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A hybrid topology optimization algorithm for static
and vibrating shell structures

F. Belblidia∗;† and S. Bulman

Department of Civil Engineering; University of Wales Swansea; Swansea SA2 8PP; U.K.

SUMMARY

Structural designers are reconsidering traditional design procedures using structural optimization tech-
niques. Although shape and sizing optimization techniques have facilitated a great improvement in the
emergence of new optimum designs, they are still limited by the fact that a suitable topology must be
assumed initially. In this paper a hybrid algorithm entitled constrained adaptive topology optimization,
or CATO is introduced. The algorithm, based on an arti�cial material model and an adaptive updating
scheme, combines ideas from the mathematically rigorous homogenization (h) methods and the intuitive
evolutionary (e) methods. The algorithm is applied to shell structures under static or free vibration sit-
uations. For the static situation, the objective is to produce the sti�est structure subject to given loading
conditions, boundary conditions and material properties. For the free vibration situation, the objective is
to maximize or minimize a chosen frequency. In both cases, a constraint on the structural volume=mass
is applied and the optimization process is achieved by redistributing the material through the shell
structure. The e�ciency of the proposed algorithm is illustrated through several numerical examples of
shells under either static or free vibration situations. Copyright ? 2002 John Wiley & Sons, Ltd.

KEY WORDS: shells; structural topology optimization; arti�cial material

1. INTRODUCTION

This work is an extension of the fundamental research conducted by the ADOPT research
group at the University of Wales Swansea led, until his untimely death, by Professor Ernest
Hinton. This is a tribute to him.
Topology optimization is a tool which assists the designer in the selection of suitable initial

structural topologies. The aim is to redistribute material from within a so-called reference
domain in an iterative and systematic manner in order to arrive at a structural topology which
is in some sense optimal.
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836 F. BELBLIDIA AND S. BULMAN

Figure 1. Basic concept of h-method topology optimization using a square microcell with a centrally
placed rectangular hole as the material model: (a) top: before optimization—uniform homogenized
material for all FEs; and (b) bottom: after optimization—each FE has a di�erent material density.

There has been an extensive and continuous development in structural topology optimization
techniques since the 1980s. Three major techniques have emerged, they have some common
aspects such as the material format, the iterative improvement scheme and the constraint
satisfaction strategy. They can be classi�ed as follows:

• Evolutionary methods (e): The basic idea in the method is to use the fully stressed
design techniques. In this case, ine�cient material is removed from the design domain
to allow the emergence of a new topology. The removal process can be achieved by
either varying the elastic modulus as a function of the strain energy density as in
the hard-kill=soft-kill methods [1] or by deleting from the design domain the space
occupied by groups of elements with low strain energy density values as done in ESO
technique [2]. This method is an intuitive engineering approach.

• Homogenization methods (h): The method uses the optimality criteria algorithm based
on Khun–Tuker conditions. The material is represented by a sponge-like material with
in�nitely many micro-scale cells with voids, see Figure 1. Depending on the cell used
to de�ne the material model, we have the rank-1 and rank-2 models, the square
microcell with a rectangular void [3; 4] and �nally the arti�cial material model or SIMP
method [5; 6]. The method is more mathematically based and the optimization process
is achieved by the variation of the porosity of the sponge-like material throughout the
structure.

• Hybrid methods (h=e) which contain attributes of both (e) and (h) methods in di�ering
degrees. The �rst of these methods characterized the topology material in a manner
similar to the microcell model of Bends�e and Kikuchi [4] using the concept of Aboudi-
cell method [7]. See Figure 2.

In the present paper, we describe the constrained adaptive topology algorithm for structural
optimization, or CATO, which is an h=e-method. The algorithm uses a single layered arti�cial

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2002; 54:835–852



HYBRID TOPOLOGY OPTIMIZATION ALGORITHM 837

Figure 2. Bends�e and Kikuchi classic micro-cell model: unit cell with rectangular hole
in microscopic co-ordinates.

material model which consists of a porous medium. The aim of the algorithm is to �nd the
optimum design of the structure by updating the density parameters for each element within
a given design domain. The algorithm uses a mass preserving scheme which may change
during the iterative improvement—hence the use of the word ‘adaptive’ in the name CATO.
The paper starts by introducing the optimization problem which can be de�ned as a static

problem where the objective is to �nd the sti�est structure under a given loading and boundary
conditions or a free vibration one where the objective is to optimize (maximize or minimize)
a chosen natural structural frequency. A detailed description of the CATO algorithm is then
introduced where the single layered arti�cial material model is described, followed by an
explanation of the iterative material updating scheme used in the CATO algorithm. Finally,
several examples are provided to demonstrate the use of the CATO algorithm in topology
optimization of shell structures under either static or free vibration situations.

2. STRAIN ENERGY STRUCTURAL OPTIMIZATION

Many works have been undertaken for structural topology optimization based on evolution-
ary [1; 2] or homogenization [3–6] methods. The CATO algorithm, which is a hybrid method,
has already been applied to the topology optimization of structures under plane stress=strain
conditions [8].
The main purpose of the CATO algorithm is to �nd an optimal structural topology by using

the structural material more e�ciently and satisfying some basic requirements for a structural
design. This is achieved by redistributing material within the structure creating zones of void
(no material) and solid (material). This results in an optimum structural topology which is
presented as a variable density plot. We ensure that the targeted structural mass is maintained
during the complete iterative process, so that at each iteration step we have a valid solution.
For structures under static situations, the structural optimization is de�ned as:

Find an optimum structural topology, which corresponds to the minimum of the
structural total strain energy and satis�es a structural volume=mass constraint
condition. For shell structures, the total strain energy is obtained by the contribution
of the membrane, bending and shear strain energy.

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2002; 54:835–852



838 F. BELBLIDIA AND S. BULMAN

Therefore, the strain energy density value at each element is used as a optimization criterion
in the iterative process.

3. NATURAL FREQUENCY STRUCTURAL OPTIMIZATION

The structural response to a dynamic loading depends, to a large extent, on the �rst few
natural frequencies of the structure. It is often necessary to shift the fundamental or several
lower frequencies of a structure away from the frequency range of a dynamic loading to avoid
excessive vibrations of the structure.
A great deal of research focused on structural optimization under dynamic loading conditions

has been conducted during the past three decades. Most of the work considers structural
optimization with dynamic frequency constraints. The earlier work was conducted by Olho�
on optimal design of vibrating plates [9; 10], a literature survey which covers most of the work
in this area can be found in Reference [11]. Recently the application of the homogenization
method has been introduced with success in topology optimization of structural dynamic
analysis [12–14]. Finally, the evolutionary structural optimization method [2; 15] is used to
solve natural frequency optimization for vibrating structures.
The natural frequency structural optimization problem is de�ned as:

Find an optimum structural topology, which corresponds to the minimum or max-
imum of a particular natural frequency of the structure and satis�es a structural
volume=mass constraint.

For the natural frequency structural optimization, let us introduce the frequency sensitivity
criterion as a parameter used to perform the optimization task.

3.1. Frequency sensitivity criterion

To �nd the best location for the material at each iteration, a factor for each element in the
structure is evaluated. This sensitivity factor, which indicates the in�uence that the material
has on the natural frequency of the structure, can be de�ned as follows.
The eigenvalue problem which de�ne the dynamic behaviour of the structure is stated as

(K −!2nM)un=0 (1)

where K and M are the global sti�ness and mass matrices, respectively, !n is the nth nat-
ural frequency and un is the corresponding eigenvector. The natural frequency !n and the
corresponding eigenvalue un are related to each other by the Rayleigh quotient

!2n=
kn
mn

(2)

in which the modal sti�ness kn and the modal mass mn are de�ned as

kn= uTnKun

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2002; 54:835–852



HYBRID TOPOLOGY OPTIMIZATION ALGORITHM 839

and

mn= uTnMun (3)

The change in the frequency by the redistribution of material in the structure can be obtained
by the sensitivity calculation of the frequency as

�(!2n)=
1
mn
(�kn −!2n�mn) (4)

If the material in an element e has been updated in the structure during the material redis-
tribution scheme by creating an elemental void, the frequency sensitivity can be evaluated
approximately by assuming that the eigenvector un has not been a�ected by this update in
the material of that particular element [11; 15], therefore

�kn = u(e)
T

n �Ku(e)n =−u(e)Tn K(e)u(e)n

�mn = u(e)
T

n �Mu(e)n =−u(e)Tn M(e)u(e)n
(5)

in which K(e) and M(e) are the sti�ness and mass matrices of the element e, and u(e) is the
eigenvector of that element. The sensitivity of the frequency due to the update in the material
of the eth element is obtain by substituting (5) into (4), so that

�(!2n)=f
e=

1
mn
u(e)

T

n (!2nM
(e) −K(e))u(e)n (6)

The sensitivity factor fe is an indicator of the change in the natural frequency as a result of
the change of the material amount in the element e. This factor is used as a criterion in the
updating scheme used in CATO.
Note that expression (6) of this factor can be simpli�ed by omitting the modal mass mn

from (6) as mn is the same for every element in the structure. Note that the summation of
the sensitivity factor over all the elements is equal to zero which is useful for checking the
correctness of the code [2].
Note that in the present work we are involved in the minimization (or the maximization)

of a particular frequency without taking into account the e�ect of cross-over of modes: as,
for example, the �rst frequency is increasing, the second frequency is decreasing and it can
happen that the two frequencies meet. To avoid the cross-over phenomenon we can, in this
case, while minimizing (or maximizing) a particular frequency, keep the di�erence between it
and its closest frequency constant. This can be done by adding a constraint to the optimization
problem. This idea has not been implemented in the present work.

4. CONSTRAINED ADAPTIVE TOPOLOGY OPTIMIZATION ALGORITHM

Let us describe the main features of the CATO algorithm. Firstly, the single layered arti�cial
material model is introduced, followed by a detailed explanation of the iterative material
updating scheme process. Finally, several examples are presented to show the performance of
the proposed algorithm for shell structures under static and free vibration situations.

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2002; 54:835–852



840 F. BELBLIDIA AND S. BULMAN

4.1. Arti�cial material model

By considering structural topology optimization as a material distribution problem, the struc-
ture can be described by a discrete function �, de�ned at each point x as

�(x)=

{
1 if x∈�s material;

0 if x∈�\�s no material
(7)

where � is the design domain, �s is the solid part of it and x∈� is the vector of design
variables.
If isotropic behaviour is assumed for the solid part of the structure, we can write

�(x)= �(x)�0 and D(x)= �(x)D0 (8)

where �0 and D0 are the density and elastic constitutive matrix, respectively, of the homoge-
neous solid. Note that �(x) is related to the mass matrix M and D(x) is also related to the
sti�ness matrix K.
For the numerical solution of the optimization problem, the discrete function � causes

solution di�culties [4]. One easy way to overcome these di�culties is to replace the discrete
function � by a continuous one �, where 06�(x)61. As a convenient �ction we will assume
that the material has a micro-cellular structure and each cell is a square with a square hole
of side length a where 06a61. Thus, in the present model

�(x)=1− a2(x) (9)

Note that by changing the size of the void, which is used as a design variable, we are able
to create a micro-cellular void (a=1) or solid (a=0). CATO uses this concept to redistribute
material iteratively in the structure.
It is desirable to obtain a solution which only consists of solid and void regions. This

allows a better approximation to condition (7). Rozvany [5] suggested that porous regions
could be suppressed by adding to the material costs the ‘cost of manufacturing of holes’,
thereby a parameter � can be included to penalize the intermediate values of �(x). Hence

�(x)= �(x)��0 and D(x)= �(x)�D0 (10)

where the exponent �¿1 and is usually between 3 and 9.
Note that although we have assumed a micro-cellular material with square hole size a,

we have approximated the resulting material behaviour as though it were isotropic based on
solid isotropic microstructure with penalty (SIMP [5; 6]) method rather than truly orthotropic.
There is, therefore, no dependency on the orientation of the square hole in the arti�cial
material model unlike the case for the more conventional micro-cell model.

4.2. The CATO algorithm

For structure under static situation, the elemental strain energy density values fe are obtained
from a static analysis at each iteration. These values are ordered in an ascending manner.
For free vibration optimization problem, the result of the sensitivity factor values fe for each

element are obtained from a free vibration analysis at each iteration for a chosen frequency,
CATO orders these values according to the type of frequency optimization required

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2002; 54:835–852
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• in a ascending order of fe for a frequency minimization problem, or
• in a ascending order of −fe for a frequency maximization problem. This allows the use
of the same algorithm for both natural frequency minimization or maximization problem.

The CATO algorithm is now summarized in the following steps. Note that we have used
the standard term ‘design’ and ‘non-design’ domain to refer to zones in which the density
parameters are allowed to change and zones where they are not.

1. De�ne the optimization problem type (static or free vibration). Set up the design domain
data, optimization data and FE model data including information de�ning the mesh,
material properties, boundary conditions and loading conditions for the static case. Set
iteration counter i=1.

2. For the desired mass fraction, Mfac, initialize the material density parameters aei for each
element according to the expressions

aei =



0 if non-design domain

(1−Mfac)1=2 if design

apr if prescribed

Calculate the desired mass of the system Mdes using

Mdes =Mfac ∗
n∑
e=1
�eve

where n is the number of elements in the design domain and �e and ve are the density
and the volume of element e, respectively.

3. For the current aei values evaluate the appropriate constitutive properties using an arti-
�cial material model. See Section 4.1.

4. Depending on the optimization problem, perform a static or a free vibration analysis.
5. Order the elements according to their values fe.
6. From a speci�ed mass preserving relationship �aei (f

e) evaluate the change of the
density parameters �aei for each element and update the density parameter so that
aei+1 = a

e
i +�a

e
i . See Section 4.3.

7. Given the new density parameters aei+1, evaluate the overall structural mass of the
system Msys.

8. Check the requirement that Msys=Mdes¡Mtol. If this condition is not satis�ed, adjust aei+1
proportionately to obtain Msys =Mdes and go to step 7.

9. If some convergence criterion is met continue to step 10, otherwise set i= i + 1 and
return to step 3.

10. Post-process the results prior to visualization and then terminate the solution.

4.3. Material updating scheme for structural optimization

The CATO algorithm uses an incremental relationship �ae(fe) to adjust the elemental mate-
rial parameter ae according to the element factor value fe related to the optimization problem
type. A special feature of this relationship is that it is chosen so as to preserve the total mass
of the structure during the optimization iterative process. Figure 3 shows an example of this

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2002; 54:835–852



842 F. BELBLIDIA AND S. BULMAN

Figure 3. Example of the relationship �ae(fe) at an early stage of the iterative scheme (solid line),
and at an intermediate stage (dash line).

relationship at two stages of the scheme. The function is composed of a curve of the form
y= npcur (n and pcur are described later).
To de�ne the curve some parameters are needed. If ‘=[‘1; ‘2; : : : ; ‘n]T is the list of n

element numbers ordered with regard to the type of optimization problem, then three parameter
values fmin, fmax and fcut are calculated as

fmin = f(‘
1)

fmax = f(‘
n)

(11)

and

fcut =f(‘
k )

where k satis�es the equation
n∑
i=k
�‘

i
v‘

i
=Mdes (12)

and �‘
i
and v‘

i
are the density and volume of element ‘i, respectively.

The change in the density parameter �aei for element e at iteration i is illustrated in Figure 3
and is given by

�aei = �n
pcur (13)

where

�=− fe − fcut
|fe − fcut|

n=
fe − fcut

r
(14)

pcur =pinit − (i − 1:0)× iter

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2002; 54:835–852
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and r is de�ned as

r=

{
fmax − fcut if fe¿fcut

fmin − fcut if fe6fcut
(15)

Three further parameters are speci�ed by the user, they are: (a) The maximum incremental
density parameter �amax which governs the maximum allowable change in �ae at any one
iteration cycle. (b) The initial curve exponent parameter pinit determines the initial con�gura-
tion of the curve. Finally, (c) The iterative advancing parameter iter controls how the curve
adapts through the iterative scheme.
Once the density parameters aei for all elements in the design domain have been updated

the mass of the new system is evaluated to check that the mass fraction constraint is not
violated using the expression

|Msys=Mdes|¡Mtol (16)

where Msys is the current structural mass of the system, Mdes is the desired mass and Mtol is
some allowable tolerance on the mass constraint.
If (16) is satis�ed, then the algorithm can proceed to the next iteration. However, if (16)

is not satis�ed then the mass error for each element is calculated as

Merr =
Msys − Ndes

n
(17)

where n is the number of elements in the design domain. The new density parameter aei+1 for
each element is then simply taken as

aei+1 = a
e
i +Merr (18)

4.4. Convergence

Two termination criteria are used in CATO process, if one of them is satis�ed, the topology
optimization is terminated. These criteria are:

1. the number of iterations exceeds a number speci�ed by the user, or
2. the change in the objective function (strain energy, or frequency) at any two successive
iterations is below a given tolerance.

After convergence some post-processing of the results is conducted which included a thres-
holding technique in order to get a black and white topology image.

5. EXAMPLES

CATO is now illustrated for several problems involving shell structures under static situations
in Section 5.1 and free vibration situations in Section 5.2.
For all examples, a single layered arti�cial material is considered and the common

parameters used for the CATO algorithm in all examples are: maximum incremental den-
sity parameter �amax =0:05, the initial curve exponent parameter pinit = 5:0, and the iterative
advancing parameter iter is 0:05. A maximum of 100 iterations is assumed with a convergence

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2002; 54:835–852



844 F. BELBLIDIA AND S. BULMAN

Figure 4. Clamped square plate under a point load: (a) convergence of the normalized strain energy; and
(b) optimal sti�ening topology.

tolerance in the change of the objective function of 1%. For each example, the convergence
history is given with the optimum topology design as a black and white image. All units are
assumed to be consistent.
We should note that because we are using the arti�cial material model, the density values

(strain energy or natural frequency) obtained during the iterative process are normalized by
their maximum value.

5.1. Shell structures under static situation

5.1.1. Square plate under plane stress behaviour. A square plate clamped on the left-hand
edge and subjected to a point load applied at middle of the free edge opposite the clamped
edge.
The problem data is: elastic modulus E=2:1×105, Poisson’s ratio �=0:3, and load magni-

tude F=100. A structured FE mesh consisting of 900 (30×30) quadrilateral nine-noded shell
elements is used to represent the plate. The plate side length is a=10, and the thickness is
h=0:1. A mass fraction of 50% is considered.
Figure 4(a) illustrates the variation of the normalized strain energy with increasing number

of iterations while Figure 4(b) shows the optimal sti�ening topology at 72 iterations. There
is a decrease in the strain energy of about 80%.

5.1.2. Clamped square plate under bending behaviour. We now consider a clamped supported
square plate under central point load, the problem data is: elastic modulus E=10:92×105,
Poisson’s ratio �=0:3, load magnitude F=100. A structured FE mesh consisting of 625
(25×25) quadrilateral nine noded shell elements is used to idealize the plate quadrant. The
plate side length is a=10 and the thickness is h=0:1. A mass fraction of 50% is considered.
In this example only a symmetric quadrant of the plate is analysed, however, the topology

image shows the result for the whole plate.
Figure 5(a) illustrates the variation of the normalized strain energy with increasing number

of iterations while Figure 5(b) shows the optimal sti�ening topology at 69 iterations. There
is a decrease in the strain energy of about 85%.

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2002; 54:835–852
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Figure 5. Clamped supported square plates under central point load: (a) convergence of the normalized
strain energy; and (b) optimal sti�ening topology.

5.1.3. Elliptic paraboloid (EP) shell with parabolic edges. The EP shell surface is obtained
by translating a hogging parabola over another hogging parabola �xed in a vertical plane,
while keeping the plane of the moving parabola vertical and at right angles to the plane of
the �xed parabola. The surface equation can be expressed by

z(x; y)=
k
a2
(x2 + y2)

where k is equal to 0:13. The shell has a centrally applied point load and its four edges are
clamped. Only the symmetric quadrant is considered.
A structured FE mesh consisting of 400 (20×20) quadrilateral nine noded shell elements

is used to idealize the symmetric quadrant and its projection on the xy plane is a square of
side length a=100.
The problem data is: elastic modulus E=10:92×103, Poisson’s ratio �=0:3, load magnitude

F=100, and the shell thickness h=0:01. A mass fraction of 50% is considered.
Figure 6(a) shows the variation of the normalized strain energy with increasing number of

iterations for the EP shell. The optimal topology is shown in Figure 6(b) at 55 iterations. We
notice a decrease in the strain energy of about 80%.

5.1.4. Conoid shell. In this example, the shell has three straight edges and a curved edge
de�ned by the conoid parabolic surface

z(x; y)=
ky
a
×
(
1− y2

a2

)

where the curvature factor k is taken equal to 50:0. The curved edge is aligned with the x-axis
and the shell geometry is interpolated linearly along the y-axis. Both ends of the curved edge
are supported by a hinge and the straight edge opposite to the curved edge is clamped. The
other edges are free. The shell is subjected to a centrally applied point load. A structured FE
mesh consisting of 400 (20×20) quadrilateral nine noded shell elements is used to idealize
the symmetric half of the shell. The projection of the shell half on the xy plane is a square
of side length a=100. The problem data used for the EP shell is again used here.

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2002; 54:835–852
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Figure 6. Clamped at four edges EP shell subjected to a centrally applied point load: (a) convergence
of the normalized strain energy; and (b) optimal sti�ening topology.

Figure 7. Conoid shell subjected to a centrally applied point load: (a) convergence of the normalized
strain energy; and (b) optimal sti�ening topology.

Figure 7(a) shows the variation of the normalized strain energy with increasing number of
iterations for the conoid shell while Figure 7(b) shows the optimal topology for this shell at
96 iterations. There is a decrease in the strain energy of about 88%.

5.2. Shell structures under free vibration situation

Note that when dealing with a frequency minimization, it can happen that the structure con-
nectivity collapses leading to a non-de�ned structure with a minimum null frequency due to
the use of a single layered material model. In this case, the user can stop the iterative process
or a structural connectivity criterion can be introduced [16]. In CATO when dealing with a
minimization problem, no thresholding is used and therefore the �nal topology result is a grey
scaled image. Note also that in the present study there is no control on the cross-over modes
phenomenon.

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2002; 54:835–852
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Figure 8. Convergence of normalized frequency of a square 2D plate example: (a) minimize the �rst
frequency; and (b) maximize the �rst frequency.

Figure 9. Topology optimization results of a square 2D plate example: (a) minimize the �rst frequency;
and (b) maximize the �rst frequency.

5.2.1. Square plate under plane stress behaviour. A square plate of dimension 10×10 is
clamped at three sides as in Reference [2]. The whole plate is meshed with 25×25 nine-noded
elements. The problem data are: elastic modulus E=70000:0, Poisson’s ratio �=0:3, mass
density �=2700, and the plate thickness h=0:01. Two topology optimization problems are
investigated dealing with (a) the minimization and (b) the maximization of the �rst frequency
using a mass fraction of Mf = 92% and a penalty exponent for the arti�cial material of �=3.
Figure 8 illustrates the variation of the normalized �rst frequency for cases (a) and (b),

respectively, while Figure 9 shows their respective optimal sti�ening topologies. The topology
results are in good agreement with Xie and Steven [2].

5.2.2. Clamped square plate under bending behaviour. The plate introduced earlier in
Section 5.1.2 is used for natural frequency optimization using the following data: elastic
modulus E=70000:0, Poisson’s ratio �=0:3, mass density �=2700, and the plate thickness
h=0:01.
The optimization problems are de�ned as (a) minimizing the �rst frequency or (b) maxi-

mizing it using a mass fraction of 75% and a penalty exponent of �=5.

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2002; 54:835–852
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Figure 10. Convergence of normalized frequency of a clamped square plate example: (a) minimize the
�rst frequency; and (b) maximize the �rst frequency.

Figure 11. Topology optimization results of a clamped square plate example: (a) minimize the �rst
frequency; and (b) maximize the �rst frequency.

Figure 10 illustrates the variation of the normalized �rst frequency for cases (a) and (b),
respectively. Note that there is a decrease about 90% after 78 iterations in case (a) and an
increase about 25% after 53 iterations in case (b). Figure 11 shows their respective optimal
sti�ening topologies for the whole plate. Note that topology image for case (a) is, to some
extend, similar to the ‘negative’ image of case (b).

5.2.3. Elliptic paraboloid (EP) shell with parabolic edges. The EP shell described in
Section 5.1.3 is again investigated here using the same geometry, mesh and the following
problem data: elastic modulus E=70000:0, Poisson’s ratio �=0:3, mass density �=2700,
and the plate thickness h=0:01.
The optimization problems are de�ned as (a) minimizing the �rst frequency, (b) maximizing

it, or (c) maximizing the second frequency using a mass fraction of 75% and a penalty
exponent of �=5.
Figure 12 illustrates the variation of the normalized frequency for (a) minimized the �rst

frequency, (b) maximized the �rst frequency and (c) maximized the second frequency,
respectively, while Figure 13 shows their respective optimal sti�ening topologies for the whole
shell. Note that after 29 iterations there is a clear collapse of the shell in case (a) while after
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89 iterations and 92 iterations there is an increase about 25 and 20% in cases (b) and (c),
respectively.

5.2.4. Conoid shell. The conoid shell introduced before (Section 5.1.4) is considered for
natural frequency optimization based on the same data as the EP shell (Section 5.2.3).
Figure 14 illustrates the variation of the normalized frequency for (a) minimized the �rst

frequency, (b) maximized the �rst frequency and (c) maximized the second frequency,
respectively, while Figure 15 shows their respective optimal sti�ening topologies for the whole
shell. Here in case (a) the convergence is reached in 26 iteration with a decrease about 80%
in the �rst frequency minimization and a small increase about 10 and 7% for the �rst and
second frequency maximization respectively.

6. CONCLUSIONS

This paper has illustrated the use of the CATO algorithm for topology optimization of shell
structures under static and free vibration situations. The algorithm combines ideas from both
conventional (h) and (e) methods. Several examples are introduced and can be compared with
previously known work with favorable results. The convergence to the optimum shell design
is reached in ¡100 iterations in both cases.
In static case, for the examples introduced here there have been a decrease in the strain

energy of 80–88%. For the natural frequency minimization problem no thresholding has been
used avoid the collapse of structural connectivities. We have noticed that for a minimization
of a particular frequency, the topology image is quite similar to the ‘negative’ of the image
of the maximization of that particular frequency.
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