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Genetic toxicology studies are required for the safety
assessment of chemicals. Data from these studies have
historically been interpreted in a qualitative, dichoto-
mous ‘‘yes’’ or ‘‘no’’ manner without analysis of dose–
response relationships. This article is based upon the
work of an international multi-sector group that exam-
ined how quantitative dose–response relationships for
in vitro and in vivo genetic toxicology data might be
used to improve human risk assessment. The group
examined three quantitative approaches for analyzing
dose–response curves and deriving point-of-departure
(POD) metrics (i.e., the no-observed-genotoxic-effect-
level (NOGEL), the threshold effect level (Td), and the
benchmark dose (BMD)), using data for the induction of
micronuclei and gene mutations by methyl methanesul-
fonate or ethyl methanesulfonate in vitro and in vivo.
These results suggest that the POD descriptors obtained

using thedifferentapproachesarewithin thesameorder
of magnitude, with more variability observed for the in
vivo assays. The different approaches were found to be
complementary as each has advantages and limita-
tions. The results further indicate that the lower confi-
dence limit of a benchmark response rate of 10%
(BMDL10) couldbe considereda satisfactory PODwhen
analyzing genotoxicity data using the BMD approach.
The models described permit the identification of POD
values that couldbecombinedwithmodeofactionanal-
ysis todeterminewhetherexposure(s)belowaparticular
level constitutes a significant human risk. Subsequent
analyseswill expand thenumberof substancesandend-
points investigated, and continue to evaluate the utility
of quantitative approaches for analysis of genetic toxi-
city dose–response data. Environ. Mol. Mutagen.
54:8–18,2013. VVC 2012WileyPeriodicals, Inc.
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INTRODUCTION

Evaluation of genetic damage is a pivotal component

of the safety assessment of chemicals. Historically,

genetic toxicologists have relied on a battery of tests to

screen for various types of genetic damage in an attempt

to cast a wide net to identify potential mutagens. The typ-

ical battery of in vitro and in vivo hazard screening tools

includes: (1) an in vitro test for gene mutations in bacte-

ria, (2) an in vitro test for chromosomal damage and/or

gene mutations in cultured mammalian cells, and (3) an

in vivo test for cytogenetic effects in rodent bone marrow

cells. This testing paradigm has been effective in prevent-

ing the introduction of potent genotoxic agents, and geno-

toxic carcinogens, into the environment and it is widely

agreed that this approach has served the regulatory com-

munity well.

The need to assess in vivo dose–response relationships

as a follow-up to hazard screening when evaluating the

risks associated with human exposure was recognized at

the time regulatory genetic toxicology testing was first

introduced [Flamm et al., 1977; Thybaud et al., 2007],

but the lack of suitable in vivo methods for evaluating

mutations and other genetic damage available at the time,

coupled with initial enthusiasm about the apparent excel-

lent correlation between bacterial mutagenicity and rodent

carcinogenicity [McCann and Ames, 1976], led to the

establishment of a qualitative screening battery designed

to categorize agents as either non-mutagens or demon-

strated mutagens (e.g., see [Dearfield et al., 1991]). In

contrast to other toxicology disciplines, decisions about

genotoxic risk continue to be based on qualitative factors

that classify an agent as ‘‘positive’’ or ‘‘negative’’ in the

above test battery and supplementary tests. Genetic toxi-

cologists, not unlike other toxicologists, have embraced

the concept of testing up to a maximum tolerated dose

(MTD) for in vivo tests, and to maximum cytotoxicity

and/or concentration limit for in vitro tests. The use of

relatively high doses/concentrations for genotoxicity tests

is based on limited sensitivity and the finite number of

animals/cells used in an assay, and geared toward maxi-

mizing the potential to detect an effect. This is appropri-

ate for hazard identification, but when testing does not

provide the data required for a dose–response curve that

covers the range from background to maximal response,

that data cannot be used for the determination of a no-

observed-genotoxic-effect-level (NOGEL), and moreover,

the data cannot be used for estimation of risk at realistic

exposure levels.

Positive findings for genotoxicity have been encoun-

tered in experiments using in vitro test systems with

chemicals that do not appear to have genotoxic activity in

in vivo assays [Thybaud et al., 2007]. This is perhaps not

surprising, considering the much higher exposure concen-

trations that can be achieved in in vitro assays relative to

actual levels of exposure achievable in vivo, and consid-

ering the differences in metabolism, pharmacokinetics,

and target cell distribution between in vivo and in vitro

systems. Nevertheless, even in the presence of other toxi-

cology data indicating negligible concern for human

safety, positive results from in vitro genotoxicity tests

have often led to the prohibition of use and/or cessation

of development of compounds that may have had substan-

tial societal value. Thus, it is important that genetic toxi-

city testing move toward a more quantitative approach for

the evaluation of genetic toxicology data.

In an effort to improve the prevailing paradigm in

genetic toxicology, experts from North America, Europe,

and Japan initiated three workgroups to address the afore-

mentioned issues, as well as other related issues, under

the auspices of the Health and Environmental Sciences

Institute (HESI) of the International Life Sciences Insti-

tute (ILSI) [Gollapudi et al., 2011]. Two workgroups

have published critical evaluations of emerging technolo-

gies to assist genetic toxicologists in improving the scien-

tific basis of sound in vitro genetic toxicity testing for

more accurate human risk assessment [Lynch et al.,

2011], and a follow-up strategy for determining the rele-

vance of in vitro test results to human health [Dearfield

et al., 2011], respectively. The present report is based on

the work of the third workgroup (the ‘‘Quantitative Anal-

ysis Workgroup’’) whose primary objectives are to de-

velop strategies for the quantitative analysis of in vitro

and in vivo genotoxicity dose–response data, and more-

over, to consider critically how quantitative analyses

might be used to assess human risk.

This initial work examined different quantitative dose–

response modeling approaches for derivation of point-of-

departure (POD) metrics such as NOGEL, benchmark

dose (BMD), and threshold effect levels (Td) for the

well-studied alkylating agents methyl methanesulfonate

(MMS) and ethyl methanesulfonate (EMS). Subsequent

work will expand the analyses to include additional com-

pounds and endpoints, develop approaches for quantitative

comparisons across endpoints and extrapolations from in

vitro responses to in vivo exposure situations, and crit-

ically evaluate the ability to use quantitative data from

experimental models and human exposure scenarios to

determine acceptable exposure levels.

BACKGROUND INFORMATION

Quantitative Analysis Workgroup

The Quantitative Analysis Workgroup (QAW), which

includes scientists from multiple sectors (i.e., government,

industry, and academia), was charged with collecting and

analyzing genotoxicity data from publicly available sour-

ces, as well as unpublished results available from the

HESI committee’s member organizations. The QAW, in

Environmental and Molecular Mutagenesis. DOI 10.1002/em
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collaboration with Health Canada, created a Microsoft-

ACCESS database to store detailed dose–response infor-

mation for a variety of genotoxicity and carcinogenicity

end points for four pilot chemicals (i.e., the G4 chemi-

cals)—EMS, MMS, ethyl nitrosourea (ENU), and methyl

nitrosourea (MNU). Data were collected from studies

examining the following endpoints: in vitro and in vivo

micronucleus, in vitro mammalian gene mutations, in

vivo and in vitro chromosomal aberrations, in vivo and in

vitro DNA strand breaks (i.e., comet), in vivo Pig-a muta-

tions, mutations in transgenic rodents (e.g., lacZ, cII), and

carcinogenicity. Publicly available, peer-reviewed studies

indexed in the National Library of Medicine’s PubMed

and TOXNET databases, including the Chemical Carcino-

genesis Research Information System (CCRIS) and

GENETOX databases (http://toxnet.nlm.nih.gov/

index.html) were consulted, along with the Carcinogenic

Potency Database (CPDB) (http://potency.berkeley.edu/

index.html), and US National Toxicology Program (http://

ntp-apps.niehs.nih.gov/ntp_tox/index.cfm) databases.

Data Characteristics

Ideally, investigations of dose–response relationships

are conducted using data from experimental designs that

include more dose levels than normally used in traditional

hazard assessment (i.e., 3 or 4 dose groups and a negative

control). For quantitative analysis, it is preferable to

include several doses not only in the effect zone, but also

3–5 at the lower end of the dose–response curve where

no apparent increase over the background is expected for

the endpoint of interest. The more dose groups in the

range where the response is expected to be minimal,

the more precise will be the ability to describe effectively

the dose–response relationship. Uncertainty can also be

reduced with the inclusion of more replicates at each dose

level. Table I summarizes the key characteristics of the

datasets that were analyzed. Only studies that tested a

minimum of three dose levels, with a concurrent negative

control, were included in the database.

When analyzing the collected data, due attention has

been given to the fact that visual inspection and interpre-

tation of the dose–response relationship can be distorted

by the format used to plot the values [Jeffrey, 2009]. It is

well known that the use of different graph scales with the

same data can affect the perception of the dose–response

relationship, and can lead to misinterpretation of the

actual shape of the response. For example, linear-linear

graphs of mutation dose–response data are often stated to

be preferable depictions; however, these can give the mis-

taken impression that the underlying data are linear when

in fact they are not. This mistake can happen when data

from the critical low-dose range are compressed to the

point that they cannot be adequately distinguished and

visualized as to whether they are linear or not (Fig. 1a).

Further, a log-linear scale allows visualization of low

dose values but gives the visual impression of nonlinear-

ity with linear data (Fig. 1b), and a log-log plot will show

an apparent threshold below a dose that induces a

response that is smaller than an existing spontaneous

value (Fig. 1c). Thus, the QAW recognized that various

plots have different merits for displaying data for particu-

lar purposes, and it is important to define clearly ‘‘thresh-

old responses’’ other than by their visual appearance on a

Cartesian plot, and to use great care when reaching con-

clusions as to whether a dose–response displays a seg-

mented or ‘‘hockey stick" response with a threshold dose

(i.e., Td). For the aforementioned reasons, both linear and

nonlinear responses need to be distinguished using statisti-

cal procedures to determine the best fit of the data.

METHODS

For this proof-of-concept project, dose–response data for induction of

gene mutations (in vitro and in vivo) and micronuclei (in vitro and in

vivo) by EMS and MMS were evaluated. Although these chemicals have

been widely used as positive control test chemicals by genetic toxicolo-

gists for decades, experiments designed to examine their dose–response

patterns, especially at low doses, have only become available during the

last few years (e.g., see [Doak et al., 2007; Gocke and Wall, 2009; Pot-

tenger et al., 2009; Bryce et al., 2010]).

Determination of PODMetrics

After identifying dose–response data that are useful for this exercise,

it was necessary to identify the desirable dose–response descriptors that

can be derived. The desired outputs included descriptors of the dose

below the point at which a response cannot be detected, the initial slope

of the dose–response curve, the maximum mutagenic response observed,

and an index of cellular toxicity at conditions that produce the observed

responses. These descriptors included the POD metrics outlined below.

No-Observed-Genotoxic-E¡ect-Level

NOGEL is defined as the highest tested dose for which no statistically

significant increase in the incidence of the genotoxic effect is observed

relative to an appropriate untreated control (i.e., background). Ideally,

this would include specification of the statistical power of the test used

to define the NOGEL; such a power calculation was considered for sev-

eral of the datasets, but not reported for the analyses conducted here.

Datasets were identified that included a suitable number of replicates

(preferably three or more), with a suitable number of cells/targets (e.g.,

mostly >10,000 cells analyzed per dose for the analysis of MN) and

with several doses resulting in genotoxic event frequencies similar to the

NOGEL and solvent control. In fact, the in vitro micronucleus datasets

from Doak et al. [2007] had several additional replicates at four doses

surrounding the NOGEL, in order to reach 10,000 or more cells at this

critical region, while LeBaron et al. [2008] evaluated >10,000 cells per

replicate. Experimental datasets that fit these requirements were very

limited and are presented in Tables I and II. Accordingly, one can argue

that a NOGEL should in principle determine a point on the dose–

response curve where the response is indistinguishable from background,

and thus, doses below that point, may represent negligible concern.

However, since the NOGEL is dependent on the experimental design

(i.e., the selected doses), it has a measure of uncertainty associated

with it.

Environmental and Molecular Mutagenesis. DOI 10.1002/em
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Standard approaches were used to determine the NOGEL value. Data

were evaluated using analysis of variance (ANOVA) followed by a one-

sided Dunnett’s test at a 5 0.05 [Winer, 1977] using SPSS version

16.0.1. This analysis identified a dose where the responses were not stat-

istically distinguishable from the response in the concurrent untreated

control samples. The highest dose at which the end point of interest did

not differ significantly from the background was identified as the

NOGEL. The next highest dose was considered the lowest observed gen-

otoxic effect level (LOGEL). As shown in Table I, data were trans-

formed (log or square root) where necessary, based on Bartlett’s statistic

for variance homogeneity [Winer, 1977].

Threshold E¡ect Level

Definitions of threshold in the literature vary, and this term is often

qualified by a descriptor such as ‘‘biological thresholds,’’ ‘‘apparent

thresholds,’’ ‘‘operational threshold,’’ etc. [Pottenger and Gollapudi,

2010]. The Workgroup defined a ‘‘Threshold Effect Level’’ (Td) as a

statistically identified dose (not limited to tested doses/exposures) below

which the effect cannot be distinguished with the available data from the

untreated background level, and above which it is possible to observe an

increase in the effect above the untreated or negative control level. Td

estimates can be derived by mathematical modeling of the dose–response

data, and are based upon decision rules applied to the statistical analysis

of the experimental response data at different doses. The bilinear hockey

stick model [Lutz and Lutz, 2009] and broken stick model [Lynch et al.,

2003] are specifically designed for comparing linear models with two pa-

rameters to threshold models with three parameters. Statistical rejection

of a linear model would indicate that a more complex model, such as

one including a Td, may be needed. Threshold values were calculated

using the ‘‘hockey stick’’ package described by Lutz and Lutz [2009],

with some prerequisites defined in Gocke and Wall [2009] and Johnson

et al. [2009]. More specifically, the combined assessment involves four

steps: (1) comparison of control groups; (2) rejection of the linear dose–

response relationship (for the entire dose range); (3) acceptance of dose–

response relationship with zero slope below the NOGEL; (4) application

of threshold software developed by Lutz and Lutz [2009] to calculate

threshold values including confidence limits [Gocke and Wall, 2009]. All

threshold values determined in this study adhered to these steps, and the

data analysis followed the four-stage statistical procedure outlined below.

To avoid the issues stated previously regarding log-linear and log-log

plots, the four stages were carried out on untransformed data, unless oth-

erwise stated. Stage 1 involved a one-way ANOVA for a dose-related

effect (SPSS version 16.0.1). If they did not show significant differences,

control groups could be cumulated. Stage 2 involved comparison of lin-

ear and quadratic models using the coefficient of determination (R2,

SPSS version 16.0.1). The F distribution was then used to calculate P

values in Microsoft Excel 2007. Stage 3 involved determination of

NOGEL and LOGEL values using a one-sided Dunnett’s test on either

untransformed or log-transformed data (SPSS version 16.0.1). Linear and

quadratic models were then compared at the NOGEL and below in the

same way as described for Stage 2. Data that had a flat or zero dose–

response slope at the NOGEL and below were then suitable for bilinear

or hockey stick analysis. Stage 4 involved a comparison of linear versus

hockey stick models using the R software package (version 12.2) recom-

mended by Lutz and Lutz [2009]. Parameters, y-intercept, Td, and slope

above Td were estimated for best fit of a hockey stick model by mini-

mizing the residual sum of squares. Confidence intervals (CI) were esti-

mated for all parameters using an F distribution [Lutz and Lutz, 2009].

If the 95% CI of the derived Td value does not encompass zero, the

model is considered a good fit to the data. This is a key feature of the

hockey stick approach, and Lutz and Lutz [2009] note that if the 95%

CI of the Td includes zero, it is not statistically possible to distinquish

the fit of a hockey-stick response from a linear response.

Benchmark Dose

The BMD approach is based on mathematical modeling of dose–

response data, and has been proposed as an improvement on the NOAEL

(no observed adverse effect level) approach [Crump, 1984; Slob, 1999,

2007]. The approach has been widely used in other fields of toxicology

to define POD values for both cancer and non-cancer endpoints. The

BMD approach estimates a dose (i.e., the BMD) that produces some pre-

determined, and presumably biologically relevant, increase in the

Environmental and Molecular Mutagenesis. DOI 10.1002/em

Fig. 1. Visual display of dose–response data leading to potential distor-

tions. (a) Linear-linear scale. Inset shows expanded view of the low dose

data and the differences between a linear response (open circles) and one

in which there is a threshold (filled circles). (b) Log-linear scale. (c)

Log–log scale. Lines of linear plots of data are indistinguishable when

all the data are displayed.
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response over control (i.e., the benchmark response or BMR). The

approach employs mathematical dose–response modeling that takes fac-

tors such as sample size and shape of the curve into account [Crump,

1984], and a small measurable effect (i.e., BMR) and a critical effect

dose (i.e., BMD) are estimated without the need for data transformation

[Slob, 1999, 2007; EPA, 2000, 2010]. The BMR refers, for continuous

endpoints, to a percentage change compared with background response

(i.e., negative control) as estimated by the fitted model (e.g., 5% or 10%

change), whereas for quantal endpoints, the BMR is a specific increase

in incidence compared with background incidence (e.g., the additional

risk or extra risk). The lower limit of the one-sided 95% CI on the BMD

is termed the BMDL. Thus, a BMDL10 refers to the estimate of lower

95% CI of a dose that produces a 10% increase over the fitted back-

ground level for continuous endpoints, and 10% extra risk for quantal

endpoints. The BMDL is often considered an adequate POD for the

extrapolation of the dose–response data below the range of available

data. Genotoxicity dose–response data can be modeled using BMD meth-

odology since both dichotomous (quantal) and continuous responses can

be analyzed, provided that the data set shows a dose-related trend. BMD

estimates differ from NOGEL or Td values in that they provide an esti-

mate of the size of the effect associated with the estimated dose.

BMDL10 values were derived using the dose–response modeling soft-

ware package PROAST, developed at the National Institute for Public

Health and the Environment (RIVM) in the Netherlands (www.proast.nl;

versions 26.4, 28.1 and 28.3 [Slob, 2002]). This program is analogous to

the United States Environmental Protection Agency’s BMDS software

[EPA, 2010], and these two agencies are working to achieve consistency

between the two software packages and their algorithms. The models

used were the exponential models recommended by the European Food

Safety Authority [EFSA, 2009]. The exponential family of nested dose–

response models used in PROAST is illustrated in Supporting Informa-

tion Figure 1. The shapes of the curves can vary depending on (1) back-

ground levels of the endpoint, (2) the relative efficacy of dose; and (3)

the maximum effect (relative to 1) (Slob 2002). Model selection was

performed using the log-likelihood ratio test that assesses whether a stat-

istically significant improvement in the fit is achieved by adding addi-

tional parameters. The model with additional parameters is only accepted

if the difference in log-likelihoods exceeds the critical value at P 5

0.05. This is automatically performed in PROAST by selecting the

‘‘automatic selection of optimal model from nested family" option. The

critical differences in log-likelihood values between two nested models

are provided in Supporting Information Table 1. A log-likelihood value

is also provided for the ‘‘full’’ model, which is simply the set of the

geometric means of the observations at each dose (together with the re-

sidual variance). The log-likelihood ratio test can be used to compare the

selected model with the full model using a goodness-of-fit test. The

model is accepted when the log-likelihood value of the fitted model is

significantly better than that of the full model. The BMD05 and BMD10

with their associated lower (BMDL) confidence limits are then derived

from the selected model.

RESULTS

The main objective of this exercise was to evaluate

critically different approaches for the analysis of genotox-

icity dose–response data, and to develop a ‘‘tool box’’ of

approaches to be used for data interpretation and risk

assessment. As a starting point for quantitative analysis of

the genotoxicity data, and to evaluate and refine the cur-

rently available quantitative approaches, dose–response

data for the induction of gene mutations and micronuclei

by the two direct-acting alkylating agents MMS and EMS

were examined. The datasets used for this analysis

included data-rich in vitro and in vivo studies with multi-

ple dose measurements (see Table I).

Table II summarizes the POD metrics (i.e., NOGEL,

Td-LCI (lower confidence interval), and BMDL10) deter-

mined for each dataset examined. The BMDL10 was

selected because, for several of the datasets, it was not

possible to determine a BMDL05 value. Some of these

values differ from previously published values because

the dose–response models were applied as described in

the Methods section. For example, a one-sided Dunnett’s

test was used to determine the NOGEL, whereas some of

Environmental and Molecular Mutagenesis. DOI 10.1002/em

TABLE II. NOGEL, Td-LCI, and BMDL10 Values for Gene Mutation (Gene Mut) and Micronucleus (MN) Endpoints Induced
by MMS or EMS (cmpd) In Vitro (vt) and In Vivo (vv)

Cmpd Effect VT/VV System Units NOGEL Td-LCI BMDL-10 Data source

EMS Gene Mut vt AHH-1 lg/ml 1 0.95 1.08 Doak et al., 2007;

Johnson et al., 2009

Gene Mut vv Bone Marrow mg/kg bw 50 21.46 9.29 Gocke and Wall, 2009

vv Liver mg/kg bw 50 25.67 41.00 Gocke and Wall, 2009

vv GI Tract mg/kg bw 25 12.97 12.23 Gocke and Wall, 2009

MN vt TK6 lg/ml 1.17 0.74 0.54 Bryce et al., 2010

vt TK6 lg/ml 6.25 3.92 2.38 Bryce et al., 2010

vt AHH-1 lg/ml 1.3 0.87 1.29 Doak et al., 2007;

Johnson et al., 2009

MN vv Bone Marrow mg/kg bw 80 56.66 58.68 Gocke and Wall, 2009

MMS Gene Mut vt AHH-1 lg/ml 1 0.86 0.56 Doak et al., 2007;

Johnson et al., 2009

vt L5178Y lg/ml 1.1 0.52 0.52 Pottenger et al., 2009

MN vt AHH-1 lg/ml 0.8 0.14 0.54 Doak et al., 2007;

Johnson et al., 2009

vt TK6 lg/ml 0.63 0.48 0.19 Bryce et al., 2010

vt TK6 lg/ml 0.47 0.44 0.11 Bryce et al., 2010

MN vv Blood mg/kg bw 5 14.07 1.74 LeBaron et al., 2008

AHH-1 and TK6 are cell lines of human origin; L5178Y is a murine lymphoma cell line.
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the previously published values used a two-sided Dun-

nett’s test. Similarly, some of the Td-LCI values calcu-

lated here, as presented in Table II, do not match the pub-

lished values because top doses were occasionally dis-

counted for hockey stick analysis (i.e., Stage 4) due to

supra-linearity (saturation, see Table I), or an increasing

exponential dose-response above the Td [Lutz and Lutz,

2009]. This was not the case for BMD analysis where all

doses were included in the analyses.

Dose–response functions for induction of HPRT gene

mutations by MMS in AHH-1 cells in vitro are shown in

Figures 2a–2d, as examples of how the data were ana-

lyzed. Figures 2a and 2b show the linear versus quadratic

modeling outputs produced using SPSS v16.0.1. These

constitute the aforementioned prerequisites (i.e., Stages 2

and 3) that precede analysis with the hockey stick

approach. Figures 2c and 2d show the output graphs for

the Td-LCI (using the R hockey stick software [Lutz and

Lutz, 2009]) and BMD dose–response (using PROAST

modeling results), respectively. A comparison of the mod-

eling results across datasets identified several interesting

points (Table II). All the in vitro NOGEL values were of

a similar order of magnitude for gene mutations and

micronuclei (�0.5–1 lg/ml for MMS and 1–6.25 lg/ml

for EMS). The calculated Td-LCI values were numeri-

cally similar to the calculated NOGEL values for each

Environmental and Molecular Mutagenesis. DOI 10.1002/em

Fig. 2. Dose–response modeling results for HPRT gene mutations induced by MMS in vitro in AHH-1 cells. (a) Linear versus quadratic modeling

for the entire dose–response. Quadratic model gave the best fit (P < 0.05). (b) Linear versus quadratic modeling at the NOGEL and below. Linear

model gave the best fit (P > 0.05) with negative slope 23.33 6 12.80 that contains zero (P > 0.05). (c) Td-LCI dose–response modeling. (d) BMD

dose–response modeling. The three parameters NOGEL, TD-LCI, and BMDL10 are shown in each graph for comparison. For (c), the solid line shows

the best fit of the hockey stick function, and the dotted line shows the hockey stick with the inflection point at the lower 95% confidence limit of the

threshold (i.e., Td-LCI) [Lutz and Lutz, 2009]. For (d), CED is the critical effect dose or BMD; CES is the critical effect size, in this case 10% or

0.1; CED-L05 is the lower confidence interval of the BMD or BMDL; CED-L95 is the upper confidence interval of the BMD or the BMDU. For this

example, model E5-CED had the highest log-likelihood and provided the best representation of the data.
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dataset, in vivo and in vitro, except for the in vivo MMS

micronucleus data where the Td-LCI was about 3-fold

higher than the NOGEL (Table II). Although the

BMDL10 values tended to be the lowest across all data-

sets, for both EMS and MMS, all three parameters fell

within the same order of magnitude, with a 6-fold maxi-

mum difference among the in vitro datasets and an 8-fold

maximum difference among the in vivo datasets.

DISCUSSION

Toxicologists evaluate many different types of adverse

events, including reproductive, developmental, organ tox-

icities, and carcinogenic effects. Processes believed to be

driven by the interaction of toxicants with non-DNA cel-

lular constituents are often evaluated by assuming a

threshold dose below which no effect is expected. Toxi-

cologists generally acknowledge and support the existence

of homeostatic mechanisms and employ the supposition

that adverse effects occur only when these mechanisms

are saturated or overloaded [Piersma et al., 2011]. As a

result, a NOEL can be derived from the dose–response in-

formation generated for safety assessment studies. Geno-

toxic mechanisms, on the other hand, have historically

been considered as being based upon a stochastic process,

and the paradigm employed assumes low dose linearity

for induced effects, and the absence of a response thresh-

old.

When selecting the dose levels for toxicology studies

that do not include genetic endpoints, investigators

emphasize the importance of identifying a NOEL. These

NOELs, or LOEL when a NOEL is not available, are

used to derive acceptable or tolerable human exposure

levels (e.g., reference dose or RfD) by applying one or

more uncertainty factors to the calculated POD (i.e.,

NOEL) that accounts for data uncertainties. For example,

the US EPA’s Integrated Risk Information System (IRIS)

defines an RfD as ‘‘an estimate (with uncertainty span-

ning perhaps an order of magnitude) of a daily oral expo-

sure for a given duration to the human population

(including susceptible subgroups) that is likely to be with-

out an appreciable risk of adverse health effects over a

lifetime’’ [EPA, 2011]. RfD values are derived from

BMD, NOEL, LOEL, or other suitable POD. The most

commonly used POD values are the NOAELs or specified

BMDs (e.g., BMD10).

The three dose–response descriptors reported here were

selected because they each represent a different approach.

NOGEL values represent the POD metric that is analo-

gous to the statistical NOEL derived from standard toxi-

cology data. As such, they rely entirely on tested doses

and do not evaluate the entire dose–response. By defini-

tion, NOGELs are strongly affected by the experimental

design and the statistical methodology employed. Given

that there is no context for adversity for in vitro genetic

toxicity data, and no disease endpoint associated with in

vivo genetic toxicology data on surrogate genes or non-

heritable endpoints such as micronuclei in bone marrow

cells, the term NOGEL provides a more precise descriptor

than the standard toxicology terms of NOEL or no-

observed-adverse-effect-level (NOAEL) for genotoxicity

data. In contrast to the NOGEL, the Td and BMD

approaches involve determination of interpolated POD

metrics, calculated using the entire dataset, and generated

using statistical approaches that also provide measures of

uncertainty such as confidence limits [Crump, 1984; Slob,

2002; Lutz and Lutz, 2009]. Confidence limits associated

with Td and BMD estimates, such as Td-LCI and

BMDL10 values, represent the lower confidence limits of

the interpolated POD metrics, and as such, they are inher-

ently more conservative than NOGELs.

Determination of Td-LCI values, which represent the

lowest estimate of the inflection point beyond which a

response begins to increase significantly, has the most

stringent data recommendations (e.g., three doses above

and three doses below the estimated Td-LCI, see [Pot-

tenger and Gollapudi, 2010]). The BMD analysis,

intended for datasets with three doses plus control, as is

often seen with bioassays, is capable of analyzing datasets

with more doses, but does not have the stringent require-

ments associated with Td analysis. Although both analy-

ses can be influenced by high dose data, the Td value is

more likely than the BMD value to be influenced by

high-dose responses indicative of sub- or supra-linearity.

Determination of BMDL10 values for genotoxic effects

has the additional advantage that the POD metric can be

readily compared to BMDL10 values calculated for other

toxicological endpoints including carcinogenicity [Her-

nandez et al., 2011]. In addition, the ratio of BMDU10 to

BMDL10 values provides information on the uncertainty

surrounding the BMD estimate.

The three approaches examined in this work (i.e.,

NOGEL, Td-LCI, and BMD) demonstrate the utility of

using quantitative methods to describe the nature of the

dose–response curves for the induction of micronuclei and

gene mutations after exposure to MMS and EMS in vitro

and in vivo, and moreover, derive statistically defensible

POD metrics. The analyses suggest that the different POD

metrics determined for these chemicals are within the

same order of magnitude, with more variability observed

for the in vivo assays. Although the magnitudes of the

metrics investigated are similar, the different quantitative

approaches employed are complementary because they

each have advantages and limitations. For example,

BMDL can be used with a limited number of doses,

although it is preferable that more dose levels are avail-

able, whereas Td-LCI determination requires a large num-

ber of doses below and above the threshold effect level.

The data-rich studies available in the G4 database are

Environmental and Molecular Mutagenesis. DOI 10.1002/em
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currently being employed to determine the required num-

bers of doses above and/or below the point of departure

for effective determination of Td-LCI. As noted, the

BMDL and Td-LCI approaches have the distinct advant-

age, relative to the experimental design-limited NOGEL

approach, of taking into account the variability in the

data, and allowing the calculation of confidence intervals.

The assumption that no level of exposure to a geno-

toxic chemical is risk-free arose from the supposition that

even a single molecule could produce a mutagenic lesion

in DNA that could lead to a pre-cancerous cell that could

proliferate. This assumption has its basis in the ‘‘one-hit’’

model of radiation mutagenesis/carcinogenesis, and the

subsequent demonstration of linear dose–responses for

DNA adducts induced by alkylating agents [Turteltaub

et al., 1993; Swenberg et al., 2008]. Although more recent

data demonstrate nonlinear dose–response for exoge-

nously-induced DNA adducts [Swenberg et al., 2011], this

paradigm continues to play a dominant role in human

health risk assessment, and in regulatory decisions for

mutagens and mutagenic carcinogens. The principal

exception to this low-dose linear default assumption is for

genotoxic chemicals that act via a non-DNA target, e.g.,
the proteins of the mitotic spindle (Elhajouji et al., 1997).

In these cases, limited guidance exists for the quantitative

use of dose–response data for human health risk assess-

ment and ensuing regulatory decisions [FDA, 2006; Thy-

baud et al., 2007; ICH, 2011].

Because genetic damage in a sentinel cell type is not in

itself a disease outcome, it is more difficult to calculate

potential incremental health risks from incremental

increases over the spontaneous mutation frequency in the

same way that this is done for an apical endpoint such as

cancer. Further, high-dose information has generally been

used to generate a binary determination of whether or not

a chemical is genotoxic, and regulatory decisions are of-

ten made on the basis of this dichotomous information.

This was originally considered suitable because mutagenic

potential was thought to be a rare property of only a few

chemicals to which exposure could simply be prevented.

However, with accumulating experience, it has become

apparent that many chemicals, both synthetic and natural,

can induce genetic damage [Galloway et al., 1987; Moore

and Brock, 1988; Seeberg et al., 1988; Kultz and Chakra-

varty, 2001; Charles et al., 2002; Claxton et al., 2010].

The Quantitative Workgroup recognizes that a quantita-

tive approach is needed to help support rational risk-based

decisions regarding agents that induce genetic alterations.

In common with other toxicological endpoints, there are

different mathematical methods to characterize dose–

response data and derive POD metrics. In order to iden-

tify an exposure level associated with a minimal risk of

inducing genetic damage, it is necessary to define an ex-

posure that either fails to increase the existing level of the

toxic event of interest (e.g., mutant frequency for muta-

genic chemicals) by an agreed-upon minimal level over

control or background values, or fails, through the appli-

cation of an appropriate experimental and mathematical

method, to induce a specified absolute frequency of the

toxic event. The acceptable/tolerable increase can be

defined relative to the existing spontaneous frequency or

specified as an absolute frequency or rate.

The Workgroup also recognizes that zero exposure to

hazardous substances is not always possible, and that it is

timely to explore ways to maximize information that can

be obtained from detailed dose–response data from geno-

toxicity studies. It is clear that organisms experience a

substantial endogenous level of DNA damage (=30,000

DNA lesions/cell; [Swenberg et al., 2011]), and a sponta-

neous mutation rate that is not zero. Given the ubiquitous

presence of background DNA damage, human health risk

assessment for genotoxins and mutagens should consider

this natural background of genetic damage, and subse-

quently, using quantitative methods such as those

described in this study, attempt to minimize/prevent expo-

sures that add to the mutational burden of a given popula-

tion.

In conclusion, this article explored the applicability of

three different approaches to assess genotoxicity dose–

response data and derived POD metrics such as BMD,

Td, and NOGEL. The BMD and Td estimates have a

quantifiable measure of uncertainty associated with them

and hence are recommended as initial acceptable

approaches if adequate data are available, whereas the

NOGEL approach parallels the commonly-used statistical

NO(A)EL. Given that the BMD approach is already

widely used in the risk assessment community for other

toxicology endpoints, it may become the preferred

approach when analyzing genotoxicity data, with the Td

estimation serving as a useful adjunct for more refined

analysis in certain circumstances. Moreover, the findings

support the use of the lower confidence limit of a 10%

response as an adequate POD and BMR for genotoxicity

data, when the BMD approach is utilized.

Ongoing work is expanding the analyses to include

additional chemicals in the G4 database (e.g., ENU and

MNU) and additional endpoints (e.g., DNA strand breaks

as measured in a Comet assay, DNA adducts), and more-

over, evaluating the ability to use quantitative data from

experimental models to calculate POD metrics and use

the metrics for risk assessment and determination of ac-

ceptable human exposure levels. In addition, ongoing

analyses are developing approaches for quantitative com-

parisons of in vitro and in vivo responses. Finally,

ongoing work is extending the comparative analysis of

different statistical methods and different PODs, with the

ultimate goal of producing a standard operating protocol

to guide effective quantitative analysis of genetic toxicity

dose–response data. It is hoped that application of quanti-

tative approaches, such as those used here, will help to

Environmental and Molecular Mutagenesis. DOI 10.1002/em
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bring the field of genetic toxicology closer to other fields

of toxicology. It is conceivable that the POD values along

with uncertainty factors or a margin of exposure

approach, and a mode-of-action analysis, can be used to

help set acceptable/tolerable exposure levels or reference

doses for genotoxic materials.
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