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On Constructing Parsimonious Type-2 Fuzzy Logic

Systems via Influential Rule Selection
Shang-Ming Zhou, Member, IEEE, Jonathan M. Garibaldi, Robert I. John, Member, IEEE, and Francisco Chiclana

Abstract—Type-2 fuzzy systems are increasing in popularity
and there are many examples of successful applications. While
many techniques have been proposed for creating parsimonious
type-1 fuzzy systems, there is a lack of such techniques for type-2
systems. The essential problem is to reduce the number of rules,
whilst maintaining the system’s approximation performance. In
this paper, four novel indices for ranking the relative contribution
of type-2 fuzzy rules are proposed, termed R-values, c-values,
ω1-values and ω2-values. The R-values of type-2 fuzzy rules are
obtained by applying a QR decomposition pivoting algorithm to
the firing strength matrices of the trained fuzzy model. The c-
values rank rules based on the effects of rule consequents, whilst
the ω1-values and ω2-values consider both the rule base structure
(via firing strength matrices) and the output contribution of fuzzy
rule consequents. Two procedures for utilising these indices in
fuzzy rule selection (termed ‘forward selection’ and ‘backward
elimination’) are described. Experiments are presented which
demonstrate that, by using the proposed methodology, the most
influential type-2 fuzzy rules can be effectively retained in order
to construct parsimonious type-2 fuzzy models.

Index Terms—Type-2 fuzzy sets, parsimony, rule ranking, rule
selection, index, QR, SVD-QR

I. INTRODUCTION

TYPE-2 fuzzy sets were initially proposed by Zadeh in

1975 [1]. Unlike type-1 fuzzy sets whose membership

values are precise numbers in [0, 1], membership grades

of a type-2 fuzzy set are themselves type-1 fuzzy sets, so

type-2 fuzzy sets offer an opportunity to model higher level

uncertainty in the human decision making process than type-1

fuzzy sets [2]–[5]. In a type-2 fuzzy inference system (T2FIS),

some fuzzy sets used in the antecedent and/or consequent parts

and each rule inference output are type-2 fuzzy sets. T2FISs

have been used in many successful applications in various

areas where uncertainties occur, such as in decision making

[6]–[8], diagnostic medicine [9], [10], signal processing [11],

[12], traffic forecasting [13], mobile robot control [14], pat-

tern recognition [15]–[17], intelligent control [18], [19], and

ambient intelligent environments [20].

However, one challenge in type-1 fuzzy systems also re-

mains in T2FISs, that is, the curse of dimensionality: the

number of fuzzy rules required increases exponentially with

the dimensionality of the input space. An additional challenge
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in T2FIS modelling is that it involves higher computational

overhead than type-1 fuzzy inference system modelling [2].

Importantly, in data-driven type-2 fuzzy modelling, the type-2

fuzzy rule-base generated by the back-propagation method [2],

[21] will almost certainly suffer from rule redundancy [26].

This is because, as an accuracy-oriented method, the back-

propagation training process is concerned only with produc-

ing an accurate system model, without any consideration of

parsimony, consistency, and transparency of generated rule-

base. Hence, accurate and parsimonious modelling techniques

are urgently needed for T2FIS modelling. As a matter of

fact, even in type-1 FIS modelling, the problem of developing

parsimonious fuzzy modelling technique with as few fuzzy

rules as possible is a very important research topic [22]–

[25]. Interestingly, Liang and Mendel have suggested using

the SVD-QR method [27], [28] to perform rule reduction for

the sake of designing parsimonious interval T2FIS (IT2FIS)

[26], in which QR decomposition with column pivoting is

further applied to the unitary matrix V after the singular-value

decomposition (SVD) of the firing strength matrix. However,

one issue arising in applying their method is the estimation

of an effective rank. Some research on type-1 fuzzy models

indicates that rule reduction using the SVD-QR with column

pivoting algorithm is very sensitive to the chosen rank, in

that different estimates of the rank often produce dramatically

different rule reduction results [29], [30].

In order to avoid the estimation of the rank for the SVD-QR

with column pivoting algorithm, this paper applies the pivoted

QR decomposition algorithm to type-2 fuzzy rule reduction.

The absolute values of diagonal elements of matrix R in QR

decomposition (termed the R-values) of fuzzy rules tend to

track the singular values and can be used for rule ranking.

However, both the pivoted QR decomposition algorithm and

the SVD-QR with column pivoting algorithm only consider

the rule-base structure, without paying attention to the effect

of rule consequents during rule selection. In other words, both

algorithms only employ the information from the premises of

the fuzzy rules when carrying out rule reduction, but ignore

the information from the rule consequents. In type-1 fuzzy

system modelling, one way of considering the effects of fuzzy

rule consequents on rule selection is via the orthogonal-least

squares (OLS) technique [31]. Wang and Mendel first applied

the OLS method to fuzzy rule selection [32], in which it was

used to select the most important fuzzy basis functions, each

of which was associated with a fuzzy rule. Later, Wang and

Langari employed the OLS method to remove less important

consequent terms for a first-order Tagaki-Sugeno fuzzy model

[33]. Mastorocostas et al. proposed a constrained OLS ap-
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proach as an improvement to the basic OLS approach for

producing compact fuzzy rule-bases [34]. The OLS based

methods select the most important type-1 fuzzy rules based on

their contributions of variance to the variance of the output.

Another way of considering the output contribution of the

fuzzy rules has been proposed by Zhou and Gan in fuzzy

modelling based on support vector machines (SVMs) [25].

The Lagrangian multipliers of an SVM (termed the α-values

of fuzzy rules) are used to rank the contributions of associated

rule consequents. In this paper, we propose a novel method

to consider the effects of type-2 rule consequents in order to

select the most influential rules, which we term c-values. It can

be seen that the existing methods of selecting influential fuzzy

rules by considering the contributions of rule consequents

[25], [32]–[34] are type-1 fuzzy system-oriented, which can

not be applied in type-2 fuzzy models. Another advantage

of the proposed c-values of fuzzy rules is that these values

can be derived directly from given type-2 fuzzy rules: no

additional computational techniques like OLS or SVM are

needed. In type-1 fuzzy system modeling, other techniques

of constructing parsimonious rules such as the one in [35]

focus on merging similar fuzzy sets, do not take into account

the scheme of selecting the influential rules in terms of rule

ranking results.

Ideally, a rule ranking method should take into account

both the structure of the rule-base and the effects of rule

consequents in order to generate a parsimonious fuzzy model

with good generalisation performance. However, currently this

kind of scheme is very rare, even in type-1 fuzzy system

modelling. In this paper, we propose ω1-values and ω2-values

in order to take into account both the type-2 rule base structure

and the contributions of type-2 rule consequents.

The organization of this paper is as follows. Section 2

reviews T2FIS with emphasis on IT2FIS whose secondary

membership grades are unity. In Section 3, we propose some

new rule ranking indices forT2FISS. Two procedures for util-

ising these indices in type-2 fuzzy rule selection are described

in Section 4. Section 5 includes the experimental results of

evaluating the proposed methods in three examples. Finally,

discussion of the various indices is presented in Section 6,

together with conclusions.

II. OVERVIEW OF TYPE-2 FUZZY LOGIC SYSTEMS

A T2FIS is a fuzzy logic system in which at least one of the

fuzzy sets used in the antecedent and/or consequent parts and

each rule inference output is a type-2 fuzzy set. Consider a

type-2 Mamdani FIS having n inputs x1 ∈ X1, · · · , xn ∈ Xn

and one output y ∈ Y . The rule base contains K type-2 fuzzy

rules expressed in the following form:

Rk : if x1 is F̃ k
1 and · · · and xn is F̃ k

n , then y is G̃k (1)

where k = 1, · · · , K , F̃ k
i and G̃k are type-2 fuzzy sets. These

rules represents fuzzy relations between the multiple dimen-

sional input space X
∆
= X1×· · ·×Xn and the output space Y .

However, the computing load involved in deriving the system

output from a general T2FIS model is high in practice, and this

has become a major factor curtailing applications of general

T2FIS. Advances have recently been made in computing

general T2FIS inference by using geometrical approximations

[36], [37]. For an IT2FIS in which the fuzzy sets F̃ k
i and G̃k

are interval fuzzy sets, the computing ofT2FISS can be greatly

simplified. The membership grades of interval fuzzy sets can

be fully characterised by their lower and upper membership

grades of the footprint of uncertainty (FOU) separately [2].

Without loss of generality, let µF̃ k

i

(x) =
[
µ

F̃ k

i

(x), µF̃ k

i

(x)
]

and µG̃k(y) =
[
µ

G̃k
(y), µG̃k(y)

]
for each sample (x, y).

The firing strength of an IT2FIS µF̃ k(x) = ⊓n
i=1µF̃ k

i

(x) is

an interval [2], i.e.,

µF̃ k(x) =
[
fk(x), f

k
(x)
]
, (2)

where

fk(x) = µ
F̃ k

1

(x) ∗ · · · ∗ µ
F̃ k

n

(x) (3)

and

f
k
(x) = µF̃ k

1

(x) ∗ · · · ∗ µF̃ k
n

(x), (4)

where * is a t-norm operator. In this paper, the singleton

fuzzifier is used in the type-2 fuzzy inference process. The

centroid of the type-2 interval consequent set G̃k is an interval

calculated as follows,

CG̃k

∆
= [yk, yk] =

{∑
N

i=1
yiθi∑

N

i=1
θi

∣∣∣∣ θ1 ∈
[
µ

G̃k
(y1), µG̃k(y1)

]
,

· · · , θN ∈
[
µ

G̃k
(yN ), µG̃k(yN )

]}

(5)

for the discretised y-domain {y1, · · · , yN}. The IT2FIS output

set via type-reduction, Yc(x), is also an interval set having the

following structure,

Yc
∆
= [yl, yr] =

{∑
K

i=1
yifi

∑
K

i=1
fi

∣∣∣∣ y1 ∈ [y1, ȳ1], · · · , yK ∈ [yK ,

ȳK ], f1 ∈ [f1, f
1
], · · · , fK ∈ [fK , f

K
]
}

(6)

Then the defuzzified output of the IT2FIS is

y =
yl + yr

2
(7)

However, special attention should be paid to the calculations

of the end points of Yc(x), yl and yr. From (6), we see that

yl and yr can be expressed separately as follows [2]:

yl =

∑K

i=1 yif i
l∑K

i=1 f i
l

=
∑K

i=1
yipi

l (8)

yr =

∑K

i=1 yif i
r∑K

i=1 f i
r

=
∑K

i=1
yipi

r (9)

where f i
l = f i or f

i
contributing to yl, f i

r = f i or f
i

contributing to yr, pi
l = f i

l /
∑K

i=1 f i
l and pi

r = f i
r/
∑K

i=1 f i
r.

Hence, it is necessary to determine which of
{
f i
}K

i=1
and{

f
i
}K

i=1
contribute to yl and which of

{
f i
}K

i=1
and

{
f

i
}K

i=1
contribute to yr. This can be done by the Karnik-Mendel

procedure developed in [2].

Given the data set
{
x(i), y(i)

}S

i=1
for designing an IT2FIS,
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the back-propagation algorithm can be used to train an IT2FIS

such that the following mean-square error (MSE) is min-

imised:

e =
1

2

S∑

t=1

(
y(x(t)) − y(t)

)2

(10)

This differentiable MSE measure is a common error mini-

mization heuristic used in system modelling. The validity of

using the MSE as an objective function to minimize error

relies on the assumption that system outputs are offset by

inherent Gaussian noise. For regression tasks, in which the

objective is to approximate the function of an arbitrary signal,

this presumption often holds. However, this assumption may

be invalid for some classification tasks, where other error

metrics such as cross-entropy [38] or maximal class margin

[39] may be more suited. Our paper focuses on regression-type

problems.

In IT2FIS modelling, currently the primary membership

functions are usually defined by correspondingly blurring type-

1 fuzzy membership functions, such as triangular functions,

trapezoid functions and Gaussian functions, in different ways.

Among these, Gaussian primary membership functions are the

most widely used ones [2]. This is because it is necessary

to compute the derivatives in the back-propagation algorithm

for tuning IT2FIS parameters. Computing such derivatives is

much more challenging than in a type-1 fuzzy logic system.

Obviously, the continuity and differentiability of Gaussian

primary membership functions make the computation involved

much more accessible to fuzzy logic system designers [21],

[40]. However, the proposed methods in the next sections of

this paper are applicable to any kind of type-2 membership

functions, because the proposed rule ranking and rule selection

in this paper are performed without any need to specify the

nature of the type-2 membership functions.

For the sake of constructing an initial IT2FIS model in this

paper, we use Gaussians with uncertain means as the primary

membership functions of the type-2 fuzzy sets F̃ k
i and G̃k [2],

i.e.,

µF̃ k

i

(xi) = exp

(
−

1

2

(
xi − mk

i

σk
i

)2
)

mk
i ∈

[
mk

i1, m
k
i2

]

(11)

and

µG̃k(y) = exp

(
−

1

2

(
y − mk

σk

)2
)

mk ∈
[
mk

1 , m
k
2

]
(12)

The back-propagation method can then be used to tune the

antecedent and consequent parameters in (11) and (12) so as

to minimise the mean-square error (10). Details of this training

method can be found in [2] [21].

One issue arising is that the type-2 fuzzy rule-base generated

by the back-propagation method will almost certainly suffer

from rule redundancy, so we need to select the most important

fuzzy rules and remove the redundant ones from the generated

rule-base. Liang and Mendel applied the SVD-QR with col-

umn pivoting algorithm to an IT2FIS for generating a compact

type-2 rule-base by removing the redundant rules [26], but it is

necessary to estimate an efficient rank rn in this algorithm. In

our experiments using the SVD-QR algorithm for rule ranking,

it was found that different rn produced different rule ranking

results. Hence, in order to avoid the estimation of rank rn,

we propose to apply the pivoted QR decomposition method to

rule ranking, further suggest the indices of c-values, ω1-values

and ω2-values of fuzzy rules for rule ranking from different

aspects of IT2FIS with the goal of constructing a parsimonious

model.

III. NEW RULE RANKING INDICES

A. The R-values of fuzzy rules

The R-values of fuzzy rules are obtained by applying

the pivoted QR decomposition method to the firing strength

matrices. The idea behind this method is to assign a rule

significance index to each fuzzy rule, then rank and select

the influential fuzzy rules in terms of this index.

However, one issue arising in designing an IT2FIS is that

the fuzzy rule sequence in the rule-base is changed after

calculating yr and yl. This is because in the Karnik-Mendel

procedure [2], it is necessary to arrange the
{
yi
}K

i=1
in

ascending order for calculating yr (and, similarly, to arrange

the
{
yi
}K

i=1
in ascending order for calculating yl). Hence, in

applying the pivoted QR decomposition method, it is necessary

to restore the fuzzy rule sequence when calculating the firing

strength matrices [2]. Specifically, for yr, let the original rule

order be I = [1, 2, · · · , K]T . After re-ordering
{
ȳi
}K

i=1
in

ascending order, the rule order becomes I ′ = ΦI (where Φ
is a permutation matrix). Next, the rule order in I ′ is re-

numbered as 1, 2, · · · , K for calculating yr by the Karnik-

Mendel procedure. Then the firing strength matrices in the

original order I are calculated as follows.

First, the number K̂ determined in the Karnik-Mendel

procedure is very important, because for i ≤ K̂ , f i
r = f i,

and for i > K̂, f i
r = f

i
. Thus,

yr =

∑K̂

i=1 yif i +
∑K

i=K̂+1 yif
i

∑K̂

i=1 f i +
∑K

i=K̂+1 f
i

(13)

So,

pi
r =





f i
/(∑K̂

i=1 f i +
∑K

i=K̂+1 f
i
)

i ≤ K̂

f̄ i
/(∑K̂

i=1 f i +
∑K

i=K̂+1 f
i
)

i > K̂
(14)

Then a firing strength vector given an input x is obtained by

restoring the original rule order,

p(x) = Φ−1
[
p1

r, · · · , p
K̂
r , pK̂+1

r , · · · , pK
r

]T
(15)

So the S training samples
{
x(i), y(i)

}S

i=1
lead to S firing

strength vectors composing a firing strength matrix Pr of size

K × S

Pr =

[
p
(
x(1)

)
, · · · , p

(
x(S)

)]T

(16)

Finally, the QR with column pivoting algorithm addressed in

the following steps is applied to Pr, in which each rule is

assigned an R-value as its significance index value.
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Step 1. Calculate the QR decomposition of Pr and get the

permutation matrix Π via PrΠ = QR, where Q is a unitary

matrix and R is an upper triangular matrix. The absolute values

of the diagonal elements of R, denoted by |Rii|, decrease as

i increases and are termed R-values.

Step 2. Rank the fuzzy rules and find their positions in the

rule-base in terms of the R-values and the permutation matrix

Π. Each column of Π has one element taking the value one

and all the other elements taking the value zero. Each column

of Π corresponds to a fuzzy rule. The numbering of the jth

most important rule in the original rule-base is indicated by

the numbering of the row where the element of the jth column

containing one is located. For example, if the value one in the

1st column is in the 4th row, then the 4th rule is the most

important one and its importance is measured as |R11|. The

rule corresponding to the first column is the most important,

and in descending order the rule corresponding to the last

column is the least important.

Because the R-values of Pr tend to approach to singular

values of Pr, they can be used as a rule ranking index in

designing a T2FIS with a compact rule-base. In practice, we

usually use the normalised R-values defined as follows to

perform the rule ranking:

Ri
n =

|Rii|

max
i

|Rii|
(17)

In terms of the normalised R-values obtained by applying

QR with column pivoting to Pr, the available fuzzy rules in

rule-base are ranked. Let Ωr denote the set with these ranked

rules.

Similarly, the fuzzy rules are ranked in terms of the nor-

malised R-values obtained by applying QR pivoted decompo-

sition to the firing strength matrix Pl for yl. Let Ωl denote the

set with these ranked rules. Hence, two sets of ranked fuzzy

rules, Ωr and Ωl, are obtained.

B. The c-values of fuzzy rules

Both the SVD-QR with column pivoting method and pivoted

QR method only take into account the rule-base structure,

focusing on the rule antecedent parts when applied to rule

reduction of IT2FIS. In the following, we further propose an

approach to ranking type-2 fuzzy rules based on the effects of

rule consequents, G̃i.

As a matter of fact, it can be seen from the procedure

for designing IT2FIS described in the above section that for

each type-2 fuzzy rule, the magnitude of the left and right

end-points of the centroid of the consequent set G̃i,
∣∣yi
∣∣ and∣∣yi

∣∣, separately determine the strength of the effects of the

rule consequent on the output end-points yl and yr. Hence,∣∣yi
∣∣ and

∣∣yi
∣∣ are very useful indices for measuring the output

contributions of type-2 fuzzy rules. These
∣∣yi
∣∣ and

∣∣yi
∣∣ are

called the c-values of type-2 fuzzy rules in this paper.

In practice, these c-values of fuzzy rules, C(i) =
∣∣yi
∣∣ or∣∣yi

∣∣, are usually normalised as well for rule ranking:

Ci
n =

C(i)

max
i

C(i)
(18)

In the rule ranking process, firstly, the normalised c-values∣∣yi
∣∣ are used as rule ranking indices for calculating yr. Let Ωr

denote the set with ranked rules in terms of
∣∣yi
∣∣. Secondly,

the fuzzy rules are ranked in terms of the normalised c-values∣∣yi
∣∣ for calculating yl, and let Ωl denote the set with ranked

rules in terms of
∣∣yi
∣∣.

C. The ω1-values and ω2-values of fuzzy rules

Although type-2 fuzzy rule ranking by c-values takes into

account the output contribution of the rule consequents, it

ignores the rule-base structure. In order to consider both the

rule-base structure and the consequent contribution of fuzzy

rules for rule ranking, another two new types of rule ranking

indices, termed the ω1-values and ω2-values, are separately

suggested as follows. Firstly,

ωi
1 = Ci

n · Ri
n (19)

where C(i) =
∣∣yi
∣∣ (or

∣∣yi
∣∣) for yl (or yr), and |Rii| are the

R-values of Pl (or Pr). Secondly,

ωi
2 = min

(
Ci

n, Ri
n

)
(20)

where C(i) =
∣∣yi
∣∣ (or

∣∣yi
∣∣) for yl (or yr), and |Rii| are the

R-values of Pl (or Pr).

The choice behind the definition of the ω1 in (19) lies in

that a fuzzy rule ranking result considering both rule-base

structure and contributions of rule consequents is expected

to be a monotonically increasing function of ranking results

from individual aspects (i.e., from rule-base structure or con-

tributions of rule consequents), a higher (lower) ranking result

from one aspect leads to a higher (lower) ω1-value. However,

a higher ranking result in terms of ω2-value defined in (20) is

obtained only if both its two operands are higher.

To obtain the rule ranking, firstly the ω1- (or ω2-) values are

calculated by choosing C(i) as
∣∣yi
∣∣ for yr and |Rii| of Pr in

(19) (or (20)). Let Ωr denote the set of rules ranked in terms

of these calculated ω1- (or ω2-) values. Secondly, the ω1- (or

ω2-) values are calculated by choosing C(i) as
∣∣yi
∣∣ for yl and

|Rii| of Pl in (19) (or (20)). Let Ωl denote the set of rules

ranked in terms of these calculated ω1- (or ω2-) values.

IV. TYPE-2 FUZZY RULE SELECTION AND

IMPLEMENTATION

A. Type-2 Fuzzy Rule Selection Procedures

Let DT be the test dataset and DV be the validation

dataset. Given a type-2 fuzzy model T2FIS∗ constructed from

data by the back-propagation algorithm, the generalisation

performance of the T2FIS∗ is measured in terms of the Err
(∗)
t

obtained by applying the model to the testing samples in

the data set DT , whilst the Err
(∗)
v denotes the validation

performance obtained by applying to the validation samples

in the data set DV . The R-values, c-values, ω1-values and

ω2-values can be used to identify the most influential type-2

fuzzy rules in the T2FIS∗. Assume Ωl and Ωr are the rule

ranking results obtained for calculating yl and yr separately

in terms of the chosen rule ranking index:

Ωl =

{
Ωl(1), Ωl(2), · · · , Ωl(K)

}
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Ωr =

{
Ωr(1), Ωr(2), · · · , Ωr(K)

}

where K denotes the number of fuzzy rules in rule base of the

initial fuzzy model T2FIS∗. The rule importance denoted by

Ωl(i) or Ωr(i) decreases as i = 1, 2, · · · , K; correspondingly,

the rule redundancy denoted by Ωl(i) or Ωr(i) decreases as

i = K, K−1, · · · , 1. In this paper, two type-2 fuzzy rule selec-

tion procedures, termed forward selection (FS) and backward

elimination (BE), are described, based on the proposed rule

ranking indices. Given an error tolerance threshold eh, the

two procedures are used to determine the smallest possible

model that explains the available data well from the rule base

of the model T2FIS∗. The threshold eh lies between Err
(∗)
v

and Ẽrrv , i.e., eh ∈ [Err
(∗)
v , Ẽrrv ], where Ẽrrv denotes the

maximal validation RMSE of type-2 fuzzy models with one

rule in rule-bases. The choice of eh > Err
(∗)
v implies that one

is ready to sacrifice some system approximation ability for the

sake of obtaining a more compact rule-base for a fuzzy model.

The FS procedure acts to directly select the influential fuzzy

rules from Ωl and Ωr, whilst the BE procedure acts to remove

the redundant rules from Ωl and Ωr (correspondingly retaining

the important fuzzy rules). Let Σi be the rule subset selected

recursively.

1) The FS Procedure: The FS procedure is a heuristics for

rule selection which starts with an empty set of type-2 fuzzy

rules (i.e. Σ0 = ∅). One at a time, the most important type-2

fuzzy rules from Ωl and Ωr are added (separately) to Σi (the

set of selected rules), the validation root-mean-square-error

(RMSE) Err
(i)
v of the fuzzy model constructed by Σi tends

to be smaller. This rule selection process continues until the

chosen criterion (the validation RMSE of the fuzzy model) is

below a model error tolerance threshold, eh. As indicated in

Figure 1, the FS procedure consists of the following steps:

Step 1. Set Σ0 = ∅, i = 1, and assign a model error

tolerance threshold eh.

Step 2. Select the most important type-2 fuzzy rules from

Ωl and Ωr as follows:

Σi = Σi−1 ∪

{
Ωl(i)

}
∪

{
Ωr(i)

}

where Ωl(i) and Ωr(i) are the ith most important rules in Ωl

and Ωr respectively.

Step 3. Construct a type-2 fuzzy model T2FISi by using the

rules in Σi;

Step 4. Apply T2FISi to the validation dataset DV and the

test dataset DT to obtain new RMSEs: Err
(i)
v and Err

(i)
t ;

Step 5. If Err
(i)
v ≤ eh, stop the selection process and

use T2FISi as the final compact fuzzy model with selected

rule set Σi, and with Err
(i)
t as the measure of generalization

performance for T2FISi; otherwise, increase i by 1, and go to

Step 2.

It should be noted that, because eh ≥ Err
(∗)
v , the termina-

tion of the FS procedure is guaranteed, in the sense that the

FS procedure always finds a non-empty set of influential rules

Σi. At least, the initial model T2FIS∗ satisfies the termination

condition.

Fig. 1. Forward selection procedure for selecting important fuzzy rules.

Fig. 2. Backward elimination procedure for removing redundant fuzzy rules.

2) The BE Procedure: The BE procedure is a heuristic for

removing redundant rules while retaining influential rules. It

works by starting from the full set of ranked rules, i.e. Σ0 = Ωl

(or Ωr), for the initial fuzzy model T2FIS∗. One at a time, the

most redundant type-2 fuzzy rules from Ωl and Ωr are deleted

(separately) from Σi (the set of selected rules), the validation
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RMSE Err
(i)
v of the fuzzy model constructed by the selected

rules in Σi tends to be greater. This rule reduction process

continues until the chosen criterion (the validation RMSE of

the fuzzy model) is above a model error tolerance threshold,

eh. As indicated in Figure 2, the BE procedure consists of the

following steps:

Step 1. Set Σ0 = Ωl (or Ωr), i = 1, and assign a model

error tolerance threshold eh.

Step 2. Remove the most redundant type-2 fuzzy rules by

performing a difference of rule subsets as follows:

Σi = Σi−1 −

{{
Ωl(K + 1 − i)

}
∪{Ωr(K + 1 − i)}

}

Step 3. Construct a type-2 fuzzy model T2FISi by using the

rules in Σi;

Step 4. Apply T2FISi to the validation dataset DV and the

test dataset DT to obtain new RMSEs: Err
(i)
v and Err

(i)
t ;

Step 5. If Err
(i)
v > eh or i = K (the full number of

rules), stop the reduction process and use T2FISi−1 as the

final compact fuzzy model with selected rule set Σi, and with

Err
(i−1)
t as the measure of generalization performance for

T2FISi−1; otherwise, increase i by 1, and go to Step 2.

Because Err
(∗)
v ≤ eh ≤ Ẽrrv , the termination of the BE

criteria is enforced when the rule set has been reduced to

just {Ωl(1) ∪ Ωr(1)}. In practice, if this occurred, then the

BE procedure could be repeated with a lower eh, while still

ensuring eh ≥ Err
(∗)
v .

As a further comment, it should be noted that an idiosyn-

crasy of type-2 rule ranking is that the two ranked sets Ωl

and Ωr, obtained by calculating yl and yr separately, may be

different. Consequently, the final fuzzy rule selection results

obtained through the FS and BE procedures described above

may be different.

B. Implementation of The Proposed Procedures

Given a training dataset
{
x(i), y(i)

}S

i=1
, the process of

applying these proposed procedures is as follows.

Step 1. Set the initial mean and width parameters for the

Gaussian primary functions with uncertain means in an initial

input space partition.

Step 2. Train the IT2FIS model by applying the back-

propagation algorithm.

Step 3. Rank the fuzzy rules of the trained IT2FIS model

in terms of the selected rule ranking index, such as one of the

proposed indices introduced in Section III.

Step 4. Conduct one or both of the FS and BE procedures

described in Subsection IV-A to obtain the reduced type-2

fuzzy model(s).

It should be noted that not only the proposed indices in

Section III, but also the rule ranking index obtained by the

SVD-QR method [26] can be used in the above procedures.

Indeed, the rule selection process used in the SVD-QR method

is the same as the FS procedure using the rule ranking results

obtained by SVD-QR decomposition.

C. Applications to Type-1 Mamdani Fuzzy Systems

It is known that an interval type-2 Mamdani fuzzy logic sys-

tem is a generalisation of a type-1 Mamdani system (T1MFIS).

If the lower and upper membership grades of the FOU in a

IT2FIS are equal, then the IT2FIS reduces to the T1MFIS.

Hence, the proposed methods can be applied to T1MFIS as

well by treating the T1MFIS as a special case of the IT2FIS.

Specifically speaking, for a T1MFIS the K × S firing

strength matrices Pl and Pr are the same (i.e. Pl = Pr),

so only one group of R-values used as rule ranking index is

obtained for constructing the T1MFIS with a compact rule

base. Similarly, the left end-points of the centroid of the

consequent set G̃i, yi, will be equal to the right end-points, yi

(i.e. yi = yi). Consequently, they both reduce to the traditional

centroid of the consequent set obtained by defuzzification of

the T1MFIS. Hence the traditional centroids of the consequent

sets in a T1MFIS are the c-values of type-1 fuzzy rules for

measuring the strength of the effects of the rule consequents

on the output. Accordingly, there is only one group of ω1-

values (ω2-values) for considering the output contribution of

rule consequents as well as the rule-base structure. As the

sets of ranked rules Ωl and Ωr are the same, the final rule

selection results obtained through the FS and BE procedures

are the same. That is to say, either the FS or BE procedures

can be used in identifying the influential type-1 fuzzy rules

for the T1MFIS, with the same results.

V. EXPERIMENTS

In this section, we use three examples to evaluate the pro-

posed rule reduction methods for constructing parsimonious

IT2FISs, and compare with the established SVD-QR with

column pivoting method for rule ranking. Furthermore, type-1

fuzzy logic models are compared with the constructed IT2FIS

models in order to examine the benefits of the type-2 approach.

The first example is to recover an original signal from data

highly contaminated by noise. Although the modelled system

in this example seems simple, it is known in the signal

processing community that it is rather challenging to recover

the original signal from data highly contaminated by noise,

without prior knowledge. The second example is a real world

problem in which we wish to predict automobile fuel con-

sumption in MPG (miles per gallon) based on several attributes

of an automobile’s profile. Automobile MPG prediction is

a typical nonlinear regression problem. The third example

considers a liquid-saturated steam heat exchanger [45]. The

main motivation for the choice of the heat exchange process is

that this plant is a significant benchmark for nonlinear control

design purposes, because it is characterised by a non-minimum

phase behaviour which makes the design of suitable controllers

particularly challenging even in a linear design context [45].

Hence, it is highly suitable as a context in which an IT2FIS

approach is used to predict the system behaviours.

A. Signal Recovery Problem

In the experiments for this example, the noisy signal is

generated by

y(t) = ṽ(t) + θ̃(t) (21)

where ṽ is the original signal and θ̃ is an interference signal.

The original signal is generated by

ṽ(t) = sin (40/(x(t) + 0.03)) + x(t − 1)/10. (22)
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The interference signal is generated from another Gaussian

noise source ñ, with a mean of zero and a standard deviation

of one, via an unknown nonlinear process

θ̃(t) = 4 sin (ñ(t)) ñ(t − 1)/
(
1 + ñ(t − 1)2

)
(23)

The measured signal y is the sum of the original information

signal ṽ and the interference θ̃. However, we do not know the

interference signal θ̃. The only signal available to us is the

measured signal y. The task is to learn the characteristics of

the original information signal ṽ from the measured signal y,

then recover the original signal. A T2FIS may be suitable for

such a signal processing problem due to its strong capability of

characterising higher uncertainty exhibited within such noisy

data [12].

1) Initial type-2 fuzzy model: In the following, we con-

structed an initial IT2FIS model with two inputs x(t), x(t−1)
selected in terms of regularity criteria [43] and one output y(t).
The antecedent and consequent parameters in (11) and (12)

were optimised by the back-propagation algorithm [2] [21].

In order to train the interval type-2 fuzzy model to represent

the nonlinearity and higher uncertainty of the system, the

data generation process (21), (22) and (23) was run 10 times.

In each of the runs, 100 samples
{
x(h), y

(h)
k

}S

h=1
(S=100,

k = 1, · · · , 10) were generated with x(h) ∈ [2, 5] and y
(h)
k

obtained by (21). Then the data set

{
x(h), min

k
y
(h)
k

}100

h=1

was

used to generate the antecedent means {mi1} in (11) by

the fuzzy c-means (FCM) unsupervised clustering algorithm

[41], whilst the data set

{
x(h), max

k
y
(h)
k

}100

h=1

was used to

generate the means {mi2}. The consequent means {m1}
and {m2} in (12) were randomly selected from the output

data samples. The width parameters in (11) and (12) were

determined using the nearest neighbour heuristic suggested by

Moody and Daken [42], based on the corresponding data sets.

Hence, all the initial antecedent and consequent parameters

were determined from given data sets, rather than manually

derived.

Four initial type-2 fuzzy sets were generated for each

input variable, which led to 16 rules in the initial interval

type-2 fuzzy model. After the training process, this interval

type-2 fuzzy model had the ability to recover the original

signal well with RMSE 0.2739, as illustrated in Figure 3.

Further evaluation of the generalisation performance of this

trained model was undertaken in order to examine whether,

given system inputs which were different from the training

samples, the outputs of the trained model could follow the

characteristics of the original signal rather than act as the noisy

signal. A test dataset with 40 testing inputs that were different

from the above available training inputs was generated. The

generalisation performance of the trained fuzzy model was

measured by the RMSE of the original signal values calculated

by (22) and the trained model outputs given these testing

inputs.

In our experiments, this type-2 fuzzy model achieved a

generalisation performance with the RMSE 0.1178 when being

applied to the testing samples.

2 2.5 3 3.5 4 4.5 5
−3

−2

−1

0

1

2

3

4

x

v

Fig. 3. Signal recovering by IT2FIS model on training samples: the dots
represent the measured signal, solid line represents the original signal ṽ and
dashed line represents the recovered signal.

2) Type-2 fuzzy rule ranking: Next, we applied the pro-

posed rule reduction methods to the trained interval type-2

fuzzy model, and evaluated them in comparison with the SVD-

QR rule reduction method. First, the QR with column pivoting

algorithm was applied to the firing strength matrices Pl and

Pr, in which the R-values of fuzzy rules were generated for

selecting influential rules in calculating yl and yr separately.

Figure 4 depicts the corresponding R-values and singular

values of fuzzy rules in descending order obtained from the

firing strength matrices Pl and Pr individually. These indicate

that the R-values track the singular values well, so the R-

values of Pl and Pr can be used to rank the fuzzy rules.

Figure 5 illustrates the ω1-values, normalised R-values and c-

values of fuzzy rules with the rule orders in rule base, whilst

Figure 6 depicts the ω2-values, normalised R-values and c-

values of fuzzy rules with the rule orders in rule base. These

two figures show that there exist certain correlations among

the proposed indices. However, it can be seen that each rule

has different index values, and that a rule with higher R-value

does not necessarily mean it has higher c-value, ω1-value, or

ω2-value, etc. Hence, these indices evaluate the importance

of fuzzy rules in their own ways. Table I illustrates the rule

ranking results obtained in terms of the proposed indices: the

R-values, c-values, ω1-values and ω2-values of fuzzy rules

obtained when applied to the firing strength matrices Pl and

Pr. As a comparison, the rule ranking results obtained by the

SVD-QR with column pivoting algorithm are summarised in

Table II. It can be seen that the rule ranking obtained by SVD-

QR with column pivoting algorithm indeed depends on the

rank rn.

3) Type-2 fuzzy rule selection by the FS procedure: In this

signal recovery problem, because the original signal remained

unknown and the only available data was the measured signal,

the noisy data was used as the validation dataset during the

rule selection process. The testing dataset was the above

dataset with 40 testing samples. The model performance was

measured by the RMSEs of a constructed fuzzy model on

the two datasets, Errv and Errt. The model parsimony was

evaluated in terms of the number of fuzzy rules in the rule-
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TABLE I
THE RULE RANKING RESULTS BY THE PROPOSED RULE INDICES IN THE SIGNAL RECOVERING PROBLEM

Indices Matrices Rule Ranking Results

R-values
Pr 16 11 15 1 7 10 6 12 5 9 2 14 3 13 8 4
Pl 11 16 15 1 6 10 2 12 7 5 3 14 9 8 13 4

c-values
Pr 9 1 16 11 12 7 10 6 15 5 14 2 8 13 4 3
Pl 16 1 7 11 12 3 6 2 8 9 5 13 10 14 15 4

ω1−values
Pr 16 11 1 7 15 10 9 6 12 5 2 14 8 13 3 4
Pl 16 11 1 6 2 7 12 15 10 3 5 9 14 8 13 4

ω2−values
Pr 16 11 1 7 15 10 9 6 12 5 2 14 8 13 3 4
Pl 16 11 1 6 2 7 12 15 10 3 5 9 14 8 13 4

TABLE II
RULE RANKING RESULTS BY SVD-QR WITH COLUMN PIVOTING IN THE SIGNAL RECOVERING PROBLEM

Algorithms Matrices Rule Ranking Results

SVD-QR(rn = 4)
Pr 1 16 12 8 5 6 7 4 9 10 11 3 13 14 15 2
Pl 1 16 14 13 5 6 7 8 9 10 11 12 4 3 15 2

SVD-QR (rn = 5)
Pr 1 16 12 8 14 6 7 4 9 10 11 3 13 5 15 2
Pl 1 16 13 12 15 6 7 8 9 10 11 4 3 14 5 2

SVD-QR (rn = 6)
Pr 1 12 16 13 14 7 6 8 9 10 11 2 4 5 15 3
Pl 1 13 16 12 14 15 7 8 9 10 11 4 2 5 6 3
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Fig. 4. The R-values and singular values of firing strength matrices Pl

(bottom) and Pr (top) in descending order in the signal recovering problem

base of the constructed model. The RMSE tolerance threshold

eh was set to be 0.3. Table III summarises the rule selection

results obtained by applying the FS procedure using each

of the proposed indices (R-values, c-values, ω1-values and

ω2-values). As a comparison, Table IV summarises the rule

selection results obtained by applying the FS procedure using

the SVD-QR with column pivoting algorithm with rn = 4, 5
and 6. In this signal recovery problem, with the consideration

of the consequent effects of trained fuzzy rules on the overall

system output, the normalised c-values
∣∣yi
∣∣ and

∣∣yi
∣∣ of fuzzy

rules depicted in Figure 5 or Figure 6 led to a parsimonious

interval type-2 fuzzy model featuring 11 rules, selected from

16 rules. For the normalised R-values shown in Figure 5, ω1-

values shown in Figure 5 and ω2-values shown in Figure 6,

12 important rules were identified for the final model. As
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Fig. 5. ω1-values, normalised c-values and R-values of type-2 fuzzy rules

with the rules orders in rule base: ω1-values with normalised
∣∣yi
∣∣ and R-

values of Pr (top); ω1-values with normalised
∣∣yi
∣∣ and R-values of Pl

(bottom) in signal recovering problem

a comparison, 15 fuzzy rules were chosen by the SVD-QR

pivoting algorithm with rn = 4 and 5, whilst for rn = 6 the

SVD-QR algorithm did not indicate any rules to be removed.

4) Type-2 fuzzy rule selection by the BE procedure:

The proposed rule ranking indices were then used in the

BE procedure to select the most important fuzzy rules, and

the results were compared to those obtained by SVD-QR

pivoting algorithm. Table V summarises the rule selection

results obtained by applying the BE procedure using each

of the proposed indices (R-values, c-values, ω1-values and

ω2-values). As a comparison, Table VI summaries the rule

selection results obtained by applying the BE procedure using

the SVD-QR with column pivoting algorithm with rn = 4, 5
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TABLE III
RULE SELECTION RESULTS BY FS PROCEDURE WITH THE PROPOSED RULE RANKING INDICES IN THE SIGNAL RECOVERING PROBLEM

R-values c-values ω1−values ω2−values

No. of
Rules

Errv Errt No. of
Rules

Errv Errt No. of
Rules

Errv Errt No. of
Rules

Errv Errt

8 1.507 1.478 8 1.200 1.185 8 1.507 1.478 8 1.507 1.478

9 1.506 1.477 9 1.148 1.145 9 0.684 0.529 9 1.506 1.477

10 1.206 1.124 10 1.144 1.145 10 0.682 0.529 10 1.206 1.124

11 0.538 0.372 11 0.288 0.124 11 0.538 0.372 11 0.538 0.372

12 0.275 0.128 12 0.287 0.122 12 0.275 0.128 12 0.275 0.128

13 0.274 0.119 13 0.274 0.126 13 0.274 0.119 13 0.274 0.119

TABLE IV
RULE SELECTION RESULTS VIA FS PROCEDURE WITH THE RULE RANKING BY SVD-QR WITH COLUMN PIVOTING METHOD IN THE SIGNAL RECOVERING

PROBLEM

SVD-QR (rn = 4) SVD-QR (rn = 5) SVD-QR (rn = 6)

No. of
Rules

Errv Errt No. of
Rules

Errv Errt No. of
Rules

Errv Errt

12 1.797 1.817 12 0.947 0.848 12 0.735 0.562

13 1.245 1.201 13 0.735 0.561 13 0.680 0.525

14 1.140 1.140 14 0.301 0.115 14 0.680 0.524

15 0.276 0.100 15 0.276 0.100 15 0.536 0.367

16 0.274 0.118 16 0.274 0.118 16 0.274 0.118
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Fig. 6. ω2-values, normalised c-values and R-values of type-2 fuzzy rules

with the rules orders in rule base: ω2-values with normalised
∣∣yi
∣∣ and R-

values of Pr (top); ω2-values with normalised
∣∣yi
∣∣ and R-values of Pl

(bottom) in signal recovering problem

and 6. It can be seen that for the R-values and ω2-values, 13

important rules were identified, whilst the BE procedure with

c-values and ω1-values identified 14 rules. As a comparison,

in this procedure 15 fuzzy rules were selected by the SVD-QR

pivoting algorithm with rn = 4 and 5. Again, the SVD-QR

algorithm with rn = 6 did not indicate any rules to remove.

5) Comparison with a type-1 Mamdani approach: As a

further comparison, we constructed a type-1 Mamdani fuzzy

system model for this signal recovery problem, in which the

initial antecedent means of Gaussian membership functions

were the averages of the {mi1} and {mi2} used for con-

structing above initial IT2FIS model, the consequent means

were randomly selected from the output samples, and the

width parameters were determined using the nearest neighbour

heuristic [42] based on the given data sets. The trained type-

1 Mamdani fuzzy system model recovered the original signal

with RMSE 0.3790 on the training samples and produced an

RMSE of 0.2551 for outputs on the 40 testing inputs with the

corresponding original signal values. By setting the RMSE

tolerance threshold eh for rule selection to be 0.4, the best

result of rule selection for constructing a parsimonious type-1

Mamdani fuzzy model was obtained in terms of the c-values

of fuzzy rules. In this best model, 11 influential type-1 fuzzy

rules were selected from the 16 rules, producing an RMSE

of 0.3951 when recovering the signal from the training inputs

and an RMSE of 0.2474 for testing samples.

6) Effects of noise changes: In this signal recovery prob-

lem, it is natural to want to know what happens if the

noise characteristics change, after a type-2 fuzzy model has

been trained according the available measured data. As stated

above, given a measured signal y, for example generated by

(21), the task is to construct a type-2 fuzzy model to learn

the characteristics of the original information signal ṽ from

the measured signal y, and then recover the original signal.

After the training process, the trained type-2 fuzzy model has

learned the characteristics of the original signal (22). That is

to say, this model possesses the ability to approximate the

original signal, given the inputs x. The model output is the

recovered signal. In rule selection, rule reduction or other such

procedures, no matter how the noise level θ̃ in (23) is changed

again, the signal recovery performance achieved by the trained

model will not be changed. This is because the original signal

source (22) is not impacted (i.e., the characteristics of the

original signal are not changed, only the measured signal (21)
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TABLE V
RULE REDUCTION RESULTS BY BE PROCEDURE WITH THE PROPOSED RULE RANKING INDICES IN THE SIGNAL RECOVERING PROBLEM

R-values c-values ω1−values ω2−values

No. of
Rules

Errv Errt No. of
Rules

Errv Errt No. of
Rules

Errv Errt No. of
Rules

Errv Errt

15 0.274 0.118 15 0.274 0.118 15 0.274 0.118 15 0.274 0.118

14 0.274 0.118 14 0.288 0.224 14 0.274 0.118 14 0.274 0.118

13 0.274 0.119 13 0.537 0.367 13 0.537 0.368 13 0.274 0.119

12 0.609 0.573 12 1.230 1.194 12 0.537 0.368 12 0.609 0.573

TABLE VI
RULE REDUCTION RESULTS VIA BE PROCEDURE WITH THE RULE RANKING BY SVD-QR WITH COLUMN PIVOTING METHOD IN THE SIGNAL

RECOVERING PROBLEM

SVD-QR (rn = 4) SVD-QR (rn = 5) SVD-QR (rn = 6)

No. of
Rules

Errv Errt No. of
Rules

Errv Errt No. of
Rules

Errv Errt

16 0.274 0.118 16 0.274 0.118 16 0.274 0.118

15 0.276 0.100 15 0.276 0.100 15 0.536 0.367

14 1.140 1.140 14 0.301 0.115 14 0.615 0.440

is influenced by the changes of the noise θ̃). Hence, there

is no need to re-train the model. However, in an application

of the trained model, the RMSE between the model output

and the measured signal given an input will vary along with

the change of the noise θ̃. In our experiments we did not

use the RMSE between the model output and the original

signal given an input as the training performance measure for

the trained model, because the training data hails from the

measured signal (21). However, if the original signal source

(22) is changed, no matter whether or not the noise level

θ̃ in (23) is changed, the type-2 fuzzy model must be re-

trained according to the new measured data. This is because

the characteristics of the fundamental signal in the measured

data have been changed.

B. MPG Prediction Problem

In this example of automobile MPG prediction, the data

collected from automobiles of various makers and models

is available in the UCI (Univ. of California at Irvine) Ma-

chine Learning Repository. In the available data set with 392

samples, there are six input attributes (number of cylinders,

displacement, horsepower, weight, acceleration, and model

year) and one output attribute (the fuel consumption in MPG).

However, only three input variables (weight, acceleration, and

model year) were considered here, based on the regularity

criterion [43]. The 392 samples were randomly partitioned

into a training set (196 samples), a testing set (120 samples),

and a validation set (76 samples) for building and evaluating

an initial IT2FIS model. The validation set was used in the

rule selection and reduction process, whilst the performance

of the IT2FIS models constructed was evaluated in terms of

the RMSEs on the testing samples.

1) Initial type-2 fuzzy model: Given the input-output data

samples, the FCM algorithm generated 3 clusters {mx} ac-

cording to a partition entropy measure [35]. Then, the means of

three initial antecedent interval type-2 fuzzy sets for each input

variable were produced in a manner similar to that suggested

by Mendel [2]: [mx−0.5σx−5.5σn, mx−0.5σx+5.5σn] for

the weight attribute and [mx−0.5σx−0.25σn, mx−0.5σx+
0.25σn] for the acceleration and year attributes, where σx

and σn are the standard deviation of the training samples and

additive noise respectively. The means of consequent interval

type-2 fuzzy sets were randomly selected from the output

samples, whilst the width parameters in (11) and (12) were

chosen as 0.5σx. The above initial input-output partition led to

27 rules in an initial interval type-2 fuzzy model. After training

by the back-propagation algorithm with training RMSE 2.37,

the interval type-2 fuzzy model predicted the fuel consumption

of testing samples reasonably well with testing RMSE 2.46.

2) Type-2 fuzzy rule ranking: The proposed rule reduction

methods were then applied to the trained interval type-2 fuzzy

model. Table VII shows the rule ranking results obtained by

the proposed indices. For comparison, the rule ranking results

obtained by the SVD-QR algorithm with rn = 4, 5 and 6 are

illustrated in Table VIII. Once again, it can be seen that the

rule ranking results vary with the choice of rn.

3) Type-2 fuzzy rule selection by the FS procedure: The

most influential type-2 fuzzy rules were selected based on the

above rule ranking results via the FS procedure to construct

parsimonious type-2 fuzzy models, and the results were com-

pared with those obtained by the SVD-QR pivoting algorithm.

The RMSE tolerance threshold eh was set to 3.0. Table IX

summarises the rule selection results obtained using the FS

procedure with the proposed indices. Table X summarises the

rule selection results using the FS procedure with the SVD-

QR pivoting algorithm for rn = 4, 5 and 6. In this real world

problem, the R-values and ω1-values led to a parsimonious

interval type-2 fuzzy model constructed with only 6 rules

selected from the original 27 rules. For the c-values and ω2-

values, 20 rules were retained. As a comparison, 23, 24 and

25 fuzzy rules were separately identified by the SVD-QR

algorithm with rn = 4, 5 and 6, respectively.
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TABLE VII
THE RULE RANKING RESULTS BY THE PROPOSED RULE INDICES IN THE MPG PREDICTION PROBLEM

Indices Matrices Rule Ranking Results

R-values
Pr 14 23 15 13 5 6 22 17 18 10 19 24 20 4 8 11 26 12 7 9 16 25 3 21 27 2 1
Pl 14 23 15 5 13 6 22 17 10 18 19 8 24 4 20 11 26 12 7 9 16 25 3 21 2 27 1

c-values
Pr 15 9 4 14 5 16 8 12 21 3 17 7 25 24 6 26 22 23 19 11 1 13 10 18 20 27 2
Pl 4 7 6 18 9 3 12 13 8 10 27 21 20 14 5 15 26 25 1 17 23 19 11 2 22 16 24

ω1−values
Pr 14 15 5 23 17 4 6 8 22 24 12 13 19 9 26 7 16 11 10 18 20 25 3 21 27 1 2
Pl 4 6 14 13 18 15 5 10 23 7 8 20 12 9 17 19 26 11 22 3 25 24 21 16 27 1 2

ω2−values
Pr 14 15 5 6 22 17 23 19 24 4 8 13 11 26 12 10 18 20 7 9 16 25 3 21 27 2 1
Pl 6 18 13 10 8 4 20 14 5 15 26 12 17 23 7 9 19 11 22 25 16 3 24 21 2 27 1

TABLE VIII
RULE RANKING RESULTS BY SVD-QR WITH COLUMN PIVOTING IN THE MPG PREDICTION PROBLEM

Algorithms Matrices Rule Ranking Results

SVD-QR (rn = 4)
Pr 9 21 17 27 5 6 7 8 1 10 11 12 13 14 15 16 3 18 19 20 2 22 23 24 25 26 4
Pl 9 21 17 27 5 6 7 8 1 10 11 12 13 14 15 16 3 18 19 20 2 22 23 24 25 26 4

SVD-QR (rn = 5)
Pr 9 21 27 17 6 5 7 8 1 10 11 12 13 14 15 16 4 18 19 20 2 22 23 24 25 26 3
Pl 9 21 27 17 6 5 7 8 1 10 11 12 13 14 15 16 4 18 19 20 2 22 23 24 25 26 3

SVD-QR (rn = 6)
Pr 9 21 27 26 17 6 7 8 1 10 11 12 13 14 15 16 5 18 19 20 2 22 23 24 25 4 3
Pl 14 9 27 21 17 6 7 8 2 10 11 12 13 1 15 16 5 18 19 20 4 22 23 24 25 26 3

TABLE IX
RULE SELECTION RESULTS BY FS PROCEDURE WITH THE PROPOSED RULE RANKING INDICES IN THE MPG PREDICTION PROBLEM

R-values c-values ω1−values ω2−values

No. of
Rules

Errv Errt No. of
Rules

Errv Errt No. of
Rules

Errv Errt No. of
Rules

Errv Errt

4 6.234 5.382 17 3.744 3.938 4 4.455 5.194 17 3.118 3.221

5 4.850 3.719 18 3.744 3.918 5 3.361 4.561 18 3.106 3.098

6 2.699 3.003 19 3.110 3.060 6 2.699 3.233 19 3.106 2.842

7 2.699 2.879 20 2.700 3.059 7 2.699 2.967 20 2.551 2.479

21 2.700 3.059 21 2.551 2.479

TABLE X
RULE REDUCTION RESULTS VIA FS PROCEDURE WITH THE RULE RANKING BY SVD-QR WITH COLUMN PIVOTING METHOD IN THE MPG PREDICTION

PROBLEM

SVD-QR (rn = 4) SVD-QR (rn = 5) SVD-QR (rn = 6)

No. of
Rules

Errv Errt No. of
Rules

Errv Errt No. of
Rules

Errv Errt

21 3.045 2.880 22 3.312 2.569 23 3.310 2.568

22 3.044 2.654 23 3.019 2.460 24 3.016 2.460

23 2.571 2.549 24 2.981 2.459 25 2.978 2.460

24 2.514 2.548 25 2.975 2.459 26 2.970 2.459

4) Type-2 fuzzy rule selection by the BE procedure: Finally,

the BE procedure was applied and the results compared with

those obtained by the SVD-QR algorithm. The RMSE toler-

ance threshold eh was again set as 3.0. Table XI summarises

the results obtained using the BE procedure with the proposed

indices. Table XII summarises the results obtained using the

BE procedure with the SVD-QR algorithm for rn = 4, 5 and

6. In this problem, the ω1-values resulted in 18 important

rules being selected, whilst the R-values, c-values and ω2-

values produced 20, 21 and 23 rules, respectively. As a

comparison, 23, 24 and 25 rules were selected by the SVD-

QR pivoting algorithm with rn = 4, 5 and 6, respectively. It

can be seen from these results that the proposed rule ranking

indices outperform the existing SVD-QR with column pivoting

algorithm, and are very effective in identifying the significant

rules and removing redundant ones.

5) Comparison with a type-1 Mamdani approach and other

approaches: For further comparison, we used the same train-

ing samples, testing samples and validation samples to con-

struct a parsimonious type-1 Mamdani fuzzy system model in

this MPG prediction problem. The initial antecedent means

of Gaussian membership functions were the averages of the

means used for constructing above initial IT2FIS model, the

consequent means were randomly selected from the output
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TABLE XI
RULE SELECTION RESULTS BY BE PROCEDURE WITH THE PROPOSED RULE RANKING INDICES IN THE MPG PREDICTION PROBLEM

R-values c-values ω1−values ω2−values

No. of
Rules

Errv Errt No. of
Rules

Errv Errt No. of
Rules

Errv Errt No. of
Rules

Errv Errt

23 2.562 2.455 23 2.619 2.484 20 2.608 2.480 25 2.971 2.455

21 2.551 2.455 22 2.619 2.583 19 2.608 2.480 24 2.972 2.455

20 2.551 2.479 21 2.617 2.589 18 2.607 2.484 23 2.972 2.455

19 3.106 2.842 20 3.237 2.901 17 3.228 2.807 22 3.010 2.455

18 3.106 3.098 19 3.249 3.065 16 3.228 2.898 21 3.010 2.455

TABLE XII
RULE REDUCTION RESULTS VIA BE PROCEDURE WITH THE RULE RANKING BY SVD-QR WITH COLUMN PIVOTING METHOD IN THE MPG PREDICTION

PROBLEM

SVD-QR (rn = 4) SVD-QR (rn = 5) SVD-QR (rn = 6)

No. of
Rules

Errv Errt No. of
Rules

Errv Errt No. of
Rules

Errv Errt

24 2.514 2.548 25 2.975 2.459 26 2.970 2.459

23 2.571 2.549 24 2.981 2.459 25 2.975 2.459

22 3.044 2.654 23 3.019 2.460 24 3.031 2.548

21 3.045 2.880 22 3.312 2.569 23 3.036 2.548

samples, and the width parameters were chosen as 0.5σx. The

trained type-1 Mamdani fuzzy system model predicted the fuel

consumptions with an RMSE of 2.4762 on training samples

and an RMSE of 2.6348 on testing samples. By setting the

RMSE tolerance threshold eh for rule selection as 3.0, the

best result of rule selection for constructing a parsimonious

type-1 Mamdani fuzzy model was obtained in terms of the

c-values of fuzzy rules, in which 22 influential type-1 fuzzy

rules were selected from the 27 rules. This type-1 Mamdani

model with the 22 selected rules predicted the testing samples

with an RMSE of 3.5954. Many other researchers have also

built system modelling algorithm to perform MPG prediction

for this problem. Competitive results include those of Kilic

et al in which they proposed a modelling method with a

generalisation performance (RMSE) of 2.61 [44]. It can be

seen that the results obtained in our parsimonious type-2

approach are superior to a type-1 approach and comparable,

if not a little better than other approaches (although we stress

that this cannot be stated as a definitive conclusion).

C. Steam Heat Exchanger

In the last example, water is heated by pressurized saturated

steam through a copper tube. Saturated steam is used to

provide primary heat to a process fluid in a heat exchanger.

The process plant is illustrated in Figure 7. The plant output is

the outlet liquid temperature, and the inputs are the liquid flow

rate, the steam temperature, and the inlet liquid temperature.

In this experiment, the steam temperature and the inlet liquid

temperature are kept constant to their nominal values, so we

only considered the liquid flow rate as the plant input variable.

In our experiment, 500 heat exchanging samples were

used to construct an IT2FIS model with 4 inputs selected

in terms of the regularity criterion [43]. That is, vt =
f(vt−1, vt−2, vt−4, ut), where vt is the outlet liquid tem-

perature, and ut the liquid flow rate, at time t. These 500

Fig. 7. The structure of the steam heat exchanger

samples were randomly partitioned into 300 training samples,

100 testing samples and 100 validation samples. The training

samples were used to build an initial IT2FIS model, the model

performance was evaluated in terms of the RMSEs on the

testing samples, while the validation samples were used for

rule selection and reduction.

1) Initial type-2 fuzzy model: Given the training samples,

the FCM algorithm generated two clusters {mx} based on the

given input-output samples.

The means of three initial antecedent interval type-2 fuzzy

sets for each input variable were again produced in a manner

similar to that suggested by Mendel [2], as [mx − 0.3σx −
0.1σn, mx − 0.3σx + 0.1σn] for the liquid flow rate attribute

and [mx − 0.3σx − 0.25σn, mx − 0.3σx + 0.25σn] for other

attributes, where σx and σn are the standard deviation of the

training samples and additive noise, respectively. The means of

consequent interval type-2 fuzzy sets were randomly selected

from the output samples, whilst the width parameters in (11)

and (12) were chosen as 0.3σx. The above initial input-output

partition resulted in 16 rules in the initial interval type-2 fuzzy
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model. After training by the back-propagation algorithm with

a training RMSE of 0.2642, the initial type-2 fuzzy model

predicted the outlet liquid temperature well for the testing

samples with an RMSE of 0.2436.

2) Type-2 fuzzy rule ranking and rule selection: The pro-

posed rule ranking indices were then calculated for the trained

interval type-2 fuzzy model. The most influential type-2 fuzzy

rules were selected based on the rule ranking results. The best

result achieved for constructing a parsimonious type-2 fuzzy

rule base was obtained by using the BE procedure with c-value

index and eh = 1.0. In this case, eleven rules were selected

with a validation RMSE of 0.6276 and a testing RMSE of

0.5698.

3) Comparison with type-1 Mamdani approach: For further

comparison, we used the same training, testing and validation

samples to construct a parsimonious type-1 Mamdani fuzzy

system model for this problem. The initial antecedent means

of Gaussian membership functions were the averages of the

means used for constructing the initial IT2FIS model described

above, the consequent means were randomly selected from

the output samples, and the width parameters were chosen

as 0.3σx. The trained type-1 Mamdani fuzzy system model

predicted the outlet liquid temperature with an RMSE of

0.2784 on training samples and an RMSE of 0.2847 on testing

samples. By setting the RMSE tolerance threshold eh for

rule selection as 1.0, the best result of rule selection for

constructing a parsimonious type-1 Mamdani fuzzy model was

obtained with c-value index. In this case, twelve type-1 fuzzy

rules were selected with an RMSE of 0.8052 on the testing

samples. Again, it can be seen that the type-1 approach was

inferior to the type-2 approach.

VI. DISCUSSION AND CONCLUSIONS

We have proposed some novel indices of type-2 fuzzy rules

which focus on different aspects of type-2 fuzzy logic systems

in order to determine the relative importance of the various

rules. These indices are termed R-values, c-values, ω1-values

and ω2-values. The R-values of type-2 fuzzy rules obtained by

QR decomposition pay attention to the rule-base structure, the

c-values focus on contributions of rule consequents, whilst the

ω1-values and ω2-values take into account both the rule-base

structure and contributions of rule consequents. Moreover,

two procedures, the FS procedure and BE procedure, have

been described for utilising these indices in determining a

parsimonious rule-base. The experimental results have demon-

strated that parsimonious type-2 fuzzy system models can be

effectively constructed in terms of the fuzzy rules selected

by these proposed indices, and that the proposed methods

outperform the existing SVD-QR with column pivoting method

for rule reduction. Indeed, in the second example (MPG

prediction), the proposed methods selected only six rules to

be used, while maintaining a reasonable RMSE of 2.699. In

contrast, the best SVD-QR performance resulted in retaining

23 rules with an RMSE of 2.571.

One possible issue arising in the proposed methodology

which has not been addressed in this paper is which fuzzy rule

index is best among the proposed four indices. In practice,

one can simply pick any one of these rule ranking indices

to construct a parsimonious type-2 fuzzy model; alternatively,

one can run both the FS and BE procedures on each of these

indices in turn, then pick the best. This issue certainly merits

further research.
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