
 

Cronfa -  Swansea University Open Access Repository

   

_____________________________________________________________

   
This is an author produced version of a paper published in :

International Journal for Numerical Methods in Engineering

                                                         

   
Cronfa URL for this paper:

http://cronfa.swan.ac.uk/Record/cronfa10752

_____________________________________________________________

 
Paper:

Sevilla, R., Fernández-Méndez, S. & Huerta, A. (in press).  Comparison of high-order curved finite elements.

International Journal for Numerical Methods in Engineering, 87(8), 719-734.

http://dx.doi.org/10.1002/nme.3129

 

 

 

 

 

 

 

 

_____________________________________________________________
  
This article is brought to you by Swansea University. Any person downloading material is agreeing to abide by the

terms of the repository licence. Authors are personally responsible for adhering to publisher restrictions or conditions.

When uploading content they are required to comply with their publisher agreement and the SHERPA RoMEO

database to judge whether or not it is copyright safe to add this version of the paper to this repository. 

http://www.swansea.ac.uk/iss/researchsupport/cronfa-support/ 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Cronfa at Swansea University

https://core.ac.uk/display/78846223?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://cronfa.swan.ac.uk/Record/cronfa10752
http://dx.doi.org/10.1002/nme.3129
http://www.swansea.ac.uk/iss/researchsupport/cronfa-support/ 


 

Comparison of high-order curved finite elements
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Laboratori de Càlcul Numèric (www-lacan.upc.edu), Departament de Matemàtica
Aplicada III, E.T.S. de Ingenieros de Caminos, Canales y Puertos, Universitat

Politècnica de Catalunya, Jordi Girona 1, E-08034 Barcelona, Spain.

Abstract

Several finite element techniques used in domains with curved boundaries are
discussed and compared, with particular emphasis in two issues: the exact
boundary representation of the domain and the consistency of the approxi-
mation. The influence of the number of integration points in the accuracy
of the computation is also studied. Two dimensional numerical examples,
solved with continuous and discontinuous Galerkin formulations, are used to
test and compare all these methodologies. In every example shown, the re-
cently proposed NURBS-enhanced finite element method (NEFEM) provides
the maximum accuracy for a given spatial discretization, at least one order of
magnitude more accurate than classical isoparametric finite element methods
(FEM). Moreover, NEFEM outperforms Cartesian FEM and p-FEM, stress-
ing the importance of the geometrical model as well as the relevance of a
consistent approximation in finite element simulations.

Keywords: finite element method (FEM), isoparametric FEM, Cartesian
FEM, p-version FEM, NURBS-enhanced FEM (NEFEM), exact geometry

1. INTRODUCTION

An accurate geometric description of a domain with curved boundaries
is critical in the so-called p extensions of the finite element method (FEM),
see [1]. In this approach the mesh remains unchanged (usually containing
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elements with a large aspect ratio) and the polynomial order of the approx-
imation is increased in order to properly approximate the solution. In some
applications, geometric errors induced by the isoparametric mapping deteri-
orate the accuracy of the numerical solution, see [1, 2, 3]. Therefore, an ac-
curate description of the geometry is mandatory in order to obtain maximum
accuracy for a given spatial discretization. Thus, in the so-called p-version of
FEM (p-FEM, see [4]) the blending function method [5] is usually considered
to define an exact mapping relating local and Cartesian coordinates. This
mapping offers advantages compared to classical isoparametric mapping, see
for instance [2].

Non-uniform rational B-splines (NURBS, see [6]) are widely used for ge-
ometry description in computer-aided design (CAD). Other popular options
for geometric description in CAD are polynomial B-splines (a particular case
of NURBS) and subdivision surfaces, see [7]. This fact has motivated novel
numerical methodologies considering exact CAD descriptions of the compu-
tational domain. Numerical methods using an exact geometric model can be
classified in two categories.

The first category considers methods with an exact CAD description of
the entire computational domain and approximation functions defined with
the same basis used for the CAD representation of the geometry, instead
of the classical piecewise polynomial approximation. They are referred as
isogeometric methods. For instance, in [8] polynomial B-splines are used
both to describe the geometric model and to approximate the solution. In [9]
the same idea is implemented with subdivision surfaces, and further applied
to thin shell analysis. More recently, the method proposed in [10] and the
isogeometric analysis [11] follow the same rationale, considering NURBS for
the geometric description as well as for the analysis.

The second category also considers an exact geometric model. The bound-
aries of the computational domain are exactly represented and a standard FE
rationale is used. That is, a standard piecewise polynomial approximation of
the solution is considered. First attempts to combine NURBS and p-FEM can
be found in the context of shape optimization, see [12] and references therein.
The recently proposed NURBS-enhanced finite element method (NEFEM),
see [3, 13], also lies in this category. NEFEM uses NURBS to exactly de-
scribe the boundary of the computational domain. In a sense, it is similar to
p-FEM using NURBS to exactly capture the boundary. More precisely, the
main difference between NEFEM and p-FEM is that NEFEM approximates
the solution directly with Cartesian coordinates (not in a reference element),
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ensuring reproducibility of polynomials in the physical space. Moreover,
from a practical point of view, efficient strategies are proposed in NEFEM
for the numerical integration on elements affected by the NURBS boundary
representation.

This paper is restricted to methods falling in the second category. Such
methods are simpler and more efficient because of two crucial aspects. First,
NURBS functions are only used to describe the geometry of curved bound-
aries, which is the geometry description provided by commercial CAD soft-
ware, whereas isogeometric methods require a NURBS solid for 3D simula-
tions. Second, methods as NEFEM or p-FEM use standard FE polynomial
interpolation and numerical integration. Thus, in the large majority of the
domain (namely in the interior, that is for elements not intersecting the
curved boundary) standard FE are considered, preserving the computational
efficiency of the classical FEM. This is not the case in isogeometric anal-
ysis, where NURBS are used also for approximating the solution. Those
methods require integrating NURBS functions over NURBS domains, be-
ing more expensive than the numerical integration in NEFEM or p-FEM,
which requires integrating polynomial functions over domains with NURBS
boundaries. Moreover, it is worth mentioning that the tensor product na-
ture of isogeometric methods allow an efficient implementation but it does
not allow the use of tetrahedral meshes. In fact, for complex geometries a
block decomposition in hexahedrons is needed and only C0 continuity is ob-
tained between blocks, whereas with NEFEM standard tetrahedral meshes
can be considered. Finally, isogeometric analysis require a specific treatment
of trimmed NURBS surfaces, see [14], whereas trimmed NURBS are easily
handled in the NEFEM context, see [15].

Several FE methodologies for the treatment of curved boundaries are con-
sidered and compared; namely, classical isoparametric FEM and Cartesian
FEM with an approximated boundary representation, and p-FEM and NE-
FEM with an exact description of boundary. In Section 2 the basis of each
methodology is recalled. Special attention is paid to numerical integration for
methods that consider an exact description of the geometry with NURBS.
A critical comparison between these methods is also presented. Section 3
presents two numerical examples in two dimensions, which are solved with
continuous and discontinuous Galerkin (DG) formulations. The performance
and benefits of each FE methodology are compared and discussed.

3
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W

Figure 1: Physical domain Ω with a curved boundary (left) and a triangulation of the
domain with curved FEs (right)

2. FE METHODS IN DOMAINSWITH CURVEDBOUNDARIES

Let Ω ⊂ R
2 be an open bounded domain whose boundary ∂Ω, or a portion

of it, is curved. A regular partition of the domain Ω =
⋃

eΩe in subdomains,
triangles in this work, is assumed, such that Ωi

⋂

Ωj = ∅, for i 6= j. For
instance, Figure 1 shows a domain with part of the boundary described by a
NURBS curve corresponding to a circle, and a triangulation of the domain
with curved FEs. It is important to remark that, in the following, Ωe denotes
the element with an exact description of the curved boundary, also referred as
physical subdomain. This is not the case of classical isoparametric FEs, where
the computational element, Ωh

e , corresponds to a polynomial approximation
of the curved boundary.

In this section the different methodologies used and compared for the
treatment of curved boundaries are recalled.

2.1. Approximated boundary representation

The standard FE technique used in the presence of curved boundaries is
isoparametric FEM, see [16, 17]. A nodal interpolation of the solution, u, is
considered in the reference element I with local coordinates ξ = (ξ, η), see
Figure 2,

u(ξ) ≃ uh(ξ) =
nen
∑

i=1

uiNi(ξ), (1)

where ui are nodal values, Ni are polynomial shape functions of order p in ξ,
and nen is the number of element nodes. The isoparametric transformation
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Figure 2: Isoparametric mapping between the reference element I, with local coordinates
ξ, and an approximation of the physical subdomain in Cartesian coordinates x, namely
Ωh

e
= ϕ(I)

is used to relate local and Cartesian coordinates

ϕ : I −→ Ωh
e

ξ 7−→ ϕ(ξ) :=
nen
∑

i=1

xiNi(ξ),
(2)

where xi are the nodal coordinates of the computational element Ωh
e . Note

that Ωh
e is a polynomial approximation of the physical subdomain Ωe, in

particular, of its boundary, see Figure 2. In fact, the term isoparametric
stands for the use of the same polynomial shape functions to define the func-
tional approximation uh, and to describe the geometry of the computational
element in Cartesian coordinates, see Equation (2).

Numerical integration in the computational element Ωh
e (approximation

of Ωe) is performed using the isoparametric transformation given in Equation
(2), with a numerical quadrature in the reference element I. For instance, a
stiffness elemental matrix coefficient is computed as

Ke
ij =

∫

Ωh
e

∇xNi

(

ξ(x)
)

·∇xNi

(

ξ(x)
)

dΩ =

∫

I

(

J−1
ϕ ∇ξNi(ξ)

)

·
(

J−1
ϕ ∇ξNj(ξ)

)

|Jϕ| dξ,

(3)
where Jϕ is the Jacobian of the isoparametric transformation, see Equation
(2). For curved elements the isoparametric mapping is non-linear. There-
fore, the inverse of the Jacobian, J−1

ϕ , is not a polynomial function, and no
exact integration is feasible with standard quadrature rules. In practice, a
symmetric triangle quadrature [18] on I, with a sufficiently large number of
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integration points, is usually employed to compute (3). In fact, a quadrature
of order 2p− 1 provides optimal convergence of the isoparametric FEM, see
[19].

There are two sources of error in isoparametric FEM. First, the isopara-
metric mapping in Equation (2) introduces geometric errors, due to the ap-
proximation of the physical subdomain Ωe by the computational element Ωh

e .
In fact, the boundary of the computational domain ∂Ωh is a piecewise poly-
nomial approximation of the exact boundary ∂Ω, see Figure 2. Second, for
high-order approximations on curved elements, the definition of the polyno-
mial interpolation in Equation (1) in local coordinates, ξ, implies a loss of
consistency: a polynomial interpolation of degree p > 1 in ξ does not cor-
respond to a polynomial interpolation of degree p in x. This implies that
the approximation is able to reproduce linear functions but it is not able
to reproduce higher order polynomials in Cartesian coordinates. In other
words, curved isoparametric FEs pass the patch test but they fail to pass the
so-called higher order patch tests, see [19] for further details.

Remark 1. Optimal convergence of isoparametric FEs is obtained under
some smoothness assumptions on the isoparametric mapping. In practice,
a specific node placement of interior nodes in curved elements of order p > 2
is mandatory to guarantee optimal rates of h and p convergence, see [20, 21].

An alternative to ensure consistency of the approximation, and optimal
convergence for any nodal distribution, is the so-called Cartesian FEM. This
approach defines the polynomial basis for the approximation of the solution
directly in the physical space, with Cartesian coordinates x,

u(x) ≃ uh(x) =

nen
∑

i=1

uiNi(x). (4)

Nevertheless, the isoparametric transformation in Equation (2) and the com-
putational element Ωh

e , are still considered for integration purposes. For
instance, a stiffness elemental matrix coefficient is computed as

Ke
ij =

∫

Ωh
e

∇xNi(x)·∇xNj(x) dΩ =

∫

I

∇xNi

(

x(ξ)
)

·∇xNj

(

x(ξ)
)

|Jϕ| dξ. (5)

The definition of the approximation with Cartesian coordinates, x, en-
sures reproducibility of polynomials (i.e., consistency of order p). Moreover,
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exact integration is feasible because shape functions and their derivatives
are polynomials, not only with Cartesian coordinates x, but also with local
coordinates ξ. More precisely, for a degree of interpolation p, Ni

(

x(ξ)
)

and
∇xNi

(

x(ξ)
)

are polynomials of degree p and p − 1, respectively. Therefore,
the function to be integrated, f(ξ) = ∇xNi

(

x(ξ)
)

· ∇xNj

(

x(ξ)
)

|Jϕ|, is a
polynomial of degree p(4p− 3) in ξ. The evaluation of integral in Equation
(5) can be exact with a triangle quadrature of order p(4p−3) on the reference
element I.

It is worth noting that Cartesian approximation can be considered with
Lagrangian, Eulerian, arbitrary Lagrangian-Eulerian or updated Lagrangian
formulations. Obviously, Cartesian approximation introduces an overhead
with respect to isoparametric FEs because it requires a specific definition of
the approximation for each curved element. When the mesh is fixed, this
overhead is restricted to elements affected by the curved boundary descrip-
tion, usually a very small portion of the total number of elements. For meshes
evolving with the simulation this overhead is repeated each time step, and
internal curved edges must be considered. The definition of Cartesian ap-
proximations for elements with internal curved edges does not represent an
excessive difficulty and it follows the ideas presented in the extension of NE-
FEM to 3D domains [22], where internal curved faces have to be considered.
It is worth remarking that the extra cost introduced by Cartesian FEM is
justified by the improved accuracy with respect to isoparametric FEs. In ad-
dition, Cartesian approximation allows to ensure optimal convergence with
no dependence on the node placement for curved elements, see Remark 1 and
Section 2.4.

Although Cartesian FEM ensures reproducibility of polynomials in the
physical space, the numerical integration in Cartesian FEM is still done in the
(approximated) computational element Ωh

e . Thus, Cartesian FEM precludes
the lack consistency of isoparametric FEM, but it still suffers from geometric
error. This is not the case for p-FEM and NEFEM formulations, with the
exact boundary representation, described next.

2.2. Exact boundary representation

This section recalls the basics of two formulations considering an exact
boundary representation, p-FEM [1, 4] and NEFEM [3]. In order to simplify
the presentation and without loss of generality, curved physical subdomains,
Ωe, are assumed to be triangles with one curved edge.

7
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Figure 3: Exact mapping between the reference element I with local coordinates ξ, and
the physical subdomain Ωe with Cartesian coordinates x

Nodal interpolation in p-FEM is defined in the reference element using
local coordinates ξ, see Equation (1), but an exact mapping is employed be-
tween the reference element I and the physical subdomain Ωe. For instance,
assuming a NURBS parametrization C(ξ) of the curved edge of Ωe, a simple
p-FEM mapping may be

φ : I −→ Ωe

ξ 7−→ φ(ξ) :=
1− ξ − η

1− ξ
C(ξ) +

ξη

1− ξ
x2 + ηx3,

(6)

where x1 = C(0) and x2 = C(1) are the vertices of Ωe on the curved
boundary, and x3 is the internal vertex, see Figure 3. Other options are
possible in order to define an exact mapping from I to Ωe, see for instance
[23]. However, no relevant differences, depending on the particular mapping
φ, are observed in the numerical tests discussed in Section 3.

In p-FEM, a stiffness elemental matrix coefficient is computed as

Ke
ij =

∫

Ωe

∇xNi

(

ξ(x)
)

·∇xNi

(

ξ(x)
)

dΩ =

∫

I

(

J−1
φ ∇ξNi(ξ)

)

·
(

J−1
φ ∇ξNj(ξ)

)

|Jφ| dξ,

integrating over the physical subdomain Ωe, with an exact description of the
geometry. Note that, the inverse of the Jacobian, J−1

φ , is not a polynomial
function and, as for the isoparametric FEM, no exact integration is feasible
with standard quadrature rules. Nevertheless, under some smoothness re-
quirements on the parametrization C(ξ), the same quadrature order used in
the isoparametric FEM, that is 2p − 1, guarantees optimal convergence for
p-FEM, see [24].
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Figure 4: Transformation from R = [λe
1
, λe

2
]× [0, 1] to Ωe for numerical integration in the

2D NEFEM

Note that p-FEM presents a major advantage, compared to isoparametric
or Cartesian FEM, which is the exact boundary representation. Nevertheless,
p-FEM still suffers the same lack of consistency as isoparametric FEM, due
to the definition of the polynomial shape functions in the reference element
I, with local coordinates ξ. This is not the case for the recently proposed
NEFEM [3].

NEFEM considers the exact geometry description by means of the usual
CAD boundary representation of the computational domain with NURBS.
The polynomial approximation in Equation (4) is defined with Cartesian
coordinates x, ensuring reproducibility of polynomials in the physical space
for any order of approximation p. The exact description of the boundary is
used to perform the numerical integration on the physical subdomain Ωe. In
NEFEM, a stiffness elemental matrix coefficient is computed as

Ke
ij =

∫

Ωe

∇xNi(x) ·∇xNj(x) dΩ =

∫

R

∇xNi(x(λ)) ·∇xNj(x(λ))|Jψ| dλ,

using the transformation

ψ : R = [λe
1, λ

e
2]× [0, 1] −→ Ωe

λ = (λ, ϑ) 7−→ ψ(λ) := (1− ϑ)C(λ) + ϑx3,
(7)

where x1 = C(λe
1) and x2 = C(λe

2) are the vertices on the NURBS boundary,
and x3 is the internal vertex of the physical subdomain Ωe, see Figure 4.

It is worth noting that the transformation ψ is linear in the parameter
ϑ. Thus, for a degree of interpolation p, the function to be integrated in
the rectangle R, f(λ) = ∇xNi

(

ψ(λ)
)

·∇xNj

(

ψ(λ)
)

|Jψ(λ)|, is a polynomial
of degree 2p− 1 in ϑ. Therefore, exact numerical integration in ϑ direction

9

Preprint of 
R. Sevilla, S. Fernández-Méndez and A. Huerta 
Comparison of high-order curved finite elements 
International Journal for Numerical Methods in Engineering, 87 (8); 719-734, 2011



x

y

Ωe

∂Ω

x1
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Figure 5: Triangle with a curved edge containing changes of NURBS definition (marked
with �)

is feasible with p Gauss-Legendre integration points. For the other direc-
tion, λ, no exact integration is feasible with standard quadratures due to
the rational definition of the NURBS boundary. Numerical experiments re-
veal that Gauss-Legendre quadratures are a competitive choice in front of
other quadrature rules such as trapezoidal and Simpson composite rules or
Romberg’s integration, see [3]. Numerical examples in Section 3.1 show the
influence of the number of integration points in the accuracy of NEFEM
computations.

It is worth mentioning that NURBS are piecewise rational functions de-
fined in parametric form, see [6]. Therefore, numerical integration for p-FEM
and NEFEM must be designed to account for changes of NURBS definition
along the curved edge of the physical subdomain Ωe. This issue is addressed
in the next section.

2.3. Numerical integration for p-FEM and NEFEM

This section discusses the numerical integration for p-FEM and NEFEM
when changes of NURBS parametrization are considered inside the curved
boundary edge of a physical subdomain Ωe in 2D. Key ideas for an extension
to 3D domains are also discussed.

For illustration purposes the triangle with a curved edge represented in
Figure 5 is considered first. The curved edge is described with a piecewise
parametrization C, whose definition changes in two points on the curved
edge, marked with �. The parametric coordinates of these points are called
the breakpoints or knots of the NURBS parametrization, see [6].

In p-FEM, the piecewise definition of the boundary induces a piecewise
definition of the mapping φ, see Equation (6). Therefore, a specifically de-
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Figure 6: Numerical integration for 2D p-FEM: subdivision of the reference element I to
design a numerical quadrature taking into account changes of NURBS parametrization
C(ξ) at points marked with �

signed numerical quadrature should be defined in the reference element I.
For the triangle represented in Figure 5, with two changes of NURBS defi-
nition, the reference element should be partitioned as represented in Figure
6, where the discontinuous lines show the changes of definition of the map-
ping φ. Note that these lines originate at the breakpoints of the NURBS
parametrization in the ξ axis, and are extended inside the reference element.
A composite numerical quadrature on I should be defined by using different
numerical quadratures in each region.

In NEFEM, changes of NURBS definition are easily accommodated using
application ψ, see Equation (7). The piecewise definition of the boundary
also induces a piecewise definition of the element mapping ψ. The rectangle
R is subdivided using the breakpoints, as represented in Figure 7, and a
numerical quadrature in R is defined only in terms of 1D quadratures. A
composite 1D Gauss-Legendre quadrature is used in parameter λ to take
into account the discontinuous nature of the NURBS parametrization. In
the other parameter, ϑ, exact integration is feasible, as discussed in Section
2.2.

The proposed strategy to perform the numerical integration in 2D NE-
FEM can be easily extended to 3D domains, see [22]. For instance, let Ωe be
a tetrahedral element with a face on the curved boundary, and S its NURBS
parametrization. The curved tetrahedral face is defined as the image of a
straight-sided triangle Λe (in the parametric space of the NURBS) by the
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Figure 8: Transformation from Λe×[0, 1] to Ωe for numerical integration in the 3D NEFEM

NURBS parametrization S. Then, the following mapping is considered

θ : Λe × [0, 1] −→ Ωe

(λ, κ, ϑ) 7−→ θ(λ, κ, ϑ) := (1− ϑ)S(λ, κ) + ϑx4,
(8)

where x4 is the internal vertex of Ωe. Transformation θ maps the prism
Λe×[0, 1] to the physical subdomain Ωe, see Figure 8. A numerical quadrature
can be defined on Λe × [0, 1] as a tensor product of a triangle quadrature
on Λe, with a 1D Gauss quadrature on [0, 1], as illustrated in Figure 8.
Changes of NURBS parametrization inside a curved face are easily treated
in 3D NEFEM following the same rationale of 2D. The parametric triangle
Λe is subdivided according to the changes of NURBS parametrization, and
numerical quadratures are defined in each subregion, see an example in the
left plot of Figure 9.
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λ
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ϑ

Λe

ξ

η

ζ

Figure 9: Subdivisions to design a numerical quadrature taking into account changes of
NURBS definition. On the prism Λe × [0, 1] for 3D NEFEM (left) and on the reference
tetrahedral for 3D p-FEM (right)

Remark 2. Usually Λe is a triangle with straight edges, but other situa-
tions are also possible. For instance, if the boundary representation involves
trimmed NURBS, then the parametric triangle Λe may have curved edges.
Moreover, if singular NURBS are present in the boundary description (that
is, a NURBS containing a point where a directional derivative in the para-
metric space is zero, and thererfore knot lines converge towards a so-called
singular point), Λe may be a quadrilateral element in the parametric space
of the NURBS. In such situations the mapping of Equation (8) is also valid,
and it is only necessary to modify the quadrature of Λe, see [22].

In the 3D p-FEM context, the definition of a numerical quadrature on the
reference tetrahedral accounting changes of NURBS parametrization is more
complicated. The generalization of the 2D strategy requires subdivision of
the reference tetrahedral element to account for changes of NURBS surface
parametrization, see an example in the right plot of Figure 9. In general,
different subregions are possible after subdivision. Thus, a simple option to
define a quadrature on the reference element is to use further subdivision to
obtain only tetrahedral subregions. Then, a composite quadrature may be
defined on the reference element based on standard tetrahedral quadratures.
In fact, a usual practice to facilitate the implementation of the 3D p-FEM
is to consider a polynomial approximation of the boundary. For instance, in
[25] a least-squares approximation of the exact boundary is considered in a
p-FEM context. Although the polynomial approximation of the boundary
can be selected to satisfy continuity requirements across element interfaces
[26]. The exact boundary representation is therefore lost in order to simplify
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Exact geometry Consistency
Isoparametric FEM NO NO

Cartesian FEM NO YES
p-FEM YES NO

NEFEM YES YES

Table 1: Comparison of FE techniques used in domains with curved boundaries

the computational implementation.
To conclude, the design of a numerical quadrature accounting for changes

of NURBS definition requires specific strategies. For NEFEM, the complex-
ity of the numerical integration in 3D domains is reduced to the design of a
2D numerical quadrature on the parametric triangle Λe, and exact integra-
tion is feasible in the third direction, see Figures 8 and 9. In contrast, the
design of a numerical quadrature in the 3D p-FEM requires careful attention.
The reference element must be partitioned and 3D quadratures must be con-
sidered to define a suitable quadrature in the reference element accounting
for changes of NURBS definition, see right plot in Figure 9.

2.4. Critical comparison

The main differences between all the FE techniques considered in this
work are summarized in Table 1. On one hand, the use of a non-linear
mapping relating local and Cartesian coordinates (mapping of Equation (2)
in the isoparametric FEM and the exact mapping of Equation (6) in the
p-FEM) induces a loss of consistency. That is, a polynomial interpolation
of degree p > 1 in local coordinates ξ, does not correspond to a polynomial
interpolation of degree p in Cartesian coordinates x. On the other hand,
the use of the isoparametric mapping to perform the numerical integration
(as done in the isoparametric FEM and in the Cartesian FEM) introduces
geometric errors, i.e., the boundary of the computational domain, ∂Ωh, is a
piecewise polynomial approximation of the exact boundary, ∂Ω. The only
method ensuring both consistency of the approximation (for any p) and an
exact boundary representation of the domain is NEFEM, see Table 1.

It is worth mentioning that, from a computational point of view, the def-
inition of the polynomial basis in local coordinates ξ, as done in the isopara-
metric FEM and in p-FEM, induces a marginal extra efficiency. In this case
the polynomial basis is defined once in the reference element and used to
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define the approximation in each curved element, whereas a Cartesian ap-
proximation requires a specific definition of the polynomial basis for each
curved element. The use of the isoparametric transformation to perform
the numerical integration, as done in the isoparametric FEM and in the
Cartesian FEM, also induces another marginal extra efficiency. A numerical
quadrature is defined in the reference element I and used for each curved
element. Whereas methods with an exact boundary representation require
specific strategies for curved elements. Nevertheless, it is important to recall
that this extra cost is restricted to elements affected by the NURBS bound-
ary representation, in most applications a very small portion of the total
number of elements, those in contact with non polynomial boundaries.

A priori error estimates for the FE methodologies considered in this work
have similar expressions, with optimal convergence in all cases. However,
the hypotheses to obtain these estimates are different, depending on the
definition of the approximation, in local or Cartesian coordinates, and on
the boundary representation, that is, approximated or exact.

The influence of the definition of the polynomial basis in local or Carte-
sian coordinates is discussed first. When the polynomial basis is defined
with local coordinates ξ, the mapping relating local and Cartesian coordi-
nates must be smooth enough to guarantee optimal convergence. In practice,
for the isoparametric FEM specific nodal distributions on curved elements
are necessary to obtain optimal convergence rates with p > 2, see Remark 1
and [20, 21]. For p-FEM, the NURBS parametrization of the curved bound-
ary must be smooth enough to guarantee the necessary smoothness of the
p-FEM mapping relating local and Cartesian coordinates, see [27]. In con-
trast, when the polynomial basis is defined with Cartesian coordinates x,
the derivation of a priori error estimates is very close to FE a priori error
estimates in polygonal domains, which can be found in [28, 29]. For Carte-
sian FEM and NEFEM, no specific nodal distributions in curved elements
are necessary to achieve optimal convergence. Moreover, smooth variations
of the NURBS parametrization are not required to obtain the optimal con-
vergence rates with NEFEM, see [3]. Nevertheless, optimal a priori error
estimates for FE methods with a Cartesian approximation require extra at-
tention if a standard (continuous) Galerkin formulation is considered. If a
strong imposition of Dirichlet boundary conditions is considered, or if curved
internal edges/faces are present in the mesh, optimal nodal distributions in
curved elements are necessary in order to guarantee optimal rates of conver-
gence, see [3, 15] and references therein. The key issue is that test functions
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do not vanish over the curved boundary, even if the test function is asso-
ciated to a node that is not located on the boundary. With specific nodal
distributions, such as Fekette points, the error induced by this lack of con-
sistency is lower than the approximation error and the optimal convergence
is guaranteed. Obviously, this is not the case for weakly imposed Dirichlet
boundary conditions, where optimal convergence is obtained irrespectively of
the node placement. Recall that in a DG framework boundary conditions are
usually imposed in a weak sense, and recent studies also suggest advantages
of imposing boundary conditions weakly in a standard continuous Galerkin
framework, see [30].

The influence of the boundary representation in the convergence proper-
ties of the approximation is discussed next. For FE methods with an approx-
imate boundary representation (isoparametric FEM and Cartesian FEM),
optimal convergence is provided under the assumption that geometric errors
are lower than the discretization error. The difference between the compu-
tational element Ωh

e and the physical subdomain Ωe must be bounded by
γhp, where γ is a constant, h is the characteristic mesh size and p is the
interpolation degree. Moreover, bounds of the Jacobian of the isoparametric
transformation and its first p derivatives are also necessary, see [20].

Thus, a curved element with an approximated boundary representation
must verify two contradictory requirements. On one hand, the computational
(polynomial) boundary ∂Ωh has to be close enough to the exact boundary
∂Ω. And, on the other hand, the discrepancy between the computational
element and the straight-sided element given by its vertices must vanish fast
enough, see [21].

3. NUMERICAL EXAMPLES

Two numerical examples are considered in order to compare the FE
methodologies discussed in this work. First, a Poisson problem is solved
using a continuous Galerkin formulation. The second example involves a
more complex application, the scattering of an electromagnetic plane wave
by a perfectly conducting obstacle, which is solved using a DG formulation.
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Figure 10: Coarse meshes for the Poisson problem. Nested remeshing is used for refinement

3.1. Poisson problem

The following model problem is considered






−∆u = f in Ω
u = ud on Γd

∇u · n = gn on Γn

where Ω is the domain (see two computational meshes with curved FEs in
Figure 10), Γd ∪ Γn = ∂Ω and n is the outward unit normal vector on ∂Ω.
A Dirichlet boundary condition, corresponding to the analytical solution, is
imposed in strong form in the polygonal part of the boundary Γd, and a
Neumann boundary condition, alsolacanlacala corresponding to the analyti-
cal normal flux, is imposed in the curved part of the boundary Γn. If desired,
Dirichlet boundary conditions could be imposed in a strong sense over the
curved boundary by considering Fekette nodal distributions on curved bound-
ary edges, see Section 2.4. The curved part of the boundary is given by the
usual quadratic NURBS that describes a circle, see [6], trimmed to represent
half a circle.

A polynomial source term is considered first, f(x, y) = −(32x3y2+6xy4+
2x5+42y5), in order to illustrate both the relevance of an accurate boundary
representation of the domain and the issue of consistency. The analytical
solution of the problem is a polynomial function of degree 7, namely

u(x, y) = x5y2 + x3y4 + y7.

Figure 11 shows a p-convergence comparison in the coarse mesh of Fig-
ure 10. The energy error is represented as a function of the square root
of the number of degrees of freedom (ndof) when the polynomial order of
the approximation is uniformly increased, starting with p = 1. In NEFEM,
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Figure 11: Poisson problem with polynomial analytical solution: p-convergence in the
energy norm in the coarse mesh of Figure 10

the boundary of the domain is exactly represented and the polynomial basis
for the approximation is defined in Cartesian coordinates. Therefore, with
a polynomial approximation of degree p = 7 the solution provided by NE-
FEM is the exact solution (except from rounding errors). With Cartesian
FEs, the basis is also defined in Cartesian coordinates, but the computa-
tional boundary is a piecewise polynomial approximation of the circle. Thus,
the difference between NEFEM and Cartesian FEM is only due to geomet-
ric errors. Although isoparametric FE and the p-FEM show the expected
(exponential) convergence, the effect of a non-consistent approximation is
clearly observed. The function to be approximated is a polynomial in Carte-
sian coordinates u(x), but it is far from being a polynomial function in local
coordinates u

(

ξ(x)
)

. In this example, errors introduced by a non-consistent
approximation are higher than geometric errors. Thus, isoparametric FEM
and p-FEM provide the same performance.

Next, the same Poisson problem is solved with a non-polynomial source
term, f(x, y) = x cos(y) + y sin(x), such that the analytical solution of the
problem is

u(x, y) = x cos(y) + y sin(x).

Convergence under h-refinement is first explored. Figure 10 shows the
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Figure 12: Poisson problem: h-convergence in the energy norm for p = 5 (left) and p = 6
(right)

first two computational meshes; nested remeshing is used for refinement.
The number of integration points is sufficiently large in order to ensure that
no errors due to numerical integration are present. Energy error is depicted
in Figure 12 for a polynomial approximation of degree p = 5 and p = 6. The
optimal rate of h-convergence is exhibited by every FE technique consid-
ered, but some differences in accuracy are observed. In this example the use
of a Cartesian approximation (Cartesian FEs and NEFEM) provides more
accurate results than defining the approximation with local coordinates. NE-
FEM always provides the most accurate results due to the combined effect
of the Cartesian approximation and exact boundary representation. With
p = 6, NEFEM is one order of magnitude more accurate than Cartesian FEs
and two orders of magnitude more accurate than isoparametric FEs and p-
FEM. In this example, p-FEM does not represent an advantage with respect
to isoparametric FEs. The error induced by the geometric approximation
of the boundary is lower than the error introduced by the definition of the
polynomial basis in local coordinates.

As shown in the h-convergence study, NEFEM is advantageous for high-
order approximations. Next, convergence under p-refinement is explored and
compared. Figure 13 represents the evolution of the energy error as a function
of the square root of the ndof. The polynomial degree of the approximation
is uniformly increased starting with p = 1 and for the discretizations shown
in Figure 10. As the order of the polynomial approximation is increased,
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Figure 13: Poisson problem: p-convergence in the energy norm for the computational
meshes represented in Figure 10

NEFEM offers the best performance. In fact, the desired error is attained
with the minimum ndof. Figure 13 shows that, for a given accuracy and the
coarsest mesh in Figure 10, NEFEM allows to reduce drastically the ndof. In
particular, a reduction of 40% compared to Cartesian FEM and up to 50%
compared to isoparametric FEM or p-FEM.

Finally, the influence of the number of integration points nip on the accu-
racy is studied. The coarsest mesh in Figure 10 with a polynomial approxima-
tion of degree p = 6 and p = 8 is used. To study quadrature accuracy, Figure
14 shows the evolution of the energy error versus the number of Gauss inte-
gration points for every curved boundary edge. When the polynomial basis
is defined in Cartesian coordinates (Cartesian FEM and NEFEM), numerical
integration requires more integration points to reach its maximum accuracy,
compared to the other methods. For a given degree of interpolation, NEFEM
is able to reach the same accuracy of isoparametric FEs with only one extra
integration point. Moreover, with three or four integration points more than
isoparametric FEM, NEFEM reaches its maximum accuracy. For a degree of
interpolation p = 8, NEFEM is four orders of magnitude more precise than
isoparametric FEM and p-FEM, and three orders of magnitude more precise
than Cartesian FEM.

Comparing left and right plots in Figure 14 it is important to note that
NEFEM with p = 6 and 9 Gauss integration points along curved boundary
edges achieves comparable accuracy to isoparametric FEM with p = 8 and
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Figure 14: Poisson problem: Energy norm of the error as the number of integration points
(nip) along the curved boundary edge is increased. Coarse mesh of Figure 10 with p = 6
(left) and p = 8 (right)

9 Gauss integration points. That means, that NEFEM is able to reach the
same accuracy than isoparametric FEs using the same number of integra-
tion points for boundary integrals but with a lower degree of approximation.
Figure 15 shows the evolution of the energy error versus the total number
of integration points for interior integrals as the degree of approximation p

is increased. For each point of this figure the minimum number of integra-
tion points to achieve maximum accuracy for a given p is used. Due to the
lower degree of approximation required by NEFEM, it achieves the same
accuracy than isoparametric FEM with an important reduction in the total
number of integration points. Therefore, although NEFEM requires more
computational effort per integration point due to the Cartesian approxima-
tion and the NURBS boundary representation, this comparison shows that
NEFEM is competitive because the required number of integration points
is substantially reduced to achieve a desired accuracy. Figure 15 also shows
that Cartesian FEs are not competitive because the necessary number of in-
tegration points to achieve a comparable accuracy is much greater than using
NEFEM or isoparametric FEM. Finally, note that the results using p-FEM
are not displayed because in this problem it behaves as isoparametric FEM,
see Figure 14.
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Figure 15: Poisson problem: Energy norm of the error vs number of integration points
(nip) for interior integrals as p increases using the coarse mesh of Figure 10

3.2. Electromagnetic scattering problem

The second example considers the scattering of an electromagnetic plane
wave, traveling in the x+ direction, by a perfect electric conducting circu-
lar cylinder. The wave length of the incident field is denoted by λ and the
diameter of the circle is 4λ. The problem is solved in the time-domain us-
ing a DG formulation, see [31, 32]. A coarse mesh with only four elements
for the discretization of the curved boundary is considered, and high-order
approximations are used to properly capture the solution. Figure 16 shows
the computational mesh, the transverse scattered field computed with NE-
FEM and p = 10, and the Radar Cross Section (RCS, see [33]). A Perfectly
Matched Layer (PML) is introduced in order to absorb outgoing waves. Note
that a 2λ thick PML is considered, which is enough to ensure that the accu-
racy comparison is not affected by the PML.

The RCS error evolution for increasing p is depicted in Figure 17. For the
same discretization (i.e., same degree of interpolation), NEFEM results are
more accurate than isoparametric or Cartesian FEs, with an approximate
boundary description, and also more accurate than p-FEM, with an exact
boundary representation. For instance, NEFEM with p = 10 produces a RCS
error in L2([−π, π]) norm of about 10−2, whereas isoparametric or Cartesian
FEs require p = 12 to achieve a comparable accuracy, and p-FEM requires
p = 11. Thus, NEFEM is able to reach the desired accuracy with a reduction
in ndof of about 30% compared to isoparametric or Cartesian FEs, and of 15%
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compared to p-FEM (also with an exact boundary representation). This
difference in number of degrees of freedom implies important differences in
computational cost. NEFEM computation requires 2 585 time steps to reach
the time-harmonic steady state, whereas isoparametric and Cartesian FEs
employ 3 692 time steps and p-FEM requires 3 114 time steps. In addition,
each time step with NEFEM requires less computational cost due to the
lower p needed to achieve the desired accuracy.

The difference between isoparametric FEs and Cartesian FEs are indis-
tinguishable, showing that a Cartesian approximation of the solution does
not offer any advantage if an approximated boundary representation is con-
sidered. The difference between isoparametric FEs and p-FEM is only due
to geometric errors, and relevant differences in accuracy are observed. Fi-
nally, NEFEM also considers the exact boundary representation as p-FEM
and outperforms it. The Cartesian approximation combined with an exact
boundary representation (i.e., NEFEM), provides in this example the maxi-
mum accuracy for a given spatial discretization. Finally, note that with an
approximate boundary representation the exponential convergence is exhib-
ited for p > 8 whereas with an exact boundary representation the exponential
convergence is achieved for p > 5.

To conclude, it is worth remarking that only one element per two wave-
lengths is considered in this example and a RCS error below 10−2 is obtained
with p = 11, that is, using 6 nodes per wavelength. Thus, the exact ge-
ometry considered in NEFEM combined with the Cartesian approximation,
allow to compute accurate solutions with the minimum ndof, compared to
other curved FEs and other techniques used by the computational electro-
magnetics community. For instance, [34] uses 22 nodes per wavelength and
low-order finite differences, [35] uses 20 nodes per wavelength and linear FEs,
and [36] uses 20 nodes per wavelength and finite volumes.

4. CONCLUDING REMARKS

This paper presents a comparison between several FE methodologies for
the treatment of curved boundaries: classical isoparametric FEM and Carte-
sian FEM with an approximated boundary representation, and p-FEM and
NEFEM with an exact description of the boundary. A critical compari-
son of these methods is presented, with particular emphasis in two issues:
consistency of the approximation and exact geometric description. Special
attention is paid to the numerical integration for FE methods with an exact
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boundary representation with NURBS. In this case, numerical integration
must be designed to take into account the piecewise nature of the NURBS
parametrization. The strategy to perform the numerical integration in p-
FEM and NEFEM is discussed for both 2D and 3D domains.

Two dimensional numerical examples are presented, using continuous and
DG formulations, in order to investigate the performance and benefits of each
methodology. The main conclusion of this study is that NEFEM provides
maximum accuracy for a given spatial discretization, showing the impor-
tance of a consistent approximation and exact boundary representation. For
a Poisson problem, NEFEM provides results at least two orders of magnitude
more accurate than the other FE methods studied here. Ensuring consistency
is an important issue in this example, and Cartesian FEM performs better
than classical isoparametric FEM or p-FEM. The second example considers
an electromagnetic scattering application in which the quantity of interest
is defined along the curved boundary. In this case the use of an exact rep-
resentation of the geometry is crucial. Again, NEFEM provides the most
accurate results for a given spatial discretization, one order of magnitude
more precise than classical isoparametric FEM or Cartesian FEM, and also
more accurate than methods considering an exact boundary representation,
such that p-FEM.
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[27] I. Babuška and M. Suri, “The optimal convergence rate of the p-version
of the finite element method,” SIAM J. Numer. Anal., vol. 24, no. 4,
pp. 750–776, 1987.

27

Preprint of 
R. Sevilla, S. Fernández-Méndez and A. Huerta 
Comparison of high-order curved finite elements 
International Journal for Numerical Methods in Engineering, 87 (8); 719-734, 2011



[28] C. Johnson, Numerical Solution of Partial Differential Equations by the
Finite Element Method. Cambridge: Cambridge University Press, 1987.

[29] S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Ele-
ment Methods. Springer, 1994.

[30] Y. Bazilevs and T.J.R. Hughes, “Weak imposition of dirichlet boundary
conditions in fluid mechanics,” Comp. Fluids, vol. 36, no. 1, pp. 12–26,
2007.

[31] B. Cockburn, Discontinuous Galerkin methods for Computational Fluid
Dynamics, in: E. Stein, R. de Borst, T.J.R. Hughes (Eds.), Fluids,
Encyclopedia of Computational Mechanics, vol. 3. New York: Wiley,
2004. Chapter 4.

[32] J. S. Hesthaven and T. Warburton, “Nodal discontinuous galerkin meth-
ods: Algorithms, analysis, and applications,” vol. 54 of Texts in Applied
Mathematics, New York: Springer, 2008.

[33] C.A. Balanis, Advanced Engineering Electromagnetics. New York: John
Wiley & Sons, 1989.

[34] H. Vinh, C. P. van Dam, and H. A. Dwyer, “Finite difference Maxwell
solver to study geometric shape effects on radar signature,” J. Aircraft,
vol. 34, no. 1, pp. 56–63, 1997.

[35] M. El Hachemi, O. Hassan, K. Morgan, D. Rowse, and N. Weatherill,
“A low-order unstructured-mesh approach for computational electro-
magnetics in the time domain,” Philos. Trans. R. Soc. Lond. Ser. A
Math. Phys. Eng. Sci., vol. 362, no. 1816, pp. 445–469, 2004.

[36] J. P. Cioni, L. Fezoui, and H. Steve, “A parallel time-domain Maxwell
solver using upwind schemes and triangular meshes,” IMPACT Comput.
Sci. Eng., vol. 5, no. 3, pp. 215–247, 1993.

28

Preprint of 
R. Sevilla, S. Fernández-Méndez and A. Huerta 
Comparison of high-order curved finite elements 
International Journal for Numerical Methods in Engineering, 87 (8); 719-734, 2011


