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Articular cartilage maturation is the 

postnatal development process that 

adapts joint surfaces to their site-

specific biomechanical demands. 

Maturation involves gross morphological changes that occur through a process of synchronised growth and resorption of 

cartilage and generally ends at sexual maturity. The inability to induce maturation in biomaterial constructs designed for cartilage 

repair has been cited as a major cause for their failure in producing persistent cell-based repair of joint lesions. The combination 

of growth factors FGF2 and TGFb1 induces accelerated articular cartilage maturation in vitro such that many molecular and 

morphological characteristics of tissue maturation are observable. We hypothesised that experimental growth factor-induced 

maturation of immature cartilage would result in a biophysical and biochemical composition consistent with a mature phenotype. 

Using native immature and mature cartilage as reference, we observed that growth factor-treated immature cartilages displayed 

increased nano-compressive stiffness, decreased surface adhesion, decreased water content, increased collagen content and 

smoother surfaces, correlating with a convergence to the mature cartilage phenotype. Furthermore, increased gene expression 

of surface structural protein collagen type I in growth factor-treated explants compared to reference cartilages demonstrates that 

they are still in the dynamic phase of the postnatal developmental transition. These data provide a basis for understanding the 

regulation of postnatal maturation of articular cartilage and the application of growth factor-induced maturation in vitro and in 

vivo in order to repair and regenerate cartilage defects. 
Crown Copyright  2012 Published by Elsevier Ltd. All rights reserved. 

 

articular chondrocytes or mesenchymal stem cell populations into chondral 

defects [5-8]. Further complications arise as transplanted 
Repair and regeneration of articular cartilage defects presents biologists and 

bioengineers with formidable challenges. 
From the biological perspective, repair of adult cartilage is complicated in 

that this tissue is avascular, has a low cell to volume ratio and is rich in 

glycosaminoglycan containing proteoglycans producing a high negative fixed 

charge density [1]. These attributes limit active or passive cellular migration to 

the lesion site and characterise the poor intrinsic healing capacity of adult tissue 

[2]. Above a threshold defect diameter of 3e6 mm, cartilage lesions rarely heal 

spontaneously leading to progressive cartilage degeneration [3,4]. This latter 

impasse has been resolved to some extent through cell transplantation of culture 

expanded, autologous 
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1 . Introduction 

cells initially adopt an immature cartilage phenotype that appears to be subject 

to phenotypic instability [9], resulting in the inappropriate production of 

fibrocartilage or calcified tissue, both of which are to varying degrees 

deleterious to joint function [10,11]. 
From the viewpoint of a bioengineer, articular cartilage tissue engineering 

presents unique problems, namely the growth and maturation of implanted 

biomaterial constructs in an environment, theknee,where peak 

forcescanbeseven-times bodyweight [12] and where the joint can undergo an 

average of 5000 loading cycles during normal daily activities [13]. Whilst 

generation of neocartilage using autologous donor chondrocytes or stem cells 

seeded within fabricated scaffolds does frequently result in hyaline-like 

cartilage [14], there is no evidence to show that these tissues then form adult, 

mature cartilage with the bulk and interface properties consistent with the 

latter phenotype [15,16]. Hunziker (2009) has hypothesised the deficiencies 

of chondrocyte transplantation and matrix-assisted technologies in providing 

persistent cell-based repair of chondral lesions is due to an inability to induce 

the formation of functionally competent mature articular cartilage. 

0142-9612/$ e see front matter Crown Copyright  2012 Published by Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.biomaterials.2012.09.076 
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Neocartilage generated through tissue engineering has many similarities 

with foetal and immature articular cartilage. Immature cartilages are 

characterised by the relatively isotropic nature of collagen fibril structure and 

cellular organisation compared to adult cartilage. Mature cartilage has a 

pseudo-stratified structure composed of superficial, mid, deep and calcified 

zones [17,18] and the chondrocytes within each zone have specialised 

functions that homeostatically regulate bulk and/or interface properties 

[19,20]. In addition to a stratified structure, the arcade-like organisation of 

collagen fibrils and the subdivision of the extracellular matrix into 

pericellular, territorial and inter-territorial zones in mature cartilage are also 

critical factors in its ability to support physiological joint forces [21e23]. In 

terms of biochemical and biophysical properties mature cartilage is generally 

less elastic, smoother in appearance, has lower water content and higher 

collagen content with respect to wet weight than immature cartilage [1,24]. 
The developmental transformation of immature cartilage to one that is 

anisotropic in structure and adapted to site- and jointspecific function occurs 

postnatally in mammals and is stimulated by biochemical and biomechanical 

cues that, in the case of the former, some parts of which may be 

developmentally regulated [17,25]. Immature cartilage, therefore, serves as a 

transient template upon which the diversity of form and function may be 

elaborated [26]. The rate at which postnatal maturation of immature cartilage 

proceeds, to the point where there is no significant difference with mature 

cartilage varies from species to species, and is approximately two months, five 

months and 10e18 years postpartum for rabbit, horse and human cartilages, 

respectively [15,17,27]. The extended time of maturation and gradual 

adaptation of human joints to dynamic loading has clinical implications, in 

that intrinsic and extrinsic mechanisms for cartilage repair have to recapitulate 

this developmental transformation in order to generate durable repair tissue, 

especially in joints subjected to constant dynamic loading [15]. Therefore, 

understanding the mechanisms that regulate postnatal maturation is a critical 

step in advancing strategies for cell and biomaterial based therapies for 

cartilage repair. Insulin growth factor (IGF), transforming growth factor beta 

(TGFb) and fibroblast growth factor (FGF) families of cytokines are known 

to regulate chondrocyte metabolism [28]. The levels of TGFb1 and TGFb2 

rise postnally and that of IGF1 peaks at puberty indicating possible roles in 

tissue maturation [29,30]. Whilst IGF1 induces tissue growth and stimulation 

of proteoglycan deposition during in vitro culture of immature articular 

cartilage explants, it causes a reduction in tensile mechanical function, 

properties inconsistent with tissue maturation [31]. Developmental studies of 

TGFb family member levels in articular cartilage indicate that while TGFb1-

3 are expressed prior to zonal stratification, following stratification TGFb2 

and TGFb3 levels remain high whilst those of TGFb1 are much lower [32]. 

However, studies of in vitro cultured immature cartilage explants show 

exogenously added TGFb1 promotes tissue homeostasis with no overall 

change in their size, composition or biomechanical function [31]. FGF2 exerts 

opposing effects on immature cartilage, promoting mitosis and anabolism at 

low concentration (<30 ng/ml) but inhibiting the same processes at higher 

(30e300 ng/ml) concentration [33]. Combinations of factors such as FGF2 

and TGFb1 have synergistic effects on chondrocytes, repressing collagen type 

II gene expression [34], reducing the doubling time of culture expanded 

human chondrocytes and maintaining their phenotypic stability [35]. FGF2 

and TGFb1 have also been used in the tissue engineering context to 

dedifferentiate chondrocytes in order to induce cellular proliferation prior to 

using IGF1 to promote redifferentiation and growth [36]. 
Recent work has shown the combination of FGF2 (100 ng/ml) and TGFb1 

(10 ng/ml) induce precocious postnatal developmental maturation of immature 

articular cartilage in vitro [37]. The most conspicuous change within growth 

factor-treated cartilage explants is evidence of synchronised growth and 

resorption that results in thinner cartilage, mirroring morphological changes that 

occur during maturation in vivo [17,27]. Further evidence of maturation 

following growth factor treatment in cartilage explants are an increase in the ratio 

of mature to immature collagen crosslinking and developmentally encoded 

changes in extracellular distribution of proteins such as perlecan. We therefore 

hypothesised that key biophysical and biochemical properties characteristic of 

mature cartilage appear concomitantly with changes in morphology. This study 

used native immature and mature articular cartilage as references to determine if 

morphological transformation of growth factor-treated immature cartilage 

equated to biophysical and biochemical changes consistent with a transition to 

the mature phenotype. 

2. Materials and methods 

2.1. Materials 

All chemicals were purchased from Sigma (Poole, UK) unless stated. Mature (over 18 month 

old) and immature (7-day-old) cartilage from bovine steers was obtained from local abattoirs. The 

age range of the mature donors was between 18 and 28 months. 

2.2. Articular cartilage explant culture 

Articular cartilage explants were surgically removed under sterile conditions from immature 

metacarpophalangeal joints. Full depth explants were excised using a 6 mm diameter biopsy 

punches (Stiefel Laboratories Inc, NC, USA) from the medial aspect of the medial condyle of 

individual joints. Explants were placed initially in Dulbecco’s modified Eagles medium (DMEM; 

Invitrogen, Paisley, UK) and washed in the same medium to remove blood and small particulates 

due to the presence of a small amount of subchondral bone lining the basal aspect of cartilages. 

Explants were then cultured for 21 days in serum-free culture medium; DMEM (high glucose, 4.4 

g ml1), 100 mg ml1 ascorbate-2-phosphate, 50 mg ml1 gentamicin, 10 mM HEPES pH 7.5 

(Invitrogen) supplemented with 10 mg ml1 insulin, 5.5 mg ml1 transferrin, 6.7 ng ml1 selenium 

(ITS), with or without 100 ng ml1 FGF2 and 10 ng ml1 TGFb1 (Peprotech, London, UK). Explants 

cultures were placed in a humidified 5% CO2 incubator kept at 37 C and culture medium was 

changed on every third day. 

2.3. Imaging of articular cartilage 

Eight micron sections of formalin-fixed cartilage samples that had previously been processed 

for wax embedding were hydrated and stained with 1% aqueous Safranin-O for 120 s and for 1 min 

in 1% haemotoxylin. For detection of birefringence by polarised light microscopy sections were 

hydrated and pretreated with 1% w/v bovine testicular hyaluronidase in Tris-buffered saline for 1 h 

at 37 C then stained for 1 h in 0.1% Sirius red F3BA in saturated aqueous picric acid. Stained 

sections were briefly washed in 0.01N HCL, dehydrated, cleared and mounted in DPX mounting 

medium (RA Lamb, UK). For transmission electron microscopy, samples were prepared as 

previously described [37]. Sections were contrasted with uranyl acetate and lead citrate and 

examined with a JEOL 1010 transmission electron microscope equipped with a Gatan Orius 

SC1000 CCD camera. 

2.4. Biochemical analyses 

Explants were weighed wet, frozen, lyophilised, reweighed dry then assayed for sulphated 

glycosaminoglycan (sGAG) and hydroxyproline content. sGAG content was measured with the 

dimethylmethylene blue assay using explants that had been incubated for 120 min in papain 

digestion buffer, 20 mM sodium acetate pH 6.8,1 mM EDTA, 2 mM dithiothreitol & 300 mg ml1 

papain at 60 C [38]. Values of sGAG were determined against standards of shark derived 

chondroitin sulphate. Hydroxyproline content was determined by assaying acid hydrolysates of 

papain digested samples using the method of Creemers et al. (1997) [39]. 

2.5. AFM analysis 

AFM experiments were carried out with a Nanowizard II (JPK Instruments, Berlin, Germany) 

equipped with nano-positioning sensors in all three axis and closed-loop feedback for precise, 

repeatable scanning and probe positioning with sub-nanometer resolution. AFM stiffness 

measurements were based on recording the elastic modulus of the cartilage material by using the 

AFM tip as a nanoindentor. Explants were washed in Hank’s balanced salt solution for 5 min and 

then incubated in serum-free tissue culture media (DMEM). The Petri dish was then loaded onto a 

Nanowizard II Petri dish holder (JPK Instruments) platform and held at 37 C while nanoindentation 

experiments were conducted. High aspect ratio etched silicon probes, dNTP10, (Bruker) of radius 

20 nm with spring constants of 0.32 Nm1 and resonant frequency 40e75 kHz were employed. Each 

cantilever used in the study was individually calibrated, calculating the sensitivity from a reference, 

hard force curve taken from the Petri dish surface. The cantilever-specific spring constants were 

calculated using the inbuilt thermal noise method of the Nanowizard instrument. A maximum load 

force of 20 nN was found to be optimal and applied to the surface in each recorded force curve. The 

cantilever approach and retraction velocity was constant, set at 1.8 mm s1. The Poisson ratio was 

assumed to equal 0.5. Nanoindentation force experiments were conducted capturing 100 indentation 

curves in each scan area (10  10 mm) of the explant surface. These data represented the basis for 

the estimation of a sample’s adhesive properties and Young’s modulus (E) using Hertzian mechanics 

[40,41]. Manipulation of both the approach and retraction curves yields different measurements 

which were related to cell micromechanical properties and adhesion respectively. The material 

stiffness is the slope of the unloading curve at the maximum penetration depth, and, the minimum 
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of the retraction curve is the force needed to overcome the adhesion between the sample and the 

probe. The Hertz model describes the simple case of elastic deformation of two perfectly 

homogeneous smooth bodies touching under load. The Hertz model presumes the indented sample 

is extremely thick in comparison to the indentation depth. This was the case here, where the 

indentation depth at a trigger force of 20 nN was always <10% of the cartilage thickness and thus 

below Bueckle’s indentation depth limit [42]. 

2.6. Surface topography analysis 

AFM was also employed to analysis the surface topography of cartilage samples. Images of the 

surfaces were recorded using tapping mode with silicon tips. Coordinates of the surfaces were 

acquired on a scan area of 25  25 mm and 256  256 points. Surface features such as asperity heights 

and their curvature radius were calculated according to Prokopovich and Perni (2010) [43]. In brief, 

asperities are located as points on the surface whose coordinates are higher than those surrounding. 

The 2D profile of the asperity is fitted with a parabola and the curvature radius of the asperity tip is 

calculated from the parabolic equation parameters. The height and curvature radius of each asperity 

is determined and the distribution determined at the end. 

2.7. Friction testing 

The frictional coefficient of cartilage explants was assessed using a pin-on-plate tribometer, 

with phosphate-buffered saline (PBS) as a lubricant. Six millimeter diameter freshly isolated and 

cultured articular cartilage explants, were fixed onto a nylon housing using cyanoacrylate. PBS was 

applied evenly over the polished glass surface, providing an average depth of approximately 1 mm. 

The tissue was then preloaded at 0.1 MPa for 120 s prior to disc rotation to ensure consistent 

boundary lubrication as described previously with Neu et al [44]. The sliding speed was then ramped 

to 12 mm/s, before data was recorded for 15 s. Retrospective analysis to compute the mean frictional 

coefficient was then completed using MS Excel (Microsoft, Redmond, WA, USA). 

2.8. Immunofluoresence analysis of cartilage 

Cultured or freshly isolated articular cartilage explants were frozen in n-hexane cooled in a 

bath of dry ice and ethanol. Tissues were then mounted in optimal cutting temperature embedding 

medium (Thermo Scientific, Epsom, UK) and eight micron sections cut using a Bright OTF500 

cryostat (Bright Instrument Co. Ltd, Huntingdon, UK). Sections were dried and stored in foil at 20 

C until use. Tissue sections were ringed with wax pen, washed in Tris-buffered saline including 

0.1% Tween-20 (TBS/T) and then blocked in 10% goat serum for 30 min. Primary monoclonal 

antibody anti-human collagen type I (SigmaeAldrich, Poole, UK) was diluted 1:1000 in TBS/T then 

placed on sections and incubated overnight at 4 C. Sections were washed three times in TBS/T then 

incubated with a 1:100 dilution of goat antimouse FITC conjugated secondary antibodies for 1 h at 

room temperature. Sections were washed repeatedly in TBS/T then coverslipped following the 

application of an anti-bleaching reagent, Vectashield (Vectorlabs, Peterborough, UK), containing 

propidium iodide as a nuclear marker. 

2.9. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) 

Cultured or freshly isolated articular cartilage explants were frozen in n-hexane as described 

above and stored at 70 C prior to RNA extraction. Frozen explants were homogenised in the 

presence of frozen 0.5 ml TRI reagent using a mikrodismembrator U and chilled steel vessels (B. 

Braun Biotech International, Melsungen, Germany). The supernantant from the latter process was 

placed in an RNAEasy column for total RNA extraction with DNAseI digestion step (Qiagen, 

Crawley, UK). Total RNA was quantified using NanoDrop 2000 spectrophotometer (NanoDrop, 

Wilmington, USA). One microgram of total RNA was used for reverse transcription reaction using 

the GoScript kit utilizing M-MLV reverse transcriptase and random primers (Promega, 

Southampton, UK). QPCR reactions were performed using the GoTaq qPCR mastermix (Promega), 

12.5 ng cDNA and 0.3 mM forward and reverse primers. Reactions were performed on a Stratagene 

Mx3000 real-time PCR analyser (Agilent Technologies, Edinburgh, UK) with the following thermal 

cycling program; 95 C for 10 min1 cycle, 95 C 30 s, 55 C 60 s, 72 C 30 se40 cycles. Standard curves 

over the linear range of amplification were generated for all primer sets, and data was used where 

the efficiency of amplification was between 90% and 105% and the melt curves generated a single 

product. The data shown is the ratio of the concentration of the gene of interest (in nanogrammes) 

and 18S rRNA (in nanograms). The nucleotide sequences of primer sets used in this study were as 

follows; collagen type IaI forward 50 TAC GCCCCA CCA GTC ACC TGC GTA C 30 reverse 50 

GTT TCC ACA CGT CTC GGT CA 30, RSP18F 50 CAC TGG AGG CCT ACA CGC CG 30 and 

RSP18B 50 AGG CAA TTT TCC GCC GCC CA 30. 

2.10. Statistical analysis 

PASW18 (IBM, NY, USA) was used to statistically analyse these data. All datasets were 

checked for normal distribution using the ShapiroeWilk test and homogeneity of variances using 

Levene’s test prior to statistical analysis. For parametric analysis of 2 groups we used two-tailed 

Student’s paired sample t-test, and for multiple groups a one-way analysis of variance test 

(ANOVA). The Bonferroni correction factor was applied to avoid false positive results due to 

multiple testing. Where data was either not normally distributed or variances not equal non-

parametric Kruksal-Wallis and ManneWhitney U tests were used for multiple and paired 

groups, respectively. The sample size, N, of each study represents explants excised from 

individual donor animals. 

3. Results 

3.1. Growth factor-induced postnal maturation of cartilage 

In vitro culture of articular cartilage explants excised from immature 

metacarpophalangeal joints in the presence of FGF2 (100 ng ml1) and TGFb1 

(10 ng ml1) for 21 days results in profound morphological change [37]. This 

change is illustrated by tissue resorption from the deep zone resulting in a 

reduction in height of approximately 50% of growth factor-treatedexplants 

when compared to paired control explants excised from directly adjacent sites 

of the same joint and cultured in serum-free medium alone (272.5  37.8 mm 

vs 143.5  33.7 mm, respectively, P < 0.001, N ¼ 4) Fig. 1AeB. When viewed 

under polarising conditions by light microscopy, we observed changes in the 

pattern of birefringence surrounding individual chondrocytes in the surface 

zone of growth factor-treated explants when compared to control untreated 

explants where the birefringence signal was weaker and parallel to the 

immediate surface, Fig. 1CeD. An increase in birefringence occurs as a result 

of enhanced alignment or bundling of collagen fibrils [45]. High resolution 

imaging of surface chondrocytes using transmission electron microscopy 

revealed that surface zone chondrocytes in growth factor-treated cartilage, 

corresponding to those cells displaying high birefringence, possessed a 

pericellular envelope enclosing a proteoglycan rich glycocalyx. In 

comparison, surface chondrocytes of explants cultured in control, serum-free 

medium were not separated from the territorial matrix by a pericellular coat, 

Fig. 1DeE. 

3.2. Biochemical analyses of in vitro maturation 

Biochemical analyses of native and cultured articular cartilage explants 

demonstrated that growth factor-treated cartilage was significantly different 

to both immature and serum-free cultured immature cartilage explants in 

water content (P < 0.05, N ¼ 6), dry/ wet weight ratio (P < 0.05, N ¼ 6) and 

hydroxyproline content (P < 0.05, N ¼ 6), Table 1. There was no statistical 

difference in the latter values when growth factor-treated cartilage was 

compared to native mature cartilage. There was no statistical difference in 

sGAG values within native or cultured explant sample groups. 
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3.3. AFM analyses of cartilage stiffness and adhesiveness 

One key property of maturing cartilage is a progressive increase in 

material stiffness [46]. Measuring the nanoscale compressive strength of 

cartilage using AFM we observed freshly isolated mature articular cartilage 

showed an increase in the median values for Youngs’s modulus (Eind), and 

therefore a strengthening or hardening of the apical surface compared to 

immature cartilage (13.28 kPa interquartile range 2.81e35.34 versus 4.658 

kPa interquartile range 3.199e7.582, respectively, P < 0.02, N ¼ 6), Fig. 

2AeB. We also observed an increase in median nanocompressive stiffness 

between immature cartilage explants that had been cultured for 21 days with 

growth factors FGF2 and TGFb1 compared to explants cultured in serum-free 

medium (97.8 kPa interquartile range 4.82e244.4 versus 25.22 kPa 

interquartile range 3.41e49.60, respectively, P < 0.02, N ¼ 6). The elastic 

moduli values obtained for the treated samples were more variable than the 

untreated cartilage and that of the mature cartilage controls. 
Table 1 
Comparison of biochemical composition measurements of freshly isolated immature and mature 

cartilage, and, in vitro cultured (ITS) and growth factor-treated (ITSFGF2-TGFb1) immature 

articular cartilages. 

 

Fig. 1. FGF2 and TGFb1 induce potent morphological changes in immature articular cartilage during in vitro culture. Explants were taken from adjacent sites from the same joint and cultured either in 

the absence (A) or continual presence (B) of 100 ng ml1 FGF2 and 10 ng ml1 TGFb1 for 21 days in ITS containing serum-free medium. Growth factortreated explants undergo significant resorption 

resulting in the disappearance of hypertrophic chondrocytes that reside in the deep zone of immature articular cartilage (bracketed in (A)]. Bar equals 500 mm. Polarising light microscopy of picro-

sirius red stained sections of untreated (C) and growth factor-treated cartilage explants (D). The surface cartilage of growth factor treated cartilage displays extensive changes in collagen orientation 

many fibrils are anti-parallel to the surface axis (D). Also, a thin fluorescent line parallel to the surface (white arrows) delineates the lamina splendens, a collagen and lipid rich structure that is 

approximately 3 microns deep. This structure is absent in growth factor-treated cartilage. Bar equals 50 mm. Electron microscopy of surface chondrocytes (7500) in untreated (E) and growth factor-

treated (F) cartilage explants. Note the appearance of a thickened pericellular coat surrounding individual surface chondrocytes in growth factor-treated cartilage (black arrow in F) compared to untreated 

cartilage where this microanatomical unit of mature chondrocytes is absent (arrow in E). Also noteworthy is the increased collagen fibril density in growth factor-treated cartilage explants (F). (For 

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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ITS-FGF2-TGFb1 
nsd, no significant difference to control groups. 

(Na¼Signi6 for all groups,ficantly different from Immature AC.P < 0.05). b Significantly 

different from serum-free cultured (ITS) immature cartilage. 

Freshly isolated immature cartilage also exhibited significantly higher maximal 

adhesion forces than mature cartilage (1.67 nN interquartile range 0.74e3.43 

versus 0.84 nN interquartile range 0.10e2.72, P < 0.02, N ¼ 6, respectively) and 

this trend was also replicated when maximal adhesive forces of unstimulated 

immature cartilage explants were compared to growth factor-treated immature 

cartilage (1.32 nN interquartile range versus 0.98 nN interquartile range 

0.68e1.58, P < 0.02, N ¼ 6, respectively), Fig. 2C. 

3.4. Surface topography 

Examples of the surface topography examined using AFM are shown in Fig. 

3. It is evident that native mature cartilage is smoother than immature cartilage, 

similarly samples treated with growth factors appear smoother than control. 

Quantitative assessment of the surface roughness through the values of Root 

Mean Square (RRMS), defined as the standard deviation of the asperity heights, is 

presented in Table 2. These results confirm that following in vivo maturation 

cartilage become smoother (P < 0.05, N ¼ 6) as RRMS decreases; also the addition 

of growth factors results in a lower values of surface roughness than the control 

samples (P < 0.05, N ¼ 6). Furthermore, there was no difference in RRMS values 

between mature cartilage and growth factor-treated cartilage explants (P > 0.05, 

N ¼ 6), indicating as previously demonstrated for biochemical data a convergence 

in biophysical properties. 
Each asperity, beside its height, is defined by the curvature radius of the 

extremity. The distributions of such curvature radii, for each of the samples, did 

not follow a Gaussian profile (data not shown); for this reason percentile values 

are presented instead of mean and standard deviation in Table 2. Curvature radii 

of native or growth factor-induced mature cartilages are greater than those of 

control or native immature cartilages. 

3.5. Friction analysis of cartilage 

The mean equilibrium frictional coefficient of freshly isolated mature 

cartilage was significantly higher (4.6-fold) than its immature counterpart (P < 

0.01, N ¼ 4), Fig. 4. Similarly, the frictional coefficient of growth factor 

stimulated cartilage explants were also 1.6-fold higher than explants cultured in 

medium lacking growth factor (P < 0.014, N ¼ 5). Experimentally induced in 

vitro maturation caused an approximately 3-fold rise in friction coefficient (P < 

0.02, N ¼ 4) compared to freshly isolated immature cartilage. 
3.6. Collagen gene expression in cartilage 

Having observed changes in the biomechanical and frictional properties at 

the apical interface of cartilages examined in this study we investigated 

whether these differences correlated with the presence of the surface structural 

protein, collagen type I. Using fluorescence microscopy we observed a 

contraction of, and, weaker antibody labelling for collagen type I in the 

progression from native immature to mature cartilage, Fig. 5A. A relatively 

thinner, consolidated band of labelling was also evident in in vitro cultured 

control cartilage explants compared to native immature cartilage, and this 

band was noticeably more intense in growth factor stim- 
ulated immature cartilages Fig. 5A. Using qPCR analysis, we observed that 

collagen type Ia1 gene expression decreased 3.5-fold in native mature 

cartilage compared to its immature counterpart (P < 0.05, N ¼ 4). However, 

collagen type Ia1 expression levels rose 6.3-fold in growth factor stimulated 

cartilage explants compared to cartilage explants cultured in control serum-

free medium (P < 0.02, N ¼ 4), Fig. 5B, indicating active remodelling of the 

surface zone. 

4. Discussion 

One of the major impediments in designing and implementing cartilage 

repair procedures using cellular and biomaterial composites has been the 

inability to induce and/or accelerate maturation in vitro or in vivo. Immature 

articular cartilage is the template upon which biomechanical and biochemical 

cues act in adapting the tissue to joint-specific function through induction of 

morphological, structural and biomolecular heterogeneity [26]. Data from 

equine studies, has shown that structural and biochemical heterogeneity of 

joint cartilage is delayed upon exercise deprivation in immature animals [47]. 

In the latter study, Brama et al. (2002) also demonstrated that access to 

exercise after deprivation significantly delayed the appearance of tissue 

heterogeneity, and, in some collagen-related parameters was incomplete. 

Therefore, articular cartilage maturation is partly a developmentally encoded 

process, and is not recapitulated fully in more mature animals through 

biomechanical conditioning alone. These latter studies are of great 

significance because the cellular components of biomaterials composites are 

principally embryonic or adult mesenchymal stem cells that produce 

immature neocartilage when induced to differentiate. They also provide a 

rational basis to explain why, in part, matrix-assisted repair strategies 

frequently do not lead to healing of cartilage lesions and what is required to 

overcome such obstacles. 
Previous work has shown that in vitro culture of immature articular 

cartilage in the presence of FGF2 and TGFb1 growth factors induces 

morphological changes that are consistent with the postnatal developmental 

transition to tissue maturity [17,37]. These changes included a reduction in 

cartilage height of 50% through resorption of the deep/epiphyseal-derived 

zone directed by coordinated expression of matrix metalloproteinases 1, 13, 2 

and 9, and, tissue inhibitor of metalloproteinases 1e3 [37]. The decrease in 

height and the loss of hypertrophic chondrocytes correlates with observations 

in studies of postnatal maturation in the patellofemoral joints of mice and 

rabbits [17,48]. Resorption in the deep zone of growth factor-treated explants 

is balanced by growth from the surface zone driven by chondroprogenitor 

stem cells. Our current data provides quantitative evidence that in vitro growth 

factor-induced differentiation of immature articular cartilage results in 

biophysical and biochemical properties that are indistinguishable from native 

mature cartilage. 
The mean percentage water content and dry to wet weight ratio of growth 

factor-treated cartilage explants were identical to values obtained for native 

mature cartilages. As articular cartilage matures 

% water (mg)/wet 73.8  1.07 

weight (mg) 
68.7  1.67a 77.7  1.70 68.7  2.54b,a 

dry/wet 0.26  0.01 weight ratio 0.31  0.02a 0.22  0.02 0.31  0.01b,a 

hydroxyporoline1 6.65  1.02 

mg ml 
9.83  2.07nsd 5.63  0.93 8.30  0.88b 

sGAG mg ml1 54.2  3.87 49.6  9.36nsd 38.2  7.96 42.7  6.79nsd 
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where we observed an increase in the 50% interquartile range (B, C). 

there is a progressive decrease in water content [49]. With extended culture in 

vitro, in free swelling conditions, the water content of immature cartilage 

increases, however growth factortreated explants not only resisted 

accumulation of water during culture but the water content values converged 

to those found in native mature explants and were significantly less than mean 

value for native immature cartilage. [46]. Also, as articular cartilage 

maturation proceeds, the dry to wet weight ratio of tissue 

 

Fig. 2. Changes in nanoscale elasticity and adhesive properties at the apical surface of articular cartilage. Representative loadedisplacement curves for nanoindendation analysis of cartilage samples 

(A). Despite having heterogeneous surfaces [48,52], freshly isolated immature cartilage explants exhibited significantly different ranges of both elasticity (B) and adhesion (D) when compared to their 

mature tissue sample counterparts. These differences are visualised in the boxplot representation and were shown to be significant through ManneWhitney statistical analysis; P < 0.05. Similar results 

were observed for elasticity and adhesion measurements for immature growth factor-treated cartilage explants and their untreated controls (C, E). A significant (P < 0.05) increase in sample Young’s 

modulus, and therefore, stiffening of the surface was observed following growth factor treatment when compared to the untreated control samples (C). A decrease in the adhesive status of the surface 

of growth factor-treated cartilage was observed compared to the control samples, a significant lowering of the 50% interquartile range is depicted in the boxplot analysis, indicating a reduction in the 

maximum force needed to withdraw the AFM stylus from the sample surface (E). This behavioural characteristic was reversed when analysing the approach curves and sample elasticity of cartilages 
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immature (ITS) cartilages. 

increases. [49]. We observed that growth factor-treated immature cartilage had 

identical dry to wet weight ratios to mature cartilage, correlating with a significant 

increase in hydroxyproline (collagen) content in this experimental group. There 

was no difference in sGAG (proteoglycan) content between native immature and 

mature, or, control and growth factor-treated cartilages and this pattern of data is 

similar to that described by Williamson et al. (2003) who observed no significant 

difference in the sGAG content between calf and young adult articular cartilage 

from the patellarfemoral groove [49]. 
In the latter study (Williamson et al., 2003), measurements of dynamic 

modulus showed a positive correlation (r2 ¼ 0.42, P < 0.01) with collagen content. 

We used AFM to measure the nanoscale biomechanical properties of cartilages, 

where we observed that both growth factor-treated and mature cartilages were 

significantly less elastic than control and immature cartilages, respectively. For 

this study we used nanometre-sized AFM tips that have been shown previously 

by Stolz et al. (2009) to distinguish differences in nano-compressive stiffness of 

articular cartilage from femoral heads as a function of aging [48]. We observed 

that the experimental stiffness values for cultured explants were significantly 

higher than those for freshly obtained tissue. The latter increase was due to a 

reduction in glycosaminoglycan content in in vitro cultured explants compared 

to freshly isolated native cartilages that had the general effect of raising the 

observed stiffness of these samples, also noted by Stolz et al. (2009) as a 

phenomenon occurring in human cartilage during aging. There was no significant 

difference in sGAG values between native, or, cultured explants, therefore 

negating proteoglycan content as a factor for increases in nano-compressive 

stiffness within the experimental group. The nanoscale data is determined by the 

sharpness and shape of the cantilevered probe. The conical probes 

Table 2 
Surface roughness analysis using AFM of freshly isolated immature and mature, and, immature 

cartilage explants cultured either in serum-free medium (ITS) or with growth factors (ITS-FGF2-

TGFb1). 

 
RMS (mm) 0.83  0.15 0.49  0.10 0.79  0.12 0.55  0.09a,b 

25th percentile 2.04 3.12 2.29 3.02 asperity radii 

(mm) 
50th percentile 3.04 4.58 2.72 4.62 asperity radii 

(mm) 
75th percentile 4.90 9.03 4.27 8.77 asperity radii 

(mm) 

 
(N ¼ 6 for all groups, P < 0.05) a Significantly different from serum-free cultured (ITS) 

immature cartilage. b Significantly different from Immature AC. 

used in this study were 20 nm in diameter and therefore are interrogating the 

surface at the same scale as proteoglycans and collagen fibrils, which form the 

structural components of the extracellular matrix. It is hypothesised that 

differences in surface stiffness during cartilage maturation measured at the 

nanometer scale represent changes in collagen structure, particularly in the 

thickness or density of fibres that can be modulated by fibril associated 

proteoglycans such as biglycan or decorin [50e52]. 
We also observed a similar pattern of results in nanoscale adhesion 

properties, where growth factor-treated and native mature cartilages exhibited 

reduced adhesion compared to untreated and native immature cartilages. These 

data led us to investigate the surface topography of cartilages, where we 

discovered that surface roughness declines approximately 40% between freshly 

obtained immature and mature cartilage, and 31% between control and growth 

factor-treated cartilage. The RRMS values for 

 

Fig. 3. AFM surface scan of freshly isolated immature and mature, and, serum-free (ITS) and growth factor-treated (ITS-FGF2-TGFb1) cultured articular cartilages. Roughness analysis (see Table 2) 

revealed that mature cartilages and samples treated with growth factors were smoother than immature cartilages or control samples. In addition, we also note that in surface scans, mature and growth 

factor-treated (ITS-FGF2-TGFb1) cartilage appeared more fibrous and exhibit a less dimpled appearance than immature or cultured 
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Fig. 4. Biotribological analysis of articular cartilage explants. The coefficient of friction (CoF) was measured for freshly isolated immature (7-day-old) and mature (>18 month old) cartilages, and, in vitro 

cultured growth factor-treated and untreated immature cartilages (see Materials and Methods). The CoF of freshly isolated mature cartilages was significantly higher than their immature counterparts (P 

< 0.01). The CoF of growth factor-treated explants (ITS-FGF2-TGFb1) was also significantly higher than untreated (ITS) explants (P < 0.01). The CoF of growth factor-treated cartilage explants 

increased approximately 3-fold (P < 0.05) following in vitro culture for 21 days compared to freshly isolated immature tissue. 

 

Fig. 5. Collagen type I expression during in vivo and in vitro articular cartilage developmental maturation. In freshly isolated tissue, labelling for anti-collagen type I antibodies was observed as a broad 

and diffuse surface layer, and, localised as a thinner layer at the surface in mature cartilage (A). Labelling in cartilage explants cultured in serum-free (ITS) or growth factor medium (ITS-FGF2-TGFb1) 

was more intense and was consolidated at the surface of these cartilages. Bar equals 50 mm. The ratio of collagen type IaI (in nanograms) normalised to 18S rRNA (in nanograms) is shown (B). 
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Transcript levels of collagen type IaI decrease approximately 3-fold (P < 0.05) as cartilage matures, but following in vitro experimental maturation transcript levels increase approximately 6-fold 

compared to serum-free cultured (ITS) cartilage explants (P < 0.02). 
native mature and growth factor-treated immature cartilage were not significantly 

different again indicating a convergence of biophysical properties to ones that 

characterise mature articular cartilage. Furthermore, the radii of asperities 

increased in mature and growth factor-treated cartilages by approximately the 

same magnitude. These data suggest as cartilage matures, the surface becomes 

stiffer and exhibits smoothing that results in a reduction of surface adhesion 

properties. These results confirm the findings of Ghadially et al. (1978) who 

observed by scanning electron microscopy ‘innumerable humps’ in immature 

articular cartilage from feline femoral condyles that in more mature cartilage 

were reduced in number and height, thus, revealing a comparatively smoother but 

more wrinkled surface [53]. Hump-like features were also present in native and 

cultured immature cartilages, but their appearance was reduced in native mature 

and in vitro matured cartilage. 
The equilibrium frictional coefficient of native mature articular cartilage was 

greater than that of corresponding immature tissue, and, growth factor-treated 

cartilage greater than native and cultured control immature cartilages. The 

magnitude of friction is potentially influenced by factors including the surface 

roughness, stiffness and fluid pressurisation (liable to vary with cartilage 

thickness). The reduction in asperity height (i.e. roughness) would, in isolation, 

be expected to correlate with mature cartilage demonstrating a decreased 

frictional coefficient. That the frictional coefficient increases during growth 

factor-induced maturation suggests that a concomitant increase in stiffness 

reduces the tissue deformation to such an extent that a greater (frictional) force is 

required to slide one surface over the other. This reasoning may explain, in part, 

why loss of PRG4 (lubricin) expression in a mouse knockout model leads to 

precocious wear only in mature joints [51]. The cartilage thickness could have 

also influenced the lubrication and thereby the extent of friction, through the 

generation of differential fluid pressures (i.e. a greater thickness has the potential 

to generate higher fluid pressure, thereby enhanced lubrication and a lower 

frictional coefficient). Whilst the relatively thick (mature and growth factor-

treated) cartilages do indeed exhibit lower frictional coefficients, the potential 

influence of variable fluid pressurisation was controlled by the application of a 

0.1 MPa pre-load over a 120 s period, to enforce boundary lubrication conditions 

as per Neu et al. (2010) [44]. 
Collagen type I is expressed by surface chondrocytes in foetal and neonatal 

articular cartilage. As joints mature, gene expression and protein levels of 

collagen type I decline and it is progressively replaced by collagen type II [54]. 

In the metacarpophangeal joint of bovine steers we observed a contraction in the 

depth of antibody labelling for collagen type I from the surface, correlating with 

maturation of the joint surface from calf to young adult. This contraction of 

labelling was not observed in growth factor-treated cartilage explants. When 

collagen type I gene expression was quantitatively assayed, whilst there was as 

predicted a decrease in expression in native cartilage in the transition to maturity, 

we observed an approximate 6-fold increase in gene synthesis compared to 

control untreated cartilage. The function of collagen type I in surface articular 

cartilage during postnatal development has not been defined; the presence of 

collagen type I fibrils on the surface cartilage may confer greater resistance to 

shear stresses and/or may act as a template for, or initiator of, collagen type II 

quaternary structure formation. In this particular instance, increased collagen 

type I expression is a biomarker symbolising that growth factor-treated articular 

cartilage is still within a dynamic phase of maturation. 
Data from studies examining neo-natal joint development have noted that 

anisotropy e a fundamental marker of tissue maturation e is initiated from the 

surface zone of articular cartilage [55,56]. We have also noted anisotropy of 

collagen fibril orientation in surface chondrocytes of growth factor-treated 

explants. However, the classical ‘arcade-like’ orientation of collagen fibrils is not 

present in growth factor-treated cartilages. Our studies were conducted in free 

swelling condition and in the absence of dynamic loading, and therefore, even 

though the cardinal biochemical and biophysical properties indicate attainment 

of the mature cartilage state, clearly this process in incomplete. Biochemical and 

biophysical heterogeneity are induced in vivo through adaption to dynamic 

loading, and this force is probably required ultimately to condition articular 

cartilage, and orientate collagen fibrils at the macroscale, so that it can attain 

equilibrium with its immediate environment. 

5. Conclusion 

We have quantitatively demonstrated that in vitro growth factor-induced 

maturation of immature articular cartilage causes the appearance of 

biomechanical and biophysical properties characteristic of mature adult 

cartilage. This process is rapid, dynamic and begins at the surface zone of 

articular cartilage. It is acknowledged that many cartilage repair procedures 

using cell and biomaterial constructs produce cartilage that is immature in 

phenotype and therefore deficient in many respects to restore normal, long-

lasting, joint function. We hypothesise that the combined application of FGF2 

and TGFb1 to induce maturation of chondrocytes and/or synthetic constructs, 

in vitro or in vivo, should enable this fundamental stumbling block in cartilage 

repair to be overcome. 
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