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We present a study in level set representation and evolution using radial basis functions (RBFs) for active
contour and active surface models. It builds on recent works by others who introduced RBFs into level sets for
structural topology optimisation. Here, we introduce the concept into deformable models and present a new
level set formulation able to handle more complex topological changes, in particular perturbation away from
the evolving front. In the conventional level set technique, the initial active contour/surface is implicitly
represented by a signed distance function and periodically re-initialised to maintain numerical stability. We
interpolate the initial distance function using RBFs on a much coarser grid, which provides great potential
in modelling in high dimensional space. Its deformation is considered as an updating of the RBF interpolants,
an ordinary differential equation (ODE) problem, instead of a partial differential equation (PDE) problem,
and hence it becomes much easier to solve. Re-initialisation is found no longer necessary, in contrast to
conventional finite difference method (FDM) based level set approaches. The proposed level set updating
scheme is efficient and does not suffer from self-flattening while evolving, hence it avoids large numerical
errors. Further, more complex topological changes are readily achievable and the initial contour or surface can
be placed arbitrarily in the image. These properties are extensively demonstrated on both synthetic and real
2D and 3D data. We also present a novel active contour model, implemented with this level set scheme, based
on multiscale learning and fusion of image primitives from vector-valued data, e.g. colour images, without
channel separation or decomposition.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Ever since Kass et al. [1] introduced the active contour or snake
model, there has been a multitude of works on the development of
active contour models, some theoretical and some tuned to certain
applications. Traditional snakes suffer from several issues, such as
limited capture range and difficulties in reaching concavities. The
application of the level set method [2] to the active contour model has
enabled the latter to adapt to complex topologies. It avoids the need to
reparameterise the curve and the contours are able to split or merge
in order to capture an unknown number of objects without resorting
to dedicated contour tracking. However, the original level set based
active contour [3] has proved to be of limited use in real applications
as it assumes that contours reach the object boundaries at roughly the
same time, and thus, it often suffers from weak edge leakage.

A great deal of research has been carried out to innovate and
improve external forces in order to overcome its shortcomings. Xu
and Prince's work [4], a boundary based approach, greatly improved

the snake model on convergence issues. They iteratively diffused
gradient vectors from edge areas to homogeneous regions to increase
the capture range and to improve its performance towards concav-
ities. This gradient vector flow (GVF) snake model is less sensitive to
noise interference and has better ability in recovering weak edges.
Convergence issues, however, still exist particularly when the
evolving contours are tangent to the gradient vectors as noted by
several authors, e.g. [5,6]. Over the last few years, region based
methods, such as [7–11], have become very popular as they are
generally less initialisation dependent and exhibit better ability in
handling textures and image noise interference. For example, in [8],
Chan and Vese considered the active contour as an energy minimisa-
tion of a Mumford–Shah based minimal partition problem. Some
practical applications can be found in [7,12], amongst many others.

The extension of the active contour model into the active surface
model is relatively straightforward when using implicit representa-
tion based on the level set scheme, e.g. [13]. However, this implicit
representation embeds the contour or surface into a higher dimen-
sional space which needs to be updated iteratively as a whole,
becoming more computationally expensive than traditional paramet-
ric approaches. The evolution of the embedded contour or surface
is solved using partial differential equations (PDEs) which in most
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cases involve costly finite difference methods (FDM). It also requires
more memory storage as usually the level set grid is collocating with
the image grid and needs to update each grid point instead of only the
points on the deforming contour or surface.

More importantly, in conventional level set methods (i.e. those
based on upwind FDM [2], e.g. the classic geodesic model [3]), active
contours or surfaces are not able to create topological changes away
from the zero level set where the deformable contours or surfaces are
embedded [12,14]. This means, for example, that the level sets would
miss holes inside objects. In order to accurately solve the associated
PDEs using FDM, a local method, the implicit function is required to be
smooth and remain so while evolving. Thus, re-initialisation is usually
necessary in order to achieve numerical stability. Although alternative
methods without re-initialisation are available, such as [15,16], they
often require dedicated extension of the speed function defined on the
contour.

As a primary interpolation tool, radial basis functions (RBFs) have
received increasing attention in solving PDE systems in recent years.
For example, Cecil et al. [17] used RBFs to generalise conventional
FDM on a non-uniform (unstructured) computational grid to solve the
high dimensional Hamilton–Jacobi PDEs with high accuracy. Very
recently, Wang et al. [14] interpolated level set functions using RBFs
and transformed the Hamilton–Jacobi PDEs into a system of ordinary
differential equations (ODEs) for structural topology optimisation in
2D.

In this paper, we adapt the approach presented for structure
design in [14] to apply to active modelling and show how our
proposed model greatly enhances the performance of active models.
Following [14], we interpolate the initial level set function using RBFs
and treat the implicit contour/surface propagation as an ODE problem,
which is much easier and more efficient to solve. However, the
updating scheme proposed in [14] is unsuitable for active modelling
and in this paper we propose a simple, but effective, normalisation
scheme to resolve this issue. This new active model exhibits sig-
nificant improvements in initialisation invariancy, convergence, and
topology adaptability. The initial contour or surface is embedded into
an implicit function derived from the distance transform in the way
same as the conventional level set approach. However, we then
interpolate it using RBFs which can be placed on a much coarser grid,
and with the interpolation characterised by its expansion coefficients.
Thus, deforming the original implicit function is achieved by updating
the expansion coefficients. Re-initialisation during evolution is no
longer necessary and perturbation away from the zero level is possible
to obtain more sophisticated topological changes. This has a sig-
nificant impact on the active contour and surface models to free them
from initialisation restrictions. The contour or surface can therefore be
initialised anywhere in the image. Furthermore, we demonstrate that
the segmentation can be carried out evenwithout any initial contours.

We show an implementation of this RBF level set method in a new
region based active contour model. Its external force field is derived
through statistical modelling of colour pixels in multiscale and treats
the colour image in full 3D, without channel separation or decom-
position, in order to simultaneously capture spatial and spectral
interactions. It also has the potential to model multi-band data with
more than three channels.

Additionally, we show that it is convenient for the proposed RBF
based level set method to extend from the 2D image domain to 3D
space, i.e. extension from active contours to active surfaces.

Recently in [18], Morse et al. placed RBFs at contour landmarks to
implicitly represent the active contour, thereby avoiding the manip-
ulation of a higher dimensional function. However, their method
requires dynamic insertion and deletion of landmarks which is non-
trivial. Similar to the parametric representation, the resolution and
position of the landmarks can affect the accuracy of contour rep-
resentation. More recently, the authors in [19] presented a similar
idea to ours which we preliminarily presented in [20]. Following [14],

[19] used direct RBF interpolation and evolution without speed
normalisation, which will create artificial contours during evolution.
Comparison of level set evolution will show our proposed method
provides more stable evolution with considerably fewer numerical
errors.

The remainder of this paper is organised as follows. In the next
section we present a brief review of the conventional level set
method, RBF interpolation, the proposed RBF level set evolution, its
application to a region based active contour model on colour images,
and its extension to 3D. Experimental results on both synthetic and
real world data are presented in Section 3. Conclusions and future
work are discussed in Section 4.

2. Proposed method

2.1. Level set representation

In level set representation [2], a deformable contour or surface is
implicitly represented by a multi-dimensional scalar function (signed
distance field) with the moving front embedded at the zero level set.
Let C and Φ denote the moving front and the level set function
respectively. The relationship between these two can be expressed as:

C = x jΦ xð Þ = 0f ð1Þ

where x∈ℝn, and subject toΦ xð Þ N 0 for x inside the front andΦ xð Þb0
for x outside. This representation is parameter free and intrinsic.
Considering the front (contour or surface) evolving according to dC /
dt=FN for a given function F (where N denotes the inward unit
normal), then the embedding function should deform according to
∂Φ /∂ t=F|∇Φ|, where F is computed on the level sets. By embedding
the evolution of C in that of Φ, topological changes of C, such as
splitting and merging, are handled automatically.

The level set function is commonly initialised using the signed
distance transform and its evolution numerically solved using FDM
with the upwind scheme [2]. The numerical errors using this local
approximation method may gradually accumulate and can contam-
inate the solution. Thus, periodic re-initialisation of the level set
function is usually applied to maintain numerical stability. The con-
ventional level set method generally prevents topological changes
taking place away from the developing front which restricts other
forms of topological changes, such as developing holes inside objects.
The method presented in this paper avoids solving the PDE problem
and transforms it into a much simpler ODE problem. It will allow the
level set contour or surface to deal with regions away from the
evolving front by initiating new fronts in the level set and thus capture
holes or inner boundaries of objects. This makes the active contour or
surface framework not only much more successful but also initialisa-
tion invariant.

2.2. RBF interpolated level set function

Radial basis functions have attracted significant attention in
scattered data interpolation in multi-dimensions, as well as in other
applications such as data classification. For example, Mullan et al. [21]
used dipole RBF representation with RBF centres slightly above and
below the implicit surface to propagate the 3D surface. Turk and
O'Brien [22] introduced constraint points to obtain implicit surfaces
using RBFs, which were applied to implicit active contour modelling
by Morse et al. [18].

Similar to recent works by Cecil et al. [17] and Wang et al. [14],
we interpolate the level set function Φ xð Þ using a certain number of
RBFs. Each RBF, ψi, is a radial symmetric function centred at position
xi. Only a single function ψ is used to form this family of RBFs. The
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multiquadric spline, found to be one of the best for RBF interpolation
[23] is used here, with the RBFs then written as follows:

ψi xð Þ = ψ jx−xi jð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jx−xi j2 + c2i

q
; ð2Þ

where ci is usually treated as a constant for all RBFs. The interpolation
of the level set function is expressed as follows:

Φ xð Þ = p xð Þ + ∑
N

i=1
αiψi xð Þ; ð3Þ

where N denotes the number of RBFs, αi are the expansion coefficients
of the corresponding RBF, and p xð Þ is a first-degree polynomial, which
in the 2D case can be written as p xð Þ = p0 + p1x + p2y.

1 To ensure a
unique solution to this RBF interpolation, the expansion coefficients
must satisfy as follows:

∑
N

i=1
αi = ∑

N

i=1
αixi = ∑

N

i=1
αiyi = 0: ð4Þ

These N number of RBFs are distributed across the domain and
their centre values, denoted by f1,..., fN, are given by the level set
function. The RBF interpolant then can be obtained by solving the
following linear system:

Hα = f; ð5Þ

where

H = A P
PT 0

" #
;

α = α1⋯αNp0p1p2½ $T ;

f = f1⋯fN 0 0 0½ $T ;

ð6Þ

and

Ai;j = ψj xið Þ; i; j = 1;…;N;

Pi;j = pj xið Þ; i = 1;…;N; j = 1;2;3;
ð7Þ

where pj are the basis for the polynomial. Thus, the RBF interpolation
of the level set function in (3) can be written as follows:

Φ xð Þ = ΨT xð Þα; ð8Þ

whereΨ xð Þ = ψ1 xð Þ ⋯ ψN xð Þ1xy½ $T and the expansion coefficients α is
given by: α = H−1f.

2.3. Active modelling using RBF level set

As stated in Section 2.1, the deformation of the active contour is
achieved by propagating the level sets along their normal directions
according to a localised speed which is usually image dependent. It
can be expressed as the following PDE:

∂Φ
∂t + F j∇Φ j = 0; ð9Þ

where F is the speed function along the normal direction. Unlike the
conventional level set method, here we have a level set function
interpolated by RBFs. Following [14], we assume that time and space
are separable and the time dependence of the level set function is
now due to the RBF interpolation, i.e. the expansion coefficients.
Updating the level set function is now considered as updating the RBF

expansion coefficients. In other words, the expansion coefficients
become time dependent:

Φ = ΨT xð Þα tð Þ: ð10Þ

Thus, the level set updating function (9) can be re-written as
follows:

ΨT dα
dt

+ F j ∇Ψð ÞTα j = 0: ð11Þ

This indicates that the original PDE problem can now be treated as
an ODE problem. The spatial derivative∇Ψ can be solved analytically.
Given (5), (11) can be re-written as follows:

H
dα
dt

+ B αð Þ = 0; ð12Þ

where

B αð Þ =

F x1ð Þj ∇ΨT x1ð Þ
$ %

αj
⋮

F xNð Þj ∇ΨT xNð Þ
$ %

αj
0
0
0

2

66666664

3

77777775

ð13Þ

The solution can be obtained by iteratively updating the expansion
coefficients using the first order Euler'smethod, also adopted from [14]:

α tn+1
$ %

= α tn
& '

−ΔtH−1B α tn
& '& '

: ð14Þ

The updating of the level set function starts from interpolating its
initial state using RBFs. As usual, the initial level set function is
obtained from the signed distance transform and is often initialised
such that |∇Φ|=1. Then RBFs are spread across the domain and the
interpolation takes place, providing us with the initial value of the
expansion coefficients, α. The interpolated level set is then evolved
according to (14) and (3). In conventional level set methods, the level
set function is initialised and maintained as a signed distance function
through re-initialisation. The re-initialisation can prevent numerical
errors, accumulated through level set updating using the FDM in
solving the associated PDE, from corrupting the solution. Moreover,
the signed distance function is not a solution to the level set for-
mulation, e.g. the classic geodesic formulation, which means the level
set function will not remain a signed distance function in the process
of contour evolution and hence periodic re-shaping of the level set is
necessary [24]. In a variational approach such as that proposed by
Chan and Vese [8], the level set function hardly remains a signed
distance function at any time of the evolution. We similarly do not
impose such a constraint. In fact, in order to develop perturbations
away from the existing front, it is necessary for those level sets that
are far away from the zero level to deviate from a signed distance
function [25]. In our approach, the level set function is interpolated
using RBFs and its shape is determined by RBF expansion coefficients.
The evolution of the level set function is formulated to be an ODE
problem as shown earlier, with level set derivatives solved analyti-
cally, instead of locally approximated using FDM as in conventional
level set methods. This gives stability in level set evolution and allows
continuous updating without the need for re-initialisation, and the
level set updating becomes much simpler and more efficient.

Although (14) has been proven useful in structure optimisation in
[14], a direct application of this updating scheme was found to be
unsuitable for active contour models. The updating of the level set
function is achieved by adjusting the RBF interpolation expansion
coefficients as shown in (12)–(14), with the change in coefficients

1 For simplicity, we present the solution in 2D. Its solution in higher dimensions is
straightforward.
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directly related to the spatial derivative of the level set, which is
computed analytically. It is very likely that there exist stationary
points in the level set function with their spatial derivative magnitude
close to zero. This results in drastically slow changes of level set values
in those regions, which gradually spread to their neighbours, and
hence leads to a flattening effect. Level set evolution can thus be
hampered and it can lead to further updating issues when the level set
function becomes more complex. An example is given in Fig. 1 where
a circular shape is embedded in an initial level set function, a cone
shape as shown in the first image in the first row. A constant force
is applied to this active contour, i.e. F is a real constant. This force
expands the contour outwardswhich should generally lift the level set
function. However, as shown in the first row, the top of the level set
function becomes stationary and gradually turns into a largely flat
surface. This is due to the gradient magnitude of the RBF interpolated
level set at those points being close to zero ( j ∇ΨT xið Þ

! "
α j→0) and

based on (13) and (14) the expansion coefficients at those places
would evolve much slower. As a result, the level set function tends to
get flattened and this is particularly undesirable when topological
changes should be taking place — see for example in Fig. 2 where two
circles are expanding due to the same constant expanding force. The
valley in the level set function is affected and introduces substantial

numerical artifacts, and finally contaminates the solution as shown in
the last image in the first row, indicated by the highly irregular spikes
in the level set function. Special care is thus necessary, for example
using dedicated velocity extension.

Fortunately, in deformable modelling the direction of the speed
along the normal has dominant effect on the final segmentation, not
its magnitude (however, it is preferable for level set evolution that the
speed is smoothly varying in the spatial domain). Since the gradient of
the level set function is generally smoothly varying, we propose a
simple yet highly effective solution to solve this problem which is to
modify the speed function by “normalising” it against the local
gradient estimated from the RBF interpolants, i.e. the following:

F ′ xið Þ = 1
j ∇ΨT xið Þ
! "

α j
F xið Þ: ð15Þ

Note that due to this global modelling using RBFs, the gradient is
dependent on all the RBF centres across the domain, instead of local
neighbours. Thus, the gradient near the advancing front is unlikely
to be zero, i.e. this normalisation will be unlikely to disturb the
developing front. In effect, we use level set spatial derivative mag-
nitude values as inverse weightings for the speed function in

Fig. 1. Updating RBF level set using non-normalised and normalised schemes — first row: non-normalised scheme; second row: proposed normalised scheme.

Fig. 2. Updating the RBF level set using non-normalised and normalised schemes — first row: non-normalised scheme; second row: proposed normalised scheme. See Fig. 3 for
corresponding contour evolution.
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coefficient updating. Thus, if the spatial derivative magnitude is close
to zero the external force will be scaled up in order to have a larger
influence in coefficient changes; hence it prevents the level set from
flattening. For regions where the magnitude of the level set gradient
is close to one, the speed function is hardly changed. Using this
normalisation scheme, (13) then simplifies to the following:

B αð Þ = F x1ð Þ … F xNð Þ 0 0 0½ $T : ð16Þ

Updating the expansion coefficients and hence the level set are
now even simpler and more efficient. The second row in Fig. 1 shows
the results using the normalised approach. The level set function does
not get flattened while updating the expansion coefficients. Topolog-
ical changes, for example merging, shown in the second row in Fig. 2,
can be conveniently handled, in contrast to the non-normalised
scheme (shown in the first row). Fig. 3 shows the corresponding
contour evolution. It can be clearly seen that the non-normalised
version produces erroneous contours and irregularities, while the
proposed approach handles topological changes correctly.

One of the main advantages of using an RBF interpolated level set
to represent an active contour is that more sophisticated topological
changes, besides merging and splitting, can be readily achieved. Let
F be a region indication function, i.e. Fb0 for points inside an object
of interest and FN0 for the rest. In Fig. 4, the object of interest is
shown in dark grey, and the initial snake is drawn in white. The snake
using the conventional level set scheme with re-initialisation fails to
recover the hole in the object as periodic re-initialisation prevents it
from doing so. The proposed RBF based level set method successfully
recovers the shape without dedicated effort in monitoring the front
propagation. This occurs because the proposed method uses RBF
interpolants to estimate the level set gradient, a global estimation

instead of a local one. Front propagation is then unlikely to introduce
oscillation around the zero level set. Thus re-initialisation is not nec-
essary to maintain stability. The proposed RBF expansion coefficients
updating scheme prevents other level sets, away from the evolving
front, from flattening themselves so that these level sets are sensitive
enough to sufficient gradient changes for the RBF interpolated front to
grow new fronts (i.e. contours or surfaces). It is possible that shocks
occur in certain force evolutions which may result in steep level set
surfaces. However, our empirical results show that the proposed
scheme is generally robust due to its intrinsic smoothness from RBF
interpolation.

Notably, variational level setmethods, such as the Chan–Vesemodel
[8], can also capture internal boundaries. However, the use of the delta
function in thesemethods, evenwith a smoothed (regularised) version,
means that it has a very local support in the vicinity of the zero level set,
which inevitably leads to irregularities in level set evolution as those
levels close to zero evolve much faster than the rest. This will also
hamper the level set evolution asmore levels are pushed away from the
zero level [25].

2.4. A region based active contour model using RBF level sets

We now present a novel region based active contour model using
the proposed RBF level set method. As mentioned earlier in Section 1,
region based methods generally perform better in the presence of
weak edges and image noise interference. More importantly in
relevance to this work, region based methods are considered much
less initialisation dependent. Thus, when compared against conven-
tional level set evolution, there is no factor other than the level set
scheme affecting its evolution and convergence. There are two classes
of popular region based approaches. One is based on the well-known

Fig. 3. Contour evolution using non-normalised and normalised schemes — first row: non-normalised scheme; second row: proposed normalised scheme. See Fig. 2 for
corresponding level set evolution.

Fig. 4. More complex topological changes are readily achievable — first row: initial snake and recovered shape using conventional level set method; second row: recovered shape
using proposed method. The final images in both rows show the stabilised results.
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Mumford–Shah formulation [26], where the contours compete with
each other while preserving the piecewise smooth assumption. The
other, such as the works in [7,9], globally model the image data and
the active contour evolves to maximise its posterior. We opt for the
second approach and model the image data using texem based mix-
ture modelling [27,28]. However, our emphasis remains on demon-
strating the performance of our proposed RBF level set method and
give a comparative study with the conventional level set approach in
the same active contour framework.

The external force of the proposed active contour model is based
on our recently introduced texem model [27], which is suitable for
vector-valued data, such as colour images. It handles the colour image
in full 3D, without having to decompose it into separate channels, for
example, using colour separation or principal component analysis.
Thus, it takes into account both spatial interactions and spectral or
inter-channel interactions simultaneously. Next, we briefly review the
texem representation, discuss its multiscale learning and texem
grouping, and present the active contour formulation.

2.4.1. Modelling colour images
Here, we give a very brief overview of the texem representation

(see [27] for a detailed exposition). The texem (or texture exemplar)
model is based on the assumption that a given image can be generated
from a collection of image patches and the variation in placement
results in appearance variations in the images. The texems are entities
of those representative patches along with the statistics characteris-
ing their variations. Each of the texems learnt contains partial degrees
of image micro-structures, i.e., they are implicit representations of
image primitives.

Formally, each texemm is defined by amean, μ, and a corresponding
variance, ω, i.e. m = μ;ωf g. An image is then considered as a super-
position of patches of various sizes. To learn the texems, the original
image I is broken down into a set of P overlapping patches Z = Zif gPi=1,
each containing pixels from a subset of image coordinates. We assume
that there exist K texems, M = mkf gKk=1, K≪P, for image I such that
each patch in Z can be generated from a texem with certain added
variations as follows:

p Zi jθkð Þ = p Zi jμk;ωkð Þ = ∏
j∈S

N Zj;i; μ j;k;ωj;k

! "
; ð17Þ

where θk denotes the kth texem's parameters with mean μk and
variance ωk, N (.) is a Gaussian distribution over Zj;i, S is the patch
pixel grid, μj, k and ωj, k denote mean and variance at the jth pixel
position in the kth texem. Using mixture modelling, we assume the
following probabilistic model:

p Zi jΘð Þ = ∑
K

k=1
p Zi jθkð Þβk; ð18Þ

where Θ=(β1,...,βK,θ1,...,θK), and βk is the priori probability of kth
texem constrained by ∑k=1

K βk=1. The Expectation Maximisation
(EM) technique can be used to estimate the model parameters.

2.4.2. Multiscale learning and grouping
Clearly, each image patch from an image has a measurable rela-

tionship with each texem according to the posteriori, p mk jZi;Θð Þ,
which can be conveniently obtained using Bayes' rule:

p mk jZi;Θð Þ = p Zi jmk;Θð Þβk

∑K
k=1 p Zi jmk;Θð Þβk

: ð19Þ

Thus, every texem can be viewed as an individual textural class
component, and the posteriori can be regarded as the component
likelihood. Choosing various sizes of neighbourhood ensures captur-
ing image structures at various scales. Alternatively, we can build a

pyramidical representation of the image and collecting colour pixels
across scales for learning texems, which can be more efficient in
incorporating neighbourhood relationships. A simple Gaussian pyra-
mid was found to be sufficient. Thus, each pixel in the finest level
can trace its parent pixel back to the coarsest level forming a unique
route or branch. Eq. (17) in the texem representation can then be re-
written as:

p Zi jθkð Þ = p Zi jμk;ωkð Þ = ∏
n∈l

N Z nð Þ
i ; μ nð Þ

k ;ω nð Þ
k

! "
; ð20Þ

where Zi here is a branch of pixels, l is the number of levels in the
multiscale pyramid, and Z nð Þ

i , μk(n), andωk
(n) are the colour pixel at level

n in ith branch, mean at level n of kth texem, and variance at level n of
kth texem, respectively. This is essentially the same form as (17).
However, the image is not partitioned into patches, but rather laid out
in multiscale first and then separated into branches. The pixels are
collected across scales, instead of from its neighbours.

Considering a textural regionmay containmultiple visual elements
and display complex patterns, a single texemmight not be able to fully
represent such textural regions. Hence, several texems can be grouped
together to jointly represent “multimodal” texture regions. Here, we
use a simple but effective mixture model order reduction method
proposed by Manduchi [29,30] to describe multimodal regions. Our
basic strategy is to group some of the texems based on their spatial
coherence. The grouped texem representation takes the following
form:

p̂ Zi jcð Þ = 1
β̂c

∑
k∈Gc

p Zi jmkð Þβk; β̂c = ∑
k∈Gc

βk; ð21Þ

where Gc is the group of texems that are combined together to form a
new cluster c which labels the different texture classes, and β̂c is the
priori for new cluster c. The mixture model can thus be re-formulated
as follows:

p Zi jΘð Þ = ∑
K̂

c=1
p̂ Zi jmkð Þβ̂c; ð22Þ

where K̂ is the adjusted number of classes.
The grouping in (22) is carried out based on the assumption that

the posteriori probabilities of some texems are typically spatially
correlated and hence can be grouped together. The process should
minimise the decrease of model descriptiveness, D, which is defined
as [29,30]:

D = ∑
K

j=1
Dj; ð23Þ

Dj = ∫p Zi jmj

! "
p mj jZi

! "
dZi =

E p mj jZi

! "2
# $

βj
; ð24Þ

where E[.] is the expectation computed with respect to p Zið Þ. In other
words, the compacted model should retain as much descriptiveness
as possible. This is known as the Maximum Description Criterion
(MDC). The descriptiveness decreases drastically whenwell separated
texem components are grouped together, but decreases very slowly
when spatially correlated texem component distributions merge
together. Thus, the texem grouping should search for smallest change
in descriptiveness, ΔD. It can be carried out by greedily grouping two
texem components, ma and mb, at a time with minimum ΔDab:

ΔDab =
βbDa + βaDb

βa + βb
−2E p ma jZið Þp mb jZið Þ½ $

βa + βb
: ð25Þ
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We can see that the first term in (25) is the maximum possible
descriptiveness loss when grouping two texems, while the second
term is the normalised cross correlation between the two texem
component distributions. Since one texture region may contain dif-
ferent texem components that are significantly different to each other,
it is beneficial to smoothen the posteriori as proposed in [30] such that
a pixel that originally has high probability to belong to just one texem
component will be softly assigned to a number of components that
belong to the same “multimodal” region.

2.4.3. Active contour formulation
Once the multiscale texem learning and grouping is finished, the

posteriori probability of the class of interest can be computed once
again using Bayes' rule:

p̂ c jZið Þ = p̂ Zi jcð Þβ̂c

∑K̂
c=1 p̂ Zi jcð Þβ̂c;

ð26Þ

where

p̂ Zi jcð Þβ̂c = ∑
k∈Gc

p Zi jmkð Þβk: ð27Þ

To simplify the notation, let u denote the posterior probability of
the class of interest. The posterior probability of region of interest
can then be used as the external force for the active contour. For
example, if the posterior probability is higher than the average ex-
pectation, the contour should expand in that region; otherwise, the
contour should shrink itself. The colour texem based active contour
can thus be formulated as follows:

dC
dt

= wκN + u− 1
m

! "
N ; ð28Þ

wherew is a real constant, κ denotes the curvature,m is the number of
classes and 1

m
is the average expectation of a class probability. Its level

set representation takes the following form:

∂Φ
∂t = wκ j∇Φ j + u− 1

m

! "
j∇Φ j : ð29Þ

We can then apply the proposed RBF level set scheme to solve
(29). The curvature can be computed analytically. However, since the
RBF interpolation is intrinsically smoothing the level set function, and
also in the interest of examining the evolution under the external
force field, we ignore this curvature based internal contour regular-
isation term, and use the image dependent force term alone to deform
the active contour. The contour is supposed to expand and shrink to
maximise the posterior of the regions of interest. Thus, (29) can be re-
formulated as (cf. (11)):

ΨT dα
dt

+
1
m

−u
! "

j ∇Ψð ÞTα j = 0: ð30Þ

Its solution is obtained by solving (14), where B αð Þ =
1
m
−u x1ð Þ

# $
…

h
1
m
−u xNð Þ

# $
0 0 0#T . Fig. 5 shows a flow chart of the

proposed method, from texem learning to level set updating.
The RBF centres can be placed on a regular computational grid,

which can be a lot coarser than the pixel grid due to the interpolation
capability of the RBFs, unlike in the conventional level set approach
where a dense computational grid is necessary in order to estimate
the derivatives with sufficient accuracy. In the interest of further
reducing the computational complexity, an irregular grid can be used
and the grid structure can be determined using a multiscale approach,
that is, start from a coarse level set interpolation using a coarse regular

grid which gives a good indication of the topology and shape of the
object of interest and then more RBFs centre are placed at and near
object boundaries resulting in a much finer irregular grid that is
compact and data driven.

With this proposed level set updating scheme, new contours can
even grow out in regions away from existing contours, which is not
possible for the conventional level set approach. Equally importantly,
the initial contour can be forced to vanish from the image domainwhile
newly appearing fronts are able to localise the regions. This gives
significant improvement in initialisation invariancy and achieves global
minimum, instead of local minimum (as demonstrated earlier in Fig. 4).

2.5. Extension to 3D

Similar to the conventional level set method, the extension of
the proposed method to higher dimensions is straightforward. Even
better, the proposed method demands only a much coarser mesh
grid. The RBF centres can be more loosely placed in 3D, instead of the
full pixel grid often used in conventional level set approaches. Also,
solving the ODE system in 3D is much easier than solving the PDE
system. The updating of the expansion coefficients is efficient and
again does not require re-initialisation of the level set function. The
main computation cost comes from interpolating the initial level set
and reconstructing the level set function after it stabilises. However,
there are several methods available to speed up the process, such as
the Fast Multipole Method (FMM) [31]. It has been shown by several
authors, for example [32], that RBFs can be efficiently used in inter-
polating scattered points.

3. Experimental results

We illustrate the results of the proposedmethod on both synthetic
and real data.2 For most of the examples, it is assumed it is a

input image multiscale texem
learning and grouping texems

posterior
probability

initial
active

contour

initial level
set function

RBF
interpolation

interpolated
level set

level set
updating

segmentation
result

Fig. 5. Flow chart of the proposed active contour segmentation.

2 Example animations are accompanied with this submission.
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foreground and background separation problem as typical in
deformable modelling. In the case of multi-textural regions, we do
require prior knowledge of the region of interest when performing
active contour based segmentation.

The proposed method was implemented using Matlab on a
2.5 GHz CPU PC with 8 GBs of RAM. A regular computational grid
was used with one RBF centre in every 3×3 region of pixels. For the
range of images we tested with, from 128×128 pixels to 300×200
pixels, it takes around 90 s to interpolate the level set function, around
150 s to learn the texems and perform texem grouping, and less than
10 s to update the level set function. This latter step is very efficient
since it only needs to solve the ODE problem and the spatial de-
rivatives are analytically computed. It is many times faster than con-
ventional level set methods.

To recapitulate, in Fig. 4, the active contour in the conventional level
set updating scheme could only recover the outer object boundary
where the continuous front propagation could possibly reach. The
proposed method, however, allowed the level set to create new com-

ponents away from the existing propagating front and capture the inner
boundary as well.

Fig. 6 shows the comparative results of the texem based snake
using the conventional level set approach (top row) and the proposed
RBF level set method (rows 2 and 3). The initial snake was placed
outside the object of interest and was forced to shrink. The
conventional method failed to localise the object while the proposed
method succeeded by growing new contours inside the object. In
this case, the conventional method requires the initial snake to be
specifically overlapping or placed inside the object. This assumes that
prior knowledge of the spatial position of the object of interest, as well
as its topology, is available for initialisation, which is not always the
case in real world applications. The proposedmethod does not require
any such assumptions and is particularly useful in detecting unknown
number of objects with complex topologies.

Another comparative example is given in Fig. 7, where multiple
regions exist with more complex topologies, i.e. internal boundaries.
The proposed method localised all the regions that were indicated by

Fig. 7. Comparative result on real image — first row: segmentation result using conventional level set; second and third rows: results using proposed RBF level set method.

Fig. 6. Comparative result on real image — first row: segmentation result using conventional level set with the initial snake forced to shrink; second and third rows: results using
proposed RBF level set method.
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the external force field, while the conventional level sets completely
failed with such an initialisation.

Although logically straight forward, it is significant to realise that
the ability to develop new contours in fact indicates there is actually
no need to place the initial contour in the first place. The final row
of Fig. 8 gives such an example. The first and second rows of Fig. 8 also
provide two completely different initialisations with the first one
commonly used in region basedmethods as an approach to initialisation
invariancy.

More experimental results of using the proposed method are
provided in Fig. 9. In each case, the proposed level set updating scheme
facilitated the active contour to capture all object boundaries of
interest. Also note that the texem based region force handled regional

colour and feature variations very well. Fig. 10 provides several more
initialisation-free examples, where the proposed method carried out
the segmentation without placing an initial contour, successfully
developing new contours and localising the objects. Again note that
the texem based region force handled regional colour and feature
variations very well.

Next, the ability of the proposed method in handling complex 3D
topologies and initialisation invariancy is examined. We applied the
3D RBF level set method on synthetic data and evolved the active
surface according to (9), where F is the region indication function, i.e.
Fb0 for regions inside the 3D objects andFN0 otherwise, as before. In
Fig. 11, the target object was a hollow sphere. The initial surface was
placed to surround the object and was forced to shrink to capture the

Fig. 9. Segmentation results using the proposed method.

Fig. 8. Initialisation invariancy — first row: segmentation using the proposed method with multiple uniformly distributed circular initial active contours; second row: segmentation
using the proposed method with initial active contours as parallel lines; third row: segmentation using the proposed method without any initial active contour, i.e. completely
initialisation-free.
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object boundaries. With the proposed RBF level set method, not only
was the outer boundary localised, but also the boundary inside was
captured, i.e. as the active surface was deforming, a new zero level set
developed inside the object. The next example given in Fig. 12 shows

that the region indication function shrinks the active surface that
initialised outside the target object. There was no intersection
between the initial surface and the object, or when the initial surface
deformed and disappeared. With the conventional level set
approaches, the surface would shrink and disappear completely, as
it does in the first phase of the proposed method as shown in the first
three images in the upper row. However, the proposedmethod allows
the level set to deform further to “grow” outside the initial surface and
finally recovers the object. This again demonstrates the method's
initialisation independence feature. In the final example shown in
Fig. 13, we demonstrate the ability of the proposed method in
modelling very complex geometry in 3D.

4. Conclusion

We have presented a novel method to perform implicit modelling
using RBFs. The proposed method has a number of advantages over
the conventional level set scheme: (a) The evolution of the level set
function is considered as an ODE problem rather than a much more
difficult PDE problem; (b) Re-initialisation of the level set function
was found no longer necessary for this application; (c) More complex
topological changes, such as holes within objects, are comfortably
found; (d) The active contour and surfacemodels using this technique
are initialisation independent; (e) The computational grid can be
much coarser, hence it is potentially much more computationally
efficient when updating the level set function, particularly in high

Fig. 11. Recovering a hollow sphere using a proposed method— from left: initial deformable surface, evolving deformable surface, stabilised surface, and the stabilised surface with a
section cut away to show the hole captured inside.

Fig. 12. Arbitrary initialisation — the initial surface is placed outside the object and is forced to shrink, but the proposed method allows the level set to deform further to develop a
zero level set outside the initial surface and recover the object.

Fig. 10. More examples of segmentation without initialisation using the proposed
method.
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dimensional spaces. The proposed texem based active contour
method models the colour image without decomposing it into a
lower dimensional space and shows promising performance on seg-
menting textured colour images.

Appendix A. Supplementary data

Supplementary data to this article can be found online at
doi:10.1016/j.imavis.2010.08.011.
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