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Human Substantia Nigra
Neurons Encode Unexpected
Financial Rewards
Kareem A. Zaghloul,1* Justin A. Blanco,2 Christoph T. Weidemann,3 Kathryn McGill,1
Jurg L. Jaggi,1 Gordon H. Baltuch,1 Michael J. Kahana3*

The brain’s sensitivity to unexpected outcomes plays a fundamental role in an organism’s ability
to adapt and learn new behaviors. Emerging research suggests that midbrain dopaminergic
neurons encode these unexpected outcomes. We used microelectrode recordings during deep brain
stimulation surgery to study neuronal activity in the human substantia nigra (SN) while patients
with Parkinson’s disease engaged in a probabilistic learning task motivated by virtual financial
rewards. Based on a model of the participants’ expected reward, we divided trial outcomes into
expected and unexpected gains and losses. SN neurons exhibited significantly higher firing rates
after unexpected gains than unexpected losses. No such differences were observed after
expected gains and losses. This result provides critical support for the hypothesized role of the
SN in human reinforcement learning.

Theories of conditioning and reinforce-
ment learning postulate that unexpected
rewards play an important role in allow-

ing an organism to adapt and learn new behav-
iors (1, 2). Research on nonhuman primates
suggests that midbrain dopaminergic neurons
projecting from the ventral tegmental area and
the pars compacta region of the SN encode
unexpected reward signals that drive learning
(3–6). These dopaminergic neurons are phasi-

cally activated in response to unexpected rewards
and depressed after the unexpected omission of
reward (7–9), and they are major inputs to a
larger basal ganglia circuit that has been im-
plicated in reinforcement learning across species
(10–15).

The response of these neurons to rewards
has not been directly measured in humans. We
recorded neuronal activity in human SN while
patients undergoing deep brain stimulation (DBS)

surgery for Parkinson’s disease performed a prob-
ability learning task. Patients with Parkinson’s
disease show impaired learning from positive and
negative feedback in cognitive tasks (16–18),
probably because of the degenerative nature of
their disease and the decreased number of dopa-
minergic neurons capable of mounting phasic
changes in activity in response to reward signals
(17–19). We sought to capture remaining viable
dopaminergic SN cells in our patients and de-
termine whether they exhibit responses modu-
lated by reward expectation.

We used microelectrode recordings to measure
intraoperative activity of SN in 10 Parkinson’s
patients (6 men, 4 women, mean age of 61 years)
undergoing DBS surgery of the subthalamic nu-
cleus (STN) while they engaged in a probabil-
ity learning task. We rewarded participants in
the task with virtual financial gains to motivate
learning. We identified SN by anatomic loca-
tion and its unique firing pattern (Fig. 1A) (20).
The learning task involved choosing between a
red and a blue deck of cards presented on a com-
puter screen (Fig. 1B). We informed partici-
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Fig. 1. (A) Intraoperative plan for DBS
surgery with targeting of the STN. Mi-
croelectrodes are advanced along a
tract through the anterior thalamic
nuclei (Th), zona incerta (ZI), STN, and
into the SN to record neural activity.
Each anatomical region is identified
by surgical navigation maps overlayed
with a standard brain atlas (top) and
by its unique firing pattern and micro-
electrode position (bottom). Depth mea-
surements on the right of the screen
begin 15 mm above the pre-operatively
identified target, the inferior border of
STN. In this example, the microelectrode
tip lays 0.19 mm below the target. A,
anterior; P, posterior. (B) Probability
learning task. Participants are presented
with two decks of cards on a computer
screen. They are instructed to repeatedly
draw cards from either deck to deter-
mine which deck yields the higher
reward probability. Participants are given up to four seconds for each draw. After each draw, positive or negative feedback is presented for two seconds. Decks
are then immediately presented on the screen for the next choice.
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pants that one of the two decks carried a higher
probability of yielding a financial reward than
the other. Participants were instructed to repeat-
edly draw cards from either deck to determine
which yields a higher return (high reward rate
65%, low reward rate 35%) (20). If the draw of
a card yielded a reward, a stack of gold coins
was displayed along with an audible ring of a
cash register and a counter showing accumu-
lated virtual earnings. If the draw did not yield
a reward or if no choice was made, the screen
turned blank and participants heard a buzz.
Participants completed 91.5 T 13.3 (mean T
SD) trials during the 5-min experiment.

We examined learning rates for the experi-
ment (Fig. 2A) (20). Once a participant learns
which deck has the higher payoff probability, he
or she should preferentially choose that deck.
On average, the rate with which participants chose
the higher-probability deck improved from 52.5 T

4.9% (mean T SEM) to 70.0 T 4.4% over the
course of the experiment.

We sought to determine when observed feed-
back differed from expected feedback. In pre-
vious quantitative models of retention, memory
performance falls off approximately as a power
function of the retention interval, decaying rap-
idly in the short term and slowly in the long
term (21, 22). Such a functional relation weighs
recent experiences more heavily in determining
the expected probability of a reward. Here, we
use a power function to define the expected re-
ward from a given deck as a function of reward
history. Choosing a particular deck, d, on the nth
trial will yield an expected reward, Ed[n], de-
fined as

Ed ½n� ¼ 0:5þ 0:5∑
n−1

i¼1
Rd ½n − 1�ait n ¼ 2, … N

for that deck. Rd[n] is defined as the feedback of
the nth trial (total number of trials = N) for deck
d and has a value of 1 for positive feedback, –1
for negative feedback, and 0 for trials when deck
d was not selected. Expectation is thus computed
as a weighted sum of previous outcomes, where
the weights fall off with the power function de-
termined by t. We set a such that the weights of
the power function approximate one over infinite
trials for a given t. This ensures an unbiased es-
timate of the effect of prior outcomes on expecta-
tion and limits expectation to the range between
zero and one. We fit Eq. 1 to the sequence of
choices and rewards observed in each experimen-
tal session to determine the best-fitting t for
every participant [t = 1.68 T 0.32 (mean T
SEM)] (20). Based on the best fitting t values
in this model, participants selected the deck
with the higher expected reward on 74.9 T 3.1%
of the trials. We used this model of expected
reward to classify the feedback associated with
each trial into one of four categories: (i) unex-
pected gains, (ii) unexpected losses, (iii) ex-
pected gains, and (iv) expected losses (23). The
expected reward associated with one deck for
a single experiment from a single participant is
shown in Fig. 2B as a function of trial number n.

We extracted and sorted single-unit activity
captured from SN microelectrode recordings to
find 67 uniquely identified spike clusters (3.94 T
0.6 clusters per recording) (Fig. 2C). To restrict
our analysis to dopaminergic cells, we applied
to each cluster stringent criteria pertaining to
firing rate, spike morphology, and response to
feedback, derived from previous studies (Fig.
2D) (20, 24, 25). Ultimately, we retained 15 pu-
tatively dopaminergic spike clusters, hereafter re-
ferred to as cells, for analysis [0.88 T 0.21 (mean T
SEM) cells and 21.4 T 6.5% of total spikes per
recording; 10 microelectrode recordings contrib-
uted to this subset]. Average recorded waveforms
from one cell and an example of an individual
waveform are shown in Fig. 2E.

Representative spike activity recorded from
a single SN cell in a single participant is shown
in Fig. 3. We quantified the differences in spike
activity during 225-msec non-overlapping inter-
vals (20), focusing our analyses on the interval
between 150 and 375 msec after the onset of feed-
back. Preliminary analyses demonstrated that
this interval was particularly responsive (20), and
this interval is consistent with response latencies
shown in animal studies (6, 7). Raw spike count
increased in response to positive feedback and
decreased in response to negative feedback dur-
ing this interval [F1,110 = 4.6, mean squared error
(MSE) = 1.1, P = 0.04] (Fig. 3A). Fig. 3B shows
spike activity during trials associated with unex-
pected gains and losses, recorded from the same
SN cell. The difference in activity between re-
sponses to unexpected gains and losses during
this interval was statistically significant [F1,57 =
6.9, MSE = 1.8, P = 0.01] and notably clearer
than the difference between positive and negative
feedback.

Fig. 2. (A) Learning rates are quantified by dividing the total number of trials (draws from the decks) into
10 equally sized blocks and determining how often participants correctly chose the (objectively) better
deck during that block. Trace represents mean learning rate across all participants. Error bars represent
SEM. (B) Expected reward associated with one deck in a single experiment. For each trial, we show the
expected reward computed for the left deck, El[n] (blue line) (Eq. 1). The outcome of each trial when this
deck was selected is shown as a circle. Circles having value 1 represent positive outcomes, whereas circles
having value 0 represent negative outcomes. Black circles denote expected outcomes, and red circles
denote unexpected outcomes. We base our analysis on unexpected outcomes. (C) Mean waveforms of
three unique spike clusters from one participant are shown in black, with SD colored for each cluster.
Scale bar, 10 mV and 0.5 msec. (D) For each identified cluster, we calculated the average time from the
beginning of the spike waveform to its return to baseline (a) and the average time between the two
positive peaks of the waveform (b). We restricted our analysis to those clusters that had average baseline
widths greater than 2 msec and peak-to-peak widths greater than 0.8 msec. (E) Mean (n = 4703) waveform
of spikes from a single cell from one participant is shown in black with SD in gray. (Inset) Example waveform.
Inset scale bar, 1 mV and 1 msec.

(1)
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To determine how SN neurons encode be-
havioral feedback across participants, we pooled
results for all cells meeting our inclusion crite-
ria. We compared continuous-time firing rates
and spike histograms for each SN cell to its base-
line spiking activity to generate average z-scored
continuous-time firing rates and histograms for
each cell (Fig. 3) (20). We compared neural re-
sponses to unexpected and expected positive
and negative feedback using a three-way anal-
ysis of variance for the interval between 150 and
375 msec after feedback onset (20). We found a
significant difference between responses to posi-
tive and negative feedback in z-scored firing rate
[F1,14 = 9.3, MSE = 29, P = 0.0082] and spike
counts [F1,14 = 16, MSE = 16, P < 0.005]. In
addition, we found that this main effect of feed-
back was modulated by a significant interaction
with expectation [F1,14 = 11.3, MSE = 26, P <
0.005] for continuous-time firing rate and [F1,14 =
15.0, MSE = 17, P < 0.005] for spike count. The
other post-feedback intervals (20) exhibited no
significant differences between responses to posi-
tive and negative feedback. In addition, we found
no significant change in activity in response to
deck presentation itself [supporting online ma-
terial (SOM) text].

To further investigate the strong modulatory
effect of expectation, we examined the pooled

activity across participants in response to unex-
pected gains and losses only. During the same
post-feedback interval (gray shaded region, Fig.
4A) (20), spike rates in response to unexpected
gains were significantly greater than spike rates
in response to unexpected losses [F1,14 = 16.5,
MSE = 49, P < 0.001] (Fig. 4A). Similarly,
z-scored spike counts were also significantly
greater in response to unexpected gains than to
unexpected losses [F1,14 = 18.2, MSE = 24, P <
0.001] (Fig. 4B). This difference in spike activ-
ity was driven by a statistically significant re-
sponse to unexpected gains greater than baseline
activity (SOM text).

We confirmed that this difference in aggre-
gated spike activity was consistently observed in
individual cells by examining the relative differ-
ences in spike activity in response to unexpected
gains and losses for each cell. During this inter-
val, significantly more cells [14 out of 15 cells;
c2(1) = 11.27, P < 0.001] exhibited higher nor-
malized spike rates in response to unexpected
gains than to unexpected losses [mean difference
of 0.67 T 0.14 (mean T SEM) z-scored spikes per
second].

To confirm that human SN activity is pri-
marily responsible for differentiating only be-
tween unexpected gains and losses, we examined
differences in spiking activity between expected

gains and losses. In the same 225-msec post-
feedback interval, the difference in spike rates
and normalized spike counts between expected
gains and losses did not approach signif-
icance [F1,14 < 1, n.s.] (Fig. 4C). Similarly,
the remaining intervals exhibited no signifi-
cant differences in spike rate or normalized
spike count in response to expected gains and
losses.

The computation of how outcomes differ
from expectation, often referred to as prediction
error (2), is a central component of models of
reinforcement learning and thought to be en-
coded by the activity of dopaminergic neurons
(5–7, 15, 26). We examined the correlation be-
tween spike activity and changes in expected re-
ward as determined by Eq. 1 under the assumption
that this change can be used as a surrogate for
prediction error. We defined prediction error
here as the trial-to-trial adjustment each partici-
pant makes to the expected reward for each
deck as determined by our model of expecta-
tion. Mean spike rates in the same post-feedback
interval during trials associated with large posi-
tive prediction errors were larger than spike rates
associated with small positive prediction errors,
but this difference was only marginally signifi-
cant [F1,14 = 3.2, MSE = 8, P = 0.09] (20). As
trial-to-trial differences in expected reward in-

Fig. 3. (A) Spike raster for a single ex-
periment from one participant. Indi-
vidual spike activity recorded from SN
for trials during positive (blue) and
negative (black) feedback is shown for
each trial as a function of time. Below
each spike raster is the average z-scored
continuous-time firing rate (continuous
trace) and histogram (bars, 75-msec in-
tervals). The red vertical line indicates
feedback onset. (B) Individual spike ac-
tivity, recorded from the same cell as
shown in Fig. 3A, for trials in response
to unexpected gains (blue) and losses
(black) is shown for each trial as a func-
tion of time.
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creased, there was a general increase in spike ac-
tivity, but this trend was also only marginally
significant (Fig. 4D) (20).

Our results show that differences in human
SN responses to positive and negative feed-
back are mainly driven by unexpected outcomes,
with no significant differences in neural activity
for outcomes that are anticipated according to
our model. By responding to unexpected fi-
nancial rewards, these putatively dopaminergic
cells encode information that probably helps par-
ticipants maximize reward in the probabilistic
learning task.

Our results address the important question
of whether extrapolating findings about the re-
ward properties of dopaminergic SN neurons from
nonhuman primates to humans is reasonable
(27). Whereas the role of midbrain dopaminer-
gic neurons in reward learning has been studied
extensively in animals (4–8, 15, 26), the evidence
presented here represents direct measurement of
SN neurons in humans who were engaged in a
probabilistic learning task. Our findings should
serve as a point of validation for animal models
of reward learning.

The reward for choosing the correct deck
in our study was a perceptual stimulus designed
to evoke a cognitive representation of finan-
cial reward. Primate studies, which often rely
on highly salient first-order reward stimuli

such as food and water, have demonstrated
that dopaminergic neurons are also capable
of responding to second-order associations (28),
which are items that can be used to directly
satisfy first-order needs. Because no monetary
compensation was directly provided, our ab-
stract rewards (i.e., images of second-order re-
wards) may be considered third-order. That the
modest third-order rewards used here elicited a
significant dopaminergic response, when they
were unexpected, suggests that SN activity may
play a more widespread role in reinforcement
learning than was previously thought.

Our findings suggest that neurons in the
human SN play a central role in reward-based
learning, modulating learning based on the dis-
crepancy between the expected and the realized
outcome (1, 2). These findings are consistent
with the hypothesized role of the basal ganglia,
including the SN, in addiction and other dis-
orders involving reward-seeking behavior (29).
More importantly, these findings are con-
sistent with models of reinforcement learning
involving the basal ganglia, and they suggest
a neural mechanism underlying reward learn-
ing in humans.
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Fig. 4. (A) Average z-scored spike rate for unexpected gains (blue trace) compared with unexpected
losses (black trace). The red line indicates feedback onset. The gray shaded region indicates the 225-msec
interval between 150 and 375 msec after feedback onset. Traces represent average activity from 15
SN cells recorded from 10 participants. (B) Average z-scored spike histograms for unexpected gains
(blue bars) compared to unexpected losses (black bars). The red vertical line indicates feedback
onset. Histograms represent average z-scored spike counts from the same 15 SN cells. (C) Average
z-scored spike rate for expected gains (blue trace) did not differ significantly from expected losses
(black trace) for any interval. The red line indicates feedback onset. (D) For every participant, the
median positive and negative trial-to-trial change in expected reward, as determined by Eq. 1, is
used to classify prediction error into large and small positive and negative differences. Mean z-scored
spike rate, captured between 150 and 375 msec after feedback onset for all cells, is shown for each
level of prediction error. Error bars represent SEM.
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ERRATUM

www.sciencemag.org SCIENCE ERRATUM POST DATE 24 JULY 2009 1

CORRECTIONS &CLARIFICATIONS

Reports: “Human substantia nigra neurons encode unexpected financial rewards” by K. A.

Zaghloul et al. (13 March, p. 1496). Equation 1 in this paper was incorrect.  The correct

equation is as follows: .

Post date 24 July 2009
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