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informational limits
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Abstract

This article provides an answer to the question: What is the function of cognition? By answering this question it
becomes possible to investigate what are the simplest cognitive systems. It addresses the question by treating
cognition as a solution to a design problem. It defines a nested sequence of design problems: (1) How can a system
persist? (2) How can a system affect its environment to improve its persistence? (3) How can a system utilize better
information from the environment to select better actions? And, (4) How can a system reduce its inherent infor-
mational limitations to achieve more successful behavior? This provides a corresponding nested sequence of
system classes: (1) autonomous systems, (2) (re)active autonomous systems, (3) informationally controlled auton-
omous systems (autonomous agents), and (4) cognitive systems.

This article provides the following characterization of cognition: The cognitive system is the set of mechanisms
of an autonomous agent that (1) allow increase of the correlation and integration between the environment and the
information system of the agent, so that (2) the agent can improve the selection of actions and thereby produce
more successful behavior.

Finally, it shows that common cognitive capacities satisfy the characterization: learning, memory, representa-
tion, decision making, reasoning, attention, and communication.
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1 The Thinning of Cognition

The concept of cognition is thinning. Once focusing on
the human mind, cognitive science has gradually begun
to investigate cognitively simpler organisms. Mammals
(and birds) have been part of psychology since the time
of Pavlov, but more recently much simpler organisms
have attracted the attention of cognitive science.
Investigations of insects, especially social insects, have
demonstrated incredible sophistication of adaptive
behavior, including complex pattern recognition, com-
munication, and learning.1 There have also been some
provocative studies of bacteria and bacterial colonies
suggesting that the notion of cognition may be used
to describe the organization and behavior of microbial
organisms.2 Here is the problem: cognitive science has
gotten away with a vague, prototype-driven concept of
cognition, but stretching the concept to insects and
single-cell organisms demands a more systematic dis-
cussion and ultimately a definition of a theoretical con-
cept that outlines the subject matter of the discipline.

Without such a definition, debates about whether some
(or all) bacteria possess some form of cognition are
susceptible either to trivialization of cognition (on the
pro side) or to cognitive chauvinism (on the con side).
In this article I offer such a definition.

Surprisingly little has been said about what cogni-
tion is, that would allow us to address the problem of
conceptual thinning. Available approaches to the
nature of cognition can be grouped into one of four
categories:

1. Within cognitive science, when offered, explicit def-
initions describe prototypical features of cognitive
systems. A typical example of such definitions
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is: ‘‘Cognition refers to the mechanisms by which
animals acquire, process, store, and act on informa-
tion from the environment. These include percep-
tion, learning, memory, and decision-making’’
(Shettleworth, 1998, p. 5). Here is another example,
this time focusing on bacterial cognition: ‘‘The term
cognitive refers to processes of acquiring and orga-
nizing sensory inputs so that they can serve as guides
to successful action. The cognitive approach empha-
sizes the role of information gathering in regulating
cellular function’’ (Shapiro, 2007, p. 812). Such def-
initions are suggestive of the nature of cognition,
and play an important rhetorical function in the
monographs where they appear, but they do not
offer the precision needed to analyze the thinning
problem. However, they express important heuristic
ideas, such as the idea that cognition is related to
processing of information from the environment to
guide behavior, or the idea that capacities such as
‘‘perception, learning, memory, and decision-
making’’ are central for cognition.

2. The artificial intelligence (AI) motivated founda-
tional debates about cognition (or intelligence),
which have been most influential for philosophical
debates about cognition, have followed an architec-
tural approach. They have focused on the general
functional mechanisms of implementing cognition,
and on the modeling tools needed to describe it.
This category includes the symbolic computational
(GOFIA) approach, but also the connectionist,
dynamicist, and distributed approaches to cognition.
It is probably a bit unfair to group all of these
approaches together because only the computational
approach has attempted an explicit characterization
of cognition/intelligence—the physical symbol
system hypothesis (Newell & Simon, 1981).
However, if we must interpret each of these appro-
aches as offering a necessary condition for cognition
(sufficient condition will trivialize cognition), then it
means that cognition is characterized (partially) by
the nature of its architecture. This ought to be unsat-
isfactory because there is no reason to think that the
kind of phenomena that cognitive science studies can
be characterized by a common necessary architec-
ture. A general architectural approach can at best
offer simulatability; it cannot offer a definition.

3. There has been a renewed interest in connecting
more closely the phenomenon of cognition with
life. Unlike the more functionally based architectural
approaches to cognition, which view life as but an
implementation medium for cognition, this biogenic
(Lyon, 2006) approach insists that ‘‘cognition is a
biological phenomenon and can only be understood
as such’’ (Maturana & Varela, 1980, p. 7). The thesis
is a version of what Godfrey-Smith (1996) described

as the strong continuity thesis about the relation
between life and cognition. According to it, life is a
necessary condition for cognition. A cognitive
system must be living if it is to count as cognitive.
In this tradition, the problem of defining cognition
has been reduced partly to defining life/metabolism,
or to identifying an aspect of life that supports cog-
nition. Thus, Maturana and Varela define the notion
of autopoiesis (see 2.1), which is supposed to imply
an organizational definition of both life and cogni-
tion. Observing that the notion of autopoiesis is too
weak to imply interesting cognition, Bitbol and Luisi
(2004) argue that cognition is a special kind of adap-
tive metabolism. The problem with existing nontri-
vial definitions/characterizations of cognition within
the biogenic program is that they do not connect
properly to more advanced forms of cognition.
This is not a criticism of the program itself (this arti-
cle can be viewed as a part of the program) but only
of the limited attempts of defining cognition. Note
that weaker forms of the continuity thesis, which are
more plausible, cannot use the nature of life as a
defining condition for cognition. They demand an
independent definition.

4. There are a very limited number of attempts to offer
an explicit definition of cognition with a set of suffi-
cient conditions—a mark of the cognitive—that are
not limited to high cognition. I know of only one
such attempt by Rowlands (2009, p. 8):

A process P is a cognitive process if and only if: (1) P

involves information processing—the manipulation

and transformation of information-bearing structures.

(2) This information processing has the proper function

of making available either to the subject or to subse-

quent processing operations information that was (or

would have been) prior to (or without) this processing,

unavailable. (3) This information is made available by

way of the production, in the subject of P, of a repre-

sentational state. (4) P is a process that belongs to the

subject of that representational state.

Rowlands uses this definition to argue for an extended

cognition thesis whereby it is shown that some extended

systems (a human using some artifacts) qualify as cog-

nitive systems. It is unlikely that Rowlands’ definition

suffices for the thinning problem because it is not tar-

geted to the simplest cases of cognition. The problem-

atic notion here is the notion of ‘‘representation,’’

which for Rowlands has a strong intentional dimension

requiring consciousness.

While none of the attempts at a definition are satisfac-
tory for solving the thinning problem, they offer impor-
tant insights to be preserved in a successful definition.
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So, how should we proceed towards a definition of cog-
nition? What would it mean to have offered a charac-
terization of the natural phenomenon of cognition,
appropriate to outline the domain of cognitive science?
I will make the following assumptions: (1) modern cog-
nitive science has a fairly good implicit grasp of the
domain of higher cognition; (2) cognition, like most
other biological categories, defines a gradation, not a
precise boundary—thus, we can at best hope to define
a direction of gradation of a capacity and a class of
systems for which the capacity is relevant; (3) cognition
is an operational capacity, that is, it is a condition on
mechanisms of the system, not merely on the behavior
of the system—to say that a system is cognitive is to say
something general about how the system does some-
thing, not only what it does seen from the outside;
(4) cognition is a phenomenon of organized complexity
as modus operandi—it is a product of the gradual
emergence of complex structure in the world through
various processes of incremental self-organization of
far-from-equilibrium systems; and because of this, a
general theory of cognition must be sensitive to the
inherent historicity and hierarchical organization of
complex systems (Nicolis & Nicolis, 2007).

I assume the following model: There is a thermody-
namically open system O, that is, a system exchanging
matter and energy with the environment. The interac-
tion is organized and modulated by some (functionally)
internal subsystem C of O. The question of what makes
the system cognitive is a question about what role or
function C has for O. Here I use the term function in a
sense akin to Cummins’ sense, that is, the function is
determined by the role C plays in the organization of O
and the interaction of O with its environment
(Cummins, 1975). If we call O the organism of the sce-
nario, the question about what systems are cognitive
can be analyzed via the question: What is the general
function of cognition in an organism? The systems that
have and use mechanisms that fulfill the function are
the cognitive systems. Of course, as is usually the case
with functions, the same mechanism may have other
functions, but cognitive science investigates the cogni-
tive function of the cognitive mechanisms of cognitive
systems.

I approach the analysis of the function as an analysis
of a design specification for a system. We outline a gen-
eral problem that must be solved—the design prob-
lem—and we can ask whether a particular mechanism
solves (or improves towards a solution, approaches) the
problem. We can identify the function of cognition by
first identifying a design problem faced by a class of
systems. Identifying the class of solution strategies to
the problem allows us to identify the function of cog-
nition. We must, therefore, simultaneously identify the
class of systems for which a design problem can be

defined, and characterize the general class of strategies
for solving the problem. Because solution is a success
term, while some problems can only be approached, as
a marginal improvement—the problem related to cog-
nition will turn out to be of this class—in the discussion
to follow the terms solution and strategy will also refer
to approaches.

With these considerations in mind, I will confront
the problem of identifying the general function of cog-
nition by identifying a nested sequence of design prob-
lems that co-determine a nested sequence of system
classes. Every design problem for a class of systems
defines a set of solutions for the problem—those sys-
tems within the class that satisfy the design specifica-
tion. Once such a class of solutions is defined, we may
define a further design problem related to improvement
strategies for the solution, and so on. I will apply this
methodology until I reach a class of systems for which
we can define a design problem that demands the kinds
of strategies normally associated with cognitive mech-
anisms. Once we identify the function of cognition, we
can isolate the class of cognitive systems.

The strategy can be described as follows: There is a
distant place we want to go to and surround it with a
fence in a natural way—we want to go to the uncon-
troversial cognitive mechanisms and outline an inclu-
sive domain of cognition. We start from a place with
secure foundations and no contamination of cognitive
terminology. The place is a domain of natural systems.
We categorize the domain and ask: which of the cate-
gories is most likely to lead us to the remote place—
which subdomain is most likely to contain the target
place? We proceed until we have reached the smallest
neighborhood of the target place that can be isolated by
natural, local concepts. In this way we avoid circularity
in the definition.

This methodology of analysis is particularly useful
for phenomena in organized complex systems, because
the sequence of design problems and solutions can cor-
respond to a sequence of steps of development of com-
plexity of organization. Thus, the sequential narrowing
of the class of systems offered by the process is not
merely a constructive argumentative technique that
can be discarded after it is performed. It is an essential
part of the understanding of cognition. To use a slightly
modified Wittgensteinian metaphor from the Tractatus,
we are building a ladder to reach to our target concept.
We start from a safe place—living systems—and reach
to cognition. But unlike Wittgenstein who at the end
kicked the ladder, we cannot. The ladder is part of the
final product. We can at most reposition the ladder on
an alternative footing. We can move from the realm of
living systems to artificial cognition (how to do that will
be the subject of further work), but the structure of the
ladder will always be imprinted in the cognitive systems.
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Let’s clear the suspense and introduce the main idea
about the function of cognition with an analogy.
Imagine a mathematician proving a complex theorem.
She starts with a collection of inputs—simple mathe-
matical facts. With a large collection of formal and
informal transformations, our mathematician generates
a complex proof that supports the statement of the the-
orem. Why is this complex process necessary? Why
does the solution require ‘‘cognitive’’ work? Why
doesn’t the mathematician simply grasp the theorem
directly the way she may grasp many simple theorems?
In an important sense, the proof is necessary because
there is a difference between the status of the simple
inputs and the status of the theorem. The inputs are
easy to comprehend and justify, while the theorem is
hard. The difference in status depends both on the com-
plexity of the statements and, importantly, on the
capacities of the mathematician. If our mathematician
had unlimited intellect—if she were a god—then she
would directly comprehend the theorem, just as we
can comprehend that 1+1¼ 2. The mathematician is
not a god, however. She is intellectually limited in her
capacity to comprehend complex mathematical theo-
rems. She needs to do significant cognitive work to
overcome this limitation. To this end, she uses a sys-
tematic, logically guided proof construction. The pro-
cess of proving a complex theorem and the capacities
needed to do it are necessary precisely because the
human mind is quite limited—the work of doing the
proof compensates for the mathematician’s informa-
tional limitation. Here is what I am up to. I argue
that this phenomenon of compensating for informational
limitation by doing work—as we see with the mathema-
tician—is at the root of all cognition. I claim that the
general function of cognition is to compensate for the
informational limitations that actual agents embedded
in a world face. The rest of the article will argue this.

The article is organized as follows: Section 2 devel-
ops the sequence of design problems, and simulta-
neously a nested sequence of system classes, leading
to the ultimate problem whose solution requires cogni-
tion—the informational limitation problem. Section 3
offers an analysis of the strategies for approaching the
problem, offers a precise definition of cognition, and
argues for the correctness of the definition. Section 4
briefly suggests how the question of artificial cognition
may be approached based on the definition offered
here. Finally, Section 5 offers a few concluding
remarks.

2 Autonomous Agents and Informational
Limits

In this section, I will describe a nested sequence of
design problems. I will associate each design problem

with a class of systems whose organization can be
regarded as a ‘‘good’’ solution to the problem. The
nested sequence of problems will be the following (as
new terminology is introduced the problems will be
reworded): (1) How can a system persist? (2) How
can a system affect its environment to improve its per-
sistence? (3) How can a system utilize better informa-
tion from the environment to select better actions? and
(4) How can a system reduce its inherent informational
limitations to achieve more successful behavior? The
corresponding nested sequence of systems will be:
(1) autonomous systems, (2) (re)active autonomous
systems, (3) informationally controlled autonomous
systems (autonomous agents), and (4) cognitive sys-
tems. The distinctions are not sharp: almost everywhere
there is gradation among the system classes.

2.1 System Persistence and Autonomy

The most rudimentary design problem begins here: if
there is cognition, there must be a system. Without a
condition allowing a system to exist as an entity dis-
cernible from its environment and persisting sufficiently
long as that same entity to allow qualification of its
dynamical behavior, the question of cognition does
not arise. The first design question that must be exam-
ined is: What allows systems to persist as individual enti-
ties? More specifically: For which of those systems that
persist is a capacity of cognition relevant? This design
question is targeted to naturally emerging systems.
Later (in Section 4) this will be abstracted to allow
for artificial/designed systems. However, a biogenic
approach to cognition must be faithful to the biological
origins of cognition and must include a story account-
ing for naturally emerging cognition and a further story
about how artificial cognition is possible.

We can identify two broad strategies for system per-
sistence: robust and dynamic. For the purposes of this
article, I will not define these notions, but will rely on
intuitive examples. Thus, a rock is a robust persistent
system. It is held together by strong chemical bonds.
The stability of the system is derived from the stability
of the bonds. The separation of the system from the
environment depends on the sharp difference between
the bonds of atoms within the rock and the bonds with
atoms outside the rock—in fact, what is considered to
be inside and outside the rock depends on the strength
and topological connectedness of the bonds. Robust
persistent systems are among the longest persistent sys-
tems in the universe. However, strong bonds cannot do
much more than persist. There is no need for cognition.
Rocks don’t need to think any more than they need to
eat or sleep. (But see Section 4.)

Dynamic stability is a more complex matter. This is
the realm of dissipative systems (Prigogine, 1961;
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Prigogine & Nicolis, 1977). A dissipative system is an
open nonequilibrium thermodynamical system that
maintains stability of an organizational parameter by
dissipating matter and energy from and to the environ-
ment. (i.e., there exists an appropriate parameterization
of the system such that an important parameter has a
stable dynamical orbit. See Pillay, 2008, for an intro-
duction to stability theory.) We can distinguish two
classes of dynamically stable dissipative systems: het-
eropoietic and autopoietic. In heteropoietic systems, sta-
bility (maintaining the organizational parameter) is
determined by the boundary conditions of the system
as well as a gradient of free energy that can drive the
dynamics of the system. Standard examples of such
heteropoietic systems are: Bénard cells and water
eddies. Bénard cells form when oil in a container is
heated from below sufficiently quickly that a tempera-
ture gradient exists. The system self-organizes into a
collection of convection currents that settle one next
to another, appearing like a collection of cells. In this
configuration of the fluid dynamics the system dissi-
pates the heat energy more efficiently. Water eddies
are stable structures that emerge in a water current
when the river bed has appropriate irregularities. The
eddies are driven by the energy gradient of the flowing
water and the structure of the channel. Heteropoietic
systems can be quite stable—the Great Red Spot on
Jupiter has existed for more than 400 years—but like
rocks, heteropoietic systems don’t ‘‘do’’ much from
within.

Autopoietic systems are dynamical systems where
the systems themselves, not merely the boundary con-
ditions, are responsible for maintaining stability. The
term autopoiesis was coined by Maturana and Varela
(1980) to describe a phenomenon where the conditions
for maintaining the structure of a system are present
within the system. They introduced the notion in an
attempt to provide a general characterization of living
systems, where the paradigm example of an autopoietic
system is the biological cell. They also claimed that
autopoietic systems possess cognition, but this part of
the theory is, I think, unsatisfactory, so we will ignore
it.3 One of the most interesting characteristics of autop-
oietic systems is that they support process closure. That
is, all the machinery needed to regenerate and maintain
the system is included within the system (or is readily
available in the environment in the form of matter and
free energy) and is itself a product of the system. We
can think of the closed system of product formation
rules determined by the processes—the rules specifying
how a compound is obtained from (or decomposed by)
other compounds—as defining the system (given a fixed
interval of variation of the external conditions).

Autopoietic systems are interesting for two impor-
tant reasons. (1) Their dynamic self-maintenance allows

them to persist within shallow energy wells—the bonds
that hold them together can be extremely weak in com-
parison with static systems. Moreover, they are systems
that genuinely do something about their persis-
tence—the internal processes that generate the system
perform work. (2) The process closure that defines them
determines the essential compounds/mechanisms for
maintaining the closure, as well as determining a fixed
set of functional roles for them. This all depends on the
system itself, not on any particular external interpreta-
tion of how the system operates.

Autopoietic systems, therefore, can be described in
functional terms where the structure of the process clo-
sure defines the participants and their functional roles,
and the stable organizational parameters that are main-
tained by the system provide the goal of the processes
(no intentions assumed). Autopoietic systems can be
regarded as the simplest kinds of autonomous systems
(Barandiaran & Moreno, 2006; Christensen & Hooker,
2000; Thompson, 2007). I will call a system autono-
mous if (1) it can be described as having a goal that it
‘‘tries’’ to achieve, and (2) the control mechanisms of
the system that veer it towards that goal are part of the
system.4 In autopoiesis the goal is persistence and the
control mechanism is derived from the processes in the
closure set.

The definition of autopoiesis admits resistance to
fluctuations in the external environment, but it does
not imply that an autopoietic system can adapt to
more complex changes in the environment. One
reason for this is that, as Di Paolo (2005) describes,
autopoiesis is a structural condition that a system
either satisfies or does not—either a system maintains
process closure or does not. The notion of autonomy,
however, is a graded notion: for a fixed goal, a system
can be more or less autonomous depending on how
sensitive the system is to the external conditions and
to what conditions it can adapt. Autonomous systems
are, therefore, not merely autopoietic systems, but
autopoietic systems with further capacities. The capac-
ity that tracks gradation of autonomy is often recog-
nized as adaptability (Barandiaran & Moreno, 2006;
Christensen & Hooker, 2000; Collier & Hooker, 1999;
Di Paolo, 2005). The simplest autopoietic systems pos-
sess a minimal sense of adaptability in that they are
capable of repairing damage, but the organization of
the closed system need not be sensitive to larger varia-
tions in the environment. Autopoietic process closure is
a purely internal condition of the system organization.
A more adaptable system must be open not only to
the transmission of matter and energy, which are the
resources of the autopoietic process, but also the
process itself must be sensitive to the state of the envi-
ronment. The process need not be entirely internally
closed (Barandiaran & Moreno, 2006; Christensen &
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Hooker, 2000). The dimension of system organization
related to adaptability of the organization-maintaining
processes is commonly associated with cognition,
either directly, or as I would prefer, as pointing in the
direction of cognition (to use the fencing metaphor
again).

Let us recap the progress so far. In my attempt to
characterize the function of cognition, I isolated the
class of autopoietic systems as the only naturally
emerging systems (not artifacts) for which cognition
could be relevant. This was because these are the only
systems whose conditions of persistence are determined
and controlled from within. The key functional condi-
tion here is autonomy. Cognition, minimally, must be
related to maintaining autonomy.

Not every form of autonomy should be regarded as a
product of cognition however. Cognition, as I sug-
gested in the introduction, should be an internal mech-
anism that is doing some specific work. The task, the
design problem at hand, is adaptability. Adaptability,
however, is a behavioral condition. Thus I cannot
adopt it as a target notion of the theory. I want to
focus on the internal mechanisms that facilitate it.

2.2 Active Systems

One mechanism for increasing the scope of possible
viable environments is to maintain process closure
that can switch between different modes of operation
depending on the state of the environment. Bitbol and
Luisi (2004) distinguish between different kinds of
metabolism depending on whether the system can be
in different modes of operation based on available
nutrients or cell damage. For example, depending on
whether lactose or glucose is present in the environ-
ment, Escherichia coli bacteria can activate different
genes that can be expressed to produce enzymes appro-
priate for breaking down the corresponding sugar
(Ben-Jacob et al., 2005). However, there are only so
many modes that a system can adapt to and, most
importantly, what modes the system needs to adapt
to depends on accidents in the environment.

A more flexible strategy for coping with environmen-
tal variation is to have some control over the environ-
ment—get to where food is available, or make the food
come to you, avoid places where you are food, and so
forth. A system is in a constant dynamical interaction
with its environment; the state of the system always
affects the state of the environment. In the language
of dynamical systems theory, the two systems are cou-
pled. How do we isolate those interactions that can be
interpreted as the autonomous system controlling the
environment? For simple autopoietic systems all the
interactions (as far as the process closure is concerned)
reduce to absorption of matter and energy and release

of lower grade energy (e.g., heat) and waste. This can
usually be modeled with thermodynamics and theories
of diffusion. In such systems it is not especially inter-
esting, even when possible, to model the relations with
the notion of control. The notion of control becomes
interesting when (1) the coupled dynamical interactions
can be decomposed into isolated subprocesses either
(a) from the environment to the system or (b) from
the system to the environment; and (2) the processes
can be given appropriate functional roles in terms of
control relations, that is, the system can be modeled
effectively with the machinery of control theory (a
branch of dynamical systems theory; Levine, 1996;
Hinrichsen & Pritchard, 2005). Whether this is
desirable—that is, whether one kind of model is more
effective than another—ultimately depends on the orga-
nization of the system and the nature of its interactions
with the environment. For example, when a bacterium
moves in the direction of increased nutrient gradient by
paddling and ‘‘monitoring’’ nutrition sensors (Blair,
1995), the interaction can be modeled more efficiently
in terms of control relations than with the dynamics of
diffusion.

When it is possible to decompose the coupled inter-
action between the system and the environment into
interactions of type (a) and (b) and triggering relations
between them, the system can be effectively modeled as
a control system.5 When this is possible, we can term
the environment-to-system interactions control inputs,
and the system-to-environment interactions control out-
puts. I call such systems active autonomous systems.
This allows us to state a second design problem for
active systems: How can an active system perform
better control outputs in order to improve its chances of
persistence? The question shifts the focus from condi-
tions on behavior to conditions on control outputs that
affect behavior. A normative condition on the entire
system is analyzed via a normative condition on the
control outputs of the system.

The simplest strategy is to affect the environment in
a uniform way regardless of its state. A system may
release a chemical that may attract food or repel pred-
ators; or a system may move by paddling randomly. A
more flexible strategy is to make the current state of the
environment relevant for the control outputs. The sim-
plest way of doing this is through implementing a trig-
gering relation between control inputs and control
outputs—a fixed action pattern. Autonomous systems
that operate in this way can be described as reactive
systems. There are many examples of fixed action pat-
tern behavior in the animal kingdom that are discussed
in the ethological literature. It is not clear, however,
whether there are natural systems that are only reactive
systems. Common wisdom has dictated that many
simple animals are reactive systems, but considering
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the literature on insect or bacterial cognition, there may
not be too many purely reactive systems.

The path to cognition leads in the direction of more
‘‘sophisticated’’ strategies for making the environment
relevant for effective control outputs. I focus on this
next.

2.3 Agents

As a solution to the design problem of persistence, reac-
tive systems have a weakness. They essentially define a
more-or-less functional relation between the control
inputs and control outputs—a response function. I
describe the relation as more-or-less functional, because
the systems are complex dynamical systems and in such
systems stability of behavior is a difficult luxury. It
cannot be expected that the same control inputs
would produce exactly the same control outputs, but
the outputs must be sufficiently close; otherwise it
would be pointless to describe the systems with the
machinery of control theory. Going back to the weak-
ness, whether the functional relation in fact allows the
system to approach its goal is contingent on the stabil-
ity of the environment. If the environment changes suf-
ficiently, the same fixed action patterns may have a
detrimental effect. The problem is that the response
function need not be sensitive to the success of its oper-
ation, so that it can be adjusted based on the relation of
the organism to the goal.

Now, there may be response functions whose
dynamical implementations are based on some feed-
back mechanisms that corrects the response because
some control input is correlated with how close the
system is to its goal. Such feedback mechanisms alone
do not deserve systematic investigation in terms of cog-
nitive machinery; simple cybernetics may suffice. In the
effort to locate cognition we need to consider systems
that have dedicated mechanisms for response function
control and modulation based on the goal. Such dedi-
cated mechanisms would certainly utilize dynamic feed-
back, homeostasis, or other such stability-inducing
processes as the means to achieve appropriate goal-
directed control, but they must be investigated at a
level of abstraction that goes beyond dynamics and
control.

We can consider systems that admit the following
internal functional decomposition: The system pos-
sesses a subsystem M, (for a model or a ‘‘cognitive’’
map) that mediates the control relation between the
inputs and outputs. The system possesses another
system P (for a purposeful filter) that modulates M in
light of the relation of the system to the goal. This
system organization (and terminology) was introduced
and investigated by Nauta (1970) following Ackoff
(1958). I have expanded on his work to argue that

systems with such an architecture can be regarded as
semantic information systems, where it is insisted that
information is a dynamical systems phenomenon
(Vakarelov, 2010). In such systems, M can be regarded
as having its own macrostates, and the states of M can
be correlated with an external system or a collection of
features of the environment, S, with its own macro-
states. Here by a macrostate I mean the standard
notion from dynamical systems theory of a collection
of microscopic dynamical states (Hinrichsen &
Pritchard, 2005; Katok & Hasselblatt, 1996). In this
setup, the modulating second-order control role of P,
which is sensitive to the relation of the whole organism
to the goal, provides the basis for the determination of
the macrostate structure of M and S.

The idea for this determination is as follows: The
organism is engaged in highly organized coupled inter-
action with its environment. The patterns and invari-
ances of this interaction can be described in terms of
macroscopic relations on the systems based on macro-
scopic distinctions inherent in the viability conditions
of the system and thus its goal states. In the case of
autopoietic systems, as discussed above, the viability
states are determined by the system states that maintain
the appropriate organizational condition of autopoie-
sis—the appropriate process closure. When probability
distributions of the likely future trajectories of the
system based on environmental contingencies are avail-
able, that is, when one can provide a measure of how
close the system is to the goal (or to the danger bound-
ary) it becomes possible to assess how the behavior and
the control functions of the system relate to these mac-
roscopic distinctions. Thus, the entire system–environ-
ment complex can be analyzed with a higher level of
abstraction (reducing the free parameters of the
system). In this case, we can determine the appropriate
distinctions in the environment relevant to the organ-
ism (the macrostructure of S) as well as the relevant
distinctions witnessed in M (the macrostructure of
M). In this case, the macrostates of M can be inter-
preted as informational states and the states of S as,
to borrow Gibsonian language, something like the
affordances in the environment related to S. There is
a sense in which the states of M can be regarded as
being about the states of S, but I urge caution when
making this semantic connection. In Vakarelov (2010) I
define the meaning of the states of M to be the interface
role they play in the control system, which includes, but
is not identical to the correlation between M and S.
Nonetheless, if appropriate probability measures exist,
relative information measures, as in Shannon’s theory
of communication (Shannon, 1948), can be defined
between M and S. I will use such measures in Section
3. The nature of semantics in this account of informa-
tion systems is not important for the current project.
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Let us consider a simple example of an information
system. Consider a bacterium that has a detector for
two types of nutrients that may be present in the envi-
ronment. The bacterium needs to be able to switch
between three metabolic cycles depending on the avail-
ability of the nutrients (one default with no nutrients).
Assume a mechanism, a control gene, that is triggered
by the sensor and that initiates the different metabolic
cycles depending on the state of the detector. Assume
also that extracting energy from one of the nutrients
has some negative side-effect for the bacterium, such
that the nutrient should be digested only if the bacte-
rium is in real need of food. Otherwise, the benefit is
less than the possible harm. Imagine, then, another
mechanism that is sensitive to the general health of
the bacterium so that a compound is produced in pro-
portion to the health that can bind to the control gene
and modulate its expression. In essence, the second
mechanism can modulate the role of the control gene
and allow switching to the nasty food metabolism only
if the bacterium is in danger of starving. In this system
the control gene can act as M, the modulating mecha-
nism can act as P, the goal is, naturally, maintaining
good health, and the source of the information is
the near environment divided according to three
macrostates—presence of the preferred nutrient, pres-
ence of only the nasty nutrient, and neither. This con-
stitutes a simple information system. The system is so
simple that it may not be worth describing the control
mechanism of the bacterium as an information system,
but the option is available. Real bacteria, as the litera-
ture cited earlier indicates (see note 2), have more com-
plex control systems.

Why are information systems relevant in the attempt
to define cognition? Clearly, there is a tradition in cog-
nitive science to view cognition as involving utilization
of information from the environment (see Section 1,
discussion of category 1). This consideration, while sug-
gestive, is not sufficient. The important consideration is
what information systems offer. First, information sys-
tems allow the goal of the system to enter explicitly in
the control mechanism P, as a dedicated subsystem.
The performance of the system in light of the normative
significance of the goal need not be described only
through the global behavior of the system, but may
be described through the performance of the dedicated
mechanism. Second, the mediating subsystem M
focuses the environmental significance on action con-
trol so that the control relation can be modulated by
the purposeful system.

Information systems are important for cognitive sci-
ence not simply because they offer a new level of com-
plexity of behavior and adaptability lacking in reactive
systems; although they ultimately do that. They are
important because they contain an independent,

functionally localized goal-directed environmentally
sensitive control system—a system needing independent
investigation, needing its own science. An organism
whose internal organization is so deluded as not to
allow a useful separation between different functions,
does not require a separate science of cognition. The
behavioral complexity of such an organism alone is not
a reason for calling it a cognitive system. Cognitive
science is not the science of complex behavior; it is
the science of the dedicated mechanisms that generate
the complex behavior.

No claim is made that information systems are suf-
ficient for cognition; however, they offer an important
stepping stone towards cognition. I suggest that we call
an organism that is partly controlled by an information
system an agent. This is not offered as a conceptual
analysis of agent. It is offered as a theoretical definition
motivated by the intuition that agents are distinguished
by their capacity for systematic goal-directed behavior.
It will be useful, and suggestive, to call control inputs to
an agent’s information system percepts, and the corre-
sponding control outputs actions.

The idea is to view cognitive systems as a type of
agent. Within the informational system framework I
formulate the third design problem for the class of
agents: How can an agent use better information to con-
trol its actions? The question shifts the normative focus
from the actions to the quality of the utilizable infor-
mation from the environment.

Before I investigate this design problem in the fol-
lowing section, let me eliminate some possible misun-
derstandings and confusions related to the suggested
notion of information system and the suggestion that
it is necessary for cognition.

(1) I regard the concept of information system to be
more primitive than the notions of information and
information state. Information systems are special
kinds of highly organized open dynamical systems.
The notion of information is viewed as the currency
of the information system, analogous to the way
money is the currency of an economic system. The
notion of information state, which has the role of the
information vehicle (the data), is determined by
the macrostructure of the coupled dynamical system.
This is a pragmatic conception of semantic information
where notions such as data or meaning are ultimately
determined by looking at the mode of interaction of an
organism with an environment, and the control role the
informational mechanisms play in the interaction.

Thus, (2) in light of using information systems to
move towards a notion of cognition, I must note that
this notion of information more closely resembles
Gibson’s (1979) notion of information than the com-
munication or processing notion of information more
commonly used in discussions of cognitive science.

90 Adaptive Behavior 19(2)



The notion of information system does not determine
what happens to the information inside the system, how
it is processed or whether some ‘‘computation’’ takes
place. The notions of information system and informa-
tional processing system are distinct and orthogonal. An
information system may be implemented with an infor-
mation processing (even symbolic processing) mecha-
nism inside, but it doesn’t have to be. One key
property of information processing systems is their
functional separation from other systems. Information
processing systems can be described completely by spe-
cifying inputs, processing/computation operations, and
outputs. An information system need not admit such a
functional separation. In the case of biological systems
especially, such a functional separation may be impos-
sible, except in limited cases such as explicit symbolic
manipulation in humans. In naturally emergent infor-
mation systems, embodiment and close-coupled rela-
tions between the organism and the environment are
ineliminable. In fact, they structure both the informa-
tional states of the system and the external source of the
information.

This takes us to, (3) that information systems need
not be representational systems. I do not claim that
M represents S. The philosophical treatment of the con-
cept of representation is messy. I do not wish at this
stage to enter into debates about what constitutes a
representation. Information systems should not be
viewed as nonrepresentational systems either. Some
information systems may legitimately be described as
operating with representations. Human cognition cer-
tainly relies heavily on representations. Any position
that denies this is based on ideology, not on science.
(In light of this, I regard the division of the approaches
to cognition between representationalist and anti-
representationalist as a red herring.)

Finally, (4) the importance of the notion of informa-
tion for cognition has been explicitly criticized6 by pro-
ponents of the dynamicist program (Chemero, 2009;
Thelen & Smith, 1994; van Gelder, 1998) who insist
that cognition is a dynamical system phenomenon (an
ontological claim), and it should best be investigated
with the machinery of dynamical systems theory (a
methodological prescription). What is the connection
between my approach to cognition and the dynamicist
program? I clearly deny the methodological prescrip-
tion. In fact, I deviated from the methodological pre-
scription in Section 2.2 already. Dynamical system
description of even fairly simple systems—systems for
which cognition is relevant—is not plausible in practice.
The complexity of even a simple bacterium is so great
that an explicit description with differential equations is
outlandish. Much more effective descriptions are avail-
able. In some cases it may be possible to describe
aspects of the behavior of the bacterium as an

information system in a more manageable way. I how-
ever do not deviate from the ontological claim. Indeed,
the very concept of information system is a concept of
dynamics. In Vakarelov (2010) I sketch an in-principle
way of describing information systems using dynamical
system theory, including more exotic developments
such as synergetics (Haken, 1993, 2000). Thus, the lan-
guage of dynamical systems is probably indispensable
for a mature science of cognition. Indeed, some of the
examples offered by dynamicists, such as walking or
finger tapping (Kelso, 1995), bouncing a ping-pong
ball, or even performance on the A-not-B task
(Thelen & Smith, 1994), may be best described as
dynamical systems. Conclusions of this can be, how-
ever, that some of the examples were incorrectly
regarded as cognitive phenomena (some aspects of
walking or finder tapping may be like that, even if a
brain is involved), or that information-based cognitive
phenomena only modulate the dynamical system (in the
case of bouncing a ping-pong ball), or the informa-
tional mechanisms create a platform with intrinsic
dynamics that is locally best described with dynamical
system models (in the case of the A-not-B task). The list
is not exhaustive.

2.4 Informational Limits

Any natural system would be severely limited in terms
of what information from the environment reaches it at
any moment, and how it can respond based on the
information. It is important to understand this claim
in the context of information systems. In an informa-
tion system, the notion of information contains several
dimensions:

1. The first dimension is related to the possible differ-
ences in the environment that may be relevant for
the operation and well-being of the system. In the
case of autopoietic systems, any difference in the
environment that has an effect on the state of its
structural organization is a relevant difference. For
example, fluctuation in the distribution of viable
matter is relevant, so is the existence of remote
meteors that may potentially strike the system.
Some differences in the environment may be irrele-
vant for the system. At the extreme end are differ-
ences such as whether a neutrino is passing through
the system; other more macroscopic irrelevant differ-
ences may include minor fluctuations in nutrients, or
aspects of the internal organization of other organ-
isms whose external influences are filtered by their
structure.

2. The second dimension is related to whether the dif-
ferences can propagate physically to the system.
Many things can get in the way: broken causal
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links, too much noise in the environment that washes
away the correlation, or insignificant effects on the
system. It is not sufficient for there to be a correla-
tion with external differences in principle. It may be
the case that every event in the universe is reflected in
every subsystem of it—imagine some quantum cou-
pling does that. Even if every system can serve as a
measuring apparatus for every difference in the uni-
verse, it does not mean that the information system
is sensitive to the difference. Electromagnetic radia-
tion (not light) from my laptop has a differential
effect on the state of my brain as a physical
system, but it does not follow that my brain, qua
cognitive control system, is sensitive to the radiation.

3. The third dimension is related to whether the differ-
ences can have a control significance for the system.
The human eye has more than 100 million light
receptors, each capable of a large number of possible
responses (say N). Thus, each eye is capable of
making more than N108 distinctions. That many dis-
tinctions can never be relevant for a natural agent,
for it cannot perform a compatible number of dis-
tinct actions. Only a small number of (equivalence
classes of) received distinctions ever obtain a system-
atic control role for outputs of the system.

4. The fourth dimension is related to whether those
distinctions which may have a control role can be
modulated by the goal-tracking mechanisms. The
distinctions generated by the sucking motion of a
baby’s mouth on a mother’s nipple can propagate
to the mothers body initiating the secretion of
milk. The process, however, is not modulated by a
purposeful system on the side of the mother (while, it
is on the side of the baby; and of course, the mother
can override the causal link by pulling away the
baby).

An information system has some information, that
is,M is in an informational state, only if all four dimen-
sions are active: that is, (1) if there exists a relevant
difference in the environment, (2) the difference can
be reflected in the system, (3) the reflected difference
can, in principle, have a control significance, and
(4) significance can be modulated by the purposeful
system.7

If we view an agent as facing the problem of per-
forming the best (or good) action in light of the state of
the environment, it would seem that a successful strat-
egy would demand that the distinctions relevant in the
environment would propagate to the control system of
the agent so that they can be used for steering the goal-
directed behavior. Let us call this a know-it-all strategy.
Looking for such a strategy would make sense only if
there is a reasonable possibility of the relevant distinc-
tions entering the agent as information, that is,

satisfying all four dimensions. The described dimen-
sions, however, are susceptible to several information
bottlenecks—in particular, between dimensions 1 and
2, 2 and 3, and 3 and 4. Thus we can ask (a) can the
distinctions in the environment be reflected in the
system? (b) can the distinctions reflected in the system
acquire control significance? and (c) can the distinctions
that have control significance be modulated by the pur-
poseful mechanism? Questions a and b are especially
vulnerable. In complex environments, the kind of envi-
ronments where natural agents may emerge, it can be
assumed as a natural fact that the number of distinc-
tions in the environment relevant for an organism is
astronomically larger than any distinctions reflected in
the system. Think of this as a poverty-of-stimulus argu-
ment on steroids. Moreover, it can also be assumed that
the number of distinctions reflected in the system is
considerably larger than the distinctions that may
have a control significance. (But I will not assume
that the number of distinctions relevant for purpose-
guided behavior is considerably smaller.) For the pur-
pose of this article, I consider these assumptions to be
logically contingent, but empirically and conceptually
sound.8

All natural agents therefore, including the mathema-
tician that I discussed in the introduction, are severely
informationally limited, in the sense that the structure
of the environment is vastly too complex to be inter-
nalized in the control system. I suggest that we adopt
this as a fundamental principle about real systems—a
principle that should not be idealized away.

ILP: All agents operate under the condition of severe
information limitation.

Let us call this the information limitation principle. I
regard this as a naturalistic constraint on any theory of
cognition. Any theory of cognition that ignores or ide-
alizes away ILP is either not a theory of cognition or
not a naturalistic theory. A consequence of this princi-
ple is that the know-it-all strategy is not an available
option for agent architecture.

By adopting ILP we can formulate a fourth design
problem: How can the internal organization of the con-
trol mechanisms of the agent be improved to reduce the
informational limitations?

Note that the design problem does not demand that
the information limitation is eliminated. This would be
impossible. The problem cannot be solved by only get-
ting more information. Rather, the design problem calls
for strategies that reduce the limitation. I claim that this
is the class of the cognitive systems, and the mecha-
nisms that reduce the limitation are the cognitive mech-
anisms. To be cognitive is to be limited and to be able
to do something about it.
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3 The Function of Cognition

The central proposal, the theoretical hypothesis of this
article, is that the most general conception of cognition
is that cognition refers to the set of mechanisms in an
agent that address the fourth design problem—the
information limitation (IL) problem. The work in
Section 2 served to identify the problems for which
cognition is relevant and to describe the classes of sys-
tems for which the problems arise. While an informal
conception of cognition was used in the process that
guided the theory construction that led to the informa-
tion limitation problem, the concept of cognition did
not enter the actual theoretical definitions. In this sec-
tion I will argue that the IL problem gives a good gen-
eral conception of cognition that may be useful in
addressing the thinning problem. To this end I will
accomplish three tasks: (1) I will analyze possible strat-
egies that address the IL problem; (2) I will offer a
precise characterization of the function of cognition;
and (3) I will demonstrate how prototypical capacities
associated with cognition are captured naturally by the
characterization. Task 3 will serve as the primary
inductive support for the claim that the characteriza-
tion offers a good theoretical definition of a concept of
cognition.

3.1 Overcoming Informational Limitations in Agents

What does it mean to have a strategy for overcoming
information limitation in an agent? It is useful to take
the statement apart. According to the above definition
(see Section 2.3), an agent is a system with at least one
goal and whose behavior is partly controlled by an
information system sensitive to the goal. The source
of the limitation is the huge discrepancy between the
differences in the environment relevant to the agent’s
goal and the ability of the control system of the agent to
act selectively based on the differences. Thus, a measure
of the limitation would be related to the connection
between the differences in the environment and the wit-
ness of the environment for the information system,
namely the subsystem M. Note, however, that the def-
inition of an information system does not include the
entire environment as a potential source of informa-
tion. Rather, it specifies a subsystem of the environ-
ment, S, as the source, whose macrostate structure is
determined by its dynamic interactions with the agent
(this includes its intrinsic organization). Thus, at any
moment the relevant connection is between M and S.
However, what S is, and what its macrostates are,
depends partly on the agent’s behavior; thus, S itself
can be modified as a result of changes in the agent’s
organization and control outputs. In an agent, there-
fore, a strategy for overcoming the information

limitation would be an activity (performance of work)
that allows a better coordination of the different macro-
states of S and M so that the purposeful system can
modulate the control system towards more accurate
and adapted actions in light of the goal.

ILP eliminates some strategies; in particular, it elim-
inates the brute force solution to the IL problem. It
cannot be assumed that all the agent needs to do is
get more raw data. A natural agent would get over-
whelmed quickly. Figuratively speaking, and quite sug-
gestively so for the idea of cognition, the solution needs
to be ‘‘smarter.’’

We must also disregard external intervention strate-
gies. That is, a strategy cannot depend on an external
system modifying the agent so that the information lim-
itation is reduced. In the case of evolvable systems, the
strategy cannot be for a new, better agent evolved by
some mechanism of random variation and selection.
Evolution can produce more adaptive systems, includ-
ing better cognitive systems, but itself is not a mecha-
nism of cognition. We are interested in strategies that
involve modifications of the agent by the agent itself.
Put generally, when the problem of information limita-
tion is investigated for our purpose, we must not com-
pare different agents, but a single agent across time.
(Exotic forms of Lamarckian-like evolution, where
acquired traits can be passed to the next generation,
can be included. It is unlikely that such mechanisms
exist in natural evolution, but they can be imagined in
artificial evolution.)

For the purpose of investigating the strategies for
overcoming information limitations we can make the
following assumptions: (1) Some aspects of the
agent’s organization are fixed for the information
system. Such aspects, however, can play a central role
for the operation of the system. The constraints on the
sensing system(s) of an organism (the size, position, and
makeup of the eyes, for example) or its body (the length
and arrangement of the bones, or the elasticity of tis-
sues) are essential for the functioning of the control
system of the organism. Nonetheless, these fixed con-
straints cannot be modified by the organism. They
affect the extent of the information limitation of the
organism, but they cannot be a part of an improvement
strategy. (2) A strategy must involve mechanisms that
modify the internal organization of the information
system, the relation of the agent to the environment,
and the environment itself (and potentially the very
mechanisms). The mechanisms may be parts of the
information system, or they may be additional systems
that do not directly participate in control or modula-
tion of control. They may also be implemented by
actions—control outputs—as when the system changes
its position to see better, or when the system modifies
the source of the information, as in cutting a fruit to
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look inside. The mechanisms may also be implemented
by internal changes of organization that are not outputs
of the information system (or are outputs of other par-
allel information systems).

It should be obvious by now that we cannot hope to
characterize every possible strategy for reducing the
information limitation of the agent. However, it is pos-
sible to outline several classes of strategies. These strat-
egy classes demonstrate why the function of cognition
can be connected to reduction of the information
limitation.

One way of reducing the discrepancy between the
source of information S and the medium M is to
build in more structure to M (and its control disposi-
tions) than can be facilitated by the immediate infor-
mational connection to S. This may be done in various
ways, but the most immediate is to take advantage of
the historical dynamics of M, and its interaction with S
and the rest of the information system. It is always the
case that the current state of M (and its control dispo-
sitions) depend on both history and current control
inputs. We get this simply by the fact that M is a
dynamical system. However, if its dynamics is right,
the history of its interactions may ‘‘collect’’ temporally
extended information that allows patterns of S’s behav-
ior to be reflected in the way M controls the outputs of
the system. If the patterns of historic interaction with a
system ‘‘contain information’’ about the dispositions of
the system now, and if the ‘‘information propagates’’ to
the correct dispositional state of M, the agent may be
able to ‘‘anticipate’’ the future behavior of S. Thus, the
agent’s actions may be targeted to more effective satis-
faction of its goals. The idea of anticipation, and the
corresponding notion of anticipatory system, has been
suggested to be central for cognition (Collier, 1999;
Collier & Hooker, 1999; Davidsson, Astor, & Ekdahl,
1994; Dennett, 1991; Rosen, 1985). In my account it
emerges naturally as a consequence of a strategy class
to the IL problem. The notion of anticipation, however,
is behavioral (except in the original systematic treat-
ment of Rosen, which uses the idea of an internal
model of the environment). One advantage of my
account is that anticipation emerges from an investiga-
tion of internal mechanisms in the agent.

A more complex way of building more structure in
M is, in addition to temporal dynamics, to provide
internal mechanisms that modify M concurrently in a
way that offers a better match between S and M. This
method is favored by representationalist models of cog-
nition. The cognitive system is assumed to receive a
decoupleable input, the input is processed and ana-
lyzed, and then an output is generated. The focus of
this account of cognition is the processing part. If infor-
mation is processed symbolically, the approach reduces
to GOFAI. The goal of information processing is

usually extraction of more (or more salient) informa-
tion from the input, as well as other related purposes,
such as selective storage of information for future use.
Traditional representationalist accounts of cognition
differ from my approach, or more generally from the
enactive/situated tradition to which I belong, primarily
in that for the enactive tradition the physical structure
of the agent and its interactions with the environment
play an indispensable role. However, the proposed cog-
nitive mechanisms investigated by the different schools
of representationalism fit naturally into my framework,
when representational machinery is properly integrated
in an information system, as mechanisms that offer a
reduction of information limitations.

A broader characterization of this class of IL reduc-
tion strategies is: utilization of internal mechanisms
that modify in-agent information vehicles in order to
extract more information from the available inputs.
This idea has been suggested by others as well. For
example, Ben-Jacob et al. (2005) and Ben-Jacob
(2009) describe this as extracting latent information
from the environment, where ‘‘by latent information
[Ben-Jacob et al.] refer to data embedded in the envi-
ronment that, once processed cognitively, initiates
change in the organism’s function or behavior’’
(Ben-Jacob, 2009, p. 79). Extraction of latent informa-
tion is seen as a central characteristic of cognition. A
characteristic that, Ben-Jacob argues, is found in some
bacteria and bacterial colonies.

A second way of reducing the information limitation
is when the organism carefully controls its interaction
with the environment, where the limited channel of
interaction between S andM is systematically monitored
to assure that the most relevant information for current
actions is available. This idea historically has been
emphasized by the ecological approach to cognition pio-
neered in psychology by Gibson, and in AI by Brooks.
The idea is that the organism need not internalize the
world completely. Rather, it suffices for the organism to
maintain the right invariance in its sensory array (its
control inputs) and only react to a small number of dis-
tinctions (Gibson, 1979). A metaphorical description is
that the organism offloads its informational problem to
its connection with the environment: ‘‘The world is its
own best model’’ (Brooks, 1991, p 417).

A third way of reducing the information limitation is
by changing the source of the information, S. This
strategy class can be viewed as an extension of the
second strategy class. I need to clarify first what I
mean by ‘‘changing.’’ I do not mean the situation
where the agent physically modifies the system S by
its actions. I would regard this kind of change as part
of the second class. By change of S I mean a change
produced by modifications of the information system of
the agent. Remember that the information source of an
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information system depends on the system—it depends
on which subsystem of the environment interacts with
the information system and which macrostates of the
subsystem are relevant for the goal-directed behavioral
patterns. Therefore S, as a component of the informa-
tion system, depends on the entire information system.
The key is not to think of S as an independent object in
the environment with independent properties that are
reflected in the information system. Instead, S is a
system partially constructed in the dynamical interac-
tion of the organism with its environment. In many
cases, no doubt, there may be independent ways of
identifying S and some of its macrostate structure;
after all, lions are real independent objects significant
for the well-being of an antelope. Still, S can be chan-
ged by changing the dynamics of the information
system, and the dynamics can be changed by parts of
the information system that are in or near the agent.
Let us consider an example. The information source
can be a patch of the night sky. The physical system,
the system of stars, is way back in the past light cone of
the organism, but it interacts (in one direction) with the
organism by fluctuations in the electromagnetic field
mediating between the systems. With the naked eye
few stars are visible in the patch. However, if a tele-
scope is placed on the eye, the macrostates of the source
change completely—now many more dots are visible.
The source, qua source, has changed, even if it, qua
physical object, has not changed.

Not every modification of the source provides a
reduction of the information limitation; however,
some do. This can happen by reducing selectively the
number of states connected toM—focusing. The system
uses its limited informational resources by extracting
information from only a part of the original source
(the new source is a subsystem of the original source),
but it can extract more accurate or detailed information
from the part. A cheetah can switch from exploring the
savanna to focusing on a particular gazelle and using
minute changes in the gazelle’s behavior to skilfully
modulate its chase. The distinctions and systematic
dynamics of the whole savanna, including all the
gazelles, trees, and bugs are too complex to effectively
guide the cheetah’s behavior, but by focusing on the
gazelle and a few other aspects of its environment, the
cheetah can accurately modulate its behavior at 90 km
hr�1. For the short minutes of the chase, the world of
the cheetah is effectively smaller, but she is more accu-
rately attuned to it. The key is not simply reducing the
source, but reducing the source and selecting more
important macrostates for the control of the goal-direc-
ted behavior—selecting a few important differences.

Other strategy classes of reduction of the informa-
tion limitation exist as well. For example, proponents
of extended cognition have insisted that some

organisms may utilize external artifacts, such as paper
and pen, to extend their cognitive systems, effectively
making them more powerful (Clark, 2003, 2008). The
same strategy can be described for an arbitrary agent,
without assuming that it is a cognitive strategy
(although it will turn out to be according to my analy-
sis). Such strategies, I suspect, will be found only in
fairly complex organisms, that is, humans, whose cog-
nitive capacities are not in doubt. Thus, for the pur-
poses of this article, I will not discuss these strategies
further.

3.2 Defining Cognition

It’s time for the punch line: I propose that the term
cognition be used to describe the various mechanisms
in an agent that implement the strategies that reduce
the information limitation. I want to make this idea a
bit more mathematically precise. For this purpose I will
resort to a measure defined in Shannon’s mathematical
theory of communication (MTC) (Shannon, 1948;
Weaver & Shannon, 1963). The measure that captures
the idea of one system being informationally correlated
to another is conditional information entropy.
Conditional information entropy of a system X on a
system Y is defined by the expression: H(XWY)¼
�
P

x2X,y2Y P(x&y)logP(xWy) where P(x&y) is the joint
probability and P(xWy) the conditional probability of
the states x and y. For those unfamiliar with MTC I
recommend Cover and Thomas (2006) for a more
modern technical introduction. In the context of an
information system, X¼S and Y¼M. The states are,
naturally, the corresponding macrostates of S and M.
We assume that the probabilities are determined (some-
how) by the global dynamics. Since both S and M are
subsystems, probabilities may be defined even if the
total dynamics are deterministic. This is because speci-
fication of macrostates of S andM underdetermines the
state of the global system, thus probabilistic relations
may depend on the existence of random latent variables
in the system.

The conditional information entropy, H(SWM), is
usually interpreted as the amount of information deficit
in M about S. Thus, if H(SWM)¼ 1, M and S are statis-
tically independent—the agent has no information
about the source. If H(SWM)¼ 0, then there is a perfect
correlation between M and S—the agent has perfect
information about S, and if S is the entire environment,
the agent is an epistemic god. Transformation of the
agent from M1 to M2 such that H(SWM1)>H(SWM2) is a
conditional information entropy lowering transforma-
tion. Similarly, a transformation of the source from
S1 to S2 such that H(S1WM)>H(S2WM) is also a condi-
tional information entropy lowering transformation.
Both cases have the effect of making the agent more
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attuned to its source of information. The ILP for an
agent is the observation that for most potential sources
S, H(SWM)& 1. A strategy for reducing the IL problem
is a transformation of the agent by some internal mech-
anism such that H(S1WM1)>H(S2WM2), that is, a condi-
tional information entropy lowering operation.

It is important to keep in mind that the measure H is
completely general. It can apply to any two systems (or
variables). The measure has the desired interpretation
only in the context of an information system, where
M and S, and their corresponding macrostates have a
special significance for the agent’s goal-directed behav-
ior. The notion of ‘‘information’’ in MTC is much
broader than the pragmatic/semantic notion of infor-
mation in an agent. Under no circumstances should it
be assumed that because I take advantage of a mathe-
matical measure from MTC, I have therefore switched
to ‘‘Shannon information.’’ Thus, when the notion of
conditional information entropy is used below in the
characterization of cognition, one must keep in mind
the demanding context of information systems.

With this discussion in mind, I propose the following
characterization of cognition:

. The cognitive system is the set of mechanisms of an
autonomous agent that (1) allow increase of the cor-
relation and integration between the environment
and the information system of the agent, that is,
allow lowering of the conditional information
entropy of selected important informational sources
in the environment on the information medium in
the agent, so that (2) the agent can improve the selec-
tion of actions and thereby produce more successful
behavior in light of its goal(s).

3.3 Why Is This an Account of Cognition?

My strategy for arguing that the definition of cognition
just presented is indeed the right one is to demonstrate
that we can view the accepted instruments of cognition
as strategies for reduction of informational limitations.
Going back to the metaphor of fencing cognition, I
must demonstrate (1) that we have fenced the right
things, and (2) that the fence is sufficiently constrained
to define a self-contained scientific discipline. The fenc-
ing metaphor has a weakness, however. As I insisted in
Section 1, we should expect cognition to be a graded
concept. The definition provides a graded concept
because it relies on mechanisms that produce a mar-
ginal effect—reduction (or lowering). Thus, we should
not regard the ‘‘fence’’ as a strict border. Rather, we
should regard it as a vague outline of a region of system
space, where an independent science of cognition (as
opposed to only biology) becomes important for

modeling organism structure and behavior. Thus, we
should think of the outline of the space of cognition
in the same way we think of the outline of, for example,
the tropics.

I will address (2) first, because there isn’t all that
much that could be said in support. The question of
(2) is whether it is theoretically useful to make the
notion of cognition more restricted. Arguing for (2),
then, is arguing for a claim of the following form: for
every further restriction of the class of cognitive sys-
tems, there exists a cognitive system that is omitted.
Arguing for such universal claims is very difficult in
an empirical domain. It is more productive instead to
issue a challenge: Can anybody offer a more restricted
definition of cognition, based on a further design prob-
lem, that can address the thinning problem in a non-
arbitrary way? If it is possible, then we have made
further theoretical progress. I am skeptical, however,
because I suspect any further narrowing will restrict
the mode of reduction of the informational limitation.
Such a restriction, I suspect, would be either too chau-
vinistic or too ad hoc. Of course, it is possible that a
more restricted class is defined in a completely different
way. If the challenge is viable, I think, it is in this way. I
admit, this is not a deductive argument. It is, however,
a sufficient reason to regard the claim that the definition
is the narrowest systematic definition of cognition that
can be provided as the ‘‘null hypothesis.’’

How do we know that we have fenced the right sys-
tems? We can examine the basic cognitive capacities
investigated by cognitive science and be convinced
that they indeed serve the function of reducing the
agent’s informational limitation. In this case, we see
that the common and overarching characteristic of all
basic cognitive capacities is the reduction of the infor-
mational limitation. We must focus on basic capacities,
because derived capacities may have all sorts of func-
tions. The ability to produce poetry has no interesting
connection to reducing informational limitations.

I suspect that the discussion of the various classes of
strategy for the IL problem in Section 3.1 suggested
how familiar cognitive capacities are captured, but I
was careful not to introduce cognitive language to
avoid circularity. Some of the most obvious capacities
that emerge from the discussion are capacities such as
learning and memory. Learning clearly is a mechanism
for reduction of information limitation (conditional
entropy lowering) because it is a capacity that allows
temporal patterns of interaction to modify the response
function of an organism so that limited control inputs
can produce behavior that is sensitive to larger dynam-
ical patterns in the environment. Learning an associa-
tion means that information about only one of the
associates can be received, yet the control mechanism
can function as if information about both were
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received. Memory, which can be regarded as a special
learning mechanism where information is stored in a
way that it can be recalled, that is, aspects of the con-
trol input can be regenerated and integrated back into
the control system, is also clearly a mechanism of inte-
gration of information over time, where the informa-
tion can be selectively focused. Thus memory also
incorporates the focusing strategy to the IL problem.

Maps, modeling, and representations, which are
required for some systems of memory, also allow focus-
ing of information. They also allow internalization of
aspects of the environment that may be decoupled from
the source. Thus, the system can use maps even if no
information channel exists between the source of the
map and the organism. Representations can also be
‘‘analyzed’’ by the system to extract information that
is not discernible as an input. Such mechanisms for
extraction of information are sometimes described as
reasoning, and when they lead to differential action as
decision making.

Mechanisms of attention, and selective decomposi-
tion of inputs based on feature detectors, are primarily
mechanisms of focusing of the source. Such mecha-
nisms can be implemented purely after the percept,
but often they depend on external action control
loops, as when attention is guided by the movement
of the body, eyes, ears, nose, or even flagella.

Some of the most important parts of the environ-
ment of an organism are other organisms. When organ-
isms coordinate not only their behavior, but also their
information systems directly, we can regard the organ-
isms as signaling or communicating. When communica-
tion serves as a mechanism where one organism can
obtain information about the other organism’s action
dispositions, it functions to reduce the information lim-
itation of one organism about the state and behavior of
the other, including the important case of information
about the percepts of the other. Note that as defined,
not all instances of ‘‘communication’’ between organ-
isms should be regarded as supported by cognition. All
one needs is information systems. (If one insists that
communication is a mark of the cognitive, then not
all cases of signaling between organisms should be
regarded as communication.)

This is not an exhaustive list of cognitive capacities,
but only a sample of the way one may be convinced
that cognition ultimately is about reducing informa-
tional limitation in an agent. I have not offered a spe-
cific architecture of cognition, however. It should not
be expected that we should learn anything deeper about
the vast array of cognitive capacities by realizing that
they are all strategies of conditional information
entropy lowering—no more than we can learn anything
deeper about tango, waltz, or twist by realizing that
they are all forms of dancing. The benefit of grouping

and studying tango, waltz, or twist as species of danc-
ing, as opposed to species of having-a-good-time, is
that one can discover more systematic relations and
contrasts between them. Similarly, by viewing cognitive
capacities as species of information limitation lowering
strategies, we have a more compact science of them.

How can this definition help with the thinning prob-
lem? Its main benefit is that it uses only concepts that
are not derived from high cognition. Let us say we have
a target system—a bacterium. To determine whether it
is a cognitive system, first we must identify mechanisms
that make it an information system. Second, we must
identify dedicated mechanisms that can reasonably be
described as having conditional information lowering
function. If this is possible, there is a theoretical value
in grouping the bacterium with other cognitive systems.
If such an analysis is impossible or if it appears as an
arbitrary and unnecessary theoretical imposition, then
it is best not to regard the bacterium as a cognitive
system, but as a proto-cognitive agent, or an active
autonomous system. Ultimately the verdict depends
on the careful analysis of the internal operation of the
systems. Complexity of behavior, or similarity to behav-
ior observed in cognitive systems may serve as initial
evidence that the target system is cognitive, but ulti-
mately cognition depends on what is under the hood.

4 Moving the Ladder

So far the discussion of cognition presupposed that the
candidate systems are biological organisms (or at least
autopoietic organisms, if further conditions are
demanded of biological systems). What sense can we
make of the idea of artificial cognition? One possible
way of addressing artificial cognition is simply to deny
it. One can say: cognition is a biological phenomenon!
Thus, no artificial, especially computation based cogni-
tion can exist. This, however, is throwing the baby out
with the bathwater. Such a view would regard any arti-
ficial system that exhibits sophisticated behavior, even
more sophisticated than human behavior, as a noncog-
nitive system. This would be as chauvinistic a view of
cognition as are views that insist on symbolic process-
ing or intentionality.

Another possible way of addressing the problem is
to observe that autopoiesis is itself a functional
property, and thus it can be instantiated in alternative
environments (or in molecular but constructed environ-
ments). Alternative forms of cognition are possible, but
only through alife. In other words, if one wants to
create an artificial cognitive system, one must first
create an artificial living system. This view is more plau-
sible, but it is still too restrictive.

By examining my characterization of cognition, we
can see precisely which parameters can be relaxed to
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allow alternative, including artificial, forms of cogni-
tion. It is useful to look down from the condition of
cognition, and unraveling the necessary notions, iden-
tify what is indispensable and what is not. According to
the characterization, cognition demands two things: an
agent and a conditional information entropy lowering
mechanism. There are no real constraints on the nature
of the mechanism, so we must focus on the agent. An
agent is a system that implements an information
system; thus we must consider the constraints on an
information system. An information system has three
constraints: (1) there has to be an embodied system in a
tightly constrained interaction with an environment
that hosts a source, (2) the system must have a well-
defined goal, and (3) the system must possess some
minimal organizational complexity to support the sub-
systems M and P. Condition (3) is functionally defin-
able, so it places no constraints on implementation.
Conditions (1) and (2), however, do place constraints.
The dynamic bidirectional interaction with an environ-
ment condition and sensitivity-to-a-goal condition are
necessary for the determination of the informational
states and their semantics. Condition (1) thus demands
embodiment and situatedness of the system. There is
nothing special that autopoiesis offers here. A metal
can with wheels will do. Autopoiesis offers a solution
for the presence of internally controlled goal-driven
behavior—autonomy. Autopoiesis, however, offers
only a sufficient condition of autonomy. It is a mode
of material organization that gives us simultaneously
the mode of persistent operation and the conditions
determining the goal of the system. The goal comes
for free.

There is no reason that the persistent operations of
the system and the goals must come from the same
place. In naturally emerging systems they probably
must, this is why autopoiesis may be necessary for the
origin of cognition, but in artificial systems the goal
may come from a distinct source. In other words, the
goal can be decoupled from metabolism, in which case
metabolism may be decoupled from cognition and may
be replaced by tin, copper, and silicon. The ladder of
cognition may be moved from autopoiesis to another
kind of embodied, goal-directed system.

5 Conclusion

Let us recap the achievements of this article. I started
with a question: What does cognition do in a general
system? By answering this question we simultaneously
answer the question what systems are cognitive?, and
outline the domain of cognitive science. The strategy
was not to describe a set of cognitive capacities, iden-
tified by empirical observation, but to identify a general
problem that systems of particular kind need solving.

By identifying such a problem we can identify what, in
general, cognition does—what the function of cogni-
tion is for a system. The problem that I identified is
reducing information limitation to engage in successful
behavior. I identified the problem by considering a
nested sequence of more general design problems start-
ing from a very generic problem that can be asked
about any cohesive system: How is it that it persists?
From there I considered systems that are responsible
for their own persistence—the autonomous systems.
Then a second design problem emerged: How can an
active system perform better control outputs in order to
improve its chances of persistence? I noted that systems
whose outputs are sensitive to the environment in
which they act offer a more adaptive solution to this
problem. A particularly important class of systems that
involve the environment in the determination of their
control outputs is the class of information systems. I
called such systems agents. For agents we could formu-
late a further design problem focusing on what infor-
mation can be used from the environment. Finally, by
observing that all naturalistically possible agents oper-
ate under severe information limitation, a new design
problem focusing on reducing the limitation appears,
thus leading us to cognition.

The four problems were not selected arbitrarily.
They took us from the question of being to the question
of acting, to the question of perceiving, to the question
of thinking. In a sense, although the discussion was
based on a lower level system theoretic analysis, the
concepts recovered are quite familiar. They came up,
however, in a different order from when introduced by
top-down approaches. In my order we see that acting is
a way of being, perceiving is a way of acting, and think-
ing is a way of building complexity and order in the
connection between perceiving and acting.

Funding

This research received no specific grant from any funding

agency in the public, commercial, or not-for-profit sectors.

Notes

1. See for example: Alloway (1972), Gould (1986), Greenspan

and Van Swinderen (2004), and Papaj and Prokopy (1989).
2. See Lyon (2007) for philosophical considerations, and

Ben-Jacob, Shapira, and Tauber (2005) and Ben-Jacob

(2009) for some physical/information theoretic arguments

for bacterial cognition. See Shapiro (2007) for experimen-

tal arguments.

3. See Di Paolo (2005) for a systematic criticism. However,

the matter is in no way settled. For a further defense of the

thesis that autopoiesis implies cognition see Lyon (2004).

Claims that autopoiesis is insufficient for cognition can
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also be found in Christensen and Hooker (2000),

Barandiaran and Moreno (2006), and Thompson (2007).

4. For a more detailed discussion of autonomy in broadly

similar form see Christensen and Hooker (2000).
5. Bourgine and Stewart (2004) claim that this condition is

sufficient to regard a system as cognitive.
6. It has also been criticized by Maturana and Varela, and

some of their followers.
7. Some advanced systems, such as humans, can be said to

have information without the system being able to do any-

thing with it, except to retransmit it. This notion of

‘‘having information’’ is somewhat different from the one

discussed here. It demands (cognitive) capacities not

assumed in an information system. Discussion of this

notion of information is beyond the scope of this article.
8. It may be possible to offer a stronger a priori conceptual

argument as well. Consider two agents, Gad and Doity,

that interact and that have complete relevant information.

Because the actions of Doity are relevant to Gad, the state

of the information system of Doity must be internalized in

Gad. However, the same is true in reverse. Thus, Gad must

internalize how Doity has internalized the state of Gad,

ad infinitum. Either this is an incoherent situation, or it

requires odd metaphysical assumptions, such as the possi-

bility of infinite information.
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