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Abstract

A time-marching pressure-correction/Taylor–Galerkin finite element algorithm is presented to accommodate low Mach number compress-
ible and incompressible viscoelastic liquid flows. The algorithm is based on an operator splitting constructive process that discloses three
fractional stages. For the compressible regime, a piecewise-constant density interpolation with gradient recovery is employed, for which
the background theory and consistency of approach are discussed. The scheme is applied to contraction flows for Oldroyd model fluids,
covering entry–exit flows and high pressure-drop situations. Stability and performance characteristics of the new algorithmic implementation
are highlighted. Solutions are provided for a range of compressible settings, tending to the incompressible limit at vanishing Mach number.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

In our previous studies[1], we have presented a scheme
capable of simulating weakly-compressible and incompress-
ible viscousflows. There, the scheme was applied success-
fully to several benchmark test problems. In the compressible
scenario, one observes spatial convergence-rates that reach
a third-order for continuous problems. The algorithm per-
forms well at low to vanishing Mach number (Ma), leading
to the emergence of a unified scheme for both compressible
and incompressible viscous flows. The aim of the present
study is seen as a natural extension into the viscoelastic
regime, to accommodate compressible and incompressible
liquid flows, based upon the Oldroyd-B model fluid. We con-
sider stability, accuracy and performance of the compress-
ible viscoelastic algorithm for low to zero Mach number
situations (approaching the incompressible limit). In addi-
tion, we conduct a parameter sensitivity analysis to assess
convergence history for Weissenberg number (We) levels of
order unity and for flows starting from quiescent initial condi-

∗ Corresponding author. Tel.: +44 1792 295656; fax: +44 1792 295708.
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tions. We begin by providing some motivation for the present
study.

Low Mach number flows play an important role, occurring
widely in nature and in many industrial processes. In polymer
processing operations, such as injection modelling and high-
speed extrusion, pressure and flow rate may be large. Hence,
compressibility effects within the viscoelastic regime may
become important and influence resulting flow phenomena.
From a physical perspective, the difference between incom-
pressible and compressible flows lies in the propagation of
longitudinal acoustic waves transmitted through the flow. For
incompressible flows, the speed of such longitudinal waves
approaches infinity, whereas the speed of transverse waves
is finite. In contrast, for compressible flows, the speed of
both waves takes on finite values. Moreover, this is manifest
through a switch in equation type depending on the particular
flow setting (incompressible to compressible). For example,
within the unsteady viscous regime, the equations for com-
pressible flow form a hyperbolic–parabolic system, whilst
those for incompressible flow assume an elliptic–parabolic
system. Nevertheless, it is preferable to work within a unified
framework to accommodate algorithmically, in an automated
fashion, with such type change. In the present study, this idea

0377-0257/$ – see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.jnnfm.2003.12.008
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is pursued, based on local Mach number considerations, yet
being capable of handling low Mach numbers, extending to
the incompressible limit (Ma≈ 0).

Comprehensive literature reviews for viscoelastic incom-
pressible flow may be found in Baaijens[2], Crochet et al.
[3], Keunings[4] and Walters and Webster[5]. A variety of
formulations have been developed over the last decade or
so, such as finite volume (FV) methods[6,7], finite element
method[8–11], spectral collocation methods[12] and hybrid
finite element/finite volume (FE/FV) methods[13,14]. This
would include time-marching and steady-state approaches,
leading to various options for the state-of-the-art (e.g. DEVSS
[11], Discontinuous-Galerkin and Galerkin-Least-Squares
[2], and others). The context of compressible viscous flow at
low Mach number was covered extensively in our precursor
study[1]. There, two principal numerical approaches were
highlighted, being of density-based and pressure-based con-
struction. Apropos this context, numerical computation meets
a significant challenge: transcending from low Mach numbers
towards the zero Mach number, singular limiting state. The
compressible viscoelastic domain is relatively unchartered in
the literature. Georgiou[15] has addressed non-Newtonian
inelastic (Carreau) fluid modeling for compressible flows,
with particular interest in slip effects at the wall, relevant to
time-dependent Poiseuille flow and extrudate-swell. Brujan
[16] has derived an equation of motion for bubble dynamics,
incorporating the effects of compressibility and viscoelas-
tic proprieties for an Oldroyd-B model fluid. The objective
there has been to analyse the physics of cavitation. Mackley
and co-workers[17] has reported on experimental data in the
multi-pass rheometer (MPR), taking into account compress-
ibility in time-dependent capillary flow measurements for a
high-density polyethylene melt (HDPE), linking this to pres-
sure adjustment in the system. In Barrett and Gotts[18], the
equations of motion have been transformed into the Laplace
domain to analyse a compressible dynamic viscoelastic hol-
low sphere problem.

From a numerical standpoint, the present formulation
extends an incompressible fractional-staged time-stepping
procedure to accommodate compressible viscoelastic flow
regimes, for low to vanishing Mach number. This presents
advance upon our earlier studies for viscoelastic incom-
pressible flows[9], incorporating some recent develop-
ments adopted from the compressible viscous context
[1]. The present formulation incorporates a semi-implicit
Taylor–Galerkin/pressure-correction (TGPC) technique for
mass and momentum, with a combination of two-step Lax-
Wendroff and Crack-Nicolson time discretization proce-
dures. This is a second-order pressure-correction scheme,
solving for the temporal increment of pressure on the
time-step. The discretization of stress is accomplished via
a streamline-upwinding Taylor–Petrov–Galerkin technique,
with velocity gradient recovery and hence, compatibility be-
tween stress and velocity gradient solution spaces. The equa-
tion of state for density represents the pressure dependence
within the system, through the well-established modified

form of the Tait model[19]. In the finite element representa-
tion, based upon our earlier observations and without loss of
accuracy[1], density is interpolated in a piecewise-constant
form (incompressible per element), with nodal recovery ap-
plied for density gradients.

At present, in the development of the algorithm, we restrict
attention to isothermal flows. On a benchmark example of
4:1 planar contraction flow, we illustrate how the algorithm
can meet the challenge of representing both compressible
and incompressible liquid flows. We follow how algorithmic
extension into the compressible regime has influenced the
characteristics of the original incompressible implementa-
tion, particularly via convergence proprieties to steady-state
and order of accuracy (in space and time[1]). The flow prob-
lem considered is that for an Oldroyd-B model, where it is
acknowledged that a limiting Weissenberg number (Wecrit)
will be met.

The present article is organized as follows: the gov-
erning equations for compressible viscoelastic flow for
Oldroyd-B model fluid are expounded inSection 2. In
Section 3, we introduce the fractional equation stages of
the Taylor–Galerkin/pressure-correction scheme, followed
by the finite element (FE) spatial discretization adopted. In
Section 4, we document solutions generated for the bench-
mark contraction flow test-problem. The schemes proposed
are validated for consistency and accuracy via mesh re-
finement. Comparison against incompressible counterparts
and the literature complements the high-order of accuracy
achieved. This ranks above second-order for smooth flows.
Careful attention is paid to temporal convergence histories
for flows starting from quiescent initial conditions, attain-
ing solutions at a unit level of Weissenberg number. Various
strategies are highlighted to improve numerical convergence
properties, specifically when dealing with the incompressible
flow scenario.

2. Compressible viscoelastic flow–governing
equations

The governing equations for compressible viscoelastic
flow under isothermal conditions may be represented through
conservation of mass and momentum, in conjunction with
constitutive equation for stress and equation of state for den-
sity. The balance equations of mass and momentum1 may be
expressed in non-dimensional form, using standard differen-
tial operator notation and independent variables of time,t,
and space,x:

∂ρ

∂t
+ ∇(ρU) = 0, (1)

Reρ
∂U

∂t
=

[
∇

(
2
µs

µ
d + τ

)
− ReρU.∇U − ∇P

]
, (2)

1 Non-conservative form, see Hirsh[20].
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whereU,τ,Prepresent dependent variables of velocity, extra-
stress and pressure, and�U the velocity gradient. Mate-
rial properties are described through liquid density,ρ, re-
laxation time,λ (see below), and viscosity,µ. The total vis-
cosity may be split into Newtonian (solvent),µs and poly-
meric (elastic),µe contributions, such thatµ = µs + µe.
Non-dimensional parameters adopted areµ∗

s = µs/µ = 1/9
and,µ∗

e = µe/µ = 8/9 and there is need to define the tensor
dij = [(∇U + (∇U)T )/2] − 1/3 [(∇U)]δij, as would emerge
naturally from the physics.

We adopt the Oldroyd-B model fluid to characterise stress
response, through the constitutive equation:2

We
∂τ

∂t
= −We (U · ∇τ − τ · ∇U − (τ · ∇U)T ) + 2µ∗

ed − τ.
(3)

The dimensionless group numbers are those of Reynolds
number and Weissenberg number, defined according to con-
vention as,

Re = ρ0U0l0

µ
, We = λU0

l0
. (4)

Such dimensionless form is obtained by introducing charac-
teristic scales on densityρ0, viscosityµ, lengthl0 (exit half-
channel width), velocityU0 (exit flow, average velocity),λ
and the single relaxation time of the Oldroyd model-fluid.
Note, for incompressible flow with constant density, the con-
tinuity equation reduces to�U = 0:

To represent compressibility, we appeal to the modified
Tait equation of state[19], to relate density to pressure, viz.,

P̃ + B
P̃0 + B =

(
ρ

ρ0

)m
,

where augmented pressure,

P̃ = P − 1

3
trace (τ + 2µ∗

sd). (5)

Here, power-indexm and constantB are scalar parameters,
and denote reference scale for pressure. Note, in a strict sense,
Eq. (5) is exact only for isentropic change. Although in the
present analysis, the energy equation has been discarded,3 the
Tait equation may be applied to reasonable precision more
generally, sincemandB are independent of entropy, is con-
stant[16]. This state law is often approximated to a linear
form with indexm set to unity[21], an over-simplification
which we may expose. After rearranging and differentiating
the equation of state, we gather:

∂P̃

∂ρ
= mρm−1 (P̃0 + B)

ρm0
= m(P̃ + B)

ρ
= c2(x,t), (6)

2 Note, the recommended use of the full-generalised form ofd in the
UCM constitutive model by Oliveira et al. [8] for expediency in numerical
convergence, even within the incompressible state.

3 Here, we are interested in low Reynolds number isothermal flows, where
kinetic energy considerations are negligible.

wherec(x,t ) represents the speed of sound. By employing
the chain rule uponEq. (6)and taking difference operations
over the time-step�t = (tn+1 − tn), we may relate density
increment to pressure increment at time instanttn+1 through,

�ρn+1

�t
= 1

c2(x,t)

�P̃n+1

�t
. (7)

We have recourse to such a relationship below in the deriva-
tion of the particular fractional-stage equations, to realise a
compressible temporal evolutionary expression for pressure
(see reference[1] for more details). Henceforth, for clarity
we discard yet imply (∗) notation on viscosity fractions and
(∼) notation on pressure. At this point we may define Mach
number asMa = U/c, being the ratio of fluid velocity to the
speed of sound.

3. Taylor–Galerkin/pressure-correction scheme and
FE discretization

The general framework of the Taylor–Galerkin/pressure-
correction scheme is based on a time-stepping procedure,
involving two distinct phases within each time step. The
first phaseinvolves a Taylor–Galerkin scheme, expounded
through a two-step, Lax-Wendroff time stepping procedure.
This represents a predictor–corrector doublet for velocity
and stress, which initially calculates predicted fields (U,
τ)n+1/2, prior to computing a non-divergence-free velocity
field U∗ and an updated stress fieldτn+1. Thesecond phase
is a pressure-correction scheme that ensures second-order
accuracy in time. This generates an equation for temporal
pressure-difference and a Poisson equation in incompress-
ible flow. A third andfinal phaseis a correction stage that
recaptures the velocity field at the end-of-time step loop.
By implementing a semi-implicit Crack–Nicolson treatment
for diffusion terms, a semi-discrete incremental form of the
TGPC scheme may be derived, devoid of heavy stability re-
striction imposed through diffusion operators. This scheme
may be presented in a three-fractional stage form viz.,

Stage-1a.

2Reρ
U
n+ 1

2 − Un
�t

= [∇(2µsD+ τ) − ReρU.∇U]n

− ∇Pn + ∇ · µs(D
n+ 1

2 −Dn), (8)

2We
τ
n+ 1

2 − τn
�t

= [2µeD− τ − We{U · ∇τ

− τ · ∇U − (τ · ∇U)T }]n, (9)

Stage-1b.

Reρ
U∗ − Un
�t

= [∇ · τ − ReρU · ∇U]n+
1
2 + [∇(2µsD)

− ∇P ]n + ∇µs(D
∗ −Dn), (10)
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We
τn+1 − τn+ 1

2

�t
= [2µeD− τ −We{U · ∇τ

− τ · ∇U − (τ · ∇U)T }]n+ 1
2 , (11)

Stage-2.

1

c2(x,t)

Pn+1 − Pn
�t

− �tθ∇2(Pn+1 − Pn) =

− [ρn∇.U∗ + ∇ρn.U∗], (12)

Stage-3.

Reρ
Un+1 − U∗

�t
= −θ∇(Pn+1 − Pn). (13)

Note the momentum equations for compressible and incom-
pressible flows are practically identical, bar variation in den-
sity. Differences emerge due to the various alternative forms
of the continuity equation. Hence,Eq. (12)displays some no-
table features (see[1] for detailed derivation): the first term
on the left-hand-side is a first-order time derivative repre-
sentation, whilst the second term is governed by a Laplacian
operator (elliptic properties). In addition, on the right-hand-
side, density is a direct function of pressure, that is to be
interpreted via the Tait equation of state. When the flow is
incompressible, the speed of sound asymptotes to infinity.
In this context, the first term on the left-hand-side vanishes
along with the second term on the right-hand-side, and ellip-
tic character dominatesEq. (12). Alternatively, switching to
compressible flows, the balance of equation-type-domination
adjusts between elliptic and hyperbolic, the extent of type-
mix depending upon the Mach number level (local compress-
ibility).

A Galerkin finite element spatial discretization is adopted,
based on triangular elements in two dimensions. This em-
ploys a piecewise continuous quadratic interpolationφ(x) for
velocity and stress, and linear interpolationψ(x) for pressure,
of the form:

U(x, t) = Uj(t)φj(x), τ(x, t) = Tj(t)φj(x), j = 1,6

andP(x, t) = Pk(t)ψk(x), k = 1,3. (14)

Time-dependent velocity, stress and pressure nodal-vectors
are represented asU(t), T(t) andP(t), respectively. For den-
sity, piecewise-constant interpolation over an element is con-
sidered, which necessitates recovery to gather density gradi-
ent representation[9]. Recovery is imposed per vertex node
for density, conducting averaging over all elements surround-
ing each node. From such nodal values, density gradients
may be gathered per vertex node from the underlying linear
interpolation functions, a relatively swift cost-effective pro-
cedure. Comparison between piecewise-constant and linear
density implementations is considered elsewhere[1], where

the piecewise-constant form emerges as the more pragmatic
choice.

As alluded to above, stability of the scheme is enhanced
by appealing to a semi-implicit version of the scheme. The
discretized equation for compressible viscoelastic flow may
be expressed in fully-discrete matrix form, via TGPC-stages
1–3, viz.

Stage-1a.[
2Re
Mρ

�t
+ µs

2
SU

]
(Un+

1
2 − Un)

= {−[µsSU + ReNρ(U)]U − BT }n + LTPn, (15)

2We
M

�t
(T n+

1
2 − T n) = [2µeM(L+ LT )

−{M +WeN(U)}T +We{Ne(T )L+ (Ne(T )L)T }]n,
(16)

Stage-1b.[
Re
Mρ

�t
+ µs

2
SU

]
(U∗ − Un) = {−[µsSU + ReNρ(U)]U

−BT }n+ 1
2 + LTPn, (17)

We
M

�t
(T n+1 − T n) = [2µeM(L+ LT ) − {M +WeN(U)T

+We}{Ne(T )L+ (Ne(T )L)T }]n+ 1
2 , (18)

Stage-2.[
MC

�t
+ θ�tK

]
(Pn+1 − Pn) = −LρU∗ (19)

Stage-3.

Re
Mρ

�t
(Un+1 − U∗) = θLT (Pn+1 − Pn) (20)

where

(Mρ)ij =
∫
Ω

ρφiφj dΩ, (M)ij =
∫
Ω

φiφj dΩ,

(MC)ij =
∫
Ω

ψiψj

c2(x,t)
dΩ (21)

(Nρ)ij =
∫
Ω

ρφi(U∇φj)dΩ, (N)ij =
∫
Ω

φi(U∇φj)dΩ,

(Ne)ij =
∫
Ω

φi(T∇φj)dΩ, (22)
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(B)ij =
∫
Ω

φi∇φj dΩ, (K)ij =
∫
Ω

∇ψi∇ψj dΩ,
(23)

(Lk)ij =
∫
Ω

ψi(∇φj)k dΩ,

(Lρk )ij =
∫
Ω

ψi

{
ψlρl

∂φj

∂xk
+ ∂ψl
∂xk
ρlφj

}
dΩ, (24)

(SU )ij = (Slm)ij, l, m = 1,2

(S11)ij =
∫
Ω

(
2
∂φi

∂x

∂φj

∂x
+ ∂φi
∂y

∂φj

∂y
− 2

3

∂φi

∂x

∂φj

∂x

)
dΩ,

(25)

(S12)ij =
∫
Ω

∂φi

∂y

∂φj

∂x
dΩ,

(S22)ij =
∫
Ω

(
∂φi

∂x

∂φj

∂x
+ 2
∂φi

∂y

∂φj

∂y
− 2

3

∂φi

∂y

∂φj

∂y

)
dΩ,

(26)

Algebraic solvers for such systems are dealt with exten-
sively elsewhere[22,23]. Briefly, a direct solution method
is employed at the pressure equation stage-2, whilst a space-
efficient element-by-element Jacobi iteration is invoked over
the remaining stages one and three. The element-by-element
iteration avoids full system matrix construction and the mass-
matrix iteration that results (mitn) is normally performed only
3–5 times.

From a computational standpoint, the main modification
introduced to the incompressible TGPC scheme (see refer-
ence[9]) to handle the compressible regime has arisen at
stage-2. This is achieved by the introduction of the two new
matricesMC andL�, governed by compressibility consider-
ations. Introduction ofMC implies variation of the stage-2
pressure matrix per time-step, demanding a fresh decom-
position and back-substitution per time-step as with free-
surface/domain-shifting problems. This leads to 30% more
computational time per time-step than in the incompressible
instance, but may be avoided through delayed explicit refer-
ence on the previous time-step. The form ofL� in expression
(24) indicates the need for density gradient evaluation (term,
∂ψl/∂xk see above).

In addition, in the definition of the diffusion matrixSU ,
an additional term is appended [(−2/3)(∂φi/∂x)(∂φj/∂x)]
within S11, and likewise, [(−2/3)(∂φi/∂y)(∂φj/∂y)] in S22.
With piecewise-constant density interpolation over an el-
ement, some matrix simplification4 arises: (Mρ)ij =

4 (Mρ)ij
∫
Ω
ρφiφj dΩe = ∑

Ωe

(∫
Ωe
ρφiφj dΩe

)
=

∑
Ωe

(
ρe

∫
Ωe
φiφj dΩe

)
= ∑

Ωe
ρe(Me

ij).

∑
Ωe
ρe(Me)ij and (Nρ)ij = ∑

Ωe
ρe(Ne)ij, where (Me)ij =∫

Ωe
φiφj dΩe and (Ne)ij = ∫

Ωe
φi(U · ∇φj) dΩe. We note

that the incompressible second stage of the TGPC scheme
collapses to:

[θ�tK](Pn+1 − Pn) = −LU∗. (27)

This completes our discourse on scheme derivation and dis-
cretization issues.

4. Scheme implementation and numerical solutions

The benchmark problem of flow through an abrupt
4:1 contraction for an Oldroyd-B fluid is recognised as a
formidable test problem, in terms of stability at high Weis-
senberg number. It is well-documented in the literature on vis-
coelastic incompressible flow (for example, see references:
[5,24]). Here, it is chosen to validate our asymptotic ‘zero’
Mach number solutions against published incompressible re-
sults. In addition, consistency, accuracy and behaviour of the
more compressible solutions are monitored for high levels
of Weissenberg number. For this problem, the total length of
the planar channel is 76.5 units (seeFig. 1). No-slip bound-
ary conditions are assumed on solid boundaries. At the in-
let, transient boundary conditions (bc) are imposed reflecting
build-up through flow-rate (Waters and King, (W&K)[25]),
generating set transient profiles for normal velocity (Ux) and
stress (τxx, τxy), displaying vanishing cross-sectional com-
ponents in velocity (Uy) and stress (τyy). The mathematical
specification for these profiles is given in Carew et al.[26],
with dependence upon Weissenberg number. This provides
smooth growth of driving boundary conditions, at any par-
ticularWe, and improves numerical stability in convergence
to steady-state. True transients may be accessed from suit-
able start-up fields in this manner. Step increments would
apply correspondingly, if incremental continuation through
We-solutions is employed. In contrast, at the exit, weak-form
natural boundary conditions are established, via boundary in-
tegrals (B.I.) and momentum equation representation, where
once more,Uy vanishes. A pressure reference level is set
to zero at the outlet. We take advantage of flow symmetry
about the horizontal central axis running through the domain,
computing solutions on half the problem domain. Reynolds
number is set to unity allowing some inertia to enter the
problem. To accommodate different flow regimes, our strat-
egy has been to alter the values of the Tait parameter-set
(m,B). These have been adjusted between those representing
low compressible flow conditions, say (4,102) representa-
tive of maximumMa = O(10−1), to a highly incompress-
ible state, typically (104,104) representative of maximum
Ma = O(10−4). Then, corresponding solutions may be com-
pared unequivocally to those for incompressible prevailing
assumptions.
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Fig. 1. Contraction flow schema.

Table 1
Mesh characteristic parameters

M1 M2 M3

Elements 980 1140 2987
Nodes 2105 2427 6220
Vertex nodes 563 644 1617
d.o.f. 8983 9708 14057
Corner mesh density 28 63 201
Rmin 0.024 0.023 0.006
Rmax 0.126 0.131 0.095

4.1. Trends in temporal convergence history

The unified framework may be assessed with respect to
time-stepping convergence history tolerance to steady-state
and spatial accuracy properties. To this end, three different
meshes are employed, M1, M2 and M3, covering increas-
ing levels of refinement (h) within the contraction zone. Tri-
angular element mesh structure is illustrated inFig. 2 and
mesh characteristics are quantified inTable 1, where details
are recorded for total numbers of elements, nodes, degrees
of freedom, corner mesh density and minimum and maxi-
mum element size (see also, Baloch et al.[8] and Matallah
et al.[9]). Here, a multi-block meshing strategy is employed,
with conformal mapping in each sub-block and matching of
boundary nodes at interfaces. To access the time-stepping
convergence history a temporal relative-incrementL2-norm is
defined to govern time-stepping convergence history against
a set tolerance, Tolt , viz.,

ET (X) = ||Xn+1 −Xn||
1 + ||Xn+1|| ≤ Tolt . (28)

4.1.1. Numerical parameter sensitivity analysis
(compressible flow)

First, within the compressible context, we conduct a nu-
merical parameter sensitivity analysis on time-step (�t) and
mass iteration number (mitn), setting the Tait parameter pair-
ing to (m,B) = (4,102). Here, computational testing is based
on mesh M1, with Weissenberg number set to unity and com-
mencing from initial conditions (ic) of a quiescent state. His-

Fig. 2. Mesh refinement around the contraction, M1–M3 (mesh character-
istics inTable 1).

tory tolerance results governing pressure (ET(P)), velocity
(ET(U)) and stress (ET(T)) are displayed inFig. 3. The rel-
evant parameter values are those of: (t = 10−2, 10−3, 10−4;
andmitn = 1, 3 and 5. For the compressible flow setting, re-
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Fig. 3. Compressible flow error norm convergence history for velocity ET(U), pressure, ET(P), and stress ET(T), mesh M1;We= 0.1, W&K, quiescent ic. Top:
mitn = 5,�t = 10−4, 5 × 10−4, 10−2. Bottom:�t = 10−3, mitn = 1, 3, 5.

sults demonstrate that history convergence norm increments
are relatively insensitive to adjustment in time-step beyond
10−3 and mass iteration number greater than 3. As stabil-
ity is maintained, it is apparent that by increasing time-step
value (interpreted as a fraction of the local Courant num-
ber), less time-steps and effort are demanded to achieve a
specified relative tolerance level (10−7) equating to steady-
state. An important observation concerns the start-up phase.
There, some oscillation is apparent in history tolerance, as an-
ticipated for Waters and King kinematic start-up conditions
(representative for straight channels). These oscillations are
damped away rapidly, whilst the flow evolves to a steady-
state, independent of the parameter settings employed.

4.1.2. Incremental continuation in Weissenberg number
(incompressible flow)

Next, we turn attention to incompressible viscoelastic
computations. A well-recognised and successful strategy to
reach a stable steady-state at larger Weissenberg number
levels (current target,We= 1.0) is to employincremental
continuation in Weissenberg number(order zero continua-
tion). This procedure is illustrated through sample results in
Fig. 4with numerical parameters set throughout of ((t= 10−3,
mitn = 3, mesh M2). In this manner, and commencing at the
outset from a quiescent state we first gather a solution at

We= 0.1. Subsequently, theWe= 0.1 steady-state solution
is taken up as the initial starting phase, to derive a solution
for We= 1.0. For models such as Oldroyd, a limiting level
of Weissenberg number (Wecrit) is commonly encountered
in such complex flows (see[2,12,27]). Here, we restrict
ourselves to validation at attainable solution levels of unity,
to draw out and contrast algorithmic properties of the vari-
ous alternative implementations. Even at the level ofWe=
1.0, attempting a direct solution procedure (mimicking true
time evolution) and starting from a quiescent state, reveals a
persistent periodic non-convergence pattern in convergence
history, as demonstrated inFig. 4b. This is a common oscil-
latory feature at peakWe-levels with many stable algorithms,
where monotonic convergence lies on a stability threshold,
dependent upon the size of initial perturbation placed upon
the system (given fixed discrete parameters of mesh size and
time-step). In like manner, divergence at largerWe-values
would ensue.

4.1.3. Under-relaxation procedure (incompressible flow)
Numerical instability, exposed through temporal

convergence history tolerances, may be attributed to spatial
or temporal discretization error[11]. Here, stabilization
methods, adequate for steady equation systems, may prove
ineffective for unsteady systems. Moreover, approximation
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Fig. 4. Incompressible flow error norm convergence history for velocity, ET(U), pressure, ET(P), and stress ET(T), mesh M2; (a): Top left:We= 0.1, W&K,
quiescent ic. Top right:We= 1.0 ic. fromWe= 0.1. Middle (b):We= 1.0, from quiescent ic. Bottom (c): output of (b), introducing under-relaxation.

error accumulated through the equation splitting during the
fractional-staged procedure, may itself be a source of instabil-
ity. Fietier et al.[12] have investigated numerical stability and
presented time-dependent algorithms for viscoelastic flows,
employing spectral element methods. In their study, some
stabilization strategies are proposed for flow in simple geo-
metrical configurations. One such proposal is a filtering tech-
nique, applied after each time step in an element-by-element
fashion on both velocity and stress fields. Still further sug-
gestions for stabilization procedures may be found elsewhere
[2,9].

Through the current implementation, numerical stability
can be sustained to largerWe-levels, by appealing to solution
under-relaxation. This may adjust the transient represen-
tation, to yield the steady-state solution (see pseudo time-
stepping,[26]). This is demonstrated starkly inFig. 4c, where
solution under-relaxation is applied equally to all variables
{rU , r(, rP}, at the end of a complete time-step loop. History
convergence tolerance oscillations are dramatically removed
and monotonic convergence is essentially recovered. We ob-
serve that such a relaxation ploy may be interjected on each
fractional-stage equation within the time-step loop, so that,
solution relaxation may be interpreted via time-step scaling
upon each equation-stage time-step (local time-step, per
equation). The reader is referred to Appendix for more details.
Hence, one arrives at the justification for adjustable internal

time-steps[28], to be judged as acting on each fractional-
stage solution variable and indeed, expressing dependency
upon the mesh selected (fraction of the Courant number).

For viscoelastic incompressible counterparts, we consider
the consequences of under-relaxation in some greater detail to
gather optimality. To this end, again we adopt mesh M2, and
targetWe= 1.0 solutions from quiescent initial conditions.
Fig. 5a presents the convergence history scenario without re-
laxation, for ease of comparison. End-of-3-stages relaxation
factors (ri, per variablei) are applied to the solution field of
the form:

χn+1
relax = riχn + (1 − ri)χn+1 (29)

Convergence histories for constant parameter-setting with
{rU , r�, rP} = {0.3, 0.3, 0.3} are provided inFig. 5b. This
choice is insufficient to damp the persistent oscillatory pat-
tern that has emerged. An optimal level is observed at{0.7,
0.7, 0.7} in Fig. 5c, which has the desired suppression and
smoothing effect over the prior oscillatory pattern. One may
isolate the influence of relaxation to each individual vari-
able (and stage thereby). So, for example, the setting of
{0.7, 0.7, 0.0} of Fig. 5d reveals insensitivity according to
rP (hence, on (tP scaling). As demonstrated in Appendix,
under-relaxing the local time-step (on velocity) at stage-1
is conveyed to stage-2 local time-step, even without under-
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Fig. 5. Incompressible flow error norm convergence history for velocity ET(U), pressure ET(P), and stress ET(T), mesh M2;We= 1.0, W&K, quiescent ic. (�t
= 10−3, mitn = 5) with relaxation parametersrU , rτ , rP as (a): (0.0, 0.0, 0.0), (b): (0.3, 0.3, 0.3), (c) (0.7, 0.7, 0.7) (d): (0.7, 0.7, 0.0), (e): (0.0, 0.7, 0.0), (f): (0.7,
0.0, 0.0).

relaxing the pressure variable. In contrast, removing velocity
under-relaxation, with{0.0, 0.7, 0.0}-choice, demonstrates
in Fig. 5e, the crucial role of this factor alone: optimalrU =
0.7. Removing stress under-relaxation with{0.7, 0.0, 0.0}-
setting (as inFig. 5f) accelerates temporal convergence rates
by 50%, achieving the tolerance target in half the time. One

Fig. 6. Incompressible flow error norm convergence history for velocity ET(U), pressure ET(P), and stress ET(T), mesh M2;We= 1.0, W&K, quiescent ic. (for
velocity ET(U), pressure ET(P), and stress ET(T),We= 1.0,Re= 1.0.h-Refinement (a, b and c) for weakly-compressible with (m,B) = (104,104). Different flow
scenarios, based on mesh M3 illustrated in d: incompressible, e: weakly-compressible and f: compressible with (m,B) = (4,102).

concludes, that primarily, only velocity relaxation should be
applied. Finally, applying velocity under-relaxation with op-
timal factors for mesh M2:{0.7, 0.0, 0.0}at end-of-first-stage
or at end-of-third-stage (end-of-complete-stage cycle) deliv-
ers identical history tolerance behaviour, as demonstrated in
Fig. 6. This confirms the crucial impact and importance of
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under-relaxation upon stage-1 equations, prior to the remain-
ing fractional-stages within the time-step loop.

4.1.4. Under-relaxation: incompressible,
weakly-compressible, and compressible

Based upon the above remarks, we illustrate, inFig. 7a–c,
the different history tolerance results across the series of
three meshes employed for weakly-compressible ((m,B)
= (104,104)). The history convergence tolerances across
meshes for incompressible flows are similar in form to
those of weakly-compressible and are omitted. Mesh (h)
refinement has no noticeable effect on history tolerances
for compressible ((m,B) = (4,102)) flows, following the
form shown for mesh M3 inFig. 7f. Results are also illus-
trated across flow scenarios inFig. 7d–f (incompressible,
weakly-compressible and compressible flows). For all cases
a We = 1.0 is targeted from a quiescent initial state. The
first observation is that, independent of mesh employed or
flow type, convergence history tolerance always commences
with an oscillatory pattern, typical of transient start-up
conditions. About 10–15 time units are necessary to dampen
these oscillations and recover a smooth convergence pattern.
For weakly-compressible (as well as incompressible) flows,
based on mesh M2 and M3, under-relaxation is necessary to

Fig. 7. Error norm convergence history for velocity, ET(U), pressure, ET(P), and stress ET(T),We= 1.0,Re= 1.0.h-refinement (a–c) for weakly-compressible with
(m,B)=(104,104). Different flow scenarios, based on mesh M3 illustrated in d: incompressible, e: weakly-compressible and f: compressible with (m,B)=(4,102).

reach the specified tolerance level. As anticipated by reducing
mesh size from M2 to M3, optimum levels of the relaxation
factors imply lesser need for relaxation. Note that for these
flows, a time–step of 10−3 is applied, leading to steady-state
solutions within 30–50 time units. Here, we point out that
the choice of time-step is not only governed by the Courant
number restriction, but also by the size of Weissenberg
number. Forcompressible flowconditions, relaxation is
unnecessary at this level of Weissenberg number, to reach the
specific tolerance and enhanced smoothness in convergence
is apparent beyond that of the incompressible case, upon
the three test meshes (not shown here). This is due mainly
to improved equation conditioning at stage-2, through the
modifications to accommodate for compressibility consider-
ations (seeEq. (19), Mc andL�). Here, a larger time-step is
permitted (�t = 10−2). Independent of the spatial discretiza-
tion employed, a tight window of temporal convergence is
observed, displaying a uniform and smooth trend. For com-
pressible flow, independent of meshing, less computational
time is demanded to reach a steady-state solution when
compared to counterpart incompressible flow settings (30%
more rapid). Finally, mesh refinement does not necessarily
demand stringent reduction in time-step to reach the desired
tolerance level (as is the case in the incompressible/weakly-



I.J. Keshtiban et al. / J. Non-Newtonian Fluid Mech. 122 (2004) 131–146 141

compressible context). This bodes well for numerical
continuation between the different levels of compressibility.

4.2. Mesh (h) refinement

Convergence of solutions in all component variables has
been confirmed through mesh refinement on the series of
meshes employed. Finally, consistency of the scheme is
highlighted by the ability of the scheme to accommodate
weakly-compressible flow scenarios. There similar results
are derived for incompressible and weakly-compressible
representations.

Having established satisfactory convergence trends, inde-
pendent of flow type or mesh employed, we turn to interro-
gate field solution quality through pressure, principal stress
N1 (first normal stress-difference) and shear stress contour
plots. All our results thus far have been forWe= 1.0 and
Re= 1.0. Each variable figure represents nine contour plots.
Incompressible flow results are d isplayed on the left, weakly-
compressible in the middle and compressible to the right.
Solutions based on mesh M1 are illustrated at figure-top, M2
at centre, and M3 over figure-bottom. In this manner and
for each variable, it is practical to contrast scheme accuracy,
based on mesh refinement, and scheme consistency whilst in-
creasing Mach number (from the incompressible toward the
compressible flow regime). InFig. 8, around the contraction
zone, similar pressure contour patterns at equitable levels are
observed for incompressible and weakly-compressible repre-
sentations. Pressure-drop increases with mesh-density in all
instances, being slightly higher for weakly-compressible as

Fig. 8. PressureP contours,h-refinement (M1: top, M2: centre, M3: bottom), left: incompressible, middle: weakly-compressible and right: compressible flow.
We= 1.0,Re= 1.0.

compared to incompressible flow setting. For the more com-
pressible regime, it is apparent that pressure-drop is higher
(about 10%) than with other flow settings, relating directly to
compressibility effects. Similar conclusions may be drawn on
principal stress contour plots presented inFig. 9. Here, the
maximum level of stress is considerably larger upon mesh
M3, when compared with M2 or M1, independent of flow
representation. This increase is about 90–95%, indicating
the strong presence of a singularity located at the re-entrant
corner. Field distributions show little disparity between flow
settings upon the remainder of the domain, away from the
downstream-wall, increasing thereupon. In shear stress, there
is a doubling in maximum stress level between mesh M1 and
M3 solutions (typical valuesO(18 units) on M3 compare to
O(9 units) on M1), indicating again the significant presence
of a singularity. Note, that for each variable, the contour plots
display similar patterns through mesh refinement or flow-type
under consideration. Incompressible stress fields are corrob-
orated by their close agreement with those in the published
literature (see[12,13]).

Based on the finest mesh M3, streamlines contours plots
for incompressible and compressible flows are displayed in
Fig. 10. Similar incompressible streamlines contours atWe
= 1.0 are presented in reference[13]. Contour distributions
show little disparity between flow settings, except at the
centre of the vortex zone, where the stream function peaks
(*10−4) increase from−1.86 (compressible) to−2.06 (in-
compressible), and stream function maxima increase from
1.00 (incompressible) to 1.28 (compressible). Finally, for
compressible flow based on mesh M3, density and Mach
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Fig. 9. Principal stress N1 contours,h-refinement (M1: top, M2: centre, M3: bottom), left: incompressible, middle: weakly-compressible and right: compressible
flow. We= 1.0,Re= 1.0.

Fig. 10. Streamline contours, incompressible (left) and compressible flow (right), mesh M3.We= 1.0,Re= 1.0.

number contours are provided inFig. 11. Note, density con-
tours are non-parallel in the upstream or downstream channel
sections (as with pressure). This is due to the fact that under
viscoelastic consideration, density is a function of the aug-
mented pressure, which takes into account the trace of stress
(see Tait equationEq. (5)). An increase of 28% in density
arises between the inlet and outlet. Outlet Mach numbers of

Fig. 11. Density (left) and Mach number (right) contours for compressible flow setting, mesh M3.We= 1.0,Re= 1.0.

Ma = 0.093 are approached under such compressible flow
conditions.

4.3. Stress development

To highlight the re-entrant corner solution forWe= 1.0
solutions, stress profiles (τxx, τxy, τyy) at y = 0.3 units (see
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Fig. 12. Stress profiles (τxx: top,τxy: bottom) alongy = 0.3, different meshes (M1, M2, M3) and flow scenarios (incompressible: left, compressible: right).We
= 1.0,Re= 1.0.

Fig. 1) are illustrated inFig. 12, across the three meshes
and flow scenarios. For clarity in plotting, a shift in the po-
sition of the re-entrant corner for the different meshes has
been applied. As anticipated there are no noticeable differ-
ences in stress plot results for incompressible and weakly-
compressible representations, and also across all regimes for
τyy; hence these are discarded accordingly. All plots reflect a
prominent stress peak at the re-entry corner. The level of this
peak increases with mesh refinement, and also, with greater
levels of compressibility.

For the more compressible flow, a major feature lies in the
growth of stress,τxx, near the boundary along the downstream
wall (monotonic growth at an angle 8.5◦). A correspond-
ing feature arises to a lesser degree in the shear stress com-
ponent,τxy. Such an expansion/growth of boundary stress
is non-existent in incompressible or weakly-compressible
flow settings. Finally, note that compressibility does not
mitigate the strength of the corner solution singularity in
stress.

Careful analysis of the boundary stress and stress pro-
file development is conducted upon the principal first normal
stress-difference, N1. To this end, variation in stress across
the channel, cross-sectiony = 3 to y = 4 units, is plotted
at different downstream positions (seeFig. 13). Results are

presented inFig. 13b–c based on mesh M3 for the incom-
pressible and compressible flow representations. For the in-
compressible flows, beyond a downstream position ofx= 30
units there is barely any discernible variation in the stress
field through the channel cross-section. In contrast, there is
more widening and gradual growth of stress-profiles along the
wall for the more compressible flow conditions. InFig. 14,
where for plotting clarity the cross-section dimension has
been zoomed some forty times, three-stress levels (contour
values, 1, 5 and 15 units forτxx, and 0.5, 1.8 and 2.6 units
for τxy) are plotted along the downstream channel wall. We
observe the rapid onset of the boundary layer structure just
beyond the contraction zone (contraction atx = 22 units) for
all flows. The sustained growth of stress along the down-
stream direction is detected off the channel wall into the
flow.

As an overall remark, the main disparity between incom-
pressible and compressible flow representations is related
to the levels of stress peak at the re-entry corner and the
monotonic stress growth along downstream wall and flow
direction. In the incompressible state, such growth mani-
fests a constant (limiting) level and width, established fairly
rapidly beyond the corner after the stress boundary layer has
formed.
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Fig. 13. (a) Profile samplingx-positions for principal stress N1 along downstream channel. (b–c) Principal stress N1-profiles across downstream channel section,
samplingx-positions, mesh M3, b: incompressible, c: compressible.We= 1.0,Re= 1.0.

Fig. 14. Stress profiles:τxx (right) andτxy (left) along downstream channel. Boundary layer growth for incompressible, weakly-compressible and compressible
flow conditions, mesh M3.We= 1.0,Re= 1.0 (scaling indicated).

5. Conclusions

This study has provided new insight into the finite element
modelling of viscoelastic compressible flows, where we have
consciously focused on the Oldroyd model, the Tait equation
of state, and planar contraction flows. We have proposed a
fresh look at pressure-correction type formulations to tackle
such a setting, so utilising pressure as a primary variable
emanating from conventional incompressible flow represen-
tation. In this manner, we have accurately and consistently
resolved both evolutionary and steady-state flows, covering
the low Mach number regime. A unified (single) finite el-
ement scheme is advocated, with flexibility to cover com-
pressible, weakly-compressible, and incompressible flow sit-
uations. Various aspects of study have revealed: (i) the role
and importance of relaxation across fractional-staged equa-
tions; (ii) sensitivity of the scheme to selection of{�t, h,

mitn}-parameters, within the different flow settings; (iii) con-
vergence trends and contrast of flow field response.

A major observation is the heavy-side influence that com-
pressible equation structure has on temporal, monotonic,
in-phase convergence properties. This extends equally to
the asymptotic limit and weakly-compressible scenario, that
mimics (slightly) incompressible flow (Ma≈ 10−4). Hence,
the weakly-compressible assumption may be usefully em-
ployed to numerically improve convergence properties for
incompressible viscoelastic solutions.

Pressure drops rise when greater levels of compressibility
are incorporated (here by order 10%). We observe the fact that
solution singularity (stress at re-entrant corner) may actually
increase in a more compressible setting, whilst downstream-
wall stress profiles broaden along the wall, away from initial
inception of the boundary layer, just beyond the re-entrant
corner. This is in stark contrast to the incompressible sce-
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nario, where wall-stress profiles sustains their initial width
far downstream. Stress boundary layers are provoked almost
directly beyond the re-entrant corner in all flows studied. Ex-
tensions to the current study shall be oriented towards seeking
solutions upto critical levels of Weissenberg number, and con-
sidering temporal adjustment of the compressible parameter
set.
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Appendix A

Appendix: Fractional staged equations and relaxation pro-
cedure

The relaxation procedure may be applied at different
TGPC stages and has a direct effect on the local time-step-
stage value. To clarify this point, let us consider the first and
second stages of TGPC scheme forincompressiblefluid in
compact matrix form:

AU (U∗ − Un) = �tbU, (A.1)

K(Pn+1 − Pn) = 1

θ�t
LU∗. (A.2)

Here,ndenotes the time level, (t the local time-step,U* ,U,P,
nodal vectors of non-divergence-free velocity, velocity and
pressure, respectively,bU the right-hand-side of stage-1b.AU
andKare velocity and pressure governing matrices (mass and
stiffness).

In order to relax velocity by at the end of stage-1, we
introduce a relaxed non-divergence-free velocity, viz.:

Ũ∗ = αuU∗ + (1 − αu)Un = Un + αu(U∗ − Un). (A.3)

Note, for convenience of representation we may interpret the
relaxation parameter of the text via taking advantage of stage-
1b equation (Eq. (A.1)), and re-arrangingEq. (A.3), yields:

AU (Ũ∗ − Un) = αu�tbU (A.4)

An under-relaxed representation for equation stage-1b, cast-
ing velocity solution relaxation onto the local time-step, via
scaling with factor.

To enforce relaxation upon stage-2 alone, we introduce a
relaxed pressure solution-component:

P̃n+1 = αPPn+1 + (1 − αP )Pn = Pn + αP (Pn+1 − Pn).
(A.5)

Revisiting stage-2 equation (Eq. (A.2)) with relaxation, and
taking into account Eq (A.5), we may gather a relaxed stage-2
equation:

K(P̃n+1 − Pn) = αP

θ�t
LU∗. (A.6)

Thus, at this fractional-equation stage, relaxing stage 2 is
equivalent to scaling the local pressure equation time-step
by.

Finally, one may appreciate that relaxing velocity alone
(and not pressure), conveys some relaxation into the local
time-step at stage-2, through in the rhs-vector. Reconsidering
the relaxed non-divergence-free velocity (Ũ∗) of Eq. (A.3)
and applying the discrete matrix equivalent to the divergence
operator, yields:

LŨ∗ = (1 − αu)LUn + αuLU∗, (A.7)

which will impact upon the system through the stage-2 equa-
tion accordingly,

K(Pn+1 − Pn) = 1

θ�t
LŨ∗ = αU

θ�t
LU∗ + (1 − αU )

θ�t
LUn,

(A.8)

Here, we may appeal to the continuity equation to neglect the
termLUn ≈ 0 on the right-hand-side ofEq. (A.8), giving:

K(Pn+1 − Pn) ≈ αU

θ�t
LU∗. (A.9)

Therefore, we appreciate that by relaxing velocity at stage-
1, we impart scaling on local time-steps at both stage-1 and
stage-2. Similar arguments hold for the compressible flow
context.

References

[1] J. Keshtiban, F. Belblidia, M.F. Webster, Second-order schemes for
steady weakly-compressible liquid flows, Computer Science Techni-
cal Report, CSR4-2003.

[2] F.P.T. Baaijens, Mixed finite element methods for viscoelastic
flow analysis: a review, J. Non-Newtonian Fluid Mech. 79 (1998)
361–385.

[3] M.J. Crochet, A.R. Davis, K. Walters, Numerical Simulation of Non-
Newtonian Flow, Elsevier, Amsterdam, 1984.

[4] R. Keunings, Simulation of viscoelastic flow, in: C.L. Tucker (Ed.),
Computer Modeling for Polymer Processing, Hanser, Munich, 1989,
pp. 404–469.

[5] K. Walters, M.F. Webster, The distinctive CFD challenges of compu-
tational rheology, Int. J. Num. Meth. Fluids, special issue (Keynote:
ECCOMAS), Swansea, 1–26, 2001.

[6] T.N. Phillips, A.J. Williams, Viscoelastic flow through a planar con-
traction using a semi-Lagrangian finite volume method, J. Non-
Newtonian Fluid Mech. 87 (1999) 214–246.

[7] P.J. Oliveira, F.T. Pinho, G.A. Pinto, Numerical simulation of non-
linear elastic flows with a general collocated finite volume method,
J. Non-Newtonian Fluid Mech. 79 (1998) 1–43.

[8] A. Baloch, P. Townsend, M.F. Webster, On the simulation of highly
elastic complex flows, J. Non-Newtonian Fluid Mech. 59 (2–3)
(1995) 111–128.

[9] H. Matallah, P. Townsend, M.F. Webster, Recovery and stress-
splitting schemes for viscoelastic flows, J. Non-Newtonian Fluid
Mech. 75 (1998) 139–166.

[10] J.M. Marchal, M.J. Crochet, Hermitian finite elements for calculating
viscoelastic flow, J. Non-Newtonian Fluid Mech. 20 (1986) 187–207.
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