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Abstract. In this paper, we present a preliminary study on segmenting a human upper airway from a 3D CT scan

using a level set based deformable surface model. The human upper airway has a very complex geometry and its

topology may vary from individual to individual. Accurate 3D geometry reconstruction is essential in understanding

airway disease and a prerequisite for patient-specific computational fluid dynamics analysis. The proposed method

uses a hypothesized dynamic interaction force between the deformable surface and object boundaries which can

greatly improve the deformable model performance in acquiring complex geometries, boundary concavities, and in

dealing with weak image edges. The results show that the proposed deformable model can be used to efficiently

segment complex and compact structures such as the nasal cavity from a 3D image dataset.

1 Introduction

The human upper airway is the primary conduit for passage of air to the respiratory system. There are several airway

related problems which have been recently recognised to affect a significant portion of the human population. The

nasal cavity (part of the upper airway) which conditions and filters the inspired air forms the uppermost part of the

human airway system. Numerous studies, for example [1, 2], on the nasal cavity have shown that the function and

airflow of the nasal cavity are likely to be associated with some airway diseases (for example, sleep apnoea), and are

important in the treatment of such diseases. Thus, knowledge on the function and airflow of the nasal cavity will help

in understanding the human airway diseases and will result in the development of efficient treatment methods.

The complex geometry and narrow passages of the nasal cavity have made detailed experimental studies of the nasal

airflow challenging. It is also worth noting that its topology may vary from individual to individual, which makes it

difficult for atlas based techniques. Recently, some numerical models, e.g. [3–6], have been developed to study the

airflow in nasal cavities. However, several of these studies [3,4] were performed using simplified or up-scaled models.

This is mainly due to the challenge in segmenting the complex geometry of the nasal cavity from images acquired using

computed tomography (CT) or magnetic resonance imaging (MRI). In [5], image slices were interpolated to increase

the image data resolution and the airway is extracted using a region growing algorithm, while a thresholding method is

used in [6] to extract the airway model. However, these methods may not be able to extract the nasal cavity accurately

due to the complex and compact structure of the nasal cavity, and the noise and image inhomogeneity that exist in the

dataset.

Deformable models are highly appropriate in segmenting these upper airway structures since they can naturally adapt

to local image structures. However, explicit or parametric models are not suitable in our case since they generally

have difficulties in dealing with topological changes and reaching into deep concavities and thin structures. Implicit

deformable models based on the level set technique are introduced by Caselles et al. [7] and Malladi et al. [8] to address

some of the limitations of parametric deformable models. In this approach, the evolution of curves and surfaces are

represented implicitly as a level set of a higher-dimensional scalar function and the deformation of the model is based on

geometric measures such as the unit normal and curvature. Thus, the evolution is independent of the parameterisation,

and thus topological changes such as those in the complex geometry of the nasal cavity can be handled automatically.

In this paper, we draw our inspiration from the bidirectional and dynamic nature of the magnetostatic force used in

the 2D magnetostatic active contour (MAC) model [9] to formulate a new external force field which is suitable for 3D

image data. Briefly, the proposed deformable model uses an external force field that is based on the relative position

and orientation of the deformable surface and object boundaries. This force field is called the geometric potential force

(GPF) field as it is based on the hypothesised interactions between the relative geometries of the deforming surface

and the image object boundaries (characterised by image gradients). The evolution of the deformable model is solved

using the level set method. In this preliminary study, the new deformable model is applied to the segmentation of the

complex structures of the human upper airway, including nasal cavity and sinuses, from a 3D CT image dataset.



2 Proposed Method

A deformable model is a sequence of contour or surface models obtained by taking an initial model and incrementally

modifying its shape [10]. It provides an effective way to reconstruct continuous contours or surfaces from 2D or 3D

data. Depending on the assumption of how an object boundary is described, deformable contour and surface models

can be classified into image gradient based [8, 9, 11–13], region based [14, 15], and hybrid approaches [16, 17]. For

image gradient based methods, it is assumed that object boundaries collocate with image intensity discontinuities which

is widely adopted in various computer vision problems. Region based techniques, on the other hand, assume that object

boundaries collocate with discontinuities in regional characteristics, such as colour and texture. In other words, each

object has its own distinctive and continuous regional features, which is not always true for real world data, for example,

due to intensity inhomogeneity and multi-modal nature. Conventional image gradient based methods have difficulties

in dealing with image noise, weak edges and difficult initialisations as they are generally prone to local minima that can

frequently appear in real images. Numerous research works have been reported in the literature to improve the gradient

based approach. The balloon force [8] can effectively expand or shrink the contours, however, has great difficulties

in handling weak edges and cross boundary initialisations. The bidirectionality of the gradient vector flow (GVF)

model [11] allows more flexible initialisation and its diffused force field handles image noise interference in a much

better manner. However, it has convergence issues caused by critical points in its force field [9, 12, 18]. More recent

attempts, such as [12, 13, 18], showed promising but limited success.

In [9], Xie and Mirmehdi proposed a novel deformable contour model based on hypothesized magnetic interactions

among gradient vectors and contours. This image gradient based method showed significant improvements on conver-

gence issues, e.g. reaching deep concavities, and in handling weak edges and broken boundaries. While applying the

analogy directly to deformable modelling it requires estimation of tangent vectors for the deformable contours, which

is convenient in 2D case, however, not possible in 3D. In this paper, we introduce a hypothesized geometrically induced

force field between the deformable model and object boundary that is based on the relative position and orientation of

the geometries. In other words, the magnitude and direction of the interaction forces are based on the relative position

and orientation between the geometries of the deformable model and the image object boundaries, and, hence, it is

called the geometric potential force field. This new external force field is similar to the magnetic force field used on

2D images in MAC [9], but unlike [9], the proposed force field can be readily generalized to a higher dimension.

2.1 Formulation of the geometric potential force

As in [9], the external force field is based on the hypothesized magnetic force between the active contour and object

boundaries. Consider two elements dl1 and dl2 of contours with currents I1 and I2, and tangent unit vectors t̂1 and

t̂2, respectively. According to the Biot-Savart law, the magnetic flux density dB created by the element dl1 and the

corresponding force dF acting on dl1 due to dl2 are







dB =
µ0

4π

I2dl2
r2

(t̂2 × r̂21)

dF = I1dl1(t̂1 × dB)

(1)

where r is the distance between dl1 and dl2, r̂21 is the unit vector pointing from dl2 to dl1, and µ0 is the permeability

constant. Note the term µ0/(4π) in (1) is a real constant, which can be ignored while adapting it to deformable

modelling, i.e. µ0/(4π) = 1. This formulation has been applied directly in MAC [9] to compute the magnetic field

and force required to draw the active contour towards object boundaries in 2D images. Note that the current directions

represented by the tangent vectors t̂1 and t̂2 have to be known in advance before computing the magnetic field and

force. To deal with this requirement, the authors in [9] compute the direction of the imposed currents for the active

contour and object boundary by rotating the respective gradient vectors in a clockwise or anti-clockwise manner such

that a current loop is formed on both the active contour and object boundary.

However, it is difficult to extend MAC to handle 3D images directly as it is not apparent how the hypothesized current

direction is to be estimated and set on a 3D object. Here, we show how we can solve the problem of estimating the

hypothesized current direction in [9], and show the formulation of the new geometric potential force field.

First, we re-write (1) the 2D problem in a slightly different manner allowing 3D generalization. Let vector ẑ = (0, 0, 1)
be the normal to the plane where the active contour and object boundary are lying on. The tangent vectors on the length

elements can now be represented as t̂1 = ẑ × n̂1 and t̂2 = ẑ × n̂2, where n̂1 and n̂2 are the unit normals to the

contour and object boundary at dl1 and dl2 respectively (refer to Figure 1). The magnetic flux density created by dl2 at



Figure 1. Relative position and orientation between geometries: left (2D contours) and right (3D surfaces).

dl1 can now be written as

dB = −
I2dl2
r2

(ẑ (r̂21 · n̂2)) (2)

Then the force acting on dl1 by dl2 can be given by a simple expression























dF = −
(I1dl1)(I2dl2)

r2
n̂1(r̂21 · n̂2)

= (I1dl1n̂1) dG

dG = −
I2dl2
r2

(r̂21 · n̂2)

(3)

Note that the magnetic field in the 2D model has only a vertical component: dB = (0, 0, dG) and can be treated as

a scalar dG. This formulation is analogous to the magnetic force field used on 2D images in [9], however, the new

external force field has a different physical meaning compared to the traditional magnetic force field. In particular, one

can look at the geometric potential dG as a induced scalar field, in which the strength of dG depends on the relative

position of the two elements dl1 and dl2. The magnitude and direction of the geometrically induced vector force dF is

therefore handled intrinsically by the relative position and orientation between the geometries of the deformable model

and object boundary.

More importantly, this new force field can be easily extended to higher dimensions, and a generalized 3D version of

the geometric potential force acting between two area elements dA1 and dA2 can be readily given as











dF = I1dA1n̂1dG,

dG =
I2dA2

r3
(r̂12 · n̂2)

(4)

where dG the corresponding 3D potential field, and, obviously, r̂12 = −r̂21. The exponent for r in (4) has been

changed from 2 to 3 in order to maintain its physical meaning while extending from 2D to 3D.

2.2 Deformable model based on geometric potential force

Let the 3D image be described by function u(x) where x is a pixel or voxel location in the image domain, and ∇u be its

gradient. Let dA1 belongs to the deformable surface with unit normal n̂1 whereas dA2 belongs to the object boundary

with unit normal n̂2. To compute the force acting on dA1 from dA2, we set I1 as unity and substitute I2 = |∇u| and

n̂2 = ∇u/|∇u| into (4). Then we compute the total geometric potential field strength G(x) at every voxel. Note that

only voxels on the object boundary will contribute to the geometric interaction field. Let S denote the set containing

all the edge voxels, and s denote a boundary voxel, the total geometric interaction at x can then be computed as:

G(x) = P.V.
�
�

�
�

∫∫

S

r̂xs

r3
xs

· n̂2(s)I2(s) dAs (5)

where r̂xs is the unit vector from x to s, and rxs is the distance between them. Computation of (5) is efficiently carried

out based on the 3D fast Fourier transform (FFT).

The force acting due to the geometrically induced potential field on the deformable surface C at the position x ∈ C can

then be given as:

F (x) = dAx n̂(x) G(x) (6)

Given the force field F (x) derived from the hypothesized interactions based on the relative geometries of the de-

formable model and object boundary, the evolution of the deformable model C(x, t) under this force field can be given



Figure 2. Segmentation of the human upper airway - from left to right, top to bottom: initial level set surface, interme-

diate stages of the level set evolution, and the converged deformable model.

as:

Ct =
(

F · n̂
)

n̂ (7)

Since contour or surface smoothing is usually desirable, the mean curvature flow is added and the complete geometric

potential deformable model evolution can be formulated as:

Ct = αg(x)κn̂ + (1 − α)(F · n̂)n̂ (8)

where κ denotes the curvature, g(x) =
1

1 + |∇u(x)|
is the edge stopping function, and α is a real constant to control

the weight for smoothing. Its level set representation can then be given as:

Φt = αgκ|∇Φ| − (1 − α)(F · |∇Φ|) (9)

3 Results

The new deformable model based on the geometrically induced force is applied in the segmentation of the human upper

airway. The 3D image dataset of the human airway used for this experiment is acquired from CT imaging. The image

dataset is then cropped to obtained the region containing the nasal cavity. This is done so as to reduce the computational

expenses in using the level set method. A simple global thresholding is also applied to remove very bright regions.

Those regions are known to be bone regions and often accompanied by high image gradient. Thus, this pre-processing

can minimise their interference in segmenting the airway. Figure 2 portrays the results of the segmentation process

using the proposed method. The different views of the segmented nasal cavity model is then shown in Figure 3.

As shown in the Figure 2, two initial level set surfaces are used for the segmentation process. In particular, the level set

surfaces are being initialised across different structures (i.e. across object boundaries) in the image to demonstrate the

capability of the new deformable model to deal with arbitrary cross-initialisations. The evolution process of the level

set surface and the converged deformable model is also shown in the figure.

The example demonstrates that the proposed deformable model can be used to efficiently segment complex structures

such as those of the human nasal cavity. Reasonable results were achieved without any dedicated initialisations. Note,

this is an image gradient based method, i.e. only using local edge information. Further comparison to region based

approaches on hand-labelled data is necessary. However, it is worth noting that it is not possible for other image

gradient based approaches, such as geodesic [7], GVF [11], CVF [18] and GeoGVF [12], to achieve such result.

4 Discussion

In this paper, we presented a novel external force field for image segmentation which is based on hypothesized geomet-

rically induced interactions between the deformable surface and the image object boundary. The proposed deformable

model is then applied to segmenting human upper airway from a 3D image dataset. It is shown that by using this

approach, complex geometries such as the nasal cavity can be efficiently reconstructed. Accordingly, the new ex-

ternal force is dynamic in nature as it changes according to the relative position and orientation between the evolving



Figure 3. Three different views of the segmented human upper airway.

deformable model and object boundary. It can thus be used to attract the deformable model into deep boundary concav-

ities that exists in some image objects. In addition, the new deformable model can handle arbitrary cross-initialisation

which is a desirable feature to have, especially in the segmentation of complex and compact geometries. These are

encouraging advantages compared to existing image gradient based deformable models. Quantitative analysis and

comparison to region based methods are necessary to further study the performance of the proposed model. However,

this preliminary work shows that this is a promising approach to reconstructing complex 3D objects and can provide

an good alternative to region based methods, particularly when region based assumptions are compromised due to, for

example, intensity inhomogeneity.
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