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J. D. Balakrishnan and J. A. MacDonald (2008) argue that RT-
based measures of signal detection processes provide evidence 
against signal detection theory’s notion of a flexible decision crite-
rion. They argue that this evidence is immune to the alternative ex-
planation proposed by S. T. Mueller and C. T. Weidemann (2008), 
that decision noise may mask criterion shifts. We show that noise 
in response times can produce the same effects as are produced by 
noise in confidence ratings. Given these results, the evidence is not 
sufficient to categorically reject the notion of a flexible response 
policy implemented through shifts in a decision criterion.

Theories of signal detection attempt to distinguish per-
ceptual factors from decision effects (such as response 
biases). To that effect, signal detection theory (SDT) in-
corporates the notion of a flexible decision criterion that 
adapts to contingencies in the environment (such as stimu-
lus base rates or pay-off schemes). Balakrishnan (1998a, 
1998b, 1999) identified serious problems with SDT that 
render derived measures of sensitivity and bias (such as 
d ′ and b) suspect. On the basis of novel measures of bias, 
Balakrishnan (1998a, 1998b, 1999) argued that the notion 
of such a flexible decision criterion that shifts in response 
to stimulus contingencies is fundamentally flawed.

We have shown that Balakrishnan’s (1998a) results, as 
well as those from other experiments, can in fact be ac-
counted for by a simple model incorporating a flexible 
decision criterion (Mueller & Weidemann, 2008). This 
model is an extension of SDT, but in addition to percep-
tual noise, it includes noise in the mapping from percepts 
to responses (decision noise). In particular, we distinguish 
between two types of decision noise: classification noise 
and confidence noise. Classification noise refers to noise 
in the mapping between the percept and the classification 
response (e.g., yes–no, present–absent, A–B), whereas 
confidence noise refers to the noise in the mapping be-
tween an internal state and a dependent measure index-
ing response confidence (such as confidence ratings). We 
view the decision noise model (DNM) as constituting a 
simple existence proof (rather than a full-fledged alterna-
tive to existing theories) that the results from signal detec-
tion tasks1 are compatible with flexible decision criteria 

that adapt to task contingencies. In the DNM, confidence 
noise can be larger than classification noise, which is con-
sistent with the results of our receiver operating character-
istic (ROC) analyses comparing response-related distal-
stimulus ROC functions and confidence ROC functions 
(see Mueller & Weidemann, 2008, for details). As we 
demonstrated earlier (Mueller & Weidemann, 2008), this 
discrepancy between classification noise and confidence 
noise can mask shifts in decision criteria.

Balakrishnan and MacDonald (2008) criticize our work 
on the basis of three major points. Specifically, they argue 
that:

1. Our account of how decision noise may mask crite-
rion shifts should not apply to cases where classification 
responses are collected without confidence ratings, but 
measures based on response times (RTs) of yes–no re-
sponses do show patterns similar to those for correspond-
ing measures based on confidence ratings.

2. The DNM is underconstrained because it can predict 
arbitrary likelihood ratios between the two classification 
responses, whereas empirical likelihood ratios at that point 
seem to be constrained to equal and smoothly approach 1.0.

3. Conditioning the analyses on the previous classifica-
tion response should reduce decision noise, but fails to 
show consistent increases in d ′.

These criticisms center on details of dependent vari-
ables (specifically RT and sequential dependencies) that 
we did not attempt to model in our previous article (Muel-
ler & Weidemann, 2008) and on questions about the par-
simony of our model (i.e., is it constrained to produce a 
certain result, rather than just able to). In what follows, we 
address each of these criticisms in detail. To foreshadow 
our main points, we argue that:

1. Noise in the mapping between an internal state and 
any dependent measure qualifying the classification re-
sponse (including RTs) can produce the same effects that 
we have demonstrated for confidence ratings.

2. Empirical likelihood ratios between the classification 
responses need not smoothly approach 1.0 and can even 
deviate from 1.0 in some cases. The DNM can produce 
likelihood ratios that smoothly approach 1.0, and its lack 
of constraint to always do so is warranted by the data.

3. Conditioning analyses on the previous classification 
responses produces extremely small (,.06) changes in d ′, 
and the direction of change even within a base rate condi-
tion can differ for different response instructions (yes–no 
vs. confidence ratings). We explicitly did not attempt to 
model sequential dependencies and did not specify any 
relationship between the previous response and decision 
criteria.

We therefore maintain that criterion shifts may be 
masked by noise in the mapping between internal states and 
responses, even when no confidence ratings are collected.
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relatively more incorrect responses in the tails of the dis-
tributions, which is necessary to capture the smooth transi-
tion between values below and above 1.0 and the small ten-
dency for the likelihood ratios to approach 1.0 for extreme 
(fast or slow) RTs. To validate the assumptions for this sim-
ulation, we confirmed that our data indeed showed higher 
variability for incorrect trials and that the distribution of 
RTs was approximately log normal. For each condition, 
we simulated 200,000 trials with “yes” and “no” response 
proportions set equal to the empirical hit and false alarm 
rates and stimulus base rates in both 2:1 and 1:2 propor-
tions. We then recoded and binned the simulated RTs as 
Balakrishnan and  MacDonald did, in order to obtain the 
RT-ROC and RT-likelihood ratio functions shown in Fig-
ures 1 and 2 (we used a bin size of 5,000 samples when the 
entire simulated data set was sorted by RT, which resulted 
in 2.5% of the data falling into any RT bin).

We note that the qualitative pattern of the simulated RT-
ROC functions in Figure 1 is very similar to that seen in the 
confidence data (Mueller & Weidemann, 2008, Figure 9). 
Likewise, the simulated RT likelihood ratio functions (Fig-
ure 2) are consistently below 1.0 for “A” responses and con-
sistently above 1.0 for “B” responses irrespective of stimu-
lus base rates, much like the actual data (Balakrishnan & 
MacDonald, Figure 2). We made the assumptions described 
above primarily for simplicity and convenience. The fact 
that these patterns can be observed for randomly gener-
ated RTs with a slight difference in variance for correct and 
incorrect trials shows that they do not depend on sophis-
ticated assumptions about the mapping between internal 
states and RTs. It is also obvious that the simple model 
described above cannot account for every detail of the em-
pirical likelihood ratio functions shown by Balakrishnan 

Decision Noise and Response Time
Using response time to qualify the classification re-

sponse, Balakrishnan and MacDonald analyzed those con-
ditions in our experiment (Mueller & Weidemann, 2008) 
that required only a classification response (but no con-
fidence ratings). Their results replicated those from our 
analyses that used confidence ratings to qualify the clas-
sification response. Balakrishnan and MacDonald argued 
that, unlike the confidence rating results, the RT results 
could not be explained by differential levels of decision 
noise, because only one type of response was required.

Crucial to our account of confidence rating data (Muel-
ler & Weidemann, 2008) was the notion of different 
amounts of decision noise for classification responses and 
dependent measures indexing response confidence. Con-
fidence ratings are not the only conceivable measure of re-
sponse confidence, and RTs in particular could reasonably 
be used for this purpose (with faster RTs often indexing 
more confident responses). Confidence noise, therefore, 
is not specific to confidence ratings but naturally extends 
to other dependent variables.

The notion of response confidence, however, does 
not need to be invoked. Many dependent measures (e.g., 
RTs, or electrophysiological or brain imaging data) could 
qualify a classification response and could reasonably be 
used to generate ROC or likelihood ratio functions. To the 
extent that these measures are noisy indices of internal 
states, they could produce patterns of results that are simi-
lar to those observed for confidence ratings. Depending on 
the nature of these measures, “confidence noise” or even 
“decision noise” may not be the most appropriate terms to 
describe the noise associated with them, but nevertheless 
their effects could mirror those of decision noise.

Indeed, even when RTs are generated randomly, the 
main RT results (i.e., crossing RT-ROC functions and 
likelihood functions that pass through 1.0 at the middle 
RT bin regardless of base rate) can be captured simply by 
setting the hit and false alarm rates as well as the stimulus 
base rates to the actual values. These assumptions are con-
sistent with a shift in a decision criterion (although they 
do not necessarily imply it), and they illustrate that the 
main aspects of the data can be captured even with very 
basic assumptions. As we show below, with the additional 
constraint (confirmed in our data) that RTs for correct re-
sponses are slightly less variable than those for incorrect 
responses, one can capture the more subtle features of the 
RT likelihood ratio function—namely, the smooth transi-
tion between values below and above 1.0, and the small 
tendency to approach 1.0 for extreme (fast or slow) RTs.

To illustrate how decision noise can produce RT-ROC 
functions that are similar to the confidence ROC (C-ROC) 
functions that we observed (Mueller & Weidemann, 2008, 
Figure 9) and to RT-likelihood ratio functions like those 
reported by Balakrishnan and MacDonald (Figure 2), we 
simulated data from a classification experiment with hit 
and false alarm rates equivalent to those in our experiment. 
We randomly generated RTs for all conditions by sampling 
from normal distributions with means of 1,000 msec and 
standard deviations of 100 msec for correct trials and 
110 msec for incorrect trials. These assumptions lead to 
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Figure 1. Simulated response time (RT) receiver operating 
characteristic (ROC) functions. These simulated functions show 
the same qualitative pattern as those for the ROC functions based 
on confidence ratings (Mueller & Weidemann, 2008).
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to deviate from the point between the classification re-
sponses (such a deviation would indicate a biased decision 
rule, according to classical SDT) and furthermore argue 
that the likelihood ratios associated with low confidence 
responses tend to be very close to 1.0. As Balakrishnan 
and MacDonald point out, the DNM can produce these 
results, but it is not constrained to do so—a point that they 
view as a disadvantage of the DNM.

Whereas the results described above (likelihood ra-
tios transitioning from below to above 1.0 between the 
response categories and approaching 1.0 for low confi-
dence ratings) have been found repeatedly, they are by no 
means universal. Figure 3 shows the ratios of the small-
est confidence likelihood ratio above 1.0 and the largest 
below 1.0 in the data presented by Van Zandt (2000) and 
modeled with the DNM by us (Mueller & Weidemann, 
2008). For example, a ratio of 4.0 indicates that the like-
lihood ratio changed by a factor of 4.0 (e.g., from 0.5 to 
2.0) between the confidence responses flanking the neu-
tral likelihood ratio (usually the two lowest confidence 
ratings for either classification response). Most of these 
ratios are close to 1.0, but several ratios on the upper end 
of the scale shown in Figure 3 indicate that the neutral 
likelihood ratio is not always smoothly approached. In 
light of these data, a model constrained in the ways sug-
gested by Balakrishnan and MacDonald does not seem 
warranted. Indeed, our model predicts that violations of 
these constraints should be observable to the extent that 
the response policy can be shifted substantially, espe-
cially if the difference between classification and confi-
dence noise can be reduced.

Sequential Dependencies
We identified substantial sequential dependencies in 

our data, which may represent one of presumably many 
sources of decision noise (Mueller & Weidemann, 2008). 
More specifically, we showed that participants in our ex-
periment were likely to repeat the previous confidence 
rating even when the classification response changed 
(e.g., a high-confidence “A” response was more likely to 
be followed by a high-confidence “B” response than by 
a low-confidence “B” response). Because the source of 
the decision noise was not crucial for our argument, the 
DNM does not incorporate any sequential dependencies 
and we specifically did not attempt to account for any data 
by assuming that a classification criterion shifts back and 
forth on each trial depending on the previous response, as 
suggested by Balakrishnan and MacDonald.

Balakrishnan and MacDonald calculated d ′ for tri-
als conditioned on the prior classification response and 
found small (,.06) differences within each base rate and 
response (confidence rating vs. forced choice) condition. 
In particular, the overall d ′ values fell between the d ′ val-
ues obtained for “A” responses and for “B” responses, al-
though the relative order of d ′ values was not consistent 
across base rate or response conditions. Balakrishnan and 
MacDonald argue that, contrary to the data, our model 
should predict consistently higher d ′ values when con-
ditioning on the previous response, because this should 
reduce decision noise.

and MacDonald (Figure 2). Particularly the empirical func-
tions seem somewhat noisier and also seem to approach 
1.0 equally from both sides at the transition between clas-
sification responses, whereas the tendency to approach 1.0 
at the transition is more pronounced for the more frequent 
classification responses in our simulations.

These simulations suggest that more realistic models 
of RTs in signal detection tasks do not necessarily have to 
shun the notion of flexible decision criteria to account for 
RT likelihood ratio functions. The assumption that RTs for 
correct responses are less variable than those for incorrect 
responses is admittedly ad hoc (although confirmed by 
our data); it serves only to smooth the transition in the 
likelihood ratios and could be implemented in process 
models with a number of reasonable mechanisms.

Constraints in the Likelihood Ratio Function
Classical SDT predicts that the likelihood ratio should 

equal 1.0 at the point between the two classification re-
sponses for unbiased responses and that it should deviate 
from 1.0 if the response is biased. The likelihood ratio at 
any point is equivalent to the slope of the ROC function 
at that point (see Zhang & Mueller, 2005), and therefore 
any peak in the ROC function where the slope changes 
from below 1.0 to above 1.0 (see Mueller & Weidemann, 
2008, Figures 9 and 12) corresponds to the point where 
the likelihood ratio crosses 1.0. Balakrishnan and Mac-
Donald (2008) argue that this point is rarely, if ever, found 
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Figure 2. Simulated response time (RT) likelihood ratio func-
tions. As in the RT data (Balakrishnan & MacDonald, 2008), 
the likelihood ratio is consistently below 1 for “A” responses and 
consistently above 1 for “B” responses, irrespective of stimulus 
base rate.
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provide important guidance and constraints for more ad-
equate models of choice under uncertainty.
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NOTe

1. We use this term in the loose sense defined earlier (Mueller & 
Weidemann, 2008, note 1) to refer to the basic paradigm in which two 
stimulus classes are discriminated and categorized into two classes (old 
or new, signal or noise, yes or no, A or B, etc.).

(Manuscript received May 5, 2008; 
revision accepted for publication July 19, 2008.)

To the extent that these small differences in d ′ values 
are reliable, their relative orders would indeed be difficult 
to model, because it seems to interact with base rate and 
response conditions. In particular, as Balakrishnan and 
MacDonald (2008) pointed out, these data seem at odds 
with a simple model that adjusts a decision criterion up 
or down on every trial depending on the previous clas-
sification response. We do not have an account for these 
results, but we note that more complex effects of the previ-
ous response on a decision criterion (possibly contingent 
on whether or not the previous response was correct) may 
be able to explain the small fluctuations in hit and false 
alarm rates that give rise to these results.

Discussion
As we have shown above and previously (Mueller & 

Weidemann, 2008), the indices of criterion shifts proposed 
by Balakrishnan (1998a, 1998b, 1999) are not always able 
to detect such shifts in the presence of decision noise. We 
have shown that decision noise does indeed seem to have 
a large influence on confidence rating and forced choice 
responses (Mueller & Weidemann, 2008) and have argued 
that the RT results presented by Balakrishnan and Mac-
Donald (2008) are consistent with a high degree of noise 
in the mapping between internal states and RT for a two-
alternative forced choice response.

As we stated previously (Mueller & Weidemann, 2008), 
we do not mean to argue in favor of wholesale acceptance 
of SDT or against sequential sampling models. With the 
DNM, we simply showed that the data are compatible with 
flexible decision criteria that adapt to task contingencies 
(Mueller & Weidemann, 2008). To understand the pro-
cesses involved in signal detection better, it is crucial to 
carefully analyze the extent and the limits of the implica-
tions of theory violations. The outcomes of such analyses 
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Figure 3. Ratios of the smallest confidence likelihood ratio greater than 1 and the 
largest confidence likelihood ratio less than 1 for the data reported in Van Zandt 
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when a likelihood ratio was exactly 1.0 (in such cases the ratio was taken between the 
two values flanking the 1.0 likelihood ratio).


