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a b s t r a c t

DP-reduction F ❀ DPv(F), applied to a clause-set F and a variable v, replaces all clauses
containing v by their resolvents (on v). A basic case, where the number of clauses is
decreased (i.e., c(DPv(F)) < c(F)), is singular DP-reduction (sDP-reduction), where v must
occur in one polarity only once. For minimally unsatisfiable F ∈ MU, sDP-reduction
produces another F ′

:= DPv(F) ∈ MU with the same deficiency, that is, δ(F ′) = δ(F);
recall δ(F) = c(F) − n(F), using n(F) for the number of variables. Let sDP(F) for F ∈ MU
be the set of results of complete sDP-reduction for F ; so F ′

∈ sDP(F) fulfil F ′
∈ MU,

are nonsingular (every literal occurs at least twice), and we have δ(F ′) = δ(F). We show
that for F ∈ MU all complete reductions by sDP must have the same length, establishing
the singularity index of F . In other words, for F ′, F ′′

∈ sDP(F) we have n(F ′) = n(F ′′). In
general the elements of sDP(F) are not even (pairwise) isomorphic. Using the fundamental
characterisation by Kleine Büning, we obtain as application of the singularity index, that
we have confluence modulo isomorphism (all elements of sDP(F) are pairwise isomorphic)
in case δ(F) = 2. In general we prove that we have confluence (i.e., |sDP(F)| = 1) for
saturated F (i.e., F ∈ SMU). More generally, we show confluence modulo isomorphism
for eventually saturated F , that is, where we have sDP(F) ⊆ SMU, yielding another proof
for confluence modulo isomorphism in case of δ(F) = 2.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Minimally unsatisfiable clause-sets (‘‘MUs’’) are a fundamental form of irredundant unsatisfiable clause-sets. Regarding
the subset relation, they are the hardest examples for proof systems. A substantial amount of insight has been gained into
their structure, aswitnessed by the handbook article [12]. A related area ofMU,which gained importance in recent industrial
applications, is the study of ‘‘MUSs’’, that is minimally unsatisfiable sub-clause-sets F ′

∈ MU with F ′
⊆ F as the ‘‘cores’’ of

unsatisfiable clause-sets F ; see [27] for a recent overview. For the investigations of this paper there are two main sources:
The structure of MU (see Section 1.1), and the study of DP-reduction as started with [13,20,21]:

– A fundamental result shown there is that DP-reduction is commutative modulo subsumption (see Section 5.2 for the
precise formulation).

– Singular DP-reduction is a special case of length-reducing DP-reduction (while in general one step of DP-reduction can
yield a quadratic blow-up).

∗∗ Corresponding author. Tel.: +44 01792513369.
∗ Corresponding author.
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– Confluencemodulo isomorphismwas shown in [13] (Theorem 13, Page 52) for a combination of subsumption elimination
with special cases of length-reducing DP-reductions, namely DP-reduction in case no (non-tautological) resolvent is
possible, and singular DP-reduction in case there is only one side clause, or the main clause is of length at most 2 (see
Definition 6).

The basic questions for this paper are:

– When does singular DP-reduction, applied to MU, yield unique (non-singular) results (i.e., we have confluence)?
– And when are the results at least determined up to isomorphism (i.e., we have confluence modulo isomorphism)?

Different from the result from [13] mentioned above, we do not consider restricted versions of singular DP-reduction, but
we restrict the class of clause-sets to which singular DP-reduction is applied (namely to subclasses of MU).

The conference-version of this article is [24] (two technical mistakes in [24] are corrected here; see Theorem 41 and
remarks and Corollary 47 and remarks), while the underlying report is [25].

1.1. Investigations into the structure of MU(k)

We give now a short overview on the problem of classifying F ∈ MU in terms of the deficiency δ(F) := c(F)−n(F), that
is, the problem of characterising the levels MUδ=k := {F ∈ MU : δ(F) = k} (due to greater expressivity and generality,
we prefer this notation over MU(k)); see [12] for further information.

The field of the combinatorial study of minimally unsatisfiable clause-sets was opened by [1], showing the fundamental
insight δ(F) ≥ 1 for F ∈ MU (see [16,12] for generalisations of the underlying method, based on autarky theory). Also
SMUδ=1 was characterised there, where SMU ⊂ MU is the set of ‘‘saturated’’ minimally unsatisfiable clause-sets, which
are minimal not only w.r.t. having no superfluous clauses, but also w.r.t. that no clause can be further weakened. The
fundamental ‘‘saturation method’’ F ∈ MU ❀ F ′

∈ SMU was introduced in [7] (see Definition 1). Basic for all studies of
MU is detailed knowledge on minimal number of occurrences of a (suitable) variable (yielding a suitable splitting variable):
see [23] for the current state-of-art. The levels MUδ=k are decidable in polynomial time by [6,15]; see [31,18] for further
extensions.

‘‘Singular’’ variables v in F ∈ MU, that is, variables occurring in at least one polarity only once, play a fundamental
role — they are degenerations which (usually) need to be eliminated by singular DP-reduction. Let MU′

⊂ MU be the set
of non-singular minimally unsatisfiable clause-sets (not having singular variables), that is, the results of applying singular
DP-reduction to the elements of MU as long as possible. The fundamental problem is the characterisation of MU′

δ=k for
arbitrary k ∈ N. Up to now only k ≤ 2 has been solved: MU′

δ=1 has been determined in [4], while MU′
δ=2 = SMU′

δ=2 has
been determined in [11]. Regarding higher deficiencies, until now only (very) partial results in [32] exist. Regarding singular
minimally unsatisfiable clause-sets, also MUδ=1 is very well known (with further extensions and generalisations in [15],
and generalised to non-boolean clause-sets in [19]), while for MUδ=2 not much is known (Section 7 provides first insights).

For characterisingMU′
δ=k, we need (very) detailed insights into (arbitrary)MUδ<k, since the basicmethod to investigate

F ∈ MU′
δ=k is to split F into smaller parts from MUδ<k (usually containing singular variables). Assuming that we know

MU′
δ<k, such insights can be based on some classification of F ∈ MUδ<k obtained from the set sDP(F) ⊆ MU′

δ<k of
singular-DP-reduction results. The easiest case is when |sDP(F)| = 1 holds (confluence), the second-easiest case is where
all elements of sDP(F) are pairwise isomorphic. This is the basic motivation for the questions raised and partially solved
in this article. For general k we have no conjecture yet how the classification of MU′

δ=k could look like (besides the basic
conjecture that enumeration of the isomorphism types can be done efficiently). However for unsatisfiable hitting clause-sets
(two different clauses clash in at least one variable) we have the conjecture stated in [23], that for every k ∈ N there are
only finitely many isomorphism types in UHIT ′

δ=k (unsatisfiable non-singular hitting clause-sets of deficiency k).

1.2. Overview of results

Section 3 introduces the basic notions regarding singularity, and the basic characterisations of singular DP-reduction
on minimally unsatisfiable clause-sets are given in Section 3.2. In Section 4 we consider the question of confluence of
singular DP-reduction, with the firstmain result Theorem23, showing confluence for saturated clause-sets. Section 5mainly
considers the question of changing the order of DP-reductions without changing the result. The second main result of this
article is Theorem 63, establishing the singularity index. Section 6 is devoted to show confluence modulo isomorphism on
eventually saturated clause-sets (Theorem68), the thirdmain result. As an applicationwe determine the ‘‘types’’ of (possibly
singular) minimally unsatisfiable clause-sets of deficiency 2 via Theorem 74 (Section 7). We conclude with a collection of
open problems in Section 8.

1.3. Applications

Our current main application, which motivated the questions tackled in this paper in the first place, is the project of
classifying the structure of MUδ=k as discussed in Section 1.1: Knowing some form of invariance of singular DP-reduction
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enables one to classify also singular minimally unsatisfiable clause-sets, based on knowing the non-singular minimally
unsatisfiable clause-sets of the same deficiency; see Section 7 for a first example.

For worst-case upper bounds of SAT decision (or related problems) we sometimes need to guarantee that certain
reductionswill yield a certain decrease in someparameter, for example the number of variables, independently of the special
order of reductions — this is exactly established for singular DP-reduction by the singularity index (using Corollary 64).

Finally, singular DP-reduction is a very basic and efficient reduction, which should be helpful in the search for MUSs,
using that a singular variable for F is also singular for F ′

⊆ F with F ′
∈ MU. The basic results of Section 3 make it possible

to control the effects of singular DP-reduction, while ourmain results enable one to estimate the inherent non-determinism.
We are aware of the following algorithms using sDP-reduction:

– A special case of singular DP-reduction, namely unit-clause propagation, has been exploited in [26] for searching for
(some) MUSs; see Section 3.3 for further remarks. Note that in the general situation F ′

⊆ F with F ′
∈ MU, a singular

variable for F ′ might not be singular for F (and thus might go unnoticed) — the problem is that we do not know F ′ in
advance. However in the case of unit-clauses {x} ∈ F we can discard all clauses C ∈ F with {x} ⊂ C (for a MUS involving
{x}), and so the singular literal x will not be missed.

– DP-reduction in general has been used in theoretical as well as in practical SAT-algorithms:

1. [3] used DP-reductions for (complete) SAT solving, by unrestricted application of the reduction rule.
2. In [8] a simple case of DP-reduction, namely considering only variables occurring at most twice, has been analysed

probabilistically.
3. DP-reductions has been used in the worst-case analysis of algorithms in [13,20,21]; especially in [20,21] it is shown

that allowing reductions F ❀ DPv(F) with up to K new clauses for a fixed K , i.e., c(DPv(F)) ≤ c(F) + K , can improve
worst-case performance.

4. In [9] this DP-reduction with bounded clause-number-increase has been used at each node of the search tree of a SAT
solver, with K ≈ 200.

5. In [30] another criterion analysed in [13,20,21], namely ℓ(DPv(F)) ≤ ℓ(F) has been implemented, where ℓ(F) :=
C∈F |C | is the number of literal occurrences, this time as a free-standing preprocessor. Singular DP-reduction is not

covered by this criterion (since the number of literal-occurrences can be increased by sDP-reduction).
6. This approach has been further developed in [5], but now using K = 0, i.e., c(DPv(F)) ≤ c(F). Again a free-standing

preprocessor has been provided, called ‘‘satELite’’. Now sDP-reduction is covered.

This preprocessor was incorporated into several recent SAT solvers, most notably into the minisat solvers from version
2.0 on. So a ‘‘minimal unsatisfiable core (or subset) extraction’’ algorithm like Haifa-MUC [28], the winner of the SAT
2011 competition regarding this task, applies sDP-reduction.

2. Preliminaries

We follow the general notations and definitions as outlined in [12]. We use N = {1, 2, . . .} and N0 = N ∪ {0}.
Consider a relation R ⊆ X2 on a set X; for us typically X is the set CLS of all clause-sets or the set MU of all minimally

unsatisfiable clause-sets. We view R as a ‘‘reduction’’, and we write x ❀ x′ for (x, x′) ∈ R. Such a reduction is called
terminating if there are no infinite chains x1 ❀ x2 ❀ x3 ❀ · · · of reductions. Using the reflexive-transitive closure ❀∗

(that is, zero, one or more reductions taking place), for a terminating reduction and every x ∈ X there is at least one x′
∈ X

with x ❀∗ x′ such that there is no x′′
∈ X with x′ ❀ x′′. A terminating reduction is called confluent if this x′ is always unique.

An example for a terminating and confluent reduction-relation is unrestricted DP-reduction F ❀ DPv(F) for a clause-set
F ∈ CLS and a variable v ∈ var(F), as defined below.

2.1. Clause-sets

The (infinite) set of all variables is VA, while the set of all literals is LIT , where we identify the positive literals with
variables, that is, we assume VA ⊂ LIT . Complementation is an involution of LIT , and is denoted for literals x ∈ LIT
by x ∈ LIT . For a set L of literals we define L := {x : x ∈ L} (so LIT is the disjoint union of VA and VA). A clause C is a
finite and clash-free set of literals (i.e., C ∩ C = ∅), while a clause-set F ∈ CLS is a finite set of clauses. The empty clause is
denoted by ⊥ := ∅, and the empty clause-set is denoted by ⊤ ∈ CLS. We denote by var(F) the set of (occurring) variables,
by n(F) := |var(F)| the number of variables, by c(F) := |F | the number of clauses, and finally by δ(F) := c(F) − n(F) the
deficiency. For clause-sets F ,G we denote by F ∼= G that both clause-sets are isomorphic, that is, the variables of F can be
renamed and potentially flipped so that F is turned into G; more precisely, an isomorphism α from F to G is a bijection α on
literal-setswhich preserves complementation andwhichmaps the clauses of F precisely to the clauses ofG. The literal-degree
ldF (x) ∈ N0 of a literal x for a clause-set F is the number of clauses the literal appears in, i.e., ldF (x) := |{C ∈ F : x ∈ C}|. The
variable-degree vdF (v) ∈ N0 for a variable v is the number of clauses the variable appears in, i.e., vdF (v) := ldF (v) + ldF (v).

For a clause-set F and a variable v, byDPv(F)we denote the result of applying DP-reduction on v (‘‘DP’’ stands for ‘‘Davis-
Putnam’’, who introduced this operation in [3]), that is, removing all clauses containing v and adding all resolvents on v.
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More formally

DPv(F) := {C ∈ F : v /∈ var(C)} ∪ {C �D : C,D ∈ F , C ∩ D = {v}},

where clauses C,D are resolvable iff they clash in exactly one literal, i.e., iff |C ∩ D| = 1, while for resolvable clauses C,D
the resolvent C �D := (C ∪D) \ {x, x} for C ∩D = {x} is defined as the union minus the resolution literals (the two clashing
literals). DPv(F) is logically equivalent to the existential quantification of F by v, and thus F and DPv(F) are satisfiability-
equivalent, that is, DPv(F) is satisfiable iff F is satisfiable.

We can define SAT ⊂ CLS, the set of all satisfiable clause-set, as the set of F ∈ CLS where reduction by DPwill finally
yield ⊤, the empty clause-set, while we can define USAT = CLS \ SAT , the set of all unsatisfiable clause-set, as the set
of F ∈ CLS where reduction by DP will finally yield {⊥}, the clause-set consisting of the empty clause.

Since DP-reduction on v removes at least variable v, every sequence of applications of DP until no variables are left must
end up either in ⊤ or in {⊥}. The satisfiability-invariance of DP-reduction yields that the final result does not depend on the
choices involved, but only on the satisfiability resp. unsatisfiability of the starting clause-set. So unrestricted DP-reduction
is terminating and confluent; a proof of confluence from first principles (by combinatorial means) is achieved by Lemma 28.

2.2. Minimal unsatisfiability

The set of minimally unsatisfiable clause-sets is MU ⊂ USAT , the set of all clause-sets which are unsatisfiable,
while removal of any clause makes them satisfiable. Furthermore the set of saturated minimally unsatisfiable clause-sets is
SMU ⊂ MU, which is the set of minimally unsatisfiable clause-sets such that addition of any literal to any clause renders
them satisfiable. Note that for v ∈ var(F) with F ∈ MU we have vdF (v) ≥ 2. We recall the fact ([7] and Lemma 5.1 in [19])
that every minimally unsatisfiable clause-set F ∈ MU can be saturated, i.e., by adding literal occurrences to F we obtain
F ′

∈ SMU with var(F ′) = var(F) such that there is a bijection α : F → F ′ with C ⊆ α(C) for all C ∈ F . The details are as
follows.
Definition 1. The operation S(F, C, x) := (F \ {C}) ∪ (C ∪ {x}) ∈ CLS (adding literal x to clause C in F ) is defined if
F ∈ CLS, C ∈ F , and x is a literal with var(x) ∈ var(F) \ var(C). A saturation F ′

∈ SMU of F ∈ MU is obtained by a
sequence F = F0, . . . , Fm = F ′, m ∈ N0,

– such that for 0 ≤ i < m there are Ci, xi with Fi+1 = S(Fi, Ci, xi),
– such that for all 1 ≤ i ≤ m we have Fi /∈ SAT ,
– and such that the sequence cannot be extended.

Note that n(F ′) = n(F) and c(F ′) = c(F) holds (and thus δ(F ′) = δ(F)). More generally, a partial saturation of a clause-set
F ∈ MU is a clause-set F ′

∈ MU such that var(F ′) = var(F) and there is a bijection α : F → F ′ such that for all C ∈ F we
have C ⊆ α(C).

Please note that if for F ∈ MU and F ′
:= S(F , C, x) we have F ′ /∈ SAT , then actually F ′

∈ MU must hold. Thus if F ′ is a
saturation of F ∈ MU in the sense of Definition 1, then actually F ′ is saturated (minimally unsatisfiable).

A clause-set F is hitting if every two different clauses clash in at least one literal. The set of hitting clause-sets is denoted
by

HIT := {F ∈ CLS | ∀ C,D ∈ F , C ≠ D : C ∩ D ≠ ∅} ⊂ CLS,

the set of unsatisfiable hitting clause-sets by UHIT := HIT ∩ USAT . When interpreting F as DNF, hitting clause-sets
are known as ‘‘disjoint’’ or ‘‘orthogonal’’ DNF; see Chapter 7 in [2].
Lemma 2. We have UHIT ⊂ SMU.

Proof. For F ∈ HIT we have F ∈ USAT iff


C∈F 2−|C |
= 1 (see [12]; the point is that two clashing clauses do not have

a common falsifying assignment). Thus adding a literal to a clause of F ∈ UHIT makes F satisfiable. See Example 3 for an
example showing that the inclusion is strict. �

Example 3. Two unsatisfiable hitting clause-sets used in various examples are:

F2 := {{v1, v2}, {v1, v2}, {v1, v2}, {v2, v1}}

F3 := {{v1, v2, v3}, {v1, v2, v3}, {v1, v2}, {v2, v3}, {v3, v1}}.

And an example for an element of SMU \ UHIT is given by

F4 := {{v1, v2, v3, v4}, {v1, v2, v3, v4}, {v1, v2}, {v2, v3}, {v3, v4}, {v4, v1}}.

To see F4 ∈ SMU it is easiest to use Corollary 5.3 in [19], that is, we have to show that for all v ∈ var(F4) and ε ∈ {0, 1}
we have ⟨v → ε⟩ ∗ F4 ∈ MU. W.l.o.g. v = v1 and ε = 0, and then ⟨v → ε⟩ ∗ F4 = {{v2, v3, v4}, {v2, v3}, {v3, v4}, {v4}} ∈

MUδ=1. The clause-sets F2, F3, F4 are elements of MUδ=2; see Section 7 for more on this class.

The following (new) observation is fundamental for the study of hitting clause-sets:
Lemma 4. For F ∈ HIT and a variable v we have DPv(F) ∈ HIT .
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Proof. Consider clauses E1, E2 ∈ DPv(F), E1 ≠ E2. If E1, E2 ∈ F , then E1, E2 clash since F is hitting. The two remaining cases
are (w.l.o.g.) E1 ∈ F , E2 /∈ F and E1, E2 /∈ F . In the first case assume E2 = C2 �D2 for C2,D2 ∈ F with C2 ∩ D2 = {v}. Since
v /∈ var(E1), it clashes E1 with C2 (as well as with D2) and thus with E2. For the second case also assume E1 = C1 �D1 for
C1,D1 ∈ F with C1 ∩ D1 = {v}. We must have C1 ≠ C2 or D1 ≠ D2, yielding a clash between C1, C2 resp. D1,D2, and thus
also E1, E2 clash. �

Since DP-reduction preserves unsatisfiability, we get:

Corollary 5. For F ∈ UHIT and a variable v we have DPv(F) ∈ UHIT .

3. Singularity

In this section we present basic results on singular variables in minimally unsatisfiable clause-sets. Lemmas 9, 12 yield
basic characterisations of singular DP-reduction for minimally unsatisfiable resp. saturated minimally unsatisfiable clause-
sets (some of these results were discussed in [22]), while Lemma 14 shows that in the context ofMUunit-clause propagation
is a special case of singular DP-reduction. These results are straight-forward, but the choice of concepts is important, and
the facts are somewhat subtle.

3.1. Singular variables

Definition 6. We call a variable v singular for a clause-set F ∈ CLS if we have min(ldF (v), ldF (v)) = 1; the set of singular
variables of F is denoted by vars(F) ⊆ var(F). F is called nonsingular if F does not contain singular variables. Furthermore
we use the following notations:

– MU′
:= {F ∈ MU : vars(F) = ∅} denotes the set of nonsingular MUs;

– SMU′
:= SMU ∩ MU′ is the set of nonsingular saturated MUs;

– UHIT ′
:= UHIT ∩ SMU′

= HIT ∩ MU′ is the set of nonsingular unsatisfiable hitting clause-sets.

More precisely:

– We call variable v m-singular for F for some m ∈ N, if v is singular for F with m = vdF (v) − 1. The set of 1-singular
variables of F is denoted by var1s(F) := {v ∈ VA : ldF (v) = ldF (v) = 1} ⊆ vars(F).

– A non-1-singular variable is a variable which m-singular for some m ≥ 2 (so ‘‘non-1-singular’’ variables are singular).
The set of non-1-singular variables of F is denoted by var¬1s(F) := vars(F) \ var1s(F).

A singular literal for a singular variable v is a literal x with var(x) = v and ldF (x) = 1; if the underlying variable is 1-
singular, then some choice is applied, so that we can speak of ‘‘the’’ singular literal of a singular variable. For the singular
literal x for v we call the clause C ∈ F with x ∈ C the main clause, while the side clauses are the clauses D1, . . . ,Dm ∈ F
with x ∈ Di (here v is m-singular).

Example 7. For F := {{a}, {a, b}, {a, b}}, variable a is 2-singular, while variable b is 1-singular, and thus vars(F) = {a, b},
var1s(F) = {b} and var¬1s(F) = {a}. The main clause of a is {a}, its side clauses are {a, b}, {a, b}, while for the main clause of
b there is the choice between {a, b} and {a, b}.

In general, if F ∈ MU contains a unit-clause {x} ∈ F , then var(x) is singular for F (see Lemma 14). Thus the clause-sets
{⊥} and F2 (recall Example 3) are the two smallest elements of MU′, SMU′ and UHIT ′ regarding the number of clauses.

3.2. Singular DP-reduction

The following special application of DP-reduction appears at many places in the literature (see [11], or Appendix B in [15]
and subsequent [31,18]), and is fundamental for investigations of minimally unsatisfiable clause-sets:

Definition 8. A singular DP-reduction is a reduction F ❀ DPv(F), where v is singular for F ∈ MU. For F , F ′
∈ MU

by F
sDP
−→ F ′ we denote that F ′ is obtained from F by one step of singular DP-reduction; i.e., there is a singular variable v

for F with F ′
= DPv(F), where v is called the reduction variable. And we write F sDP

−→∗ F ′ if F ′ is obtained from F by an
arbitrary number of steps (possibly zero) of singular DP-reductions. The set of all nonsingular clause-sets obtainable from F
by singular DP-reduction is denoted by sDP(F):

sDP(F) := {F ′
∈ MU′

: F sDP
−→∗ F ′

}.

The following lemma is kind of ‘‘folklore’’, but apparently the only place where its assertions are (partially) stated in the
literature (in a more general form) is [18], Lemma 6.1 (we add here various details):

Lemma 9. Consider a clause-set F and a singular variable v for F . Then the following assertions are equivalent:
1. F is minimally unsatisfiable.
2. δ(DPv(F)) = δ(F) and DPv(F) is minimally unsatisfiable.
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3. DPv(F) is minimally unsatisfiable, and for the main clause C and the side clauses D1, . . . ,Dm for v (in F) we have:
(a) Every Di clashes with C in exactly one variable (namely in v).
(b) For 1 ≤ i ≠ j ≤ mwe have C �Di ≠ C �Dj.
(c) For E ∈ F with v /∈ var(E) and for all 1 ≤ i ≤ mwe have C �Di ≠ E.

Proof. The equivalence of Part 1 and Part 2 is a special case of Lemma 6.1 in [18]. Part 2 implies Part 3, since if one of the
conditions 3(a), 3(b) or 3(c) would not hold, then the deficiency of DPv(F) would be (strictly) smaller than F , contradicting
the assumption δ(DPv(F)) = δ(F). Finally we show that Part 3 implies Part 1. Since DPv(F) is minimally unsatisfiable, F is
unsatisfiable. Now suppose that F is not minimally unsatisfiable. So for some clause E ∈ F the clause-set F ′

:= F \ {E} is
still unsatisfiable. By condition 3(a) we know that C �Di must be in DPv(F) for all i ∈ {1, . . . ,m}. Thus clause E cannot be
the main clause C , and if m = 1, then E cannot be the side clause neither. So v is still a singular variable in F ′. Since DPv(F)
is minimally unsatisfiable, while we have DPv(F ′) ⊆ DPv(F), we obtain DPv(F ′) = DPv(F), that is, either E is one of the side
clauses and its resolvent with C was obtained by some other resolution or was already present, or E does not contain v, and
thus E must be a resolvent. In any case we get a contradiction with one of 3(b) or 3(c). �

Corollary 10. If F ∈ MU and v is a singular variable of F , then also DPv(F) ∈ MU, where δ(DPv(F)) = δ(F). So the classes
MUδ=k for k ∈ N are stable under singular DP-reduction.

Corollary 11. Consider F ∈ MU and a singular variable v with singular literal x, withmain clause C and side clauses D1, . . . ,Dm.
Then adding C \ {x} to Di for all i ∈ {1, . . . ,m} is a partial saturation of F (recall Definition 1).

Proof. Let F ′ be obtained from F by replacing the clauses Di by the clauses Di ∪ (C \ {x}) for each i ∈ {1, . . . ,m} (note
that by Lemma 9, Part 3(a), the literal-sets Di ∪ (C \ {x}) are clash-free and thus indeed clauses). By Lemma 9 we know
that DPv(F) ∈ MU holds. Now DPv(F ′) = DPv(F), and so in order to show that F ′

∈ MU, we need to show that the three
conditions of Part 3 of Lemma9 hold. Condition 3(a) holds by definition. And conditions 3(b), 3(c) follow from the fact (which
was already used for DPv(F ′) = DPv(F)), that the changed clauses Di yield the same resolvents with clause C . �

Lemma 9 can be strengthened for saturated F by requiring special conditions for the occurrences of the singular variable.

Lemma 12. Consider a clause-set F and a singular variable v for F . For the singular literal x for v consider the main clause C and
the side clauses D1, . . .Dm ∈ F . Let C ′

:= C \ {x} and D′
i := Di \ {x}. The following assertions are equivalent:

1. F is saturated minimally unsatisfiable.
2. The following three conditions hold:
(a) DPv(F) is saturated minimally unsatisfiable;
(b) C ′

=
m

i=1 D
′
i;

(c) for every E ∈ F with v /∈ var(E) we have C ′
⊈ E.

Note that conditions 2(b), 2(c) together imply the condition that for E ∈ F we have C ′
⊆ E if and only if v ∈ var(E) holds.

Proof. First assume that F is saturated minimally unsatisfiable. If there would be E ∈ F with v /∈ var(E) and C ′
⊆ E, then

for F ′
:= S(F , E, v) we had DPv(F ′) = DPv(F), and thus F ′ would be unsatisfiable, contradicting saturatedness of F . We

have C ′
⊆

m
i=1 D

′
i , since if there were a literal y ∈ C ′ and y /∈ D′

i for some i, then DPv(S(F ,Di, y)) = DPv(F). And we have
C ′

⊇
m

i=1 D
′
i , since if there were a literal y contained in all D′

i , but not in C ′, then DPv(S(F , C, y)) = DPv(F).
By Lemma 9 we know that DPv(F) is minimally unsatisfiable, and that all resolutions are carried out, with no contraction

due to coinciding resolvents or coincidence of a resolvent with an existing clause. Assume that DPv(F) is not saturated, that
is, there is a clause E and a literal ywith G := S(DPv(F), E, y) ∈ USAT . If E ∈ F then DPv(S(F , E, y)) = G ∈ USAT , and so
there is some 1 ≤ i ≤ m with E = C �Di. But now DPv(S(F ,Di, y)) = G, yielding a contradiction.

Now we consider the opposite direction, that is, we assume that C ′
=

m
i=1 D

′
i , that DPv(F) is saturated minimally

unsatisfiable, and that C ′ is contained in some clause of F iff this clause contains the variable v. First we establish the three
conditions from Lemma 9, Part 3. Since clauses are clash-free, C ′ has no conflict with any D′

i , and thus the clash-freeness-
condition is fulfilled. If we had C �Di = C �Dj for i ≠ j, then w.l.o.g. there must be a literal y ∈ C ′ with y ∈ D′

i and y /∈ D′
j ,

which is impossible since C ′ contains only literals which are common to all side clauses. Finally, since all resolvents C �Di
subsume the parent clause Di, by theminimal unsatisfiability of F also Condition 3(c) is fulfilled. So we have established that
F is minimally unsatisfiable.

Assume that F is not saturated, that is, there exists a clause E ∈ F and a literal y with G := S(F , E, y) ∈ MU. Let
F ′

:= DPv(F) and G′
:= DPv(G) (note G′

∈ USAT , and that F ′
∈ SMU by assumption). Our strategy is to derive a

contradiction by showing that literal occurrences can be added to F ′ in such a way that G′ is obtained, contradicting that F ′

is saturated.
First consider E /∈ {C} ∪ {Di}1≤i≤m. If var(y) ≠ v, then G′

= S(F ′, E, y). If y = v, then G′
= S(F ′, {E}, C ′)

(using Condition 2(c)). It remains the case y = v, but this case is impossible since then for all 1 ≤ i ≤ m we have
C �Di = D′

i ⊆ (E ∪ {v}) �Di = E ∪ D′
i , and thus DPv(G) would be satisfiability equivalent to DPv(G \ {E ∪ {v}}), whence G

would not be minimally unsatisfiable.



76 O. Kullmann, X. Zhao / Theoretical Computer Science 492 (2013) 70–87

So we have E ∈ {C} ∪ {Di}1≤i≤m, i.e., v ∈ var(C). If E = C , then G′
= S(F ′, {D′

i}1≤i≤m, y), using that C ′ is the intersection
all the D′

i , and thus at least one D′
i does not contain y. And if E = Ci for some i, then G′

= S(F ′,D′
i, y). �

Corollary 13. The class SMU is stable under singular DP-reduction.

3.3. Unit-clauses

In this subsection we explore the observation that unit-clause propagation for minimally unsatisfiable clause-sets is
a special case of singular DP-reduction. First we show that unit-clauses in minimally unsatisfiable clause-sets can be
considered as special cases of singular variables in the following sense:

Lemma 14. Consider F ∈ MU.

1. If v is singular for F and occurs in every clause of F (positively or negatively), then we have {v} ∈ F or {v} ∈ F .
2. If {x} ∈ F for some literal x, then v := var(x) is singular in F (with ldF (x) = 1). If here F is saturated, then v must occur in

every clause of F .

Proof. For Part 1 consider a main clause C for v, and assume w.l.o.g. v ∈ C . Since every other clause D ∈ F \ {C} contains
v, while C has exactly one clash with D by Lemma 9, Part 3(a), literals in C \ {v} are pure in F , and thus there cannot be any
(that is, C = {v} holds), since F is minimally unsatisfiable. For Part 2 we first observe that every other clause of F containing
x would be subsumed by {x}, which is impossible since F is minimally unsatisfiable. If F is saturated, then every clause
D ∈ F \ {{x}} must contain x by Lemma 12, Part 2(c). �

So nonsingular minimally unsatisfiable clause-sets do not contain unit-clauses.

Example 15. Some examples illustrating the relation between unit-clauses and singular variables for MU:

1. From F2 = {{v1, v2}, {v1, v2}, {v1, v2}, {v2, v1}} ∈ UHIT ′
δ=2 (recall Example 3) we obtain, using ‘‘inverse unit-clause

elimination’’:
(a) {{x}, {v1, v2, x}, {v1, v2, x}, {v1, v2, x}, {v2, v1, x}} ∈ UHITδ=2
(b) {{x}, {v1, v2, x}, {v1, v2, x}, {v1, v2, x}, {v2, v1}} ∈ MUδ=2 \ SMUδ=2.

2. {{a, b}, {a, b}, {a, c}, {a, c}} ∈ UHITδ=1 contains the two singular variables b, c , while not containing a unit-clause.

If F ∈ MUδ=k contains a unit-clause {x} ∈ F , then we can apply singular DP-reduction for the underlying variable of x, and
the result DPvar(x)(F) ∈ MUδ=k is the same as the result of the usual unit-clause elimination for {x} (setting x to true, and
simplifying accordingly). We now consider the case where repeated unit-clause elimination, i.e., unit-clause propagation,
yields the empty clause.

In [4] it has been shown that for minimally unsatisfiable clause-sets F ∈ MU the following properties are equivalent:

1. F can be reduced by sDP to {⊥}, i.e., F sDP
−→∗ {⊥}.

2. All sDP-reductions of F end with {⊥}, i.e., sDP(F) = {⊥}.
3. δ(F) = 1.

Let r1 : CLS → CLS denote unit-clause propagation, that is, r1(F) := {⊥} if ⊥ ∈ F , r1(F) := F if all clauses of F have
length at least two, and otherwise r1(F) := r1(⟨x → 1⟩ ∗ F) for {x} ∈ F , where ⟨x → 1⟩ ∗ F means setting literal x to true,
i.e., removing clauses containing x, and removing literal x from the remaining clauses (see [14,17] for a proof of confluence,
i.e., independence of the choice of the unit-clauses {x}, and for generalisations). So, if for F ∈ MU we have r1(F) = {⊥},
then we know F ∈ MUδ=1. Now it is well-known (first shown in [10]) that for F ∈ CLS we have r1(F) = {⊥} iff there
is F ′

⊆ F with F ′
∈ MU ∩ RHO, where RHO is the class of renamable (or ‘‘hidden’’) Horn clause-sets, that is, we have

F ′
∈ RHO iff there is a Horn clause-set F ′′

∈ HO with F ′ ∼= F ′′, where HO := {F ∈ CLS | ∀ C ∈ F : |C ∩ VA| ≤ 1} (each
clause contains at most one positive literal). Altogether follows the following well-known characterisation:

Lemma 16. For F ∈ MU holds r1(F) = {⊥} iff F ∈ MUδ=1 ∩ RHO.

Proof. If for F ∈ MU holds r1(F) = {⊥}, then F ∈ RHO by [10], while F ∈ MUδ=1 by [4] and Lemma 14. And if F ∈ RHO
holds (for arbitrary F ∈ USAT ), then r1(F) = {⊥} by [10]. �

If for a clause-set F ∈ CLS we have r1(F) = {⊥}, then by Lemma 16 there is F ′
⊆ F with F ′

∈ MUδ=1∩RHO. Construction
of such F ′ is performed in [26]. In [26] also failed-literal elimination is discussed, i.e., the case r2(F) = {⊥} (see [14,17]),
where r2 : CLS → CLS is defined as r2(F) := r2(⟨x → 1⟩ ∗ F) for a literal xwith r1(⟨x → 0⟩ ∗ F) = {⊥}, while otherwise
r2(F) := F .

Example 17. The following examples show that r2 and sDP-reduction are incomparable regarding derivation of a
contradiction:

1. F2 ∈ UHIT ′
δ=2 (recall Example 3) has r2(F2) = {⊥}.

2. F :={{a, b, c}, {a, b, c}, {a, b, d}, {a, b, d}, {a, e, f }, {a, e, f }, {a, e, g}, {a, e, g}} fulfils F ∈ UHITδ=1, while r2(F) = F (all
clauses of F have length 3).
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4. Confluence of singular DP-reduction

In this section we introduce the question of confluence of singular DP-reduction. In Section 4.1 we define ‘‘confluence’’
and ‘‘confluence modulo isomorphism’’, and discuss basic examples. In Section 4.2 we obtain our first major result, namely
confluence for SMU (Theorem 23).

4.1. The question of confluence

Definition 18. Let CF MU be the set of F ∈ MU where singular DP-reduction is confluent, and let CF IMU be the set
of F ∈ MU where singular DP-reduction is confluent modulo isomorphism:

CF MU := {F ∈ MU | |sDP(F)| = 1}
CF IMU := {F ∈ MU | ∀ F ′, F ′′

∈ sDP(F) : F ′ ∼= F ′′
}.

Example 19. Examples illustrating CF MU ⊂ CF IMU ⊂ MU:

1. In [4] it is shown that every F ∈ MUδ=1 contains a 1-singular variable (see [15,23] for further generalisations). Thus by
Corollary 10 we get that singular DP-reduction on MUδ=1 must end in {{⊥}}, and we have MU′

δ=1 = {{⊥}}. It follows
MUδ=1 ⊆ CF MU.

2. We now show MUδ=2 ⊈ CF MU. Let F ∈ MUδ=2 be obtained from F2 (recall Example 3) by ‘‘inverse singular DP-
reduction’’, adding a new singular variable v and replacing the two clause {v1, v2}, {v2, v1} ∈ F2 by the three clauses
{v, v1}, {v, v2}, {v, v2}, obtaining F (the other two clauses in F are {v1, v2}, {v1, v2}):

F =


{v, v1}, {v, v2}, {v, v2}, {v1, v2}, {v1, v2}

.

Singular DP-reduction on v yields F2 (and thus by Lemma 9 we get indeed F ∈ MUδ=2). The second singular variable
of F is v1, and sDP-reduction on v1 yields F ′

:= {{v, v2}, {v, v2}, {v, v2}, {v, v2}}, where F ′
≠ F2. Note however that we

have F ′ ∼= F2 (since F ′ consists of all binary clauses over the variables v, v2), and in Theorem 74 we will indeed see that
we have MUδ=2 ⊆ CF IMU.

3. We show MUδ=3 ⊈ CF IMU by constructing F ∈ MUδ=3 with sDP(F) = {F1, F2} where F1 ≁= F2. Let G1 := F2, and
let G2 be the variable-disjoint copy of G1 obtained by replacing variables v1, v2 with v′

1, v
′
2. Let w be a new variable, and

obtain F1 by ‘‘full gluing’’ of G1,G2 on w, that is, add literal w to all clauses of G1, add literal w to all clauses of G2, and let
F1 be the union of these two clause-sets:

F1 =


{w, v1, v2}, {w, v1, v2}, {w, v1, v2}, {w, v1, v2}, {w, v′

1, v
′

2}, {w, v′

1, v
′
2}, {w, v′

1, v
′

2}, {w, v′
1, v

′
2}


.

We have F1 ∈ UHIT ′
δ=3. We obtain F from F1 by inverse singular DP-reduction, adding a new (singular) variable v, and

replacing the two clauses {w, v1, v2}, {w, v1, v2} by the three clauses {v, w, v1}, {v, v2}, {v, w, v2}:

F =


{v, w, v1}, {v, v2}, {v, w, v2}, {w, v1, v2}, {w, v1, v2}, {w, v′

1, v
′

2}, {w, v′

1, v
′
2}, {w, v′

1, v
′

2}, {w, v′
1, v

′
2}


.

Singular DP-reduction on v yields F1, and thus F ∈ MUδ=3. The second singular variable of F is v1, and sDP-reduction
on v1 yields a clause-set F2 containing one binary clause (since we left out w in the replacement-clause {v, v2}). Since all
clauses in F1 have length 3, we see F2 ≁= F1.

4.2. Confluence on saturated MU

Definition 20. For clause-sets F ,Gwe write F ⊆
→ G if for all C ∈ F there is D ∈ Gwith C ⊆ D.

If F ⊆
→ G, then we say that ‘‘F is a subset of G mod(ulo) supersets’’. ⊆→ is a quasi-order on arbitrary clause-sets and a

partial order on subsumption-free clause-sets, and thus⊆
→ is a partial order on MU. The minimal element of⊆→ on CLS

is⊤, theminimal element onMU is {⊥}. Nowwe show that ‘‘nonsingular saturated patterns’’ are not destroyed by singular
DP-reduction:

Lemma 21. Consider F0, F , F ′
∈ MU with F sDP

−→∗ F ′.

1. If F0 is nonsingular, then F0 ⊆
→ F ⇒ F0 ⊆

→ F ′.
2. If F0, F , F ′

∈ SMU, then F0 ⊆
→ F ′

⇒ F0 ⊆
→ F .

Proof. W.l.o.g. we can assume for both parts that F ′
= DPv(F) for a singular variable v of F . Part 1 follows from the facts

that v /∈ var(F0) due to the nonsingularity of F0, and that due to the minimal unsatisfiability of F no clause gets lost by an
application of singular DP-reduction. For Part 2 assume ldF (v) = 1. Then the assertion follows from the fact, that due to the
saturatedness of F we have for the clause C ∈ F with v ∈ C and for every clause D ∈ F with v ∈ D that C \ {v} ⊆ D \ {v}. �

Example 22. Illustrating the conditions of Lemma 21:

1. An example showing that in Part 1 nonsingularity of F0 is needed, is given trivially by F = F0 = {{v}, {v}}.
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2. While an example for Part 2 with F ∈ MU \ SMU and F0 ⊈
→ F is given by F0 = F ′

= F3 (recall Example 3) and

F = {{v1, v2, v3}, {v1, v2, v}, {v, v3}, {v1, v2}, {v2, v3}, {v3, v1}}.

Theorem 23. SMU ⊂ CF MU.

Proof. Consider F ∈ SMU and two nonsingular F ′, F ′′
∈ SMUwith F sDP

−→∗ F ′ and F sDP
−→∗ F ′′. From F ′

⊆
→ F ′ and F sDP

−→∗ F ′

by Lemma 21, Part 2 we get F ′
⊆

→ F , and then by Part 1 we get F ′
⊆

→ F ′′; in the same way we obtain F ′′
⊆

→ F ′ and thus
F ′

= F ′′. �

5. Permutations of sequences of DP-reductions

This section contains central technical results on (iterated) singular DP-reduction. The basic observations are collected
in Section 5.1, studying how literal degrees change under sDP-reductions. It follows an interlude on iterated general DP-
reduction in Section 5.2, stating ‘‘commutativitymodulo subsumption’’ andderiving the basic fact in Corollary 30, that in case
a sequence of DP-reductions as well as some permutation both yieldminimally unsatisfiable clause-sets, then actually these
MUs are the same. In Section 5.3 then conclusions for singular DP-reductions are drawn, obtaining various conditions under
which sDP-reductions can be permuted without changing the final result. A good overview on all possible sDP-reductions
is obtained in Section 5.4 in case no 1-singular variables are present. In Section 5.5 we introduce the ‘‘singularity index’’,
the minimal length of a maximal sDP-reduction sequence. Our second major result is Theorem 63, showing that in fact all
maximal sDP-reduction-sequences have the same length.

5.1. Monitoring literal degrees under singular DP-reductions

First we analyse the changes for literal-degrees after one step of sDP-reduction.

Lemma 24. Consider F ∈ MU and an m-singular variable v (m ∈ N). Let C be the main clause, and let D1, . . . ,Dm be the side
clauses; and let F ′

:= DPv(F). Consider a literal x ∈ LIT ; the task is to compare ldF (x) and ldF ′(x).
1. If var(x) ≠ v and x /∈ C, then ldF ′(x) = ldF (x).
2. If var(x) = v, then ldF (x) + ldF (x) = m + 1, while ldF ′(x) = ldF ′(x) = 0.

For the remaining items we assume var(x) ≠ v and x ∈ C.
Let p := |{i ∈ {1, . . . ,m} : x /∈ Di}| ∈ {0, . . . ,m}.

3. ldF ′(x) = ldF (x) − 1 + p.
4. max(m, ldF (x) − 1) ≤ ldF ′(x) ≤ ldF (x) − 1 + m.
5. If m = 1, then ldF ′(x) ≤ ldF (x).
6. We have ldF ′(x) > ldF (x) iff p ≥ 2.
7. The following conditions are equivalent:
(a) ldF ′(x) = ldF (x) − 1.
(b) ldF ′(x) < ldF (x).
(c) x ∈ C ∩ D1 ∩ · · · ∩ Dm.
(d) var(x) ∈ var(C) ∩ var(D1) ∩ · · · ∩ var(Dm).

8. If ldF ′(x) < ldF (x), then ldF ′(x) = ldF (x) − 1 ≥ m.

Proof. Parts 1–3 follow by definition, Parts 4, 6 follows by Part 3, Part 5 follows by Part 4. Part 7 follows by Parts 1–4 and
the observation, that if x ∈ C , then x /∈ D1 ∪ · · · ∪ Dm (due to F ∈ MU). Part 8 follows by Part 7. �

We get that singular variables can only be created for 1-singular DP-reduction, while singular variables can only be
destroyed for non-1-singular DP-reductions; the details are as follows:

Corollary 25. Consider F ∈ MU and an m-singular variable v for F (m ∈ N), and let F ′
:= DPv(F).

1. (a) If m ≥ 2, then vars(F ′) ⊆ vars(F) with var1s(F ′) ⊆ var1s(F).
(b) If m = 1 then var1s(F ′) \ var1s(F) ⊆ var¬1s(F).

2. (a) If m = 1, then vars(F) \ {v} ⊆ vars(F ′) with var1s(F) \ {v} ⊆ var1s(F ′).
(b) If m ≥ 2 then vars(F) \ vars(F ′) ⊆ var¬1s(F).

Proof. We use Lemma 24 as follows: Part 1(a) follows by Part 8 (if a literal degree decreased, then it is at leastm ≥ 2). Part
1(b) follows by Part 7 (it cannot be that the degrees of a literal and its complement decrease at the same time). Part 2(a)
follows by Part 5. And Part 2(b) follows by Part 6 (it cannot be that the degrees of a literal and its complement increase at
the same time). �

For saturated clause-sets, singular DP-reduction cannot increase literal degrees:

Corollary 26. Consider F ∈ SMU and a singular variable v; let F ′
:= DPv(F).

1. For all literals x holds ldF ′(x) ≤ ldF (x).
2. Thus if w ≠ v is a singular variable for F , then w is also singular for F ′.

Proof. By Lemma 12 we get in the situation of Lemma 24, Part 6, that p = 0 must hold. �
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5.2. Iterated DP-reduction

Definition 27. Consider F ∈ CLS and a sequence v1, . . . , vn of variables for n ∈ N0. Then

DPv1,...,vn(F) :=


F if n = 0
DPvn(DPv1,...,vn−1(F)) if n > 0.

Thus in ‘‘DPv1,...,vn ’’ DP-reduction is performed in order v1, . . . , vn. We have var(DPv1,...,vn(F)) ⊆ var(F)\{v1, . . . , vn}. In [20]
(Lemma 7.4, page 33) as well as in [21] (Lemma 7.6, page 27) the following fundamental result on iterated DP-reduction is
shown: If performing subsumption-elimination at the end, then iterated DP-reduction does not depend on the order of the
variables, while additionally performing subsumption-elimination inbetween has no influence. More precisely:

Lemma 28. Let rS : CLS → CLS be subsumption-elimination, that is, rS(F) is the set of C ∈ F which are minimal in F w.r.t.
the subset-relation. And for n ∈ N0 let Sn be the set of permutations of {1, . . . , n}. Then we have the following operator-equalities
for all variable-sequences v1, . . . , vn ∈ VA (n ∈ N0):

1. rS ◦DPv1,...,vn = rS ◦DPv1,...,vn ◦ rS.
2. For all π ∈ Sn we have rS ◦DPv1,...,vn = rS ◦DPvπ(1),...,vπ(n) .

Definition 29. Consider F ∈ CLS and v1, . . . , vn ∈ VA (n ∈ N0). Then a permutation π ∈ Sn is called equality-preserving
for F and v1, . . . , vn (for short: ‘‘eq-preserving’’), if we have DPv1,...,vn(F) = DPπ(v1),...,π(vn)(F). The set of all eq-preserving
π ∈ Sn is denoted by eqp(F, (v1, . . . , vn)) ⊆ Sn.

Note that if var(F) ⊆ {v1, . . . , vn}, i.e., all variables are included in the DP-reduction, then eqp(F , (v1, . . . , vn)) = Sn
(every DP-reduction for these variables will end in either ⊤, if F ∈ SAT , or else {⊥}). We can now show the fundamental
characterisation of equality-preserving permutations in case of minimal unsatisfiability:

Corollary 30. Consider F ∈ CLS and variables v1, . . . , vn (n ∈ N0) such that DPv1,...,vn(F) ∈ MU. Then we have for π ∈ Sn:

π ∈ eqp(F , (v1, . . . , vn)) ⇔ DPvπ(1),...,vπ(n)(F) ∈ MU.

Proof. The direction from left to right follows by assumption. For the direction from right to left let F ′
:= DPv1,...,vn(F) and

F ′′
:= DPvπ(1),...,vπ(n)(F). Assume that F ′′

∈ MU holds. By Lemma 28 we have rS(F ′) = rS(F ′′), and thus F ′
= F ′′, since

minimally unsatisfiable clause-sets do not contain subsumptions. �

Since hitting clause-sets do not contain subsumptions, by Lemma 4 we obtain:

Corollary 31. For clause-sets F ∈ HIT and variables v1, . . . , vn (n ∈ N0) we have eqp(F , (v1, . . . , vn)) = Sn.

5.3. Iterated sDP-reduction via singular tuples

Generalising Definition 6 we consider ‘‘singular tuples’’:

Definition 32. Consider F ∈ MU. A tuple v = (v1, . . . , vn) of variables (n ∈ N0) is called singular for F if for all
i ∈ {1, . . . , n} we have that vi is singular for DPv1,...,vi−1(F). Note that for a singular tuple (v1, . . . , vn) all variables must
be different. We call variable vi (i ∈ {1, . . . , n})m-singular (m ∈ N) for v and F , if vi ism-singular for DPv1,...,vi−1(F). And the
singularity-degree tuple of v w.r.t. F is the tuple (m1, . . . ,mn) of natural numbers such that vi is mi-singular for v and F .

Example 33. Consider F := {{a}, {a, b}, {a, b}} (recall Example 7). There are 5 singular tuples for F , namely
(), (a), (b), (a, b), (b, a). Considering v := (a, b), variable a is 2-singular for v and F , and b is 1-singular for v and F , and thus
its singularity-degree sequence is (2, 1), while considering v ′

:= (b, a), both a and b are 1-singular for v ′ and F , and thus
the singularity-degree sequence is (1, 1).

For the understanding of sDP-reduction of F ∈ MU, understanding the set of singular tuples for F is an important task. Two
basic properties are:

1. F has only the empty singular tuple iff F is nonsingular.
2. If (v1, . . . , vn) is a singular tuple for F , then for all i ∈ {0, . . . , n} the tuple (v1, . . . , vi) is also singular for F .

Definition 34. Consider F ∈ MU and a singular tuple (v1, . . . , vn) for F . A permutation π ∈ Sn is called singularity-
preserving for F and (v1, . . . , vn) (for short: ‘‘s-preserving’’), if also (vπ(1), . . . , vπ(n)) is singular for F . The set of all s-
preserving π ∈ Sn is denoted by sp(F, (v1, . . . , vn)) ⊆ Sn.

By Corollary 30 we obtain the fundamental lemma, showing that singularity-preservation implies equality-preservation:

Lemma 35. For F ∈ MU and a singular tuple v we have sp(F , v) ⊆ eqp(F , v).

Thus singular tuples with the same variables yield the same reduction-result:
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Corollary 36. Consider two singular tuples (v1, . . . , vn), (v
′
1, . . . , v

′
n) for F ∈ MU. If {v1, . . . , vn} = {v′

1, . . . , v
′
n}, then

DPv1,...,vn(F) = DPv′
1,...,v

′
n
(F).

Preparing our results on singularity-preserving permutations, we consider first ‘‘homogeneous’’ singular pairs in the
following two (easy) lemmas.

Lemma 37. Consider F ∈ MU and two different non-1-singular variables v, w for F . Let C be the main clause for v, and let D be
the main clause for w. There are precisely two cases now:

1. If C = D, then w /∈ vars(DPv(F)) and v /∈ vars(DPw(F)).
2. If C ≠ D, then w ∈ var¬1s(DPv(F)) and v ∈ var¬1s(DPw(F)).

Proof. Part 1 follows by Lemma 24, Part 4, and Part 2 follows by Part 8 of that lemma (to see that the complements occur
at least twice after the DP-reductions). �

Example 38. We illustrate the two cases of Lemma 37:

1. Let F := {{v, w}, {v, a}, {v, a}, {w, b}, {w, b}} ∈ MUδ=1. Then C = D = {v, w}, and w is not singular in DPv(F) =

{{w, a}, {w, a}, {w, b}, {w, b}}, and v is not singular in DPw(F) = {{v, a}, {v, a}, {v, b}, {v, b}}.
2. Let F := {{v, a}, {w, a}, {v, a, b}, {v, a, b}, {w, a, b}, {w, a, b}} ∈ SMUδ=2. Then C = {v, a} ≠ D = {w, a},

and now w is singular in DPv(F) = {{w, a}, {a, b}, {a, b}, {w, a, b}, {w, a, b}}, and v is singular in DPw(F) =

{{v, a}, {v, a, b}, {v, a, b}, {a, b}, {a, b}}.

Lemma 39. Consider F ∈ MU and a singular tuple (v, w) for F with singularity-degree tuple (1, 1). Let C,D ∈ F be the two
occurrences of v.

1. Assume w is not 1-singular in F :
(a) Then w is 2-singular in F . Let E0 ∈ F be the main-clause of w, and let E1, E2 ∈ F be the two side-clauses.
(b) We have {E1, E2} = {C,D}.
(c) So v is 1-singular in DPw(F).
(d) Thus (w, v) is a singular tuple with singularity-degree tuple (2, 1).

2. Otherwise w is 1-singular in F .
(a) v is 1-singular in DPw(F).
(b) Thus (w, v) is a singular tuple with singularity-degree tuple (1, 1).
(c) Let E1, E2 be the two occurrences of w in F : |{C,D} ∩ {E1, E2}| ≤ 1.

Proof. For Part 1 we use Lemma 24, Part 7, and we see that w is 2-singular for F (sDP-reduction can only reduce literal-
degrees by one), and the complement of the singular literal ofw must occur in all occurrences of variable v; we also see that
DP-reduction on w does not change the degree of v. For Part 2 we use Corollary 25, Part 2(a), together we the fact that the
occurrences of two 1-singular variables cannot completely coincide, since then we had more than one clash between the
main clause and the side clause (see Lemma 9, Part 3(a)). �

Example 40. We illustrate the two cases of Lemma 39:

1. Let F := {{v, w}, {v, w}, {w}} ∈ SMUδ=1, with DPv(F) = {{w}, {w}}. Then {C,D} = {{v, w}, {v, w}}, and E0 = {w} and
{E1, E2} = {C,D}, where DPw(F) = {{v}, {v}}.

2. We give examples for both cases of |{C,D} ∩ {E1, E2}| ∈ {0, 1}:
(a) Let F := {{v, a}, {v, a}, {w, a}, {w, a}} ∈ SMUδ=1. Then DPv(F) = {{a}, {w, a}, {w, a}} and DPw(F) =

{{v, a}, {v, a}, {a}}, where {C,D} = {{v, a}, {v, a}} and {E1, E2} = {{w, a}, {w, a}}.
(b) Let F := {{v}, {v, w}, {w}} ∈ MUδ=1. Then DPv(F) = {{w}, {w}} and DPw(F) = {{v}, {v}}, where {C,D} =

{{v}, {v, w}} and {E1, E2} = {{v, w}, {w}}.

Nowwe are ready to show the central ‘‘exchange theorem’’, characterising s-preserving neighbour-exchanges (recall that
every permutation is a composition of neighbour-exchanges): The gist of Theorem 41 is that in most cases neighbours in a
singular tuple can be exchanged safely (i.e., s-preserving), except of the cases where a 1-singular DP-reduction is followed
by a non-1-singular DP-reduction (Case 3(b)).

Theorem 41. Consider F ∈ MU and a singular tuple v = (v1, . . . , vn) with n ≥ 2, and let (m1, . . . ,mn) be the singularity-
degree tuple of v w.r.t. F . Consider i ∈ {1, . . . , n − 1}, and let π ∈ Sn be the neighbour-exchange i ↔ i + 1 (i.e., π(j) = j for
j ∈ {1, . . . , n} \ {i, i + 1}, while π(i) = i + 1 and π(i + 1) = i). Let (m′

1, . . . ,m
′
n) be the singularity-degree tuple of v

′ w.r.t. F ,
where v ′

:= (vπ(1), . . . , vπ(n)), in case of π ∈ sp(F , v). The task is to characterise when π ∈ sp(F , v) holds; we also need to be
able to apply such s-preserving neighbour-exchanges consecutively, by controlling the changes in the singularity-degrees.

1. If π ∈ sp(F , v), then for j ∈ {1, . . . , n} \ {i, i + 1} we have m′
j = mj.

2. Assume mi ≥ 2.
(a) π ∈ sp(F , v).
(b) m′

i ≤ mi+1 + 1.
(c) m′

i+1 ≥ mi − 1.
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(d) If mi+1 = 1, then m′
i = 1.

(e) If mi+1 ≥ 2, then m′
i+1 ≥ 2.

3. Assume mi = 1.
(a) Assume mi+1 = 1.

i. π ∈ sp(F , v).
ii. m′

i+1 = 1 and m′
i ∈ {1, 2}.

(b) Assume mi+1 ≥ 2.
i. π ∈ sp(F , v) if and only if vi+1 is singular in DPv1,...,vi−1(F).
ii. If π ∈ sp(F , v), then m′

i ≥ 2.

Proof. Part 1 follows by Lemma 35. For the remainder let F0 := F , and Fi := DPvi(Fi−1) for i ∈ {1, . . . , n}.
Now consider Part 2; sowe assumemi ≥ 2 here. For Part 2(a) we need to show that vi+1 is singular for Fi and vi is singular

for DPvi+1(Fi): The former follows by Corollary 25, Part 1(a), while the latter follows by Part 2(a) of that Corollary (if vi+1 is
1-singular for Fi) and by both parts of Lemma 37 (if vi+1 is non-1-singular for Fi; the main clauses for vi, vi+1 in Fi cannot be
the same).

Part 2(b), 2(c) follow by Part 7 of Lemma 24, while Part 2(d) follows by Part 8 of that Lemma. Now consider Part 2(e), and
so we assume mi+1 ≥ 2. If m′

i ≥ 2 then m′
i+1 ≥ 2 follows from Part 1(a) of Corollary 25; it remains the case m′

i = 1. Let x
be the singular literal of vi in Fi, and let y be the singular literal of vi+1 in Fi+1. Since sDP-reduction by vi in Fi increased the
number of occurrences of y, for the main clause C of vi in Fi (thus x ∈ C) we must have y ∈ C . Let D be the main clause of
vi+1 in Fi, that is, y ∈ D (note that C,D are the only occurrences of variable vi+1 in Fi). If m′

i+1 = 1 would be the case, then
we would have x ∈ C,D contradicting x ∈ C .

Finally consider Part 3, assumingmi = 1. Part 3(a) follows with Lemma 39. For Part 3(b) assumemi+1 ≥ 2. For Part 3(b)i
the direction from left to right follows by definition, while the direction from right to left follows by Part 2(b) of Lemma 25.
And Part 3(b)ii by Part 5 of Lemma 24. �

We remark that for Part 2(e) of Theorem 41, in the conference version we also asserted that m′
i ≥ 2 would be the case

(Lemma 26, Part 2, in [24]), which is false as shown in Example 43.

Corollary 42. Consider F ∈ MU and a singular tuple v = (v1, . . . , vn) (n ≥ 2) with 1 ≤ i < n. Then a sufficient condition for
the neighbour exchange i ↔ i + 1 to be s-preserving is:

vi is non-1-singular for v , or vi+1 is 1-singular for v , or vi+1 is singular for DPv1,...,vi−1(F).

Proof. To show the sufficiency of the three conditions, use Parts 2(a) resp. 3(a)i resp. 3(b)i of Theorem 41 (in a cascading
form). �

5.3.1. Examples
We now give various examples showing that the bounds from Theorem 41 are sharp in general. First we show that a

swap of two non-1-singular variables can create a 1-singular variables.

Example 43. Consider k ∈ N. The following F ∈ MU and v, w ∈ var(F) have the properties that (v, w) is a singular tuple
with singularity-degree tuple (k, k) while (w, v) is a singular tuple with singularity-degree tuple (1, k).

1. Let F :=


{v, w}, {v, x1}, . . . , {v, xk}, {w}, {x1, . . . , xk}


∈ MUδ=1.
2. v is k-singular for F , while w is 1-singular for F .
3. We have vars(F) = var(F) = {v, w, x1, . . . , xk} and var¬1s(F) = {v}.
4. Let F ′

:= DPv(F) = {{w, x1}, . . . , {w, xk}, {w}, {x1, . . . , xk}}.
5. Now w is k-singular for F ′, and thus the associated singularity-degree tuple for (v, w) and F is (k, k).
6. While the singular tuple (w, v) has singularity-degree tuple (1, k).

Next we give examples showing that the bounds from Part 2 of Theorem 41 are sharp in general.

Example 44. All examples (again) are in MUδ=1.

1. First we consider Part 2(b), showing that the two extreme casesm′
i = 1 andm′

i = mi+1 + 1 are possible.
(a) Example 43 yieldsmi = mi+1 = k ≥ 2 andm′

i = 1,m′
i+1 = k.

(b) That is, the original pair (vi, vi+1) has singularity-degree tuple (k, k), while after swap we have (1, k). In the sequel
we will describe the examples in this manner.

(c) For k ∈ N let F1 := {{v, w}, {v, w, x1}, . . . , {v, w, xk}, {x1, . . . , xk}, {w}}. Then for (v, w) we have (k, k), while for
(w, v) we have (k + 1, k).

2. Now we consider Part 2(c), showing thatm′
i+1 = mi − 1 + p for all p ∈ N0 is possible.

(a) For p = 0 we just re-use F1, but in the other direction, from (w, v) with (k + 1, k) to (v, w) with (k, k).
(b) Let F2 := {{v}, {v, w, y}, {v, y}, {w, x1}, . . . , {w, xp}, {x1, . . . , xp}} for p ≥ 1. For (v, w) we have (2, p), while for

(w, v) for have (p, p + 1).
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3. Finally we consider Part 2(d), showing thatm′
i+1 = k for all k ∈ N is possible.

(a) For k = 1 consider F3 := {{v}, {v, w}, {v, w}}. For (v, w) we have (2, 1), and for (w, v) we have (1, 1).
(b) Let F4 := {{v}, {v, x1}, . . . , {v, xk}, {w, x1, . . . , xk}, {w, x1, . . . , xk}} for k ≥ 2. For (v, w)wehave (k, 1), and for (w, v)

we have (1, k).

Finally we give examples showing that the bounds from Part 3 (the casemi = 1) of Theorem 41 are sharp in general.

Example 45. All examples (again) are in MUδ=1.

1. For Part 3(a) (mi+1 = 1), that is, the singularity-degree tuple (1, 1), it is trivial that after swap we can have (1, 1) again,
while to obtain (2, 1) consider F3 from Example 44 in the other direction.

2. Consider Part 3(b) (mi+1 ≥ 2).
(a) An example showing that the swap can be impossible is given by F := {{v, w}, {v, w}, {w, x1}, . . . , {w, xk},

{x1, . . . , xk}} for k ≥ 2: For (v, w) we have (1, k), while (w, v) is not singular.
(b) And to obtain swap-results (1, k) ❀ (k, k) we use Example 43, but in the other direction.

5.3.2. Applications
We first consider singular tuples where all permutations are also singular:

Definition 46. Consider F ∈ MU and a tuple v = (v1, . . . , vn) (n ∈ N0). v is called totally singular for F if v is singular for
F with sp(F , (v1, . . . , vn)) = Sn.

Corollary 47. Consider F ∈ MU and a singular tuple v = (v1, . . . , vn) (n ∈ N0) such that each vi is non-1-singular in F (i.e.,
{v1, . . . , vn} ⊆ var¬1s(F)). Then v is totally singular for F , and for each permutation v ′ every variable is non-1-singular for v.

Proof. With Part 2(a) of Theorem 41 and Part 1(a) of Corollary 25. �

We remark that in the conference version, that is Corollary 27 in [24], a more general version is stated, only assuming for
v that every variable is not-1-singular for it (not, as in Corollary 47, already for F ). We believe this more general statement
is true, but the proof there is false. Themore general version is not needed for any of the other results of [24] or the article at
hand. Furthermore a false additional assertion is given in Corollary 27 in [24], namely that all permutation of v would also
be non-1-singular, which is refuted by the following example.

Example 48. Consider F := {{v, a}, {a}, {v, b}, {v, b}} ∈ MUδ=1. Then (v, a) has the property that all variables are non-1-
singular for it, while (a) is 1-singular for F .

We mention another (simpler) case of total singularity (which already follows by Corollary 25, Part 2(a)):

Corollary 49. Consider F ∈ MU and a singular tuple v = (v1, . . . , vn) such that {v1, . . . , vn} ⊆ var1s(F). Then v is totally
singular, and for each permutation v ′ of v each variable is 1-singular (for v ′).

Proof. With Part 3(a)i of Theorem 41 and Part 2(a) of Corollary 25. �

Finally we get some normal form of a singular tuple v for F ∈ MU by moving the singular variables from F to the front,
followed by further 1-singular DP-reductions, and concluded by non-1-singular DP-reductions:

Corollary 50. Consider F ∈ MU and a singular tuple v = (v1, . . . , vn). Let V := {v1, . . . , vn} ∩ var1s(F) and p := |V |.
Consider any π0 : {1, . . . , p} → {1, . . . , n} such that {vπ0(i) : i ∈ {1, . . . , p}} = V . Then there exists q ∈ {p, . . . , n} and an
s-preserving permutation π for v such that π extends π0, and vπ(i) is 1-singular for (vπ(1), . . . , vπ(n)) and i ∈ {1, . . . , n} if and
only if i ≤ q.

Proof. The sorting of v is computed via singularity-preserving neighbour swaps, in four steps (‘‘processes’’). Process I
establishes that in the associated singularity-degree tuple all entries equal to 1 appear in the front-part (the first q elements).
This is achieved by noting that a neighbouring degree-pair (≥ 2, 1) can be swapped and becomes (1, ≥ 1). Thuswe can grow
the 1-singular front part by every value 1 occurring not in it, and we obtain a permutation where all singularity-degrees of
value 1 appear in the (consecutive) front-part (while the back-part has all singularity-degrees of values ≥ 2).

Process II now additionally moves variables in V occurring in the back-part to the front-part as follows: If there is still
such a variable, then this cannot be the first place in the back-part, and so the variable can be moved one place to the left.
Possibly process I has to applied after this step (if it does, then the front-part grows at least by one element). This process
can be repeated and terminates once all of V is in the front part. Now the variables in the front part and especially q have
been determined. In the remainder the front part is put into a suitable order.

Process III only considers the front part, and the task is to move all variables in V to its front. This is unproblematic, since
1-singular DP-reduction does not increase literal degrees. Finally process IV commutes the variables in V into the given
order. �

Comparing two different singular tuples, they do not need to overlap, however they need to have a ‘‘commutable beginning’’
via appropriate permutations, given they contain at least two variables:
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Lemma 51. Consider F ∈ MU and singular tuples (v1, . . . , vp), (w1, . . . , wq) for F with p, q ≥ 2. Then there is an s-
preserving permutation π for (v1, . . . , vp) and an s-preserving permutation π ′ for (w1, . . . , wq), such that both (vπ(1), wπ ′(1))
and (wπ ′(1), vπ(1)) are singular for F .

Proof. If one of the two tuples contains a 1-singular variable vi ∈ var1s(F) resp. wi ∈ var1s(F), then the assertion follows by
Corollary 50 and Part 2 of Corollary 25. So assume that neither contains a 1-singular variable from F . Note that if none of the
variables of a singular tuple is 1-singular for F , then all the variables in it must be singular for F , since new singular variables
are only created by 1-singular DP-reduction according to Corollary 25, Part 1(a). Thus the assertion follows by Corollary 47
and Lemma 37. �

5.4. Without 1-singular variables

If F ∈ MU has no 1-singular variables, then we know its maximal singular tuples (singular tuples which cannot be
extended), as we will show in Lemma 57, namely they are given by choosing exactly one singular literal from each clause
which contains singular literals. In this context the concept of ‘‘singularity hypergraph’’ is useful, so that we can recognise
such maximal singular tuples as minimal ‘‘transversals’’. Recall that a hypergraph G is a pair G = (V , E), where V is a set, the
elements called ‘‘vertices’’, while E is a set of subsets of V , the elements called ‘‘hyperedges’’; the notations V (G) := V and
E(G) := E are used.

Definition 52. For F ∈ MU we define the singularity hypergraph S(F) as follows:

– The vertex set is var(F) (the variables of F ).
– For every v ∈ vars(F) let xv be the singular literal (which depends on the given choice in case v is 1-singular), and let

L := {xv : v ∈ vars(F)}.
– Now the hyperedges are given by var(C ∩ L) for C ∈ F with C ∩ L ≠ ∅.

I.e.,

S(F) := (var(F), {var(C ∩ L) : C ∈ F ∧ C ∩ L ≠ ∅}).

Note that the hyperedges of S(F) are non-empty and pairwise disjoint.

Example 53. Continuing Example 19:

1. For F as in Part 2 we have S(F) = ({v, v1, v2}, {{v, v1}}).
2. For F as in Part 3 we have S(F) = ({v, w, v1, v2, v

′
1, v

′
2}, {{v, v1}}).

Example 54. With another inverse sDP-reduction, applied to F from Part 2 of Example 19 and introducing variable v′, we
obtain

F = {{v, v1}, {v, v2}, {v, v2}, {v
′, v1}, {v′, v2}, {v′, v2}}.

We have vars(F) = {v1, v, v′
} and var1s(F) = {v1}. Choosing v1 resp. v1 as the singular literal for v1, we have S(F) =

({v, v′, v1, v2}, {{v, v1}, {v
′
}}) resp. = ({v, v′, v1, v2}, {{v}, {v′, v1}}).

Example 55. Consider

F :=


{a, b}, {a, x, v}, {a, y, v′
}, {b, x, v}, {b, y, v′

}, {x, v}, {y, v′
}, {v, v′}


.

We have S(F) = ({a, b, x, y, v, v′
}, {{a, b}, {x}, {y}, {v, v′

}}). We have furthermore the properties F ∈ MUδ=2 \ SMUδ=2
and var(F) = var¬1s(F).

Definition 56. Consider F ∈ MU. A singular tuple (v1, . . . , vn) for F is called maximal, if there is no singular tuple
extending it, i.e., DPv1,...,vn(F) is nonsingular.

Lemma 57. Consider F ∈ MU with var1s(F) = ∅. The variable-sets of maximal singular tuples for F are precisely the minimal
transversals of S(F) (minimal sets of vertices intersecting every hyperedge). And the maximal singular tuples of F are precisely
obtained as (arbitrary) linear orderings of these variable-sets.

Proof. By Corollary 25, Part 1(a), for each singular tuple (v1, . . . , vn) of F we have {v1, . . . , vn} ⊆ var¬1s(F) = vars(F). So
by Corollary 47 all permutations are singular. Finally, for v ∈ vars(F) let Fv := DPv(F), let Cv ∈ F be the main clause of v,
and let Hv := var(Cv) ∩ vars(F). Then we have S(Fv) = (V (S(F)) \ {v}, E(S(F)) \ {Hv}). The assertion of the lemma follows
now easily by induction. �

Example 58. Continuing Example 19 (and Example 53): For F as in Part 2 as well as in Part 3 the two maximal singular
tuples are (v) and (v1).

Example 59. Continuing Example 55: We have 2 · 2 = 4 minimal transversals, namely {a, x, y, v}, {b, x, y, v}, {a, x, y, v′
},

{b, x, y, v′
}. There are thus 4 elements in sDP(F); Theorem 74 will show that they are necessarily all isomorphic to F2 (since

after reduction 2 variables remain; recall Example 3). Finally we remark that F has precisely 4 · 4! = 96 maximal singular
tuples.
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Since two different minimal transversals of S(F) remove different variables, they result in different sDP-reduction results.
So the elements of sDP(F) are here in bijective correspondence to the minimal transversals of F , and we get:

Corollary 60. For F ∈ MU with var1s(F) = ∅ we have that |sDP(F)| is the number of minimal transversals of S(F).

5.5. The singularity index

Definition 61. Consider F ∈ MU. The singularity index of F , denoted by si(F) ∈ N0, is the minimal n ∈ N0 such that a
maximal singular tuple of length n exists for F .

So si(F) = 0 ⇔ F ∈ MU′. See Corollary 69, Part 1, for a characterisation of F ∈ MU with si(F) = 1. In Theorem 63 we
will see that all maximal singular tuples are of the same length (given by the singularity index). As a first step towards this
result we show a special case:

Lemma 62. Consider F ∈ MU not having 1-singular variables (i.e., var1s(F) = ∅). Then everymaximal singular tuple has length
si(F), which is the number of different clauses of F containing at least one singular literal.

Proof. The assertion follows by Lemma 57 and the fact, that the hyperedges of the singularity hypergraph are pairwise
disjoint. �

More general than Lemma 62 (but with less details), we show next that for all minimally unsatisfiable clause-sets all
maximal singular tuples (i.e., maximal sDP-reduction sequences) have the same length. The basic idea is to utilise the good
commutativity properties of 1-singular variables, so that induction on the singularity index can be used.

Theorem 63. For F ∈ MU and every maximal singular tuple (v1, . . . , vm) for F we have m = si(F).

Proof. We prove the assertion by induction on si(F). For si(F) = 0 the assertion is trivial, so assume si(F) > 0. If F has no
1-singular variables, then the assertion follows by Lemma 62, and so we assume that F has a 1-singular variable v. First we
show that we can choose v such that si(DPv(F)) = n − 1.

Consider a maximal singular tuple (v1, . . . , vn) of length n = si(F). Note that si(DPv1(F)) = n − 1. If v1 is 1-singular,
then we can use v := v1 and we are done, and so assume v1 is not 1-singular. The induction hypothesis, applied to
DPv1(F), yields si(DPv1,v(F)) = n − 2. Now by Corollary 25, Part 2, both tuples (v1, v) and (v, v1) are singular for F ,
whence DPv1,v(F) = DPv,v1(F) holds (Corollary 36), and so si(DPv,v1(F)) = n − 2. We obtain si(DPv(F)) ≤ n − 1, and
thus si(DPv(F)) = n − 1 as claimed.

Now consider an arbitrarymaximal singular tuple (w1, . . . , wm). It suffices to show that si(DPw1(F)) ≤ n−1, fromwhich
by induction hypothesis the assertion follows. The argument is now similar to above. The claim holds for w1 = v, and so
assume w1 ≠ v. By induction hypothesis we have si(DPv,w1(F)) = n − 2. By Corollary 25, Part 2, both tuples (v, w1) and
(w1, v) are singular for F . Thus si(DPw1,v(F)) = n − 2. We obtain si(DPw1(F)) ≤ n − 1 as claimed. �

Corollary 64. For F ∈ MU and F ′, F ′′
∈ sDP(F) we have n(F ′) = n(F ′′).

6. Confluence modulo isomorphism on eventually SMU

Finally we are able to show our third major result, confluence modulo isomorphism of singular DP-reduction in case all
maximal sDP-reductions yield saturated clause-sets.

Definition 65. Aminimally unsatisfiable clause-set F is called eventually saturated, if all nonsingular F ′ with F sDP
−→∗ F ′ are

saturated; the set of all eventually saturated clause-sets is ESMU := {F ∈ MU : sDP(F) ⊆ SMU}.

By Corollary 13 we have SMU ⊆ ESMU. If C ⊆ MU is stable under sDP-reduction, then we have C ⊆ ESMU iff
C ∩MU′

⊆ SMU. In order to show ESMU ⊆ CF IMU (recall Definition 18), we show first that ‘‘divergence in one step’’
is enough, that is, if we have a clause-set F ∈ MU such that sDP-reduction is not confluent modulo isomorphism, then we
can obtain from F by sDP-reduction the clause-set F ′

∈ MU with singularity index 1 (thus using si(F) − 1 reduction steps)
such that also for F ′ sDP-reduction is not confluent modulo isomorphism:

Lemma 66. Consider F ∈ MU \ CF IMU. So si(F) ≥ 1. Then there is a singular tuple (v1, . . . , vsi(F)−1) for F , such that for
F ′

:= DPv1,...,vsi(F)−1(F) we still have sDP(F ′) ∈ MU \ CF IMU (note si(F ′) = 1).

Proof. We prove the assertion by induction on si(F) ≥ 1. The assertion is trivial for si(F) = 1, and so consider n :=

si(F) ≥ 2. If there is a singular variable v ∈ vars(F) with DPv(F) ∈ MU \CF IMU, then the assertion follows by induction
hypothesis. So assume for the sake of contradiction, that for all singular variables v we have DPv(F) ∈ CF IMU. Consider
(maximal) singular tuples (v1, . . . , vn), (w1, . . . , wn) for F such that DPv(F) and DPw(F) are not isomorphic. By Lemma 51
w.l.o.g.we can assume that (v1, w1) and (w1, v1) are both singular for F , whenceDPv1,w1(F) = DPw1,v1(F)byCorollary 36.We
have DPv1(F),DPw1(F) ∈ CF IMU by assumption, andwe obtain the contradiction that DPv(F) and DPw(F) are isomorphic,
since DPv(F) is isomorphic to the result obtained by reducing F via a (maximal) singular tuple v ′

= (v1, w1, . . .) of length
n, where permuting the first two elements in v ′ yields the singular tuple w ′

= (w1, v1, . . .) with the same result, which in
turn is isomorphic to DPw(F). �
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Corollary 67. Consider a class C ⊆ MU which is stable under application of singular DP-reduction. Then we have C ⊆

CF IMU if and only if {F ∈ C : si(F) = 1} ⊆ CF IMU.
Proof. Obviously the stated condition forC ⊆ CF IMU is necessary. Now assume thatC ⊈ CF IMU, and consider some
F ∈ C \ CF IMU. Then for the F ′ as defined in Lemma 66 we have F ′

∈ C \ CF IMU with si(F ′) = 1. �

Now we analyse the main case where all sDP-reductions give saturated results:
Lemma 68. Consider F ∈ MU and a clause C ∈ F . Let C ′

:= {x ∈ C : ldF (x) = 1} be the set of singular literals in C, establishing
C as the main clause for the underlying singular variables var(x) (for x ∈ C ′), and let Fx := {D ∈ F : x ∈ D} be the set of side
clauses of var(x) for x ∈ C ′. Due to F ∈ MU the sets Fx are non-empty and pairwise disjoint (note that var(x) is |Fx|-singular in
F for x ∈ C ′). Now assume |C ′

| ≥ 2, and that for all x ∈ C ′ we have DPvar(x)(F) ∈ SMU. Then:
1. |C ′

| = 2.
2. ∀ x ∈ C ′

∀D ∈ Fx : (C \ C ′) ⊆ D.
3. For x, y ∈ C ′ we have that DPvar(x)(F) and DPvar(y)(F) are isomorphic.
Proof. Consider (any) literals x, y ∈ C ′ with x ≠ y. Then for D ∈ Fx we have (C \ {x, y}) ⊆ D by Corollary 11, since otherwise
the corollary can be applied to var(x), replacing D by D∪ (C \ {x, y}), which yields the partial saturation F ′

∈ MU of F with
singular variable var(y), and where then DPvar(y)(F ′) would yield a proper partial saturation G of DPvar(y)(F), contradicting
that the latter is saturated. It follows that actually C ′

= {x, y} must be the case, since if there would be z ∈ C ′
\ {x, y}, then

ldF (z) ≥ 2 contradicting the definition of C ′. It follows Part 2. Finally for Part 3 we note that now F ❀ DPx(F) just replaces x
in the clauses of Fx by y, while F ❀ DPy(F) just replaces y in the clauses of Fy by x, and thus renaming y in DPx(F) to x yields
DPy(F). �

Corollary 69. For F ∈ MU with si(F) = 1 we have:
1. If |vars(F)| ≥ 2:
(a) vars(F) = var¬1s(F), that is, all singular variables are non-1-singular.
(b) The main clauses of the singular variables coincide (that is, there is C ∈ F such that for all singular literals x for F we have

x ∈ C).
(c) If F ∈ ESMU then |vars(F)| = 2.

2. If F ∈ ESMU then F ∈ CF IMU.
Proof. Part 1(a) follows by Part 2(a) of Corollary 25, and Part 1(b) follows by Lemma 37. Now Parts 1(c), 2 follow from
Lemma 68. �

Example 70. The two clause-sets F from Example 19 (recall Example 58) fulfil si(F) = 1 and |vars(F)| = 2. For F from in
Part 2 there we have F ∈ ESMU, for F from Part 3 we have F /∈ CF IMU.

By Corollary 67 we obtain from Part 2 of Corollary 69:
Theorem 71. ESMU ⊂ CF IMU.

7. Applications to MUδ=2

If F ∈ CF IMU, then we can speak of the non-singularity type of F as the (unique) isomorphism type of the elements
of sDP(F). In this section we show that for F ∈ MUδ=2 these assumptions are fulfilled. First we recall the fundamental
classification:
Definition 72. Consider n ≥ 2, let addition for the indices of variables v1, . . . , vn be understood modulo n (so n + 1 ❀ 1),
and define Pn := {v1, . . . , vn}, Nn := {v1, . . . , vn}, Ci := {vi, vi+1} for i ∈ {1, . . . , n}, and finally Fn :=


Pn,Nn


∪


Ci : i ∈

{1, . . . , n}


∈ MU′
δ=2.

So n(Fn) = n and c(Fn) = n + 2. Recall Example 3, where F2, F3, F4 were already given. The clause-sets Fn are precisely
(up to isomorphism) the non-singular elements of MUδ=2:
Theorem 73 ([11]). For F ∈ MU′

δ=2 we have F ∼= Fn(F).
We show now that for F ∈ MUδ=2 we have the non-singularity type of F , which can be encoded as the number of

variables left after complete sDP-reduction, using that the isomorphism types in MU′
δ=2 are determined by their number

of variables:
Theorem 74. MUδ=2 ⊆ CF IMU.
Proof. The first proof is obtained by applying Corollary 64 and the observation that non-isomorphic elements of MU′

δ=2
have different numbers of variables. The secondproof is obtained by applying Theorem71 and the fact thatMU′

δ=2 ⊆ SMU,
whence MUδ=2 ⊆ ESMU. �

Definition 75. By Theorem 74 to every F ∈ MUδ=2 we can associate its non-singularity type nst2(F) ∈ N≥2, the unique n
such that F by singular DP-reduction can be reduced to a clause-set isomorphic to Fn.
So, considering the structure of Fn as a ‘‘contradictory cycle’’, we can say that every F ∈ MUδ=2 contains a contradictory
cycle, where the length of that cycle is nst2(F) (and thus uniquely determined), while, as Example 19 shows, the variables
constituting such a cycle are not uniquely determined.
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8. Conclusion and open problems

We have discussed questions regarding confluence of singular DP-reduction on minimally unsatisfiable clause-sets.
Besides various detailed characterisations, we obtained the invariance of the length of maximal sDP-reduction-sequences,
confluence for saturated and confluencemodulo isomorphism for eventually saturated clause-sets. Themain open questions
regarding these aspects are:

1. Can we obtain a better overview on singular tuples for F ∈ MU ?
(a) What are the structural properties of the set of all singular tuples, for F ∈ MU, SMU, UHIT ?
(b) Especially for F ∈ UHIT it should hold that if si(F) is ‘‘large’’, then |vars(F)| must be ‘‘large’’. More precisely:

Conjecture 76. For every k ∈ N there are a ∈ N and α ∈ R>0 such that for all F ∈ UHITδ=k with si(F) ≥ a we have
|vars(F)| ≥ α · si(F).

2. Can we characterise CF MU and/or CF IMU? Especially, what is the decision complexity of these classes?
3. Are there other interesting classes for which we can show confluence resp. confluence mod isomorphism of singular

DP-reduction?

As a first application of our results, in Section 7 we considered the types of (arbitrary) elements of MUδ=2. This detailed
knowledge is a stepping stone for the determination of the isomorphism types of the elements of MU′

δ=3, which we
have obtained meanwhile (to be published; based on a mixture of general insights into the structure of MU and detailed
investigations into MUδ≤2).

The major open problem of the field is the classification (of isomorphism types) of MU′
δ=k for arbitrary k. The point of

departure is the conjecture stated in [23] that for F ∈ UHIT ′
δ=k the number n(F) of variables is bounded.

Regarding the potential applications from Section 1.3, applying singular DP-reductions in algorithms searching for MUSs
is a natural next step.

Finally, a promising direction is the generalisation of the results of this paper beyondminimal unsatisfiability, possibly to
arbitrary clause-sets: The analysis of sDP-reduction is much simplified by the fact that for F ∈ MU all possible resolutions
must actually occur, without producing tautologies and without producing any contractions. To handle arbitrary F ∈ CLS,
these complications have to be taken into account.
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