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Alpha-Level Aggregation: A Practical Approach
to Type-1 OWA Operation for Aggregating

Uncertain Information with Applications
to Breast Cancer Treatments

Shang-Ming Zhou, Member, IEEE, Francisco Chiclana,

Robert I. John, Senior Member, IEEE, and Jonathan M. Garibaldi

Abstract—Type-1 Ordered Weighted Averaging (OWA) operator provides us with a new technique for directly aggregating uncertain

information with uncertain weights via OWA mechanism in soft decision making and data mining, in which uncertain objects are

modeled by fuzzy sets. The Direct Approach to performing type-1 OWA operation involves high computational overhead. In this paper,

we define a type-1 OWA operator based on the �-cuts of fuzzy sets. Then, we prove a Representation Theorem of type-1 OWA

operators, by which type-1 OWA operators can be decomposed into a series of �-level type-1 OWA operators. Furthermore, we

suggest a fast approach, called Alpha-Level Approach, to implementing the type-1 OWA operator. A practical application of type-1

OWA operators to breast cancer treatments is addressed. Experimental results and theoretical analyses show that: 1) the Alpha-Level

Approach with linear order complexity can achieve much higher computing efficiency in performing type-1 OWA operation than the

existing Direct Approach, 2) the type-1 OWA operators exhibit different aggregation behaviors from the existing fuzzy weighted

averaging (FWA) operators, and 3) the type-1 OWA operators demonstrate the ability to efficiently aggregate uncertain information

with uncertain weights in solving real-world soft decision-making problems.

Index Terms—OWA operators, aggregation, fuzzy sets, type-1 OWA operators, Alpha-cuts, Alpha level, uncertain information, soft

decision making, breast cancer treatments.

Ç

1 INTRODUCTION

AGGREGATION operation is not only an important research
topic in knowledge and data engineering [1], [2], [3],

[4], [5], but also one of the most important steps in dealing
with multiexpert decision making, multicriteria decision
making, and multiexpert multicriteria decision making [6],
[7], [8]. The objective of aggregation is to combine
individual sources of information into an overall one in a
proper way, so that the final result of aggregation can take
into account all the individual contributions [9]. Currently,
at least 90 different families of aggregation operators have
been studied [9], [10], [11], [12], [13], [14], [15], [16], [17],
[18], [19]. Among them, the Ordered Weighted Averaging
(OWA) operator proposed by Yager [18] is one of the most
widely used, with many successful applications achieved in
areas, such as: decision making [6], [8], [12], [21], [22], fuzzy
control [23], [24], market analysis [25], and image compres-

sion [26]. However, the majority of the existing aggregation
operators, including the OWA one, focus exclusively on
aggregating crisp numbers. As a matter of fact, inherent
subjectivity, imprecision, and vagueness in the articulation
of opinions in real-world decision applications make
human experts exhibit remarkable capability to manipulate
perceptions without any measurements [20]. In these cases,
the use of linguistic terms instead of precise numerical
values seems to be more adequate in dealing with vague or
imprecise information or to express experts’ opinions on
qualitative aspects that cannot be assessed by means of
quantitative values [6], [21]. Thus, techniques for aggregat-
ing uncertain information rather than precise crisp values
are in high demand, which motivated us to suggest a new
OWA operator, called type-1 OWA operator [27]. The type-1
OWA operator is able to aggregate linguistic terms repre-
sented as fuzzy sets via OWA mechanism, and a Direct
Approach has been suggested to perform type-1 OWA
operation [27]. Interestingly, some well-known existing
aggregation operators, such as Yager’s OWA operator, the
join and the meet operators of fuzzy sets [41], [42] are special
cases of this type-1 OWA operator [28].

Different ways of aggregating linguistic assessments,
including the ones that follow the way of fuzzifying Yager’s
OWA operators, have been proposed in literature [13], [21],
[29], [30], [31], [32], [33], [34], [35]. A detailed review of the
state-of-the-art research in this topic can be found in [27]
and [28]. The type-1 OWA operator is different from these
existing methods. For example, an approach to OWA
aggregation with interval weights and interval inputs was
suggested in [32], in which two definitions of aggregating
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interval arguments with interval weights based on the rank
of intervals via probabilistic measures were given. How-
ever, different probabilistic distributions could lead to
different reorderings of the inputs and consequently
different outputs could be derived using this approach.
Ahn’s method focused on the use of the uniform distribu-
tion, although no evidence is provided to support that this
type of distribution should always be used [32]. The type-1
OWA operator does not suffer from the aforementioned
drawback as it is defined according to Zadeh’s Extension
Principle, only the issues of reordering of crisp values are
involved, and therefore, it avoids dealing with the ranking
of fuzzy sets/intervals. Moreover, in this paper, we propose
an �-level type-1 OWA operator and prove that the Alpha-
Level Approach can lead to its equivalence one obtained by
the Extension Principle. There is no evidence to support that
Ahn’s method has such property.

To the best of our knowledge, the research work by
Mitchell and Schaefer [33], and the research on fuzzified
Choquet integral [34], [35] may be the most relevant to our
research on type-1 OWA operators. Mitchell and Schaefer
also applied Zadeh’s Extension Principle to Yager’s OWA
operator, but their approach focused on the ordering of
fuzzy sets during the aggregation process. The type-1
OWA operator avoids ordering fuzzy sets. The Yager’s
OWA operator is treated as a nonlinear function and is
fuzzified to the case of having fuzzy sets as inputs in a
type-1 OWA operator. As for the research on fuzzified
Choquet integrals, the existing approaches only consider
the aggregation of fuzzy sets with crisp weights, while the
type-1 OWA operator is able to aggregate fuzzy sets with
fuzzy weights as well.

Another widely investigated fuzzified aggregation
operators, the fuzzy weighted averaging (FWA) operators
[36], [37], [38], can also be applied to the aggregation of
fuzzy sets with fuzzy weights. Noteworthily, Yager’s OWA
operator is a nonlinear aggregation operator, while the
weighted averaging operator is linear. Therefore, the type-1
OWA operator is significantly different from the FWA
operator [27], [28].

However, the Direct Approach to performing type-1 OWA
operation suggested in [27] involves high computational
load, which inevitably curtails further applications of the
type-1 OWA operator to real-world decision making. This
paper focuses on how to achieve a high computing
efficiency in performing type-1 OWA operations for
aggregating uncertain information with uncertain weights,
where these uncertain objects are modeled by fuzzy sets. To
this end, the �-level type-1 OWA operator is defined using
the �-cuts of fuzzy sets. Moreover, a fast approach to type-1
OWA operation, called Alpha-Level Approach, with detailed
theoretical analyses is addressed. Promisingly, the complex-
ity of this Alpha-Level Approach is of linear order, so it can be
used in real-time soft decision making, database integration
and information fusion that involve aggregation of un-
certain information.

This paper is organized as follows: Section 2 describes the
definition of�-level type-1 OWA operator. Section 3 proposes
the fast approach to implementing the type-1 OWA opera-
tion. The complexity of the Direct Approach and the fast Alpha-
Level Approach are analyzed in Section 4. Section 5 extensively
evaluates the computing efficiency of the proposed approach
including a practical application of type-1 OWA operators to
breast cancer treatments. Finally, conclusions and discussion
are presented in Section 6.

2 DEFINITION OF TYPE-1 OWA OPERATORS BASED

ON �-CUTS OF FUZZY SETS

As a generalization of Yager’s OWA operator and based on
Zadeh’s Extension Principle, the type-1 OWA operator is
defined to aggregate uncertain information with uncertain
weights, when both are modeled as fuzzy sets.

First, let F ðXÞ be the set of fuzzy sets with domain of
discourse X, a type-1 OWA operator is defined as follows
[27], [28]:

Definition 1. Given n linguistic weights fWigni¼1 in the form of
fuzzy sets defined on the domain of discourse U ¼ ½0; 1�, a
type-1 OWA operator is a mapping �

� : F ðXÞ � � � � � F ðXÞ �! F ðXÞ
ðA1; . . . ; AnÞ 7! Y

ð1Þ

such that

�Y ðyÞ ¼ supXn
k¼1

�wia�ðiÞ ¼ y

wi 2 U; ai 2 X

�W 1ðw1Þ ^ � � � ^ �WnðwnÞ
^�A1ða1Þ ^ � � � ^ �AnðanÞ

� �
; ð2Þ

where

�wi ¼
wiPn
i¼1 wi

and � : f1; . . . ; ng �! f1; . . . ; ng is a permutation function
such that a�ðiÞ � a�ðiþ1Þ; 8i ¼ 1; . . . ; n� 1, i.e., a�ðiÞ is the ith
highest element in the set fa1; . . . ; ang.

From the above definition, it can be seen that the
aggregation result �ðA1; . . . ; AnÞ ¼ Y 2 F ðXÞ is a fuzzy set
defined on X. However, implementation of type-1 OWA
operation in aggregating a group of fuzzy sets is not
straightforward and easy. A Direct Approach to performing
type-1 OWA operation has been suggested in [27], but it
involves high computational load.

In the interests of improving computing efficiency of
type-1 OWA aggregation, in this section, we describe an
alternative way of defining type-1 OWA operators based on
�-cuts of fuzzy sets. To do this, we first introduce the
concept of the �-level type-1 OWA operator guided by �-
cuts of fuzzy weights.

Definition 2. Given the n linguistic weights fWigni¼1 in the form
of fuzzy sets defined on the domain of discourseU ¼ ½0; 1�, then
for each � 2 ½0; 1�, an �-level type-1 OWA operator with �-
level sets fWi

�g
n
i¼1 to aggregate the �-cuts of fuzzy sets fAigni¼1

is given as

�� A1
�; . . . ; An

�

� �
¼

Pn
i¼1 wia�ðiÞPn
i¼1 wi

wi 2Wi
�; ai

�� 2 Ai
�; i ¼ 1; . . . ; n

� �
;
ð3Þ

where Wi
� ¼ fwj�Wi

ðwÞ � �g, Ai
� ¼ fxj�Ai

ðxÞ � �g, and � :
f1; . . . ; ng ! f1; . . . ; ng is a permutation function such that
a�ðiÞ � a�ðiþ1Þ; 8 i ¼ 1; . . . ; n� 1, i.e., a�ðiÞ is the ith largest
element in the set fa1; . . . ; ang.

According to the Representation Theorem of fuzzy set [40],
the �-level sets ��ðA1

�; . . . ; An
�Þ obtained via Definition 2 can

be used to construct the following fuzzy set:

2 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 23, NO. X, XXXXXXX 2011



G ¼ [
0���1

���

�
A1
�; . . . ; An

�

�
ð4Þ

with membership function

�GðxÞ ¼ _
�:x2�� A1

�;...;A
n
�ð Þ

�

� ð5Þ

From the above definition, it can be seen that the aim of

the �-level type-1 OWA operator is to aggregate the �-cuts

of fuzzy sets fAigni¼1 with the �-cuts of fuzzy set weights

fWigni¼1. Given the fact that the �-cuts of fuzzy numbers

(i.e., normal and convex fuzzy sets on the domain of real

numbers IR) are intervals, the �-level type-1 OWA operator

actually provides a way of aggregating uncertain argu-

ments with uncertain weights to some extent as Ahn’s

method did [32]. However, we proceed further to aggregate

uncertain information modeled by fuzzy sets.
First, the two apparently different aggregation operators

in (2) and (5), defined according to Zadeh’s Extension
Principle and the �-cut of fuzzy sets, respectively, are
equivalent as it is proved in the following:

Theorem 1. Given the n linguistic weights fWigni¼1 in the form
of fuzzy sets defined on the domain of discourse U ¼ ½0; 1�,
and the fuzzy sets A1; . . . ; An, then we have that

Y ¼ G;

where Y is the aggregation result defined in (2) and G is the
result defined in (4).

Proof. We need to prove that for any fuzzy sets A1; . . . ; An

and � 2 ½0; 1�

Y� ¼ ��

�
A1
�; . . . ; An

�

�
;

To prove Y� � ��ðA1
�; . . . ; An

�Þ, we note that 8y 2 Y�,

there exist w1; . . . ; wn 2 U , and a1; . . . ; an 2 X such that

y ¼
Pn

i¼1 �wia�ðiÞ, where �wi ¼ wiPn

i¼1
wi

, and � � �W 1ðw1Þ ^
� � � ^ �WnðwnÞ ^ �A1ða1Þ ^ � � � ^ �AnðanÞ. Thus, we have

that � � �WiðwiÞ and � � �AiðaiÞ8i, i .e , wi 2Wi
�;

ai 2 Ai
�; i ¼ 1; . . . ; n. As a result, y 2 ��ðA1

�; . . . ; An
�Þ

according to Definition 2.

To prove that ��ðA1
�; . . . ; An

�Þ � Y�, we note that

8y 2 ��ðA1
�; . . . ; An

�Þ, there exist ŵ1 2Wi
�; . . . ; ŵn 2Wn

�

and â1 2 A1
�; . . . ; ân 2 An

� such that y ¼
Pn

i¼1 �̂wiâ�ðiÞ,

where �̂wi ¼ ŵiPn

i¼1
ŵi

. Because � � �WiðŵiÞ and � �
�AiðâiÞ 8i, then

� � �W1ðŵ1Þ ^ � � � ^ �WnðŵnÞ ^ �A1ðâ1Þ ^ � � � ^ �AnðânÞ:

As a result

� � supXn
k¼1

�wia�ðiÞ ¼ y

wi 2 U
ai 2 X

�W1ðw1Þ ^ � � � ^ �WnðwnÞ
^ �A1ða1Þ ^ � � � ^ �AnðanÞ

� �
¼ �Y ðyÞ:

Hence, y 2 Y�. tu
Theorem 1 is called the Representation Theorem of type-1

OWA operators. According to this Representation Theorem,

type-1 OWA operators can be decomposed into a series of
�-level type-1 OWA operators. It provides an effective tool
for performing type-1 OWA operations.

It is noted that in fuzzy sets-based soft decision making,
linguistic terms are commonly modeled by fuzzy numbers.
In what follows, we will focus on these type of fuzzy sets,
unless otherwise stated.

When the linguistic weights and the aggregated objects
are fuzzy number, the �-level type-1 OWA operator
produces closed intervals, as the following theorem states:

Theorem 2. Let fWigni¼1 be fuzzy numbers on U ¼ ½0; 1� and
fAigni¼1 be fuzzy numbers on IR. Then, for each � 2 ½0; 1�,
��ðA1

�; . . . ; An
�Þ is a closed interval.

Proof. First, we have that

yðw1; . . . ; wn; a1; . . . ; anÞ ¼
Pn

i¼1 wia�ðiÞPn
i¼1 wi

is a continuous function of w1; . . . ; wn; a1; . . . ; an. Because

a�ð1Þ �
Pn

i¼1 wia�ðiÞPn
i¼1 wi

� a�ðnÞ;

we have that yðw1; . . . ; wn; a1; . . . ; anÞ is also a bounded

function.
Second, because fWigni¼1 and fAigni¼1 are fuzzy

numbers on U ¼ ½0; 1�, their �-level sets are of the form
Wi

� ¼ ½Wi
��;W

i
�þ�; Ai

� ¼ ½Ai
��; A

i
�þ� ði ¼ 1; . . . ; nÞ, a n d

therefore compact sets of IR (closed and bounded). The
Cartesian product of Wi

� and Ai
� is a compact subset of

IR2n. Function yðw1; . . . ; wn; a1; . . . ; anÞ is continuous and
therefore the image of the Cartesian product of Wi

� and
Ai
� is also a compact subset of IR.

It is well known that a closed interval of IR is a
connected set, and that the Cartesian product of two
closed intervals of IR is a connected set of IR2. Conse-
quently, the Cartesian product of Wi

� and Ai
� is a

connected subset of IR2n. As a result, the image of the
Cartesian product of Wi

� and Ai
� is a connected subset of

IR. Because the only connected subsets of IR are intervals,
we conclude that the image of the Cartesian product ofWi

�

and Ai
� by the continuous function yðw1; . . . ; wn; a1; . . . ;

anÞ is a closed interval [39]. Hence, ��ðA1
�; . . . ; An

�Þ is a
closed interval. tu
Based on this theorem, the computation of the type-1

OWA output according to (4), G, reduces to compute the

left endpoints and right endpoints of the intervals

��ðA1
�; . . . ; An

�Þ

��

�
A1
�; . . . ; An

�

�
� and ��

�
A1
�; . . . ; An

�

�
þ;

where Ai
� ¼ ½Ai

��; A
i
�þ�;Wi

� ¼ ½Wi
��;W

i
�þ�.

For the left endpoints, we have

��

�
A1
�; . . . ; An

�

�
� ¼ min

Wi
�� � wi �Wi

�þ
Ai
�� � ai � Ai

�þ

Xn
i¼1

wia�ðiÞ

,Xn
i¼1

wi;

ð6Þ
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while for the right endpoints, we have

�� A1
�; . . . ; An

�

� �
þ ¼ max

lWi
�� � wi �Wi

�þ
Ai
�� � ai � Ai

�þ

Xn
i¼1

wia�ðiÞ

,Xn
i¼1

wi:

ð7Þ
It can be seen that (6) and (7) are programming problems.

In the next section, we will address how to solve these
problems so that the type-1 OWA aggregation operation
can be performed efficiently.

3 FAST IMPLEMENTATION OF TYPE-1 OWA
OPERATION

The objective of type-1 OWA operators is to aggregate
uncertain information modeled as fuzzy sets. In this section,
we propose a fast algorithm for type-1 OWA operations,
which can be used in real-time applications. The idea
behind this algorithm hails from the above �-level type-1
OWA aggregations. For the type-1 OWA operations, we
only need to calculate all the necessary �-level aggregations
in (6) and (7), then based on the Representation Theorem of
fuzzy set, the final aggregation result can be constructed as
shown in (4). This fast algorithm is called the Alpha-Level
Approach in this paper.

First in the following lemma, we list some basic
inequalities as described in some textbooks that will be
used later in the paper.

Lemma 1. 1) For a � 0; c � 0, if b
a � d

c , then

b

a
� bþ d
aþ c �

d

c
:

2) If a � c, ba � d
c , then

b� d
a� c �

b

a
:

3) If a � c, ba � d
c , then

b� d
a� c �

b

a
:

Note that for the left endpoints in (6), the function

f wi; aið Þ ¼
Xn
i¼1

wia�ðiÞ

,Xn
i¼1

wi; ð8Þ

is a monotonically nondecreasing function of ai. So,

��

�
A1
�; . . . ; An

�

�
� ¼ min

Wi
�� � wi �Wi

�þ

Xn
i¼1

wiA
�ðiÞ
��

,Xn
i¼1

wi;

¼ min
Wi

�� � wi �Wi
�þ

hðw1; . . . ; wnÞ;

ð9Þ

where A�ð1Þ
�� � � � � � A�ðnÞ

�� , and

h w1; . . . ; wnð Þ ¼
Pn

i¼1 wiA
�ðiÞ
��Pn

i¼1 wi
: ð10Þ

>Now we construct a new function of endpoints of
intervals Wi

� as follows:

�i0�� ¼
�

Pi0�1
i¼1 Wi

��A
�ðiÞ
�� þ

Pn
i¼i0 W

i
�þA

�ðiÞ
��

Ji0
; ð11Þ

where

Ji0 ¼
�
Xi0�1

i¼1

Wi
�� þ

Xn
i¼i0

Wi
�þ: ð12Þ

In particular, we have

�1
�� ¼

�

Pn
i¼1 W

i
�þA

�ðiÞ
��

J1
; ð13Þ

where

J1 ¼�
Xn
i¼1

Wi
�þ: ð14Þ

Then, we have the following theorem:

Theorem 3. 1) If �i0�� � A�ði0Þ
�� , then

�i0þ1
�� � �i0�� � A�ði0Þ

�� :

2) If �i0�� � A�ði0Þ
�� , then

A�ði0Þ
�� � �i0�� � �i0þ1

�� :

Proof. Denoting

E ¼
Xi0�1

i¼1

Wi
��A

�ðiÞ
�� ;

and

F ¼
Xn
i¼i0

Wi
�þA

�ðiÞ
�� ;

then,

�i0�� ¼
E þ F
Ji0

and

�i0þ1
�� ¼

E þWi0
��A

�ði0Þ
�� þ F �W

i0
�þA

�ði0Þ
��

Ji0 þ
�
Wi0

�� �Wi0
�þ
� ;

¼
E þ F �

�
Wi0

�þ �Wi0
��
�
A�ði0Þ
��

Ji0 �
�
Wi0

�þ �Wi0
��
� :

Because

Ji0 �Wi0
�þ �Wi0

�þ �Wi0
��

then according to statements 2 and 3 in Lemma 1,
results 1 and 2 can be derived. tu
The solution to problem (9), and thus (6) is given in the

following theorem:

Theorem 4. Let i	0 be the minimum number in f1; . . . ; ng
satisfying �

i	0
�� � A�ði	0Þ

�� , then �
i	0
�� is the minimum of (9).

Proof. Starting with i0 ¼ 1, we check the relation between

�i0�� and A�ði0Þ
�� until the first pair f�i

	
0
��; A

�ði	0Þ
�� g satisfying

�
i	0
�� � A

�ði	0Þ
�� is found. This search process is guaranteed

to produce such a first pair because
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�n�� ¼
Pn�1

i¼1 W
i
��A

�ðiÞ
�� þWn

�þA
�ðnÞ
��

Ji0
� A�ðnÞ

�� :

Next, we prove that �
i	0
�� is the minimum of (9).

According to the above search process, for any j 2
f1; . . . ; i	0 � 1g we have that �j�� � A�ðjÞ

�� . Theorem 3
implies that

�
i	0
�� � �

i	0�1
�� � � � � � �2

�� � �1
��:

On the other hand, the application of Theorem 3 to �
i	0
�� �

A
�ði	0Þ
�� leads to

�
i	0þ1
�� � �i

	
0
�� � A�ði	0Þ

�� :

Because A
�ði	0Þ
�� � A�ði	0þ1Þ

�� then we have that �
i	0þ1
�� �

A
�ði	0þ1Þ
�� , and therefore

�
i	0þ2
�� � �i

	
0þ1
�� � A�ði	0þ1Þ

�� :

Following a similar reasoning, we get

..

.

�n�� � �n�1
�� � A�ðn�1Þ

�� :

So,

�n�� � � � � � �
i	0þ1
�� � �i

	
0
��

and therefore �
i	0
�� is the minimum of f�1

��; . . . ; �n�g. In the
following, we prove the minimum of hðw1; . . . ; wnÞ is in
the form of �i0��.

Because

@h w1; . . . ; wnð Þ
@wi

¼
A�ðiÞ
��

Pn
i¼1 wi

� �
�
Pn

i¼1 wiA
�ðiÞ
��Pn

i¼1 wi
� �2

¼ A
�ðiÞ
�� � h w1; . . . ; wnð ÞPn

i¼1 wi

ð15Þ

so, if A�ðiÞ
�� � hðw1; . . . ; wnÞ, then @hðw1;...;wnÞ

@wi
� 0, i.e., if

A�ðiÞ
�� � hðw1; . . . ; wnÞ, then hðw1; . . . ; wnÞ is monotonically

nondecreasing on each one of its arguments wi. As a
result, A�ðiÞ

�� � hðw1; . . . ; wnÞ leads to minimizing
hðw1; . . . ; wnÞ at Wi

�� in the direction of wi, i.e.,

h w1; . . . ; wi�1;W
i
��; wiþ1; . . . ; wn

� �
� h w1; . . . ; wnð Þ:

Similarly, A�ðiÞ
�� � hðw1; . . . ; wnÞ leads to minimizing

hðw1; . . . ; wnÞ at Wi
�þ in the direction of wi.

Assume that A�ði0�1Þ
�� � hðw1; . . . ; wnÞ � A�ði0Þ

�� . Because

A�ð1Þ
�� � � � � � A�ðnÞ

�� , then hðw1; . . . ; wnÞ reaches its mini-

m u m a t w1 ¼W 1
��; . . . ; wi0�1 ¼Wi0�1

�� ; wi0 ¼Wi0
�þ; . . . ;

wn ¼Wn
�þ, that is to say, the minimum of hðw1; . . . ; wnÞ

can be expressed in the form of �i0��. Hence, �
i	0
�� is the

solution of (9). tu
For the right endpoints, the monotonicity of function (8)

implies that

��

�
A1
�; . . . ; An

�

�
þ ¼ max

Wi
�� � wi �Wi

�þ

Xn
i¼1

wiA
�ðiÞ
�þ

,Xn
i¼1

wi;

¼ max
Wi

�� � wi �Wi
�þ

g w1; . . . ; wnð Þ;

ð16Þ

where A
�ð1Þ
�þ � � � � � A

�ðnÞ
�þ , and

g w1; . . . ; wnð Þ ¼
Pn

i¼1 wiA
�ðiÞ
�þPn

i¼1 wi
: ð17Þ

In order to find the solution of (7) and (16), we construct

a new function of endpoints of intervals Wi
� as follows:

�i0�þ ¼
�

Pi0�1
i¼1 Wi

�þA
�ðiÞ
�þ þ

Pn
i¼i0 W

i
��A

�ðiÞ
�þ

Hi0

; ð18Þ

where

Hi0 ¼
�
Xi0�1

i¼1

Wi
�þ þ

Xn
i¼i0

Wi
�� ð19Þ

in particular,

�1
�þ ¼

�
Pn

i¼1 W
i
��A

�ðiÞ
�þ

H1
; ð20Þ

where

H1 ¼�
Xn
i¼1

Wi
��: ð21Þ

Then, we have the following theorem:

Theorem 5. 1) If �i0�þ � A
�ði0Þ
�þ , then

�i0�þ � �i0þ1
�þ � A

�ði0Þ
�þ :

2) If �i0�þ � A
�ði0Þ
�þ , then

A
�ði0Þ
�þ � �i0þ1

�þ � �i0�þ:

Proof. Let

C ¼
Xi0�1

i¼1

Wi
�þA

�ðiÞ
�þ ;

and

D ¼
Xn
i¼i0

Wi
��A

�ðiÞ
�þ ;

then

�i0�þ ¼
C þD
Hi0

and

�i0þ1
�þ ¼

C þWi0
�þA

�ði0Þ
�þ þD�Wi0

��A
�ði0Þ
�þ

Hi0 þ
�
Wi0

�þ �Wi0
��
� ;

¼
C þDþ

�
Wi0

�þ �Wi0
��
�
A
�ði0Þ
�þ

Hi0 þ
�
Wi0

�þ �Wi0
��
� :
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Because Hi0 � 0, then according to the statement 1 in
Lemma 1, results 1 and 2 can be derived. tu
The solution to problems (7) and (16) is given in the

following theorem:

Theorem 6. Let i	0 be the minimum number in f1; . . . ; ng
satisfying �

i	0
�þ � A

�ði	0Þ
�þ , then �

i	0
�þ is the maximum of (17), and

thus the solution of (7).

Proof. Starting with i0 ¼ 1 we check the relation between

�i0�þ and A
�ði0Þ
�þ until the first pair f�i

	
0
�þ; A

�ði	0Þ
�þ g satisfying

�
i	0
�þ � A

�ði	0Þ
�þ is found. This search process is guarantee to

produce such a first pair because

�n�þ ¼
Pn�1

i¼1 W
i
�þA

�ðiÞ
�þ þWn

��A
�ðnÞ
�þ

Hi0

� A�ðnÞ
�þ :

Next, we prove �
i	0
þ is the maximum of (17).

According to the above search process, for any
j 2 f1; . . . ; i	0 � 1g, we have that �j�þ � A

�ðjÞ
�þ . Theorem 5

implies

�j�þ � �jþ1
�þ � A

�ðjÞ
�þ :

So,

�1
�þ � �2

�þ � � � � � �
i	0
�þ:

On the other hand, the application of Theorem 5 to

�
i	0
�þ � A

�ði	0Þ
�þ leads to

�
i	0
�þ � �

i	0þ1
�þ � A

�ði	0Þ
�þ :

Because A
�ði	0Þ
�þ � A

�ði	0þ1Þ
�þ , then we have that �

i	0þ1
�þ �

A
�ði	0þ1Þ
�þ , and therefore

�
i	0þ1
�þ � �

i	0þ2
�þ � A

�ði	0þ1Þ
�þ :

Following a similar reasoning, we get

..

.

�n�1
�þ � �n�þ � A

�ðnÞ
�þ :

So,

�
i	0
�þ � �

i	0þ1
�þ � � � � � �nþ

and therefore �
i	0
�þ is the maximum of f�1

�þ; . . . ; �n�þg. In

the following, we prove the maximum of gðw1; . . . ; wnÞ is

in the form of (18).

An analysis of function gðw1; . . . ; wnÞ similar to the

one applied to function hðw1; . . . ; wnÞ in Theorem 3

produces the following: 1) If A
�ðiÞ
�þ � gðw1; . . . ; wnÞ then

function gðw1; . . . ; wnÞ is monotonically nondecreasing

on each of its arguments wi and the maximum of
gðw1; . . . ; wnÞ in the direction of wi is achieved at Wi

�þ

g
�
w1; . . . ; wi�1;W

i
�þ; wiþ1; . . . ; wn

�
� gðw1; . . . ; wnÞ:

2) If A
�ðiÞ
�þ � gðw1; . . . ; wnÞ then function gðw1; . . . ; wnÞ

is monotonically nonincreasing on each of its arguments
wi and the maximum of gðw1; . . . ; wnÞ in the direction of
wi is achieved at Wi

��

g
�
w1; . . . ; wi�1;W

i
��; wiþ1; . . . ; wn

�
� gðw1; . . . ; wnÞ:

Assume that A
�ði0�1Þ
�þ � gðw1; . . . ; wnÞ � A�ði0Þ

�þ . Because

A
�ð1Þ
�þ � � � � � A

�ðnÞ
�þ , then gðw1; . . . ; wnÞ reaches the max-

imum at w1 ¼W 1
�þ; . . . ; wi0�1 ¼Wi0�1

�þ ; wi0 ¼Wi0
��; . . . ;

wn ¼Wn
��, that is to say, this maximum can be expressed

in the form of (18). Hence, �
i	0
�þ is the maximum of

gðw1; . . . ; wnÞ, i.e., the solution of (7) and (16). tu

Theorems 4 and 6 and their proofs actually indicate the

procedures for finding the values �
i	0
�� and �

i	0
�þ, respectively.

Given n linguistic weights fWigni¼1, the procedure to

aggregate fAigni¼1 by a type-1 OWA operator via the �-

level aggregation scheme is given in Fig. 1, in which the �

values are required to cover all the available membership

grades f�WiðwiÞg and f�AiðaiÞg.
Example 1. Assume the following numerical domains U ¼

f0:0; 0:5; 1:0g and X ¼ f0:0; 1:0; 2:0g. Let the given lin-

guistic weights W ¼ ui
�W ðuiÞ

� �
ui2U

on U be
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Fig. 1. Procedure of the Alpha-Level Approach to type-1 OWA operation.



W 1 ¼ 0:0 0:5 1:0
1:0 0:5 0:0

� �
; W 2 ¼ 0:0 0:5 1:0

0:0 1:0 0:0

� �
;

W 3 ¼ 0:0 0:5 1:0
0:0 0:5 1:0

� �
;

and the aggregated objects on X be

A1 ¼ 0:0 1:0 2:0
0:0 0:5 1:0

� �
; A2 ¼ 0:0 1:0 2:0

1:0 0:5 0:0

� �
;

A3 ¼ 0:0 1:0 2:0
0:0 1:0 0:0

� �
:

To calculate the �-cuts of Wi and Aiði ¼ 1; 2; 3Þ, the
following set of � values will be used: f0; 0:5; 1:0g. We
use the type-1 OWA operator �W1;W 2;W 3 to aggregate the
sets A1; A2; A3 according to the procedure in Fig. 1

G ¼ �W 1;W 2;W 3ðA1; A2; A3Þ:

So, we need to get the �-levels of G at � ¼ 0; 0:5 and 1.0,

respectively.
Case I. � ¼ 0:0
Obviously, the �-levels of Ai and Wiði ¼ 1; 2; 3Þ are

A1
� ¼ A2

� ¼ A3
� ¼ 0:0; 1:0; 2:0f g

and

W 1
� ¼W 2

� ¼W 3
� ¼ 0:0; 0:5; 1:0f g;

respectively. Thus, we have

A1
�� ¼ A3

�� ¼ A3
�� ¼ 0:0;

A1
�þ ¼ A2

�þ ¼ A3
�þ ¼ 2:0;

W 1
�� ¼W 2

�� ¼W 3
�� ¼ 0:0;

W 1
�þ ¼W 2

�þ ¼W 3
�þ ¼ 1:0:

. Computation of �
i	0
��. Because A1

�� ¼ A2
�� ¼ A3

��,
the permutation operator is � ¼ ð1; 2; 3Þ. Then,

1. i0 ¼ 1. According to the (13), we have

�i0�� ¼
W 1

�þA
�ð1Þ
�� þW 2

�þA
�ð2Þ
�� þW 3

�þA
�ð3Þ
��

W 1
�þ þW 2

�þ þW 3
�þ

¼ 0:0

� A�ði0Þ
��

¼ A1
��:

So, we get �
i	0
�� ¼ 0:0.

. Computation of �
i	0
�þ. Because A1

�þ ¼ A2
�þ ¼ A3

�þ,
the permutation operator is � ¼ ð1; 2; 3Þ. Then,

1. i0 ¼ 1. According to (20), we have

�i0�þ ¼
W 1

��A
�ð1Þ
�þ þW 2

��A
�ð2Þ
�þ þW 3

��A
�ð3Þ
�þ

W 1
�� þW 2

�� þW 3
��

¼ 0:0

< A
�ði0Þ
�þ

¼ A1
�þ:

So, we should continue this procedure by

letting i0 ¼ 2.
2. i0 ¼ 2. According to (18), we have

�i0�þ ¼
W 1

�þA
�ð1Þ
�þ þW 2

��A
�ð2Þ
�þ þW 3

��A
�ð3Þ
�þ

W 1
�þ þW 2

�� þW 3
��

¼ 1:0� 2:0þ 0:0� 2:0þ 0:0� 2:0

1:0þ 0:0þ 0:0

¼ 2:0

� A�ði0Þ
�þ

¼ A2
�þ:

So, we get �
i	0
�þ ¼ 2:0. As a result, G� ¼

½0:0; 2:0� \X ¼ f0:0; 1:0; 2:0g.
Case II. � ¼ 0:5
The �-levels of Ai and Wiði ¼ 1; 2; 3Þ are

A1
� ¼ 1:0; 2:0f g; A2

� ¼ 0:0; 1:0f g; A3
� ¼ 1:0f g

and

W 1
� ¼ 0:0; 0:5f g;W 2

� ¼ 0:5f g;W 3
� ¼ 0:5; 1:0f g;

respectively. Thus, we have

A1
�� ¼ 1:0; A1

�þ ¼ 2:0;

A2
�� ¼ 0:0; A2

�þ ¼ 1:0;

A3
�� ¼ 1:0; A3

�þ ¼ 1:0;

and

W 1
�� ¼ 0:0;W 1

�þ ¼ 0:5;

W 2
�� ¼ 0:5;W 2

�þ ¼ 0:5;

W 3
�� ¼ 0:5;W 3

�þ ¼ 1:0:

. Computation of �
i	0
��. Because A1

�� � A3
�� � A2

��,
the permutation operator is � ¼ ð1; 3; 2Þ. Then,

1. i0 ¼ 1. According to (13), we have

�i0�� ¼
W 1

�þA
�ð1Þ
�� þW 2

�þA
�ð2Þ
�� þW 3

�þA
�ð3Þ
��

W 1
�þ þW 2

�þ þW 3
�þ

¼ 0:5� 1:0þ 0:5� 1:0þ 1:0� 0:0

0:5þ 0:5þ 1:0

¼ 0:5

< A�ði0Þ
��

¼ A1
��:

So, we should continue this procedure by

letting i0 ¼ 2.
2. i0 ¼ 2. According to (11), we have
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�i0�� ¼
W 1

��A
�ð1Þ
�� þW 2

�þA
�ð2Þ
�� þW 3

�þA
�ð3Þ
��

W 1
�� þW 2

�þ þW 3
�þ

¼ 0:0� 1:0þ 0:5� 1:0þ 1:0� 0:0

0:0þ 0:5þ 1:0

¼ 1

3

< A�ði0Þ
��

¼ A3
��:

So, we should continue this procedure by

letting i0 ¼ 3.
3. i0 ¼ 3. According to (11), we have

�i0�� ¼
W 1

��A
�ð1Þ
�� þW 2

��A
�ð2Þ
�� þW 3

�þA
�ð3Þ
��

W 1
�� þW 2

�� þW 3
�þ

¼ 0:0� 1:0þ 0:5� 1:0þ 1:0� 0:0

0:0þ 0:5þ 1:0

¼ 1

3

> A�ði0Þ
��

¼ A2
��:

So, we get �
i	0
�� ¼ 1

3 .
. Computation of �

i	0
�þ. Because A1

�þ > A2
�þ � A3

�þ,
the permutation operator is � ¼ ð1; 2; 3Þ. Then,

1. i0 ¼ 1. According to (20), we have

�i0�þ ¼
W 1

��A
�ð1Þ
�þ þW 2

��A
�ð2Þ
�þ þW 3

��A
�ð3Þ
�þ

W 1
�� þW 2

�� þW 3
��

¼ 0:0� 2:0þ 0:5� 1:0þ 0:5� 1:0

0:0þ 0:5þ 0:5

¼ 1:0

< A
�ði0Þ
�þ

¼ A1
�þ:

So, we should continue this procedure by

letting i0 ¼ 2.
2. i0 ¼ 2. According to (18), we have

�i0�þ ¼
W 1

�þA
�ð1Þ
�þ þW 2

��A
�ð2Þ
�þ þW 3

��A
�ð3Þ
�þ

W 1
�þ þW 2

�� þW 3
��

¼ 0:5� 2:0þ 0:5� 1:0þ 0:5� 1:0

0:5þ 0:5þ 0:5

¼ 4

3

� A�ði0Þ
�þ

¼ A2
�þ:

So, we get �
i	0
�þ ¼ 4

3 . As a result, G� ¼ ½13 ; 4
3� \

X ¼ f1:0g.
Case III. � ¼ 1:0
The �-levels of Ai and Wiði ¼ 1; 2; 3Þ are

A1
� ¼ 2:0f g; A2

� ¼ 0:0f g; A3
� ¼ 1:0f g

and

W 1
� ¼ 0:0f g;W 2

� ¼ 0:5f g;W 3
� ¼ 1:0f g;

respectively. Thus, we have

A1
�� ¼ A1

�þ ¼ 2:0;

A2
�� ¼ A2

�þ ¼ 0:0;

A3
�� ¼ A3

�þ ¼ 1:0;

and

W 1
�� ¼W 1

�þ ¼ 0:0;

W 2
�� ¼W 2

�þ ¼ 0:5;

W 3
�� ¼W 3

�þ ¼ 1:0:

Following a similar computation process as in the two

previous cases, we get �
i	0
�� ¼ �

i	0
�þ ¼ 1

3 . As a result,

G� ¼ f1
3g \X ¼ ;.

Now we proceed to compute the membership grades
of G according to the (5)

�Gð0Þ ¼ _
�:0:02G�

� ¼ 0:0;

�Gð1:0Þ ¼ _
�:1:02G�

� ¼ 0:0 _ 0:5 ¼ 0:5;

�Gð2:0Þ ¼ _
�:2:02G�

� ¼ 0:0:

Hence, the result of aggregating the fuzzy sets A1; A2; A3

by the type-1 OWA operator �W 1;W 2;W 3 is

G ¼ 0:0 1:0 2:0
0:0 0:5 0:0

� �
:

4 COMPLEXITY ANALYSES OF THE DIRECT

APPROACH AND THE PROPOSED ALPHA-LEVEL

APPROACH TO TYPE-1 OWA OPERATIONS

Given n fuzzy set fAigni¼1 to be aggregated by a type-1

OWA operator associated with n uncertain weights

fWigni¼1, in this section, we analyze the complexity of the

Direct Approach [27] and Alpha-Level Approach to type-1

OWA operations, which was not addressed yet in [27].
In the Direct Approach, assume the domain U ¼ ½0; 1� be

discretized with nu points and the domain X with nx
points. For each combination of w1 2 U; . . . ; wn 2 U; a1 2
X; . . . ; an 2 X, the type-1 OWA aggregation in the Direct

Approach will involve 2ðn� 1Þ additions, n multiplications,

1 division, 2n� 1 t-norm operations and 1 maximum

operation. Hence, the total operations for each combination

of w1; . . . ; wn; a1; . . . ; an is

2ðn� 1Þ þ nþ 1þ 2n� 1þ 1 ¼ 5n� 1: ð22Þ

Then, ðnuÞnðnxÞn combinations of w1; . . . ; wn; a1; . . . ; an lead

to the number of operations involved in a Direct Approach to

type-1 OWA operator to aggregate fAigni¼1 to be

ðnunxÞn 5n� 1ð Þ ¼ O Knð Þ; ð23Þ

where K is a constant. Hence, the complexity of the Direct

Approach to type-1 OWA operation is in exponential order.
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In the proposed Alpha-Level Approach, assume the
number of � values in ½0; 1� be n�, and the domain X be
discretized with nx points. For each � value, the operations
in each round of the total i	0 involved in the computation of
each right endpoint �i0�þ of an �-cut include 2ðn� 1Þ
additions, n multiplications, and 1 division. So, the total
number of operations to compute the right endpoint �i0�þ is

i	0 2ðn� 1Þ þ nþ 1ð Þ ¼ i	0 3n� 1ð Þ: ð24Þ

Similarly, the total number of operations to compute the left
endpoint �i0�� is i

0
0ð3n� 1Þ. Therefore, the computation of

each �-cut ½�i
0
0
��; �

i	0
�þ� involves ði	0 þ i

0
0Þð3n� 1Þ times of

operations. Considering there exist nxðn� � 1Þ operations to
obtain the membership grades of the nx points in X, the
total number of operations involved in the Alpha-Level
Approach is

n�ði	0 þ i
0

0Þð3n� 1Þ þ nxðn� � 1Þ ¼ OðnÞ: ð25Þ

That is to say, the complexity of the Alpha-Level Approach is
in linear order. Hence, the Alpha-Level Approach achieves
much higher computing efficiency than the Direct Approach.

5 EXPERIMENTAL RESULTS

In this section, we first evaluate the computing efficiency of
the proposed scheme in comparison with the Direct Approach
[27], in which eight different kinds of type-1 OWA operators
are designed to aggregate a group of fuzzy sets. Then, we
provide a practical example for breast cancer treatment in
which type-1 OWA operators are used. In these examples,
the proposed type-1 OWA operators are compared with
another widely investigated aggregation operator, the FWA
operator [36], [37], [38].

5.1 Evaluation of Computing Efficiency and
Comparisons with Direct Approach

As Yager’s OWA operators do, type-1 OWA operators also
depend on the choices of linguistic weights fWigni¼1. By
choosing appropriate uncertain weights modeled as fuzzy
sets, we can obtain a type-1 OWA operator with desired
properties. In this section, eight different type-1 OWA
operators are designed to aggregate the fuzzy sets shown
in Fig. 2. These eight type-1 OWA operators are the meet
operator, two meet-like operators, the join operator, two join-
like operators, the mean operator, and a mean-like operator.

The meet and join operators of fuzzy sets were proposed
by Zadeh [41] and named in [42]. Interestingly, as indicated
in [27] and [28], the meet and join operations of fuzzy sets
can be performed by type-1 OWA operators with singleton
weights. For example, a type-1 OWA operator of dimension
3 becomes a meet operator if the following singleton
weights are used: Wi ¼ _0 ði 6¼ 3Þ, W 3 ¼ _1 , i.e.,

�W 3ðwÞ ¼ 1; w ¼ 1;
0; others;

�
ð26Þ

�WiðwÞ ¼ 1; w ¼ 0;
0; others;

�
ði 6¼ 3Þ ð27Þ

while the singleton weightsWi ¼ _0 ði 6¼ 1Þ,W 1 ¼ _1 make the
type-1 OWA operator into a join operator. As a matter of fact,

the meet of fuzzy sets yields the fuzzified minimum whereas
the join of fuzzy sets yields the fuzzified maximum [27].

The traditional mean operator is a particular type of
Yager’s OWA operator with weights all equal to 1=n.
Therefore, the type-1 OWA operator with all weights in the
form of singleton fuzzy sets _1=n

�GðyÞ ¼ sup
1

n

Xn
i¼1

ai ¼ y

ai 2 X

�A1
ða1Þ 	 � � � 	 �An

ðanÞ ð28Þ

can be seen as an extended mean operation on fuzzy sets
[27], [28].

Meet-like type-1 OWA (MLT1OWA) operators [27], [28]
can be obtained by selecting appropriate linguistic weights:
the last linguistic weight is to approach to the singleton
fuzzy set _1, and the rest of linguistic weights are to
approach to the singleton fuzzy set _0 in turn. The
MLT1OWA operator of dimension 3 with linguistic weights
W 1 ¼W 2 ¼ L0, W 3 ¼ L1 depicted in Fig. 3 is denoted as
MLT1OWA 1. Fig. 4 shows linguistic weights fWig3

i¼1 that
guide another meet-like type-1 OWA operation, which is
denoted as MLT1OWA2.

Join-like type-1 OWA (JLT1OWA) operators can also be
obtained by selecting appropriate linguistic weights [27],
[28]. Indeed, this is the case when the first linguistic weight is
close to the singleton fuzzy set _1, and the rest are close to the
singleton fuzzy set _0 in turn. One example of linguistic
weights chosen for JLT1OWA operator is to set W 1 ¼ L1,
W 2 ¼W 3 ¼ L0, in which the L0 and L1 are depicted in Fig. 3.
This JLT1OWA is denoted as JLT1OWA1, whereas Fig. 5
illustrates another case of linguistic weights chosen for
JLT1OWA operator, which is denoted as JLT1OWA2.

Mean-like type-1 OWA (MALT1OWA) operators can be
obtained by selecting the linguistic weights appropriately.
For example, Fig. 6 shows three linguistic weights in the
forms of triangular fuzzy numbers whose cores locate at 1/3
as follows,

�WiðuÞ ¼ max 0; min 3u; 2� 3uð Þf g: ð29Þ

After choosing the above associated weights, respec-
tively, we can use the proposed Alpha-Level Approach to
implement these eight type-1 OWA operators for aggregat-
ing the fuzzy sets depicted in Fig. 2, and compare with the
Direct Approach [27] in terms of computing efficiency,
respectively. Table 1 shows the corresponding time costs
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Fig. 2. Three aggregated fuzzy sets (from left to right): A1; A2, and A3.



of the proposed Alpha-Level Approach and the Direct
Approach in completing these operations. It can be seen that
the computing efficiency achieved by the Alpha-Level
Approach is much higher than the one achieved by the
Direct Approach.

5.2 Comparisons of the Type-1 OWA Operators with
the FWA Operators

In this section, we further compare type-1 OWA operators
using the proposed �-level approach with FWA operators
[36], [37], [38] in aggregating fuzzy sets. In our experiments,
the type-1 OWA operators and FWA operators use the same
uncertain weights to aggregate the same groups of fuzzy
sets, then we evaluate what different aggregation results
can be achieved.

In the first example, a FWA operator with linguistic
weightsW 1;W 2, andW 3 being the fuzzy sets from right to left
given in Fig. 5 is used to aggregate the three fuzzy sets
depicted in Fig. 2. Fig. 7 illustrates the aggregation results
obtained with the FWA and the corresponding type-1 OWA
operator for the same set of weights, the JLT1OWA2 operator.

In the second example, Fig. 9 shows the corresponding
aggregation results obtained using the FWA and type-1
OWA operator associated with the same linguistic weights
depicted in Fig. 8b to aggregate the same group of fuzzy
sets shown in Fig. 8a.

From the above examples, it can be seen that type-1
OWA operators and the FWA operators exhibit different
aggregation behaviors, which resembles the different
behaviors Yager’s OWA operators and the weighted
averaging operators have associated when data are crisp.

5.3 Type-1 OWA-Based Fuzzy Inferences for Breast
Cancer Treatments

In this section, we further apply type-1 OWA operators to
the aggregation of nonstationary fuzzy sets for diagnoses of
breast cancer patients.

Nonstationary fuzzy sets [43], [44] have been proposed
to model intraexpert variability and interexpert variability
exhibited in multiexpert decision making, in which the
membership function of a nonstationary fuzzy set may
alter over time. As a result, given a problem, a
nonstationary fuzzy system may generate different output
fuzzy sets in different runs [45]. This means that some
additional components become necessary besides the
commonly used in the standard fuzzy system: fuzzifier,
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Fig. 4. Linguistic weights for MLT1OWA2 (from left to right): W 1, W 2,
and W 3.

Fig. 5. Linguistic weights for JLT1OWA2 (from right to left): W 1, W 2, and
W 3.

Fig. 3. Linguistic weights. (a) L0 and (b) L1.

Fig. 6. Linguistic weights with cores locating at 1/3: Wi (i = 1, 2, 3).



rule base, rule engine, and defuzzifier. Among them, an
important additional component is to aggregate these
output sets into an overall one. In the following, we use
the type-1 OWA operator as uncertain operator to
aggregate the output sets, which leads to a type-1
OWA-based nonstationary fuzzy system (T1ONFS) as
depicted in Fig. 10.

Generally speaking, the T1ONFS works as follows: In
each run, crisp input values first feed into the system
through the fuzzifier by which the fuzzification of these
inputs is carried out in a singleton or nonsingleton way. The
fuzzified nonstationary fuzzy sets then activate the in-
ference engine and rule base to yield an output set by
performing the union and intersection operations of fuzzy
sets and compositions of relations. This process repeats n
times. So n output sets are generated. Then, a type-1 OWA

operator is applied to these output sets to generate an
overall set. Finally, this overall fuzzy set is defuzzified to
produce a crisp output.

In our study toward the design of a nonstationary fuzzy
expert system for breast cancer treatments, 12 initial fuzzy
rules are acquired [46] according to the professional
clinical guidelines provided by Nottingham University
Hospitals (NHS) Trust Breast Directorate, i.e., the fuzzy
rule base is obtained from human experts’ knowledge,
which is different from the scheme of inducing fuzzy rules
from a data set [52]. These guidelines include various
treatment decisions based on many patients’ assessment
results. In our study, 1,310 breast cancer cases are
considered. Each cancer case is to be diagnosed by
the nonstationary fuzzy system that runs 10 times, then
the diagnosis result is to be compared with the doctor’s
recommendations. The system performance will be eval-
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Fig. 7. Comparison of type-1 OWA operator with FWA operator: solid
lines represent aggregated fuzzy sets, dashed line represents the
aggregation results. (a) FWA aggregation result and (b) Type-1 OWA
aggregation result.

Fig. 8. (a) Four aggregated fuzzy sets (from left to right): A1; A2; A3, and
A4; (b) Four linguistic weights (from left to right): W 1;W 2;W 3, and W 4.

TABLE 1
Comparison of Computing Efficiency of Alpha-Level Approach and Direct Approach to Type-1 OWA Operations



uated in terms of the rate of agreement with the doctor’s

judgments. Also, the proposed method will further

compare with the FWA operator.
In this study, we use the meet-like type-1 OWA operator

with W 10 ¼ L1, Wi ¼ L0 ði ¼ 1; . . . ; 9Þ, as depicted in Fig. 3,

to aggregate the 10 output sets for breast cancer treatments.

This meet-like type-1 OWA operator is denoted as

MLT1OWA3. Tables 2 and 3 are the confusion matrices of

the agreements of the different aggregation operators-based

nonstationary fuzzy systems with doctor’s judgments, in

which the MLT1OWA3 and FWA-based nonstationary

fuzzy systems are used to provide soft decision supports

for breast cancer treatments, respectively. It can be seen that

the nonstationary fuzzy system with type-1 OWA operator

MLT1OWA3 can achieve better performance. However, like

in the case of Yager’s OWA operator [47], [48], [49], [50],

[51], the identification of appropriate weights for type-1
operators is an important research topic.

All computations in these experiments were carried out
using the R-software environment in version 2.4.0 [55]. The

source codes of type-1 OWA operations in this paper are
available upon request.

6 DISCUSSION AND CONCLUSIONS

This paper first defined the �-level type-1 OWA operator
to aggregate the �-cuts of fuzzy sets. The Representation
Theorem of type-1 OWA operators was proved. According
to the Representation Theorem, type-1 OWA operators can
be decomposed into its �-level type-1 OWA operators,
which led to the proposal and development of a fast
approach to implementing type-1 OWA operations. Pro-
misingly, the complexity of the Alpha-Level Approach is in
linear order, it can achieve much higher computing
efficiency in performing type-1 OWA operation than the
Direct Approach, and therefore it provides an efficient way
of aggregating uncertain information via OWA mechanism
in real-time applications.

It is known that in Yager’s OWA aggregation, the
identification of appropriate OWA weights is a very active
research topic [47], [48], [49], [50], [51]. We have a similar
issue in the case of the type-1 OWA operators, i.e., how to
determine type-1 OWA weights to reflect the decision
makers’ desired agenda for aggregating the criteria/pre-
ferences. Type-2 linguistic quantifiers have been proposed
for this purpose [27], although further schemes are worth
investigating for different situations. Other interesting
issues include the possibility of applying type-1 OWAs to
the merging of similar fuzzy sets for improving fuzzy
model interpretability/transparency and parsimony [52],
[53], [54], as well as their applications to multiexpert
decision making and multicriteria decision making.
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TABLE 2
Confusion Matrix Obtained by MLT1OWA3-Based Fuzzy

Decision

TABLE 3
Confusion Matrix Obtained by FWA-Based Fuzzy Decision

Fig. 10. Type-1 OWA-based nonstationary fuzzy system.

Fig. 9. Comparison of type-1 OWA operator with FWA operator: solid
lines represent aggregated fuzzy sets, dashed line represents the
aggregation results. (a) FWA aggregation result and (b) Type-1 OWA
aggregation result.
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