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Tracking with Active Contours Using
Dynamically Updated Shape Information

Abstract

An active contour based tracking framework is described that generates and
integrates dynamic shape information without having to learn a priori shape
constraints. This dynamic shape information is combined with fixative pho-
tometric foreground model matching and background mismatching. Bound-
ary based optical flow is also used to estimate the location of the object
in each new video frame, incorporating Procrustes based shape alignment.
Promising results under complex deformations of shape, varied levels of
noise, and close-to-complete occlusion in the presence of complex textured
backgrounds are presented.

1 Introduction

The work presented here is concerned with the segmentation and tracking of objects un-
dergoing arbitrary smoothly varying deformations. Constraints on the shape of the tracked
object are imposed here without the often complex, supervised pre-processing and model
preparation that is normally associated with a priori learning of shape constraints. In
other words, we are particularly interested in eliminating the need for hard a priori shape
constraints for tracking objects.

Active contours have been extensively investigated for segmentation and tracking, see
for example [8] and the references therein. They have been integrated with prior shape
knowledge (including its variations) to help increase the robustness of tracking in both
spline based approaches, e.g. [2], and geometric based level sets, e.g. [14]. Shape repre-
sentation in active contour based works is often in the form of a PCA model of a set of
characteristic level sets [9, 14], or control points modeled using the Active Shape Model-
ing (ASM) [6]. The level set PCA model is used to model the most probable underlying
variations of an object’s shape to which the currently evolving level set is compared. Sim-
ilarly, the ASM approach represents spatial modes of variation of a set of points along an
object’s contour. For example recently, Cremers [7] demonstrated how prior shape infor-
mation may be useful in extremely noisy situations where non-shape information alone
(Gaussian intensity distributions) did not allow a person to be tracked.

Many of these shape based methods that rely on supervised training of the prior shape
information are extremely powerful, however, the preparation of extensive prior shape
knowledge is not always convenient and even rather cumbersome. Moreover, these meth-
ods can encounter difficulties if the object being tracked undergoes an unpredicted trans-
formation in shape. In [22], Yilmaz et al. propose a method that adapts to previously
unseen shapes, but only utilized this high-level on-line shape information when an occlu-
sion had been detected. The approach we present in this paper is to use a signed distance



skeleton representation of shape that is dynamically and continuously updated. This as-
sumes that the deformable object may undergo smooth changes in shape from frame to
frame, and does not require any a priori shape configurations. Unlike a conventional
skeleton (e.g. [26]), a signed distance skeleton is a useful representation of shape as itis a
completely reversible summary of the object shape. Furthermore, it is based on the shock
points of the signed distance function which we use as the level set representation for our
active contour framework.

We instill the signed distance skeleton in a level set based active contour framework
that combines fixative photometric information and in-line dynamic shape modelling to
continuously control the shape of the tracked object. Furthermore, we use optical flow
along the shape boundary of the object to initialize the new position of the object in each
frame. Then alignment of the dynamic shape information is performed by Procrustes
analysis, e.g. [11], of the points in the silhouettes of the tracked object.

A new modeling approach for the photometric information is also presented that uti-
lizes a fixative photometric probabilistic description of the object being tracked. The
model maximizes the product of two ratios: (a) the ratio of the model distribution to
the foreground distribution of the current contour position for all foreground pixels; (b)
the ratio of the background distribution to the model distribution for all background pix-
els. This approach provides a robust measure of match with the tracked object. The initial
conditions are provided manually or via a bootstrap approach which detects spatially inde-
pendent foreground objects as possessing different motion properties from the dominant
motion (e.g. background), see e.g. [12].

2 Methodology

Three sources of information are incorporated into the tracking framework proposed here:
fixative photometric information via histogram modeling of the foreground (tracked ob-
ject) and background image regions (section 2.2); shape regularization using a combi-
nation of signed distance skeletons and signed reverse distance transforms (section 2.3);
and low level motion estimation using boundary based optic flow estimation (section 2.4).
The form of the shape is carried across from one frame to the next, thus providing tem-
poral shape regularization without resorting to a priori learned shape structures. Section
3 considers some practical issues such as the discrete formulation of the proposed PDE.
Experimental comparative results are then presented in section 4.

2.1 Probabilistic model

Each image frame is considered here to be composed of foreground (f) and background
(b) pixels, where Q = jUb. The foreground and background regions are associated with
photometric image information (I, Vx € § or Vx € b, for pixel x). The division of Q
is also characterized by a shape, S, defined in section 2.3. An approach is now devel-
oped to determine whether a point is more likely to have come from the foreground, { or
background, b. The foreground a posteriori probability is given by
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where p(I;|f) is the photometric data likelihood for the foreground region, p(S|f) is the
foreground shape PDF, P(f) is the prior probability for the foreground region, and p(I;,S)
is the marginal data PDF for the foreground region. The a posteriori PDF P(b|l,) for the
background region can be similarly defined. Furthermore, an a posteriori model proba-
bility, P(m|/,S), may also be similarly defined.

Thus, the foreground similarity to the model (Ry,;,) and background dissimilarity to
the model (ﬁmm) are now possible via two logarithmic probability ratio tests,
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This expression quantifies the model similarity with the estimated foreground and its dis-
similarity with the estimated background. By minimizing (4), we can produce an optimal
division of the image space into foreground and background regions.

2.2 Fixative photometric modeling

It is common to use the image RGB values to identify contiguous regions that may cor-
respond to an object of interest. This photometric information can be combined with
an active contour approach which is then able to bound regions of commonality, e.g.
[5, 19, 25]. We present a more intricate probabilistic photometric model to remember
photometric information of the object being tracked (Fixative Photometric Model). It
combines both foreground matching and foreground to background mismatching to pro-
vide a robust measure of the tracked object’s boundary. This can be compared with exist-
ing probabilistic region based active contour modeling approaches, many of which only
rely on a type of competition between the foreground and background photometric infor-
mation. These depend on the tracked object possessing sufficiently different photometric
information in comparison to the neighboring structures, which otherwise can lead to the
foreground region leaking into background regions (or vice versa). Further information
is therefore often introduced to constrain the object, such as gradient magnitude based
energy terms. In contrast to this, we advocate the use of foreground matching and back-
ground mismatching using a stable probabilistic description to reduce the possibility of
leakage from one region into another.

The photometric information in the foreground and background regions are described
by the histograms 77§ (I(x € f)) and 4%, (I(x € b)) respectively. This histogram informa-
tion is then used to approximate the PDFs, p(Ik|f) and p(k|b). The probability space
is modeled here with a finite number of Gaussian components with parameters that are
estimated via Expectation Maximization. This information is automatically available for



each new image frame via the bounds of the active contour. Thus we can reformulate (4)
as a photometric energy to be minimized,

Ep =1 / Aan I p(Ix 1) — In p(IxF)dx + A / A In p(I|m) — In p(L[B)dx;  (5)
f b

where A, controls the fixative photometric model PDF importance, and A and A4 control
the contribution of the foreground similarity and background dissimilarity respectively.
If particular parameter configurations are selected given the PDFs of the tracked re-
gions, then (5) may also be considered to be equivalent, in part, to existing models, e.g.
[5, 19, 25], that do not incorporate a similar foreground memory component. For exam-
ple, if Am =0, Ay <0, A{ = —2; and given imaging conditions that result in the intensity
distributions of the foreground and background regions possessing Gaussian distributions
with a common variance, i.e. I(x) ~ .4 (t5,063) and I(xp) ~ A (11p,063), then (5) re-

duces to
ﬁEPéAf/(IX*Uf)ZdXJr%/(Ix*“b)zdx’ (6)
f b

which is the popular energy term proposed by Chan and Vese, [5]. Alternatively, if 4, =0
and A; = —Ap, then (5) reduces to

S Epl —/lnp(lx|f)dx— /lnp(lx|b)dx, ™)
§ b

which is another popular active energy term found in [19, 25], referred to here as region
competition. Thus, the formulation proposed here provides a general fixative photometric
probabilistic based model to match to particular regions of the image data. Furthermore,
the formulation can also be adapted to possess the same functionality as existing region
based approaches.

2.3 Shape representation and regularization

In addition to photometric information constraints, (4) included shape PDFs and prior
probabilities for the foreground and background regions. We therefore introduce to our
tracking framework novel, dynamic shape information to quantify the dissimilarity of the
current shape, S M with the preceding frame shape, S [*=1]_ This is based on the assumption
that the shape of the object would not be expected to undergo significant sudden changes
from one frame [y — 1] to the next [y]. Thus, the shape of the currently tracked object may
be compared with the shape of the object in the preceding frame to reinforce the tracking
stability.

As an abstraction of the shape at a high-level, a signed distance skeleton representa-
tion, s = {(x,0)|¥(x) = 0} is selected here, (e.g. [1]). 0 is the distance from the contour
to the skeleton and W(-) is a signed distance map from the contour € that surrounds the
foreground region f. The signed distance map ¥ is a composite function, obtained by
applying the signed distance transform 2, (e.g. [3]) given by ¥ = P 0 ¢. ¥(-) has the
following properties: ¥ (x € f) < 0 and ¥(x € b) > 0. Thus, P(-) quantifies a distance
to the contour ¢. The distance transform, & is implemented here via a 3 x 3 Chamfer
approximation to the Euclidean distance transform, [3].



The signed distance skeletonization process, . o W, utilizes the signed distance map
by first identifying the local minima in the signed distance map [1], i.e. Xyin = {x|¥(x) <
W(x;) 3x; ¢ |(x,x;)] < 1,%(x) < 0}. These points define a set of disconnected minima
which then can be connected to define a recognizable skeleton in the direction of mini-
mum gradient via

XY = (x| argmin(W(x) — W(x;)), ®(x) <0, x € X2 T x;, [(x,x;))| < 1}, (8)
Xj

where XLKZO] = Xmin- XLK] then defines the skeleton where no further points can be con-
nected at iteration [k + 1]. Hence, s = X when XK = X[&+1 " The inner product,
[{-,-)] <1 is defined on a discrete pixel based grid where in practice diagonal pixels are
weighted by the inverse of their distance. The skeleton often requires thinning, so such
a process is then applied to reduce it to a 1 pixel-width skeleton. The skeletonization
process is reversible via a signed reverse distance transform, ¥ = 2~ !(s), providing the
signed distance values are retained, i.e. 0. The signed distance skeleton representation
therefore succinctly encapsulates the shape information of the tracked object.

Intuitively one may consider a simple comparison of the skeletons to be sufficient to
determine whether the current shape 57 closely resembles the shape of the tracked object
s in the preceding frame. However this information can not regulate and control
the shape of the active contour at a local level. Therefore it is necessary to reconstruct
the shape of the object after transforming the preceding frame shape s~ to the space
relevant to the current image data.

The reconstruction process can take the form of a signed reverse distance transform
2" of the aligned signed distance skeleton s'7~ 1, i.e. W/[y—1] = 21 (s'""1]) where
s = 7 (sl w1 @lY)) The alignment process .7 rigidly aligns the preceding
frame skeleton to the current shape via Procrustes alignment [11] of the silhouette of the
foreground in the preceding frame and the current frame, i.e. where ¥(x) < 0, [23]. This
has been found to be more robust than direct alignment of the skeletons. An additional en-
ergy term can therefore be considered that regulates the shape of the object being tracked

__ [1,P[0)
e ! " psl)

dx = — A / (me (x) — @/l (x))zdx. )
Q

where p(S|b) and p(S|f) are normal distributions with variances, 67, sz, respectively and
spatially variant means given by, ¥’ =11, dp o< (GE - sz) / (G%sz) implicitly controls the
influence of the shape of the contour from the preceding frame, %=1, on the evolving
contour of the current frame %", The signed distance skeletons in combination with the
signed distance maps of the tracked object thus provide a concise approach to alignment
and comparison of the shapes of the tracked object. This approach is similar in some
respects to [26], except here in this work (i) a variable topology, dynamically updated
skeleton is used; and (ii) signed distance values are retained to enable the reconstruction
of a comparable signed distance map from the preceding frame to the signed distance
map of the currently evolving contour. This is an important consideration, as will be seen
shortly, when the signed distance map is employed to re-initialize the level set embedding
function ¢, used as the basis for the evolution of the object shape.



Region regularity As a measure of regularity the prior probabilities, P(f) and P(b)
could be described by MRFs. However a simpler measure of regularity can be introduced
into the optimization process via minimization of the length of the contour defined by
L = [, 80(¥)|VW¥|dx, [5], where &(-) is the Dirac delta function. Hence, c.f. (4),

_ P(b)
EL— —Zln P(f)

where A is the weight of the length constraint and hence controls the regularity of the
boundary that divides { and b.

dx=—Ar / 8o (W) V17 dx. (10)
Q

2.4 Boundary based optical flow

Tracking objects in video data can be accomplished with active contours by allowing the
contour to adjust to the new image frame data without any external estimation of the new
position of the object, e.g. as in [24]. However this will often require more computations
to allow the contour to adapt to the new position.

A commonly used approach for tracking objects is to utilize estimates of optical flow
for features that are reasonably easy to identify. For example Lowe [15] used salient
features which are tracked using optical flow estimation, [16]. Paragios and Deriche [18]
utilized optical flow as a further constraint to be minimized. Alternatively, boundary
based optical flow may also be considered, e.g. in [21] a Canny edge detector was used
to identify suitable locations for optical flow estimation. Here we also track the object by
estimating the optical flow along the boundary points. However the tracked contours are
implicitly defined in our active contour framework, i.e. x = %(s)h’_l] Vs. First, a mean
estimate u!7~!! of the movement of the object is determined along this contour: ,u“”l] =

mzxc cct-n V77U (x) where |- | is cardinality, vI7~!!(x) is an optical flow estimate

at point x, and Cl*=1 is the set of discretized contour points, i.e. 3 5,X, = %[V’l](s).
This is then used to update the position of the object contour for each new image frame
¢ (s) = uv="1 - ¢r=11(5). Thus, the position of the contour in each new image frame
is estimated via the mean of the optical flow along the boundary of the tracked object.

3 Combined tracking framework

The contour, € that surrounds f can be approximated via splines, but this explicit repre-
sentation presents some practical difficulties, such as situations that result in significant
changes in the topology of the evolving contour. Therefore % is embedded in the zero

level of a level set, i.e. §(x, = €(s,t),t) = 0. Thus, the three energies in (4): Ep in (5),
Ew in (9) and Et, in (10) can be written as

E= [{=24(1=H(6)) (1np(0sfm) ~In p(L ) + A6 (6) (1 pl0s]m) ~In p(1 o))
Q

- (qJ[Y] (x) — \P/[%l](x))Q — 8o (W) vl }dx. (1)



where H () is the Heaviside function. Minimization of this function is possible via gradi-
ent descent, hence it can be shown (using variational calculus and methods from [5, 20])

9E _ (9) (—),f (Inp(Ix|m) — Inp(k|f)) + Ap (In p(Ix|m) — In p(L|b)) — leif)

o
Ay (q)(x) /-1l (x)) dx. (12)

where 7 is the curvature and W = ¢ which is enforced via the initialization and re-
initialization processes discussed shortly. This is then implemented via a finite difference
scheme resulting in

L0 +1)=9()) = 9] (A1 In pli]m) ~ 10 p(1])

Ao (R In p(IIm) ~Inp(1]6)) + ) = A (9() = N(0)) . (13)

where Ar is the iteration step of the finite difference calculations and &y(¢) has been
replaced by |V¢|, [5] to extend the evolution to all level sets. The level set has to be
re-initialized after a number of iterations to reduce errors that accumulate due to the finite
difference approximation. The re-initialization process used here involves locating the
zero contour of the current level set ¢ (¢) and re-computing the signed distance transform.

After re-initialization, the photometric PDFs for the foreground and background are
re-estimated to take account of the change in the location of the zero level set, i.e. V x € Q,
¢(x,1) = 0. The skeleton from the preceding frame, s/"~!l is then aligned to the skeleton
of the current level set, s”! (¢). The signed reverse distance transform is then applied to
the aligned previous frame skeleton sV~ 1] to create the signed reverse distance map for
this level set iteration.

4 Results

A number of experiments were performed to determine the efficacy of the proposed
framework. The number of finite mixtures in the Gaussian Mixture Model (GMM) for
the photometric modeling was set to six. This was empirically found to provide the best
results for the data we used.

Figure 1: Illustration of the result of tracking through complex deformations. Bootstrap
from frame 24.

As an exemplar, we first illustrate the proposed method by tracking a moving hand
undergoing a rotation resulting in complex shapes and transformations of shapes. A ro-
tating hand presents a very large range of different shapes through which the tracking
framework has to dynamically and adaptively update the shape information. The results



shown in Figure 1 demonstrate that the model proposed here is able to track under these
conditions.

The next experiment demonstrates the robustness of the proposed framework to vari-
able amounts of image noise. The noise was introduced onto the hand video sequence by
replacing pixel RGB channel values with the given probability (i.e. 15%, 30%, 45% or
60%) using a uniformly distributed noise value. This is similar to [7] except color images
were used here. Sampled frames from each noise sequence are shown in Figure 2 where it
can be seen that the tracking framework is able to track in the presence of varied amounts
of noise and complex shape deformations.

Figure 2: Illustration of the result of tracking through complex deformations and variable
amounts of noise. Only sample frames from each noise sequence are shown (15%, 30%,
45% and 60%).

The further example demonstrated here is of a person walking amongst some trees
(video data from [13]). Comparative results can be seen in Figure 3. In the top row,
the region competition [19, 25] in (7) and optical flow were used to track the person
without using shape, i.e. Ay = 0. The region competition approach soon became unable to
constrain the model sufficiently to prevent growth into the complex textured background.

In the second row, our fixative photometric model in (5) was applied, again together
with the optical flow but still without shape regularization. This stabilized the tracking
process, producing accurate tracking of the person moving amongst the complex back-
ground. However the tracking was lost when the person went behind the tree.

In the third row, we performed the same experiment, but introduced the shape in-
formation. The use of this shape information appears to provide a smoother outline of
the tracked person. Furthermore accurate tracking was also obtained for the person until
close-to-complete occlusion behind the tree. The fixative photometric model constrains
tracking to only adapt to the object of interest. This becomes a problem during severe
occlusion due to the different photometric properties of the tree.

In the final row, the same model configuration was utilized but the fixative photomet-
ric model was updated from one frame to the next, thus providing dynamic information
regarding the changing photometric properties of the foreground region. This model con-
figuration enabled tracking of the person through the close-to-complete occlusion.

Performance characterization (Table 1 and Figure 4) was performed on all frames
from the video shown in Figure 3 via comparison with manually segmented ground truth.
Results in Figures 3 and 4 help to illustrate the advantage of including dynamic shape
information in the model framework. It also illustrates that dynamically defined shape
information is sensitive to occlusions, unless the photometric information is also defined
dynamically, as for the final row in Figure 3 or model configuration (D).

Some further results for a moving observer can be seen in Figure 5 using data from
[24], where the foreground (fish) is undergoing significant changes in scale, shape and



Figure 3: Tracking results for person walking in busy background. Row (A) region com-
petition (7) without shape; row (B) fixative photometric model (5) without shape; row
(C) as for (B) but with shape prior (Ag # 0); row (D) as for (C) but updating the fixative
photometric model from frame to frame. Bootstrap from frame 10. Data from [13].
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Figure 4: Quantitative comparison for trackings result shown in Figure 3 using the fixative
photometric model and bootstrap from frame 10.

photometric properties.



] I Model \
’ Frame,y H A ‘ B ‘ C ‘ D ‘
21 0.10 | 0.75 | 0.76 | 0.74
41 0.09 | 0.82 | 0.84 | 0.84
215 0.03 | 0.63 | 0.78 | 0.55
258 0.05 | 0.00 | 0.00 | 0.76

Table 1: Dice co-efficient results corresponding to frames and model configurations in
Figure 3. Bootstrapped from frame 10.

i o ih - o
Figure 5: Tracking results for fish sequence with moving observer. Some problems were
encountered, but the tracker subsequently recovers the full shape of the fish. Data from
[24].

5 Conclusions

This paper has presented a tracking framework incorporating a novel generalized fixative
photometric active contour model and an approach for including prior shape information
that is dynamically driven, adapting to new shape configurations whilst constraining the
evolution of the active contour model. Tracking is performed via optical flow estimation
along the boundary of the contour rather than relying on the extraction of salient points
in the image data and associating those points with the object being tracked. Results
from the combined framework have shown that the framework is able to track objects
undergoing complex deformations of shape even in the presence of varied amounts of
noise. Further results have also shown tracking under close-to-complete occlusion with
complex background photometric information.
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