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Abstract

In this article we develop a Mahlo universe in Explicit Mathematics
using extended predicative methods. Our approach differs from the
usual construction in type theory, where the Mahlo universe has a
constructor that refers to all total functions from families of sets in
the Mahlo universe into itself; such a construction is, in the absence
of a further analysis, impredicative. By extended predicative methods
we mean that universes are constructed from below, even if they have
impredicative characteristics.

1 Predicativity!

After the discovery of set theoretic paradoxes at the end of the 19th and
beginning of the 20th century, especially Burali-Forti’s ([BF97]) and Rus-
sell’s (1901, [Rus02]), RussELL [Rus06] introduced in 1906 the notion of
predicativity. POINCARE (1906, [Poi06]) made this notion more precise and
proposed a foundation of mathematics, which is entirely based on predicative
constructions. A concept is called predicative, if its definition only refers to

Both authors were supported by the Volkswagen-Stiftung (RiP program at Oberwol-
fach). The first author was partially supported by the ESF research project Dialogical
Foundations of Semantics within the ESF Eurocores program LogICCC (funded by the
Portuguese Science Foundation, FCT LogICCC/0001/2007). The second author was sup-
ported by EPSRC grant EP/G033374/1, Theory and applications of induction-recursion.

!This historic introduction is partially based on [Fef05]



concepts introduced before and therefore does not presuppose its own ex-
istence. Many mathematical notions are introduced impredicatively. The
most prominent example is the set of real numbers defined as Dedekind cuts.

HERMANN WEYL (1918, [Wey18]) was the first to carry out a systematic
development of predicative mathematics. But it soon turned out that signif-
icant parts of established mathematics could not be developed using pred-
icative methods. KREISEL proposed in 1958 ([Kre60]) that ramified analysis
RA™, autonomously iterated, should be considered as the limit of predicative
analysis. Using proof theoretic methods KURT SCHUTTE [Sch65b, Sch65a]
and SOLOMON FEFERMAN [Fef64] determined (independently, in 1964-5)
I'p as the autonomous ordinal of RA*. (See also SCHUTTE’s book [Sch77,
p. 220] for an excellent presentation and discussion of this result.) Therefore,
in proof theory I'y is usually considered as the limit of predicativity. Because
of this result, predicative analysis is rather weak compared to other, more
commonly used mathematical theories (e.g., Zermelo-Fraenkel set theory or
full analysis). Already the first substantially impredicative theory ID; has
a proof theoretic ordinal which is substantially stronger than I'y.

Before moving beyond I'y, one should note that the results of reverse
mathematics show that a substantial portion of ordinary “mathematical
theorems” can be proven in the theory ATRp, Arithmetical Transfinite Re-
cursion, a theory of strength I'g, i.e., a theory which is predicative in the
proof theoretic sense (see e.g. [Sim99]). However, some mathematical the-
orems require an extension of ATRy, called (Mi-CA)g, which (from a proof
theoretic perspective) is substantially impredicative (it has the strength of
finitely iterated inductive definitions ID,,).

For theories whose proof theoretic ordinal is greater than I'g, but which
can nonetheless be analysed using predicative methods (especially without
the use of collapsing functions), GERHARD JAGER introduced the notion of
metapredicativity. The first metapredicative treatment is [Jag80], the first
published metapredicative treatments are [JKSS99] and [Str99].

One should note that there are different understandings of what can be
considered as predicative. For instance, in Martin-Lof type theory, induc-
tive and inductive-recursive definitions (the latter allows to define strictly
positive universes) are in general considered as predicative, referring to an
intuitive understanding of what is meant by a least set closed under certain
monotone operators. With inductive-recursive definitions one reaches the
strength of KPM (]DS03], Theorem 6.4.2 and Corollary 6.4.3). A Mahlo
Universe has been proposed by the second author in [Set00] as a predica-
tively justified extension of Martin-Lo6f Type Theory that goes beyond even
KPM. In this article we explain how a Mahlo universe can in fact be con-
sidered as a predicative construction.

The other extreme position regarding predicativity is the observation
that the natural numbers as defined in Peano Arithmetic can be considered
as impredicative: they are defined as the least set closed under zero and suc-



cessor, where “least” is characterized by the induction principle, which refers
to the totality of the natural numbers. So the natural numbers are defined by
referring to the totality of natural numbers. See EDWARD NELSON [Nel86],
DANIEL LEIVANT [Lei9%4, Lei95], and CHARLES PARSONS [Par92|, where
PARSONS refers this to an observation by MICHAEL DUMMETT (no citation
given).

In this article we introduce an extended predicative version of the Mahlo
universe in the context of Ezxplicit Mathematics. The corresponding theory is
impredicative using the proof theoretic understanding (i.e., it goes beyond
Ip; we expect it to even exceed slightly the strength of KPM). A Mahlo
universe M is usually defined as, roughly speaking, a collection of sets such
that for every function f : M — M there exist a subuniverse sub f of the
Mahlo universe closed under f which is an element of the Mahlo universe.
Closure under f means that f : sub f — sub f. This definition of M is
impredicative, since it refers to the set of total functions from M into itself,
which refers to the totality of M.

Our goal is to introduce the Mahlo universe “from below” so that the
definition has an extended predicative character. For this it we will refer
to the collection of arbitrary, (possibly) partial functions (which is unprob-
lematic from a predicative point of view). This collection is not directly
available in Martin-Léf Type Theory but in Explicit Mathematics, a frame-
work developed by SOLOMON FEFERMAN and further explored by the group
of GERHARD JAGER. Therefore we develop the extended predicative Mahlo
universe within the framework of Explicit Mathematics.

2 Mahloness

Mahlo cardinals were introduced 1911 by PAuL MAHLO ([Mahll, Mah12]).
Mahlo cardinals are the first substantial step in the development of large
cardinals beyond inaccessible cardinals (weakly inaccessible cardinals were
introduced 1908 by FELIX HAUSDORFF [Hau08]). A (weakly) Mahlo car-
dinal is a cardinal x which is (weakly) inaccessible and such that the set
of (weakly) inaccessible cardinals less than k is stationary in k, i.e., every
closed unbounded set in x contains a (weakly) inaccessible cardinal.

For the proof-theoretic analysis of subsystems of analysis, proof theory
makes extensive use of the recursive analogues of large cardinals ([Poh96,
Poh98]). The recursive analogue of a regular cardinal is an admissible or
recursively regular ordinal x, which is an ordinal closed under all k-partial
recursive functions. (See [HinT78], Def. VIII.2.1). Recursively inaccessible
ordinals are recursively regular ordinals « that are the s recursively regular
ordinal ([Hin78], Def. VIIL.6.1). The recursive analogue of a Mahlo cardinal
is a recursively Mahlo ordinal. An admissible ordinal  is a recursively
Mahlo ordinal ([Hin78], Def. VIIL.6.7) if for all f : M — M, which are M-



recursive with parameters in M, there exists an admissible k < M such that
Va < k.f(a) < k. (If one replaces “admissible” by “recursively inaccessible”
in this definition, one obtains an equivalent definition.) Recursively Mahlo
sets are sets of the form Lj; for recursively Mahlo ordinals M.

The theory of recursively regular ordinals is often developed in the con-
text of Kripke-Platek set theory KP. KP was introduced by RICHARD
PLATEK 1966 in his PhD thesis [Pla66] with a variant introduced indepen-
dently 1964 by SAuL KRIPKE [Kri64]. The book of JON BARWISE [Bar75]
contains an excellent exposition of KP, with the historical background de-
scribed in Notes 1.2.7. In the context of KP, an admissible set ([Bar75],
Def. I1.1.1) is a transitive set a which is a model of KP, where, apart from
closure under pair, union and Ag-separation, the main property is closure
under Ag-collection: If

beaAVrebIy € ap(r,y)
then there exists ¢ € a such that
Vo € b.3y € c.p(z,y)

for any Ag-formula ¢ with parameters in a. Recursively inaccessible sets ([Bar75],
Def. V.6.7) are admissible sets closed under the operation of stepping to the
next admissible set. Recursively Mahlo sets ([Bar75], Exercise. V.7.25) are
admissible sets adyianio such that for all Ay formulas ¢(z,y, Z) and variables

Z such that

Z € adManto A V2 € adManlo-FY € admanlo-9 (2, Y, 2)
there exists an admissible b € adyiani, such that
ZebAVr e by € by(z,y,?)

holds. Admissible, recursively inaccessible and recursively Mahlo ordinals
are the supremum of the ordinals in an admissible, recursively inaccessible
and recursively Mahlo set, respectively. Alternatively they are the ordinals
a such that L, is admissible, recursively inaccessible or recursively Mahlo,
respectively.

The step towards an analysis of recursively Mahlo ordinals was an impor-
tant step in the development of impredicative proof theory. The first step
in impredicative proof theory was the analysis of one inductive definition
by WILLIAM ALVIN HOWARD ([How72]) based on the Bachmann Ordinal
(introduced by HEINZ BACHMANN, [Bac50]). Today, this line of research is
continued by two schools in proof theory, one founded by KURT SCHUTTE
(see [Sch77]) and one founded by GAIlst TAKEUTI (see [Tak87]). The lat-
ter one is based on ordinal diagrams which are closer to Gentzen’s original
paper [Gen36]. The most productive researcher following this approach is



TOSHIYASU ARAT who pushed it beyond (M3-CA) + (Bl) [Ara96a, Ara96b,
Ara97a, Ara97b, Ara0Oa, Ara00b, Ara03, Ara04].

In the other school, iterated inductive definitions were analysed, cul-
minating in a complete analysis in the famous monograph [BFPS81] by
BucHHOLZ, POHLERS, FEFERMAN and SIEG. With GERHARD JAGER’s dis-
sertation [J&g79] the focus shifted from the analysis of subsystems of analysis
to the analysis of extensions of KPw which allowed a much more fine grained
development of intermediate theories. Here KPw is KP plus the existence
of the set of natural numbers. This turned out to be very successful with
the analysis by WOLFRAM POHLERS and GERHARD JAGER in 1982 of the
equivalent theories KPI, (A} — CA) + (BI), and Ty in [JP82]. Here KPI
is KPw plus axioms stating the inaccessibility of the set theoretic universe,
(Al —CA) + (BI) is the subsystem of analysis with comprehension (CA) re-
stricted to Al-formulas which is extended by bar induction BI, and Ty is a
system of explicit mathematics discussed in Sect. 3. The article [JP82] con-
centrates on the upper bound; the lower bound is based on the embedding
of Tg into (A} — CA) + (BI) by FEFERMAN [Fef79] and a well-ordering proof
for To by JAGER [Jd4g83]. A more direct well-ordering proof can be found
in [BS83] and [BS88] by WILFRIED BucHHOLZ and KURT SCHUTTE. The
state-of-the-art treatment technique for determining upper bounds is based
on the simplified version of local predicativity by BUCHHOLZ [Buc92]. A con-
structive underpinning was obtained by the second author, by carrying out
a proof theoretic analysis of Martin-Lof type theory [Set98], showing that
it is slightly stronger than KPI (see as well independent work by MICHAEL
RATHJEN and E. GRIFFOR [GR94].)

The first significant step beyond inaccessibles which were in some sense
two level inductive definitions, was taken by MICHAEL RATHJEN ([Rat90,
Rat91, Rat94a]) with his analysis of KPM, i.e. KPw with the Mahloness of
its universe, and a corresponding subsystem of analysis [Rat96]. The second
author of this article introduced in [Set00] a Mahlo universe in Martin-Lof
type theory and showed that its strength goes slightly beyond that of KPM.
This provided a first constructive underpinning of this proof-theoretic devel-
opment. Later GERHARD JAGER (e.g. [Jdg05]) introduced a Mahlo universe
in Explicit Mathematics (To(M)), which we will revisit in Sect. 4.

The analysis of KPM was the main stepping stone for RATHJEN to jump
to an analysis of KPw with IIs-reflection ([Rat92, Rat94b]) and later of
(M-CA) + (BI) ([Rat95, Rat05a, Rat05b]).

We look now to the rules and axioms for formulating Mahlo in Explicit
Mathematics. There are two versions, internal Mahlo (To(M)™), correspond-
ing to having a universe in Explicit Mathematics having the Mahlo property,
and external Mahlo (To(M)), corresponding to the fact that the overall col-
lection of sets has the Mahlo property. We first focus on the internal Mahlo
universe, and then indicate how to modify this in order to obtain the external
Mahlo universe.



The first part is that a recursively Mahlo set is a recursively inaccessible
set (remember that we could replace admissibles by recursively inaccessi-
ble sets). Recursively inaccessible sets correspond to universes closed under
inductive generation, so in To(M)* we demand for some constant M corre-
sponding to the recursively Mahlo set adyiani, that it is a universe which is
closed under inductive generation (which would correspond in type theory
to closure under the W-type, in subsystems of analysis to the formation of
inductively defined sets, and in KP to the formation of the next admissible
above a given set). We note here that the metapredicative versions are ob-
tained by omitting inductive generation—which is an impredicative concept
in the proof theoretic sense. Thus, for metapredicative Mahlo, closure under
inductive generation is omitted.

The assumption for the main closure property of adyianio i Z € admanlo
and Vo € adyanlo.-Jy € admanio-p(z,y, 7). We can collect the elements 2
together into one set a and replace the closure under ¢ by a function f €
(M — M).

The reader with a background in Martin-Lo6f Type Theory might wonder
why this is sufficient, since in type theory this assumption is translated as
having a function f € (Fam(M) — Fam(M)), where?

Fam(u) := {(a,b) |a€unbe (a = u)} .

The reason why this can be avoided is that for any universe u we can write
encoding functions pair € (Fam(u) — ) and decoding functions proj, €
(u — w) and proj; € ((z €u) — projyx — u) for families of sets such that for
a€wuand b € (a — u) we have proj, (pair (a,b)) = a and proj; (pair (a,b)) =
b. We use here notations inherited from dependent type theory, proj; €
((x €u) — projyz — u) means that proj; is a defined constant such that

YV € u.Vy € projy x.proj; Ty €u .

For this one defines (using join and arithmetic comprehension)

pair (a,b) := {(O,m)\xéa}u{(l,(x,y))\xéa/\yébm} ,
projga = {a | (0,2)€al
projyaxz = {y|(1,(z,y) €a} .

Now a function f € (Fam(u) — Fam(u)) can be encoded as a function
g € (u— u) s.t. g x = pair (f (projy , proj; z)), and a universe u is closed
under f if and only if it is closed under g (modulo =). In the same way we
can replace Z' occurring above, which would be translated into an element
of Fam(u), by one single element of w.

Assuming the closure of adpane under Z and ¢ the recursively Mahlo
property gave us the existence of a recursively inaccessible b containing Z'

2The notations &, =, ¢, R and related notions are introduced in Section 3, which
introduces as well the theory To.



and closed under . The existence of b translates into the existence of a
subuniverse m (a, f). So we have m (a, f) is a universe, m (a, f) C M. (Note
that in type theory an explicit embedding from m (a, f) into M needs to be
defined, which we can avoid in Explicit Mathematics because there universes
are & la Russell rather than & la Tarski). Z' € b translates into a € m (a, f) and
that adpianle is closed under ¢ is translated into f € (m(a, f) — m(a, f)).
(In type theory it was necessary to introduce a constructor reflecting f in
m (a, f), which is implicit in Explicit Mathematics. Furthermore, in the
formulation of the Mahlo universe in [Set00] the parameter a doesn’t occur.
This is because closure under a can be avoided by replacing closure under
f by closure under g such that gz is the union of fx and a.)

Universes in Explicit mathematics are usually not closed under inductive
generation, and we follow this convention. We observe that M needs in ad-
dition to being a universe to be closed under inductive generation. However,
m (a, f) does not need to be closed under inductive generation: We can use
again the trick of encoding of families of sets into sets and define for every
f € (M — M) a function g € (M — M) such that u is closed under g if u
is closed under f and inductive generation (modulo =). So we obtain that,
even if m (a, f) is not necessarily closed under inductive generation, there
still exists for every f € (M — M) a subuniverse of M closed under f and
inductive generation (modulo =).

Up to now, the strength of the rules does not exceed possessing Tg plus
the existence of one universe, since we could easily model m(a, f) := M.
What is still missing is to model that the admissible is an element of M,
which is modelled by

m(a, f)EM

Note that this means that M has a constructor that depends negatively on
M, namely
m € ((M,(M — M)) — M)

This completes the internal version of the Mahlo universe, which can be
summarized as follows (notations such as U(t) will be explained in the next
section):

UM) AT € (M2 — M)

aEMAfeM—=M) — m(a,f) CMAUmM(a,f)) Na€Em(a,f)

aceMAfeM—-M) — fe(m(a,f)—ma,f)Am(a,f)eM

An external Mahlo universe is obtained by giving the collection R of
names for sets in Explicit Mathematics the role of M. So we obtain as

conditions the axioms developed by JAGER (in addition to Ty which contains
closure of R under i):

Ra)ANfeR—-R) — Um(a,f)) NaEm(a,f),
Ra)ANfeR—-R) — fe(m(a,f)— mla,f)).



3 Explicit Mathematics

We work in the framework of Feferman’s Explicit Mathematics, [Fef75, Fef79].
It was introduced in the 1970s to formalize BISHOP-style constructive math-
ematics.

Explicit Mathematics is based on a two-sorted language, comprising indi-
viduals (combinatory logic plus additional constants) and types (i.e., collec-
tions of individuals). As general convention, individual constants are given
as lower case letters (or letter combinations) in sans serif font, individual
variables as roman lower case letters, such as x, y, individual terms as ro-
man lower case letters such as r, s, ¢, and type variables in roman upper case
letters such as U, V, X,Y (we do not use type constants). Types are named
by individuals, which are formally expressed by a naming relation R(x,U),
and one has an axiom expressing that every type has a name:

VU 3z R(z,U).

Based on the primitive element relation ¢ € X, it is convenient to intro-
duce the following abbreviations:

R(s) := IX.R(s, X),
s€t:=3XREtX)As € X,

dz € s.p(x) := Jr.x € s A\ (),

Vz € s.p(z) :=Vr.x € s — ¢(z),
sCt:=Vr€suxé€t,
s=t:=s5CtAtCs,

Ry (s) := RN(s) AVr € s.Rgp(x),
feER—-N) =Ve.R(x) — R(fx),
fe(s—s)=Vrx€s— fres,
fe(s?—=s)=Vr,yréEsAhyés— f(z,y) €s.

The usual starting point of Explicit Mathematics is the theory EETJ
of explicit elementary types with join, cf. [FJ96]. It is based on Beeson’s
classical logic of partial terms (see [Bee85] or [TvD88]) for individuals and
classical logic for types. The first order part is given by applicative theories
which formalize partial combinatory algebra, pairing and projection, and
axiomatically introduced natural numbers, cf. [JKS99]. EETJ adds types
on the second order level, and axiomatize elementary comprehension and
join as type construction operations. We dispense here with a detailed
description of EETJ which can be found in many papers on Explicit Math-
ematics (e.g., [JKSO1], [JS02] or [Kah07]). Let us just briefly address the
finite axiomatization of elementary comprehension and join. For these, we
have the following individual constants in the language: nat (natural num-
bers), id (identity), co (complement), int (intersection), dom (domain), inv



(inverse image), and j (join). These constants together make up a set of
generators, to which also belong—depending on the particular theory under
consideration—other constants used to introduce names, such as i (inductive
generation) in Ty or m in the approaches to Mahlo; for the extended pred-
icative version we have also the additional generators M, pre and sub. From
the axiomatization we just give as an example the one for intersections:

R(a) A R(b) — R(int (a,b)) AVz.x € int(a,b) >z EaAxED.

The generators for elementary comprehension and join will appear again
below when we define the notion of universe in Explicit Mathematics as a
type which is closed under elementary comprehension and join.

3.1 Inductive Generation

Let us shortly address the most famous theory of Explicit Mathematics, Tq [Fef75],
which is obtained from EETJ by adding inductive generation and the stan-
dard induction scheme on natural numbers for arbitrary formulae of the
language. Using the abbreviation

Closed(a,b,S) :=Vz € a.(Vy € a.(y,x) €b—yeS) —z €S

inductive generation is given by the following two axioms, expressing that
i (a,b) is the least fixed point of the operator X +— Closed(a,b, X), or the
accessible part of the relation b restricted to a:3

(1G.1)  R(a) AR(D) — IXR(i (a,b), X) A Closed(a, b, X),
(1G.2) R(a) AR(b) A Closed(a, b, p) — Va €i(a,b).o(x).

As mentioned before, the theory Tg played an important role in the
proof-theoretic analysis of the theories the proof theoretically equivalent
theories (A} — CA) + (BI) and KPI (see [Fef79, Jig83]); since Ty has the
same strength as KPI, one can say that inductive generation is a way of
formalizing inaccessibility in Explicit Mathematics, and formalizing it “from
below”.

3.2 Universes

We now turn to the notion of universes as discussed, for instance, in [JKSO01].
In the context of Mahloness, universes are considered by JAGER, STRAHM,
and STUDER [JSO01, JS02, Str02, Jag05, JS05].

The concept of universes can be introduced as a defined notion: A uni-
verse is a type W such that:

3Formulas such as Closed(a, b, ) are to be understood in the obvious way (replace in
Closed(a, b, S) formulas ¢t € S by ¢(t)). This convention will apply later even to formulas
where a name for a set a is replaced by ¢ — then s € a is to be replaced by ¢(s).



1. all elements of W are names and
2. W is closed under elementary comprehension and join.

For the formal definition we introduce the auxiliary notation of the closure
condition C(W, a) as the disjunction of the following formulas:

1) a=natVa=id,

2) dr.a=cox Ax e W,

4) dr.a =domz Ax €W,

(1)
(2)
(3) Jz.Ty.a=int(z,y) Ne e WAyeW,
(4)
(5) 3f3z.a=inv(f,z) Az e W,

(6)

6) Ix3fa=j(x, flANz e WAVyEx.fyeW.

The formula Vo.C(W,z) — x € W expresses that W is a type closed
under the type constructions of EETJ, i.e., elementary comprehension and
join. Now, we define a universe as a collection of names which satisfies this
closure condition, and we write U(W) to express that W is a universe:

UW) := (Vo e WR(z)) AVe.C(W,z) —x € W .
We write U(t) to express that ¢ is a name of a universe:
U(t) .= 3FXR(t, X) ANU(X).

A detailed discussion of the concept of universes in Explicit Mathemat-
ics can be found in [JKSO01], including least universes and name induction.
Universes can be considered as a formalization of admissibility. However,
since, if one adds induction axioms expressing least universes or name in-
duction, one reaches inacessibilty, they can serve as alternatives to inductive
generation in Ty.

4 Axiomatic Mahlo

The first formulation of Mahlo in Explicit Mathematics was given in a
metapredicative setting by JAGER and STRAHM [JSO01]. Its proof theoretic
strength was determined in [Str02] (with the upper bound given in [JSO01])
as ¢e900 (with induction restricted to types the strength is ¢ w 00). The
non-metapredicative version, which is obtained by adding inductive genera-
tion, was studied by JAGER and STUDER [JS02]. The resulting theory To(M)
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(Explicit Mathematics with Mahlo) is defined as the extension of Ty by the
following two axioms:

(M1) Ra)ANfeR—-R) — Um(a, f)) Na€Em(a,f),
(M2) Ra)ANfeR—-R) — fe(m(a,f)—mla,f)).

The axioms state that for every function from names to names there is a
universe which is closed under f. This universe is defined uniformly in f by
use of the universe constructor m.

An overview over what is known about To(M) can be found in JAGER’s
article [Jag05]. Together with THOMAS STUDER [JS02] he determined an
upper bound for the proof theoretic strength of Explicit Mathematics with
impredicative Mahlo, using specific nonmonotone inductive definitions in-
troduced by RICHTER [Ric71], see also [Jag0l]. A lower bound can be
combined according to JAGER [Jdg05] by using the realization of CZF with
Mahloness into Explicit Mathematics with the Mahlo universe (SERGEI T'U-
PAILO [Tup03]) together with a not-worked out adaption of the well-ordering
proof by MICHAEL RATHJEN [Rat94a] for KPM:*

Theorem. To(M) = KPM and the proof-theoretic ordinal is ¥aq(enr+1)-

The axiomatization of the universe m (a, f) for a given function f (and
given name a) is impredicative in the following sense: f is assumed to be a
total function from names to names but this totality has to hold, of course,
also with respect to the name of the “newly introduced” universe m (a, f).
In other words, in order to verify the premise f € (R — R) one already
needs to “know” m (a, f).

We call this approach to Mahlo universes axiomatic.

JAGER and STUDER, in [JS02], also consider a variant of To(M) which is
based on partial functions, partial with respect to the definedness predicate
of the underlying applicative theory. It is ease to see from the model con-
struction that this does not change the proof-theoretic strength. Note that,
when we speak about partiality of function in the following, we have some-
thing else in mind, namely that there are no “a priori” conditions given on
the behaviour of a function outside of the subuniverse under consideration.

In the given form, To(M) axiomatizes an “external” Mahlo universe, in
the sense that the “universe” of all names—the extension of Y—has the
Mahlo property. However, the collections of all names is not a universe in
the defined sense of the theory.

TupPAILO [Tup03, p. 172, IX] also considers an extension of T, which he
called Tg + MT, which formalizes an “internal” Mahlo universe, i.e., there
is a universe—in the sense defined within the theory—, named by M which

4The second author regards the latter as a good hint why this theorem is true, but
details in well-ordering proofs can be quite tricky and more details need to be worked out
before we can regard this result as a full theorem.
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has the Mahlo property. We formalise a variant To(M)* which consists of
the axioms of Ty plus the following axioms:

(M*1) UM) AT € (M2 M),

(M+2) aEMAfeEM—-M)—m(a,f)CM,

(M+3) aEMAfeM—-M)—Uma,f)ANaEm(a,f)
Afe(ma,f)—m(a,f)),

(M*t4) aEMAfeEM—=M)—m(a,f)EM

We note some differences to the axioms of Tg + M™ given by TUPAILO:

e In Ty + M™, one has the limit operator u which gives (the name of)
the next universe above a given name (see [Kah97]). Now, M is also
closed under this operator: u: M — M. This is not necessary, since
using m we can define easily for every universe a universe on top of it
m(a, Ax.z) (see also [JS02, Sect. 6]).

e Also, R is closed under the limit operator u. Since universes are not
closed under inductive generation, adding u most likely doesn’t add
any strength to it. This is at least the case without the Mahlo universe:
At the end of Sect. 4 in [JS02] as a consequence of a sophisticated
model construction an outline of the argument is given, why adding
closure under u to Ty doesn’t increase its proof-theoretic strength.

e To+MT™ has no parameter a of m, so m only depends on f &M — M).
This doesn’t make any difference, since we can define for every a € M
and f € (M — M) a g : M — M such that a universe is closed under
g if and only if it is closed under f and a. (In Sect. 2 we showed how
to encode a family of sets into a set such that a universe contains the
code for the family if it contains the index and the elements of the
family. We can do the same trick and encode two sets into one. Now
let gx be the code for the two sets fx and a, and use the fact that
universes are non-empty.)

e To+MT doesn’t demand m (a, f) C M. In this respect, To(M)™' seems
to be slightly stronger. However, any standard model used for deter-
mining an upper bound will fulfil this condition, and the well-ordering
proof shouldn’t make use of it, therefore this condition should not add
any proof theoretic strength to the theory. However, we believe that
having this axiom is more aesthetically appealing, since m (a, f) should
be a subuniverse of M.

For the extended predicative version of Mahlo, we formalize an internal
Mahlo universe corresponding to To(M)™.

12



5 Extended Predicative Mahlo

We aim to introduce new universes “from below”: given a “potential Mahlo
universe”, i.e., a universe which should have the Mahlo property, we will
enlarge this universe “carefully” by stages such that we get the desired
property. The key difference between this approach compared to the ax-
iomatic approach above is that we will not assume that f is a total function
from names to names, but we will assume that it is total on the subuniverse
which should be closed under f.

5.1 Relative f-Pre-Universe

For a given universe v—which is to be extended to a Mahlo universe—a
name a and a given (arbitrary, possibly partial) function f we first define
what it means that u is (the name of) a pre-universe, containing a, closed
under f relative to v.

RPU(a, f,u,v) := (Va.C(u,2) ANz € v — 2z € u) A (
(a€v—a€u)A (2)
Vzeufrev— freu) (3)

—_
~—

Thus, for given a, f, and v, a pre-universe u has the following properties:

e u is closed under the generators of EETJ, as long as the generated
names are in v (1);

e if a is an element of v, it is an element of u (2);

e if f maps an element x of v to an element of v, then fx is in u; i.e.,
f = cannot be in v but outside u (3).

Fig. 1 illustrates a pre-universe. We see that a and fb are included in
u, since they are in v. f ¢ is not (yet) in v, so it is not included in wu.

From a foundational point of view, this is a well-understood predicative
inductive definition and we can introduce a straightforward induction prin-
ciple to obtain least f-pre-universes. Using the new generator pre to name
a pre-universe u, a least f-pre-universe pre (a, f,v) is characterized by the
following axioms:

|. Least f-pre-universes
(EPM.1)  Rgp(v) — RPU(a, f, pre (a, f,v),v).
(EPM.2)  Rgp(v) A RPU(a, f,p,v) — Va € pre (a, f,v).¢(z).

With (EPM.2) one gets immediately: Rgp(v) — pre(a, f,v) C v.

13



Figure 1: A pre-universe

5.2 Independence

The f-pre-universes are defined relative to v; what we want is, of course,
universes that no longer depend on v. Formally, we can express this indepen-
dence by a formula Indep(a, f,u,v) which expresses that the “relativization
to v” in the closure condition of RPU(a, f,u,v) is already fulfilled:

Indep(a, f,u,v) := (Vx.C(u,z) — = € v) A
a€vA
(Vz € u.fx € )

Fig. 2 illustrates what it means for u to be independent of v, in case
u = pre(a, f,v): a€wv and therefore a € u; for a €u we have faé€v and
therefore fa € u, so u is closed under f. How f operates outside u does not
really matter: it is possible that for some b & v we have fbe v.

The following lemma follows now directly from the definitions:

Lemma 1.
R(u) ARg(v)ARPU(a, f,u,v)Alndep(a, f,u,v) — U(u)Aa € uhf € (u — u).

Thus, under the condition Indep(a, f,pre (a, f,v),v), the least f-pre-
universes pre (a, f,v) are actually universes. But the main property is that
they are now independent of v in the sense that an enlargement of v will not
change the extension of pre (a, f,v). This gives them, in fact, their predica-
tive character. Formally this property is expressed in the following extended
predicativity lemma.
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b

- u = pre (a, f,v)

Indep(a, f, u, v)

Figure 2: Indep(a, f,u,v)

Lemma 2 (Extended Predicativity). In EETJ+ (EPM.1)+ (EPM.2) we can
prove:

R(v)ARgp(w) A Indep(a, f,pre (a, f,v),v) Av C w — pre(a, f,v) = pre(a, f,w).

As a corollary we get that an enlargement of v does not influence the
independence property considered with respect to the bigger universe.

Corollary 3. In EETJ 4 (EPM.1) + (EPM.2) we can prove:

R(v)ARgp(w) A Indep(a, f,pre (a, f,v),v) A v C w — Indep(a, f, pre (a, f,w), w).

5.3 The Mahlo Universe

Intuitively, the idea to build the Mahlo universe is now to enlarge a potential
Mabhlo universe u and pre (a, f,u) in parallel up to the stage that pre (a, f, u)
is independent of u (and, of course, doing this for all @ and f). When the
preuniverse is complete, it will not depend on any future additions to u.

Thus, axiomatically expressed, the Mahlo universe, named by M, has
to be a universe, it has to be closed under inductive generation, and it
has to collect, for every f, provided pre(a, f,M) is complete, an element
representing pre (a, f, M) to it. Since in this case pre (a, f, M) is independent
of M, we introduce a new name sub (a, f) which names the same type as
pre (a, f,M), and add this element to M.

Fig. 3 illustrates the construction of M: If pre (a, f, M) is independent of
M, it contains a and is closed under f; then the name sub (a, f) is added to
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pre (a, f, M)
Indep(a, f, pre (a, f,M), M)

Figure 3: The extended predicative Mahlo universe

M (and the addition of sub (a, f) to M doesn’t affect the reason for originally
adding it to M). Note again, that how f operates outside pre (a, f, M) does
not really matter: it is possible that for some b& M we have fb& M, ie.,
that M is not closed under f.

Il. Mahlo universe
(EPM.3)  UM) A€ (M2 — M).
(EPM.4)  Indep(a, f,pre (a, f,M),M) — sub (a, f) €M A sub (a, f) = pre(a, f,M).

From (EPM.4) the theory will get its strength: Whenever we have a pre-
universe pre (a, f,M), which is independent of M, we will have a name
sub (a, f) of this universe in M. Note that by (EPM.1) pre (a, f,M) is al-
ready a pre-universe relative to M. Therefore, by Lemma 1 the premise of
(EPM.4) implies that pre (a, f,M) is in fact a universe which is closed under
a and f.

By Lemma 2 and Corollary 3 we know that independent universes do
not depend on the universe used in the last parameter. Using the additional
generator sub we can get rid of this redundant dependence in the name of
the sub-universe with is actually added to M. More concretely, under the as-
sumption Indep(a, f, pre (a, f, M), M) the addition of sub (a, f) to M does not
affect the universe named by pre (a, f,M) (or sub(a, f)). “Philosophically
spoken”, it does not affect the reason for its addition.
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5.4 M is a Mahlo Universe

To show that M is indeed a Mahlo universe, we interpret To(M)™ into Ty +
(EPM.1-4). This can be done translating m (a, f) by sub (a, f) and using
the following lemma and theorem.

Lemma 4. R(u) AU(W)ANa€v A fe(v—v)AuCvARPU(a, f,u,v)
— Indep(a, f,u,v) AU(u) Na€uA f € (u— u)

Theorem 5. aEMA f € (M — M)
—sub(a, f)EM Asub(a,f) CM
AU(sub (a, f)) Na€sub(a, f) A f € (sub(a, f) — sub(a, f))

It is a straightforward exercise to formalise variants of (EPM.1-4) to
capture an extended predicative internal Mahlo universe corresponding to
To(M). These axioms might seem no more convincing than the axioms of
axiomatic Mahlo, which just express that for every name a and function
from names to names we can find a type closed under it. But these axioms
are impredicative, since the collection of names has to have those closure
princples. An extended predicative version of external Mahlo doesn’t have
these problems, because the premise for introducing sub (a, f) doesn’t re-

quire f € (R — R) which would refer to sub (a, f).

5.5 The Least Mahlo Universe

The addition of (EPM.1-4) to Ty yields already a theory of Mahloness with
an appropriate proof-theoretic strength. However, the specific feature of the
given approach is the possibility to axiomatize a least Mahlo universe.

For this we observe that, working in a set theoretical model of explicit
mathematics, the extended predicative Mahlo universe can be defined as the
least fixed point of the following operator

(X)) :={z|C(X,z)}U{i(a,b) | a,b € X}U{sub (a, f) | Indep(a, f, pre(a, f, X), X)}

where Corollary 3 (adapted to the set theoretical setting) shows that I' is
monotone. The corresponding induction principle in set theory would be

NA)CA—-MCA
which means

(U(A) ANi€e (A2 — A)A
(Va, f.Indep(a, f,pre (a, f,A), A) — sub(a, f) € A))
—MCA

It doesn’t make sense to define pre (a, f, p) for arbitrary formulas ¢ in Ex-
plicit Mathematics, and therefore we have to restrict the induction on M to
“small sets”, i.e., elements of . We obtain the following

I1. Induction for M

17



(EPM.5)  U(u) Ai€ (u? —u) A
(Vf.Va.Indep(a, f,pre (a, f,u),u) — sub (a, f) € u)
—McCu

Now, the theory EPM of extended predicative Mahlo can be defined as
the extension of Ty by the axioms (EPM.1) — (EPM.5).

Note that such an induction principles as (EPM.5) cannot be formulated
in the axiomatic approach, as the quantifier in the “induction step” has to
range over arbitrary functions, not only those which are total from names
to names. For the approach to Mahlo in Martin-Lof type theory, which is
also based on total functions, the addition of an induction principle leads
to a contradiction (see [Pal98, Theorem 6.1]), and this is probably also the
case for axiomatic Mahlo in Explicit Mathematics. As, so far, there is no
account for partial functions in Martin-Lof type theory which allows to refer
to the collection of all terms, there is yet no possibility to define an extended
predicative version of Mahlo. We note however that we don’t expect that
the induction principles expressing minimality of M strengthen the theory.
We expect the situation in this case to be similar to that in Martin-Lof type
theory, where the second author has shown [Set97] that if one has a universe
with certain closure conditions, one can define a set corresponding to the
least universe having the same closure conditions—therefore having a least
universe doesn’t add any strength.

6 Remarks on the Analysis of EPM

A proof-theoretic analysis of EPM will be given by the authors elsewhere.
As we formalize an internal Mahlo universe, the strength of EPM is slightly
above the one of KPM. One needs one extra recursively inaccessible above
KPM, i.e., a model of EPM hast to be given in KPMI, KPw plus the existence
of one recursively Mahlo ordinal M plus Vx3y.Ad(y) A x € y. For the lower
bound one can use an embedding of the theory To(M)™ and then follow
arguments of Tupailo [Tup03] to get a realization of an appropriate extension
of CZF into To(M)™. It seems to be feasible to get a lower bound by a well-
ordering proof for that extension of CZF. The argument above would show
as well that the theory To(M)™ has the same strength as EPM and KPMI.
However, there are still a couple of questions concerning modifications
of the theory. For instance, in [JKSO01], a concept of name strictness is
introduced. It expresses that generators only generate names for appropriate
arguments (e.g., R(cox) — R(x)).> In this context, also name induction is
considered, which serves as an alternative to inductive generation or least
universes to get a theory of the strength of Ty. The addition of name

5This concept is analogous to—and motivated by—the usual strictness for definedness
or strictness for the predicate N for natural numbers in applicative theories, cf. [Kah00].
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strictness and/or name induction may allow to simplify the definitions of
relative f-pre-universe; however, there seems to be a subtle problem with
formulating name strictness for generators of subuniverses of the Mahlo
universe.

Also, one may investigate the potential of the induction axioms, for both
the subuniverses and the Mahlo universe itself, in concrete applications. As
noted above, it is the specific feature of the extended predicative approach
that it allows to formulate such induction axioms.

Finally, the formulation of an extended predicative Mahlo universe in
a metapredicative setting (both with an external and an internal Mahlo
universe) is still lacking. It should result, in principle, from the omis-
sion of inductive generation (and therefore (EPM.3)) and the induction
axioms (EPM.2) and (EPM.5), and one probably needs to add Rgp(v) —
pre (a, f,v) C v, which is no longer provable without (EPM.2). These ax-
ioms allow an embedding of the metapredicative axiomatic external Mahlo
universe (Theorem 5 holds with this modifications), which gives a lower
bound for its proof theoretic strength. However one needs to carefully check
whether any other adaptations of the axioms are needed, in order to avoid
obtaining a theory which is stronger than the metapredicative axiomatic
external Mahlo universe.
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