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LOGICALITY AND INVARIANCE

DENIS BONNAY

Abstract. This paper deals with the problem of giving a principled characterization of

the class of logical constants. According to the so-called Tarski–Sher thesis, an operation is

logical iff it is invariant under permutation. In the model-theoretic tradition, this criterion

has been widely accepted as giving a necessary condition for an operation to be logical. But

it has been also widely criticized on the account that it counts too many operations as logical,

failing thus to provide a sufficient condition.

Our aim is to solve this problem of overgeneration by modifying the invariance criterion.

We introduce a general notion of invariance under a similarity relation and present the

connection between similarity relations and classes of invariant operations. The next task

is to isolate a similarity relation well-suited for a definition of logicality. We argue that the

standard arguments in favor of invariance under permutation, which rely on the generality

and the formality of logic, should be modified. The revised arguments are shown to support

an alternative to Tarski’s criterion, according to which an operation is logical iff it is invariant

under potential isomorphism.

On the traditional semantic account of logical consequence, a sentenceφ is
said to follow from a set Γ of sentences iff, for every uniform reinterpretation
of the extra-logical expressions in Γ and φ, if all sentences in Γ are true, then
φ is true. What is nice with this semantic definition of logical consequence is
that it is purely extensional. It operates a reduction of logical truth to some
kind of general truth, thanks to the quantification over all interpretations,
without anyneed to appeal tometaphysical notions of possibility or necessity.
What is more problematic though is that it rests crucially on the distinction
between logical and extra-logical expressions. To get the account of logical
consequence right, it is thus mandatory to know where the line should be
drawn, unless one is ready to accept that we have nothing but a relative
concept of logical entailment.
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We aim here at giving a principled characterization of the class of (possible
denotations for) logical constants. The first section is devoted to a presenta-
tion of the standard semantic approach to the problem in terms of invariance.
In agreement with equally standard objections in the literature, we argue that
Tarski’s thesis, according to which permutation invariance is a necessary and
sufficient condition for logicality, should be revised because it overgenerates
by counting too many operations as logical. The second section introduces
a general framework to discuss the connection between notions of similarity
between structures and the operators which are invariant under these notions
of similarity. The problem is to find suitable constraints on the similarity
relations to be used for a characterization of logicality. This is done in the
third section. We introduce two main constraints, closure under definability
and absoluteness, which are shown to yield a nice map of the landscape of
all available similarity relations. These two constraints provide the basis of
two arguments in favor of a certain revision of Tarski’s thesis. These argu-
ments are given in the fourth section, which is devoted to an evaluation of
the consequences of such a revision upon the relationship between logic and
mathematics.

§1. The semantic road to logicality.

1.1. Characterizing logical constants. Some demarcations of the class of
logical constants will clearly not do. The following example by Etchemendy
(1999) makes clearly the point:

(1) If Leslie was a president of the US, then Leslie was a man.

Let us assume furthermore that “if . . . then ”, “president of the US” and
“man” belong to the logical vocabulary, and that “Leslie” does not. In this
case, (1) is a logical truth iff the following is true:

(2) For all x, if x was a president of the US, then x was a man.

(2) happens to be true, due to very contigent features of the history of
the United States. Therefore, (1) is a logical truth, relative to the chosen
demarcation. But this choice is clearly inadequate, because it makes the
property of being a logical truth depend on substantive facts about the
world which have nothing to do with logic. Etchemendy’s point is more
far-reaching than this example might suggest. He thinks that no choice of
logical expressions will do, because it is congenial to the semantic definition
of logical consequence that logical truth is defined in terms of some general
truths. For example,

(3) If John is tall, then Greg is tall.

is a logical truth iff, for the standard choice of logical constants, the following
is true:

(4) ∀x, y∀P (Px → Py)
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Intuitively, (3) is not logically true. But (4) might be true if our background
set theory was so weak that it would fail to provide enough extensions for
predicates.
Now, this point can indeed be granted to Etchemendy. But, as remarked
by Shapiro (1998), this just shows that the adequacy of the demarcation
makes sense only with respect to the setting in which the formalization is
to take place. In this respect, no absolute foundation of logical truth is
achieved, but, inside a given setting, a satisfactory account of the realm of
logical truths, as opposed to empirical or mathematical truths, might be
nonetheless possible.
What would be a satisfactory account? Something more than “getting the
definition of logical consequence right” is at stake. A raw list of expressions
may be such that taking exactly these expressions as logical would result
in a definition of logical consequence matching our intuitions. It will not
be sufficient as an explanation of logical truth. We do want to know both
which sentences are logically true and what makes them so. Therefore, the
demarcation is to be attained through a conceptual analysis of what it is
to be logical. The story should go roughly like this. Logic being what
it is, logical expressions have to enjoy some special properties. Then the
explanation of the distinctive nature of logical truth hinges on the fact that
only expressions with these properties should occur essentially in a sentence
for it to be logically true. In this case, something more than extensional
adequacy would indeed be achieved: the formalization would provide an
explanation of what makes for the difference between the realm of logic and
other kinds of truths.
Various strategies have been proposed to tackle this issue. Some of them
do not fit into the model-theoretic picture. This applies in particular to
proof-theoretic approaches and claims like “an expression is logical if its
use is entirely determined by rules of a certain form”.1 Other solutions
are pragmatic rather than stricto sensu semantic; given some nice model-
theoretic properties of logics, the set of logical constants is taken to be the
largest set compatible with these.2 This paper is devoted to a discussion
of the purely semantic route. The aim is to provide a characterization of
logicality as a property of semantic values available as denotations for logical
expressions. To put it bluntly, what is so special about the interpretation of
logical constants that forces us to keep them fixed when testing for logical
entailment?

1.2. Tarski’s thesis. The standard semantic account of logicality is
couched in terms of invariance. Let us see what the claim exactly is, how it
can be justified, and what are its consequences.

1Dummett (1991) or Došen (1994) are good examples.
2Quine’s (1986) insistence on completeness exemplifies such a pragmatic state of mind.



4 DENIS BONNAY

Tarski’s thesis. Given a setM , an operation QM acting onM is logical
iff it is invariant under all permutations.

To make sense of this thesis, quantifiers need to be viewed as higher-order
predicates: they yield truth values when applied to predicate extensions. A
unarymonadic quantifier is thus interpreted on a domainM by an operation
QM : ℘(M ) → {T, F }. QM is said to be invariant under permutation iff for
all permutations ð, for all A ⊆ M , QM (ð(A)) = QM (A). For example, we
can interpret ∃ on a domainM by an operation Q∃ defined by Q∃(A) = T
if A 6= ∅, and Q∃(A) = F if A = ∅ (where A ⊆ M ). Now, let ð be a
permutation, the image ð(A) of a non-empty subsetAwill always be another
non-empty subset, and the empty set will always be mapped to the empty
set. So ∃ is invariant under permutation, hence logical. On the contrary, let
a and b be two elements ofM , the operation Qa,b defined by Qa,b(A) = T
iff a ∈ A or b ∈ A grants a special role to a and b. It is not invariant under
permutation, and it should not count as logical, because it is sensitive to the
difference between a and b on the one hand and the other objects in the
domain on the other hand.
As it stands, the claim about logical constants is underspecified: Tarski’s
thesis is just a thesis about logical operations. We still need a story about the
logical symbols themselves. Sher (1991) suggests the following connection
between logicality as a property of operations and logicality as a property of
interpreted symbols:

Tarski–Sher thesis. An interpreted symbol Q is logical iff:

• Q is of type level at most 2 (i.e., Q has the same syntactic type of a
propositional connective or of a first-order quantifier).

• Q is interpreted by an operator Q associating to each domain M an
operation Q(M ) of the appropriate semantic type.

• Q is invariant under bijections across domains.

The shift from Tarski’s thesis about logical operations to the Tarski–Sher3

thesis about logical symbols is not as trivial as it may seem. The type
restriction could be challenged: why should we not deal with higher-order
languages and higher-order logical constants? The fact that it is sufficient for
a symbol to be logical that its denotation be logical could be challenged as
well. First, it has been argued that a logical symbol should have something
like a logical intension, in a sensewhich is not so easy tomakeprecise. Second,

3“Tarski’s thesis” and “Tarski–Sher thesis” are sometimes used synonymously in the lit-
erature. It is clear that the core of the Tarski–Sher thesis is Tarski’s thesis. Since the idea of
permutation invariance was put forward by Tarski as early as 1966, it seems fair to attribute
this thesis to Tarski. On the other hand, Tarski does not consider explicitly the question of
logical symbols, which was addressed in Sher’s book. Since there are many reasons, even
maybe some good ones, to accept Tarski’s thesis while rejecting Sher’s view, it seems equally
fair to us to isolate explicitly a “Tarski–Sher thesis” about logical symbols.
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it has also been argued that a logical symbol should have a uniform logical
denotation: logical operations exhibiting a wildly heterogenous behavior
across domains of different size should be banned. Notwithstanding the
interest of these problems,4 we shall focus here on what we take to be the
central issue concerning the Tarski–Sher thesis, namely Tarski’s thesis itself.
We shall first be concerned with ex ante justifications for the thesis, before
discussing, ex post, the adequacy of its consequences with respect to what
logic is.
Invariance under permutation can be justified along two different lines.
They are often confused in the literature. However, from a conceptual point
of view, it is worth distinguishing them. The first one, endorsed by Tarski
(1986), is based on a conceptual analysis of the generality of logic. The
second one tries to capture the idea that logic is formal. It can be found
in Sher (1991) as well as in previous mathematical works on generalized
quantifiers (Mostowski 1957).
The idea that a theory can be characterized by the class of transforma-
tions under which it is invariant was successfully proposed by Felix Klein in
order to unify and classify the field of geometry. The notions of Euclidean
geometry are invariant under transformations of space that preserve dis-
tance (the isometric transformations) and more generally under those that
preserve ratios of distances (the so-called similarity transformations). The
point of the Erlangen Program is to turn this into a definition: the study of
Euclidean geometry is just the study of the notions that are invariant under
similarity transformations The class of transformations under consideration
can be narrowed down or widened up. For example, if all transformations
which preserve collinearity – similarity transformations are just a subclass of
these—are allowed, this will characterize a more general geometry, namely
affine geometry. Affine geometry is more general in the sense that it can
distinguish fewer objects (all triangles are the same) and has fewer theorems.
The next move is to extend this beyond geometry and to assume that it is rel-
evant to try such a characterization for all kinds of theories, as has actually
also been done in the field of physics. Then, a characterization of logic will
come up as a result of the following argument:

The generality argument

G.1 The distinctive feature of logic among other theories is that it is
the most general theory one can think of.

G.2 The bigger the group of transformations associated with a theory,
the more general the theory.

4See Bonnay (2006) for a more detailed discussion of these issues and how they relate to
the one issue on which we focus here, namely overgeneration.
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G.3 The biggest group of transformations is the class of all permuta-
tions.

The logical notions are the notions invariant under permutations.

The idea of G.1 is to characterize logic through its position in our concep-
tual scheme. Logical notions can be used in any other field, logical laws are
used in any axiomatic theory, so that none of these should come with any re-
striction on the kind of objects to which they apply. We have seen that in the
setting of the Erlangen Program, generality is gained by enlarging the family
of transformations: this is the point of G.2. Now a characterization of logic
is at hand: it ensues from an answer to the question, what is the biggest group
of transformations? The answer, provided by G.3, is Tarski’s answer (1986):
it is just the class of all permutations of the universe onto itself. Note that
G.3 is as secure as a mathematical fact can be: it follows from the definition
of a transformation group that the biggest group of transformation acting
on a set is the group of all one-one functions onto this set. Geometries are
characterized by transformations respecting some structure of space, be it
measure ratios or collinearity. Abstracting from any kind of special feature
of the universe in order to get to the most general notions, we just end up
with all permutations.
The other justification by Sher and others rests on different assumptions:

The formality argument

F.1 Logic deals with formal notions, as opposed to non formal ones.
F.2 Formal notions are those which are insensitive to arbitrary switch-

ings of objects.
F.3 A notion is insensitive to arbitrary switching of objects iff it is

invariant under permutation

The logical notions are the notions invariant under permutation.

By contrast with G.1, F.1 is an ontological claim. Logic is characterized
directly in terms of the kind of objects it deals with. However, logic, in
some sense, is not about any special kind of objects; it is topic neutral.
Therefore, it can just be said to be about the formal features of reality,
those that make sense for every kind of objects or properties. Next, an
account has to be provided of what it is to be formal. G.2 suggests that non
formal properties,5 as opposed to formal ones, are sensitive to the identity

5Properties which are not formal might be dubbed ‘empirical’. However, this does not
seem completely correct. ‘x is a God’ is certainly not a formal property, but one might be
reluctant to consider it to be an empirical property. This is the reason why in F.1 we say that
‘Logic deals with formal notions, as opposed to non formal ones’ rather than ‘as opposed to
empirical ones’.
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of objects. For example, “red” is a non formal, empirical predicate, and it
distinguishes between things which are red and things which are not. If it
applies to some object, say this apple, and if the object under consideration
is arbitrarily replaced by another one, say this chair, there is no reason why it
should still apply to it (the apple’s being red does not force the chair’s being
red). On the contrary, a formal property should not distinguish among
objects. It should be preserved under arbitrary switchings. But then—this is
G.3—a permutation precisely performs such switchings. Therefore, formal
properties can be singled out as being precisely those that are invariant under
all permutations.
Both arguments share a common structure: they start with an intuition
about what it means to be logical (G.1 and F.1), then they push forward the
analysis of this intuition by formalizing it (G.2 followed by G.3, F.2 followed
by F.3). Both arguments converge towards permutation invariance, and the
convergence is non-trivial. As a matter of fact, the intuitive starting points
are different, but both arguments conclude on the basis of the formalization
of these intuitions that invariance under permutation is the right criterion
to characterize logicality. This agreement suggests that Tarski’s thesis is
conceptually well-motivated.6

1.3. The overgeneration problem. What kind of notions are logical on this
account? The standard quantifiers of first-order logic (FOL) are interpreted
by such invariant operations. But there are a lot of new quantifiers that turn
out to be logical, and the realm of permutation invariant operations goes far
beyond FOL. Let Qmost be a monadic quantifer such that Qmostx φ(x) is
true in amodel iffmost of the objects in themodel satisfy φ(x). The operator
Qmost is invariant under permutations, but it is not definable in FOL. The
same goes for the set-theoretic quantifierQ>ℵ0 (“there are uncountablymany
objects such that”). It is interpreted by an operator Q>ℵ0 which associates
with every set M an operation Q>ℵ0(M ) yielding the value “true” iff its
argument is an uncountable set. Q>ℵ0 is invariant under permutation, but
it is not definable in FOL, and actually, the downward Löwenheim–Skolem
property will fail for any logic containing Q>ℵ0 .
Wehave just given some examples of logical quantifiers. But it is possible to
give amuchmore accurate account of the nature of logic, once Tarski’s thesis
has been accepted. Let us draw a comparison with propositional calculus
(PC). The functional completeness theorem for PC states that every truth-
function is definable using the standard logical constants of PC, say ∧, ∨,
→ and ¬. Therefore, PC is all there is to truth-functional logic. There is
no such standard result for FOL, essentially because there is no standard
answer to what FOL is about, which would be similar to the claim that PC
is about truth-functions. The Tarski–Sher thesis does bring an answer to

6A thorough discussion of the relationships between this kind of arguments and more
traditional views about logic can be found in MacFarlane (2000).
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this question, and it becomes possible to ask whether a logic—FOL itself
or an extension of FOL—is functionaly complete with respect to what FOL
is about. We are thus interested in picking a logical language enjoying
functional completeness with respect to permutation invariant operations.
More precisely, any appropriate choice of syntax and logical expressions
should be such that, on the one hand logical expressions are permutation
invariant, and, on the other hand, every permutation invariant operation is
definable in purely logical terms. This can be done in infinitary logic. We
shall use the standard notation Lκ,ë, where κ and ë are cardinals. Lκ,ë is
the logic with the same basic connectives as FOL in which conjunctions of
fewer than κ-sentences are allowed, and quantification over sets of fewer
than ë variables are allowed. Lù,ù is just FOL. ∞ indicates that sets of
arbitrary size are allowed. L∞,∞ is therefore the strongest infinitary logic,
whose sentences are built out of arbitrarily big sets (proper classes are not
allowed) of sentences and variables.

Theorem 1.1 (McGee, 1996). An operation QM acting on a domain M is
invariant under permutation iff it is definable in L∞,∞.

So on the Tarski–Sher Thesis, logic is quite powerful, at least as powerful
as L∞,∞.

7 And here comes the criticism: it might be actually too powerful,
or more powerful than logic really is.
On Tarski’s criterion, the quantifier Qℵ1 , which tests whether there are
exactly ℵ1 objects satisfying a formula, is logical. Intuitively, something has
gone wrong. Being of size ℵ1 is a notion which belongs to set theory, not
to logic. As pointed out by Feferman (1999), an unfortunate consequence
is that logical notions will not be robust with respect to the background set
theory. For example, the conditions of application of Qℵ1 highly depend
on set-theoretic facts about higher infinites. Being of size ℵ1 is not an ab-
solute notion, its meaning depends on which sets exist: a given set can be
uncountable in a countable modelM of ZFC, because there is no bijection
in |M| between this set and ℵ0, and uncountable in an extension ofM in
which there is such a bijection. In the same line, Feferman (1999) has also
remarked that the restriction to first-order-like operations is only apparent,
because “L∞,∞ accomodates second-order quantification as a logical oper-
ation across domains” (p. 37). Therefore it is possible to express in L∞,∞

the Continuum Hypothesis and other substantial set-theoretic claims.
The situation is even worse than that. Consider a topological space S
and the operation ContS : ℘(S × S) → {T, F } defined, for R ⊆ S × S
by ContS(R) = T iff R is a continuous function. As desired, the opera-
tion Cont is not invariant under permutation because it takes into account
the underlying topological structure of the space S, which does not put
all points on a par. But for an arbitrary set M , consider the operation

7Note however that operations across domains cannot be defined unless one allows for
proper classes in the syntax. We will go back to this point in the last section.
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Cont′M : ℘(℘(M )) × ℘(M × M ) → {T, F } defined for O ⊆ ℘(M ) and
R ⊆M ×M by Cont′M (O, R) = T iff the familyO is a topology onM and
R is a continuous function on 〈M,O〉. Cont′M is invariant under permutation
and, if the domain set is allowed to vary, Cont′ is invariant under bijection.
Thus, by making the topological structure explicit, we can turn continuity
into a logical notion.
As a matter of fact, every structure or class of structures can now be
described up to isomorphism in one shot by a tailor-made logical operation:8

Fact 1.2. Let K be a class of structures of a given similarity type. If K is
closed under isomorphism, there is a language L, whose logical symbols are
interpreted by bijection invariant operators, and a sentence φK of L such that
for every modelM,M ∈ K iff φK is true inM.

Proof. For simplicity, assume that K is a class of relational structures of
the form 〈M,R〉. We define the operation QK,M over a setM by setting, for
R ⊆M ×M , QK,M (R) = T iff 〈M,R〉 is in K . This operation can be used
as the interpretation of a binary generalized quantifierQK endowed with the
following satisfaction clause:

A � QKx, y φ(x, y) [ó] iff QK,M (‖φ(x, y)‖A,ó) = T

where ó is an assignment on A and ‖φ(x, y)‖A,ó is the interpretation of φ
over A according to ó, that is the set of pairs 〈a, b〉 of elements of A such
that A � φ(x, y) [ó][x := a][y := b].
We consider a first order language L extended with the quantifier QK .
SinceK is closed under isomorphism,QK is bijection invariant. Conversely,
the class K is trivially characterized by the sentence QKxy Rxy: 〈M,R〉 �

QKxy Rxy iff 〈M,R〉 ∈ K by definition of QK . ⊣

Every class of structures, like our class K , which is closed under isomor-
phism thus gives rise to a logical quantifier, like QK . In this sense, every
mathematical notion gives rise to a closely related9 logical notion. The ques-
tion whether a given class of structures is elementary is trivialized, and the
very idea of a difference between logical and mathematical notions becomes
elusive.
All this suggests that Tarski’s criterion overgenerates and counts too many
operations as logical. First, since the aim is to distinguish the realm of logic
proper, a proposal which conflates logical notions and mathematical notions
does not seem to be on the right track. At least from a methodological

8In this section, we try to remain as neutral as possible with respect to the setting we
choose. A more detailed presentation of invariance criteria and of the setting in which we
discuss them will be given in the next section.
9This qualification is necessary. ‘Being 0’ for example, as a notion applying only to the

‘genuine’ zero is not invariant under permutation. However, the higher-order correlate ‘being
an empty-set’ and the relativized version ‘being the smallest element in a structure isomorphic
to the natural numbers’ come out as invariant.
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standpoint, one should look for alternative proposals to see whether it is
possible to do justice to the intuitive idea that logic is more basic than the
whole ofmathematics, andmore basic than set theory. Second, if logic is to be
used as a framework to develop alternative mathematical theories, it should
be neutral with respect to issues which are not mathematically settled, such
as the Continuum Hypothesis. Therefore, permutation invariance, though
it is a necessary condition for being logical, does not seem to provide a
sufficient condition. This situation is not very comfortable. We have seen that
Tarski’s thesis was well-motivated through the formality and the generality
arguments. But, unfortunately, its consequences are hard to accept. Should
we nonetheless accept those consequences, as suggested by Sher, or are there
reasons to think that the conceptual analysis has gone wrong somewhere?
We choose not to bite the bullet. Both the generality and the formality
arguments are actually more problematic than it might seem at first sight.
The argument in terms of generality rests on the assumption that invariance
under the biggest class of transformations yields maximal generality. The
idea is that the group of all permutations is as “big” as one might wish,
because in that case the transformations do not respect any extra-structure,
such as e.g., the topological structure of the space. Let us have a closer look
at this idea. Permutation invariance just says that as soon as there is an
automorphism linking 〈M,A〉 and 〈M,A′〉, a quantifier Q acting onM has
to give A and A′ the same value. On the one hand, this is indeed liberal,
because no further structure beyond the extensions A and A′ onM is taken
into account. But on the other hand, this is quite demanding: for 〈M,A〉
and 〈M,A′〉 to be similar from a logical point of view, they have to share
exactly the same structure—they have to be isomorphic. Now there are a lot
of other concepts of similarity between structures which are used in model
theory and in algebra which are far less demanding. Instead of requiring
the structure to be fully preserved, they lower the requirement to some kind
of approximate preservation. Why should we refrain from resorting to these
other concepts? To sum up, even if one grants that generality is a good way
to approach logicality, there is no evidence that the class of all permutations
is the best applicant for the job.
The problem with the justification in terms of formality is not with the
adequacy of the formalization, but rather with the adequacy of the intuitive
starting point itself. It is reasonable to think of logic as being formal, namely
free from ‘empirical’ content. But why should we take this to be sufficient to
characterize logic as opposed to mathematics or set-theory? After all, there
is more to content than permutation sensitive content. The problem with a
quantifier like Qℵ1 is precisely that it encapsulates too much “set-theoretical
content”. Formality is a property of logic that is shared by set-theory and
other branches of mathematics: it is not a surprise that taking formality as
the starting point of an analysis of logicality yields a collapse of logic into
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mathematics. A proper analysis of the distinctive feature of logic should take
into account the fact that it is even more “content-free” than set-theory.

§2. Generalized invariance. In this section, we aimat introducing a general
setting to discuss invariance criteria for logicality.

2.1. Invariance under a similarity relation. The main idea is to consider
invariance under arbitrary definitions of what it means for two structures
to be similar, without restricting attention to groups of transformations in
Klein’s sense.10 First, instead of looking at the interpretation of generalized
quantifiers as families of boolean-valued operations on sets, we will think
of them just as classes of structures. If Q is a unary monadic quantifier
of type ((e, t), t), its denotation Q yields an operation QM on each set M
which sends subsets ofM (objects of type (e, t)) to objects of type t, that is,
either T or F . Alternatively, Q will be viewed as the class of structures of
the form 〈M,P〉 such that QM (P) = T . For example, on this account, the
denotation Q∃ of ∃ is the class of structures of the form 〈M,P〉 such that P
is a non-empty subset ofM . Note that truth-functions fit into this picture
if booleans are part of the structures in one way or the other. One option
would be to workwithmulti-sorted structures and two separate domains, the
domain of objects and the domain of truth-values. For simplicity, we prefer
to consider booleans as genuine parts of the structure over a set: we will take
them to be the interpretation of 0-ary predicates. By a natural generalization
of the notion of interpretation of an n-ary predicate for n 6= 0, there are only
two possible values for a 0-ary predicate, namely ∅ and {∅}, that we will
construe respectively as false and true. On this account, the denotation of
the disjunction ∨ is the class of structures of the form 〈M,T,T 〉, 〈M,T, F 〉
or 〈M,F, T 〉. Finally, for any operator Q and for any structureM, we will
use the notationQ(M) to indicate thatM is in the classQ. All operators we
consider will be finitary operators, namely classes of structures with a finite
number of constants and a finite number of relations of finite arity.11

A similarity relationS is a relation between structures respecting signatures
(i.e., S is a family of relations Só between ó-structures for all signatures ó).
The notation isM SM′.
We are interested in the invariance of operators under similarity relations.
We say that an operator Q is S-invariant iff, for any structuresM,M′, if
MSM′, thenQ(M) iffQ(M′). For example, let us say thatM AutoM′ iff

10This general view on invariance is implicit in van Benthem (2002). Van Benthem insists
on the close connection between the invariance approach and definability results. Moreover,
he notes that “Any reasonable invariance analysis must postulate some relevant equivalence
relation on models” (2002, p. 431). Our generalization basically consists in letting any kind
of relation come into play. As we will see, equivalence relations do play a special role though.
Abstract equivalence relations have also been considered in abstract model theory: for an
overview, see Makowsky and Mundici (1985).
11In principle, generalization to the infinite case should be straightforward.
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there is an automorphism betweenM andM′, and thatM Iso M′ iff there
is an isomorphism betweenM andM′. It is clear thatAuto-invariance is just
invariance under permutation in the previous sense, and that Iso-invariance
is just invariance under bijection. Looking for an alternative to Tarski’s
thesis, we want to defend a claim of the form:

An operator Q is logical iff it is S-invariant.

for a certain similarity relation S. The point is therefore to find an S such
that it is possible to give conceptual arguments in favor of S in the spirit of
the formality and generality arguments, and such that S-invariance does not
overgenerate as badly as does Iso-invariance.

2.2. The Galois connection for invariance. Before considering particular
similarity relations, it will be useful to gain a better understanding of the
framework and to look into the duality between classes of “quantifiers”
(classes of operators) and similarity relations. Given a similarity relation S,
there is a class of operators which is naturally associated with S, namely the
class of all operators which are S-invariant, that we shall note Inv(S). In
the other direction, given a class of operatorsK , there is a similarity relation
which is naturally associated with K , namely the biggest similarity relation
leaving all operators inK invariant, that we shall note Sim(K) and formally
define byM Sim(K)M′ iff for all Q ∈ K , Q(M) iff Q(M′).
Let K be the class of all classes of operators. We shall look at K as an
ordered class, by setting K ≤ K ′ iff K ⊆ K ′. In the same way, let S be
the class of all similarity relations. We shall also look at S as an ordered
class, by setting S ≤ S ′ iff S ′ ⊆ S (i.e., iff for allM,M′, ifM S ′ M′ then
M SM′). Intuitively, S is lower than S ′ iff S is less fine-grained than S ′ (S
identifies more structures than S ′).
Sim : K → S and Inv : S → K are two “symmetric” functions which allow
us to go from classes of operators to similarity relations and the other way
around. How symmetric are they? It is easy to check that Inv and Sim are
both monotone: if K ≤ K ′, then Sim(K) ≤ Sim(K ′), and if S ≤ S ′ then
Inv(S) ≤ Inv(S ′). However, Inv and Sim are not inverses: in general, it is not
the case that Sim(Inv(S)) = S and Inv(Sim(K)) = K . Therefore, Inv and
Sim do not provide an isomorphism between our two ordered structures.
But one can show the following fact:

Fact 2.1. For any class K of operators and any similarity relation S,
Sim(K) ≤ S iff K ≤ Inv(S).

Proof. Only if. Assume Sim(K) ≤ S. It follows that Inv(Sim(K)) ≤
Inv(S). But K ≤ Inv(Sim(K)). Therefore K ≤ Inv(S).
If. Assume K ≤ Inv(S). It follows that Sim(K) ≤ Sim(Inv(S)). But
Sim(Inv(S)) ≤ S. Therefore Sim(K) ≤ S. ⊣

〈K,S,Sim, Inv〉 is thus aGalois connection (or, in terms of category theory,
Sim and Inv are adjoint functors). This makes precise the “symmetry”
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betweenSim and Inv. It follows immediately from theGalois connection that
Inv(S) = Inv(Sim(Inv(S))) and Sim(K) = Sim(Inv(Sim(K))). Moreover,
we have an isomorphism between Inv(Sim(K)) and Sim(Inv(S)). Finally the
so-called kernel operator Sim ◦ Inv : S → S is of special interest:

Fact 2.2. Sim(Inv(S)) is the reflexive, transitive and symmetric closure
of S.

Proof. LetM andM′ be two structures such thatM Sim(Inv(S))M′.
We assume for contradiction that there is no sequenceM1, . . . ,Mn of struc-
tures such thatM =M1,M

′ =Mn and for all i , 1 ≤ i ≤ n,Mi SMi+1

orMi+1 S Mi . Let Orb(S,A) be the operator defined by Orb(S,A)(M)
iff there is such a sequence fromM to A. Clearly, Orb(S,A) is S-invariant,
therefore Orb(S,A) is in Inv(S). By hypothesis, we have that Orb(S,A)(M)
but not Orb(S,A)(M′). This contradictsM Sim(Inv(S))M′. ⊣

Thus, Inv(S) = Inv(Sim(Inv(S))) tells us that a similarity relation and the
smallest equivalence relation containing it induce the same class of operators.
There are two main differences between generalized invariance andKlein’s
idea of invariance by a group of transformation. The first one is that sim-
ilarity relations are not equivalence relations, so that we loose the “group”
idea. However, we have just seen that this is not a substantial point, because
we can always look at Sim(Inv(S)), which is an equivalence relation, instead
of looking at S. The second difference is that elements of a group of trans-
formations were transformations, namely one-one function from a set onto
itself. Two structures were considered as similar if one could be transformed
into the other by a transformation in the group: this means that similarity is
always induced by a bijection. Generalized invariance is much more liberal
with respect to that: any kind of relation between structures, be it grounded
in a bijection or not, can be used as a similarity relation.
The nice thing is that we now have a wide range of possible choices of S, so
that we might hope that solving the overgeneration problem while sticking
to the invariance approach is possible. On the other hand, any choice of S
must be philosophically motivated, and we need therefore to organize the
landscape of invariance and classes of operators on a conceptual basis.12

The next section will be devoted to this task. We will look for plausible
constraints on S when S is to be used as a criterion for logicality.

2.3. Invariance under homomorphism. Before closing this section, we
should remark that S-invariance admit as particular cases some of the alter-
natives to Tarski’s thesis that have been put forward in the literature.

12We are especially indebted to Solomon Feferman and Philippe Schlenker for suggest-
ing that we should provide a detailed account of conceptually meaningful constraints on
similarity relations and for helping us to do so.
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Feferman’s proposal (1999) is to move from isomorphisms to strong ho-
momorphisms:13

Definition 2.3 (Strong Homomorphism). LetM andM′ be two struc-
tures of the same signature ó, a strong homomorphism fromM ontoM′ is
a surjective function f : |M| 7→ |M′| such that:

• For any constants a in ó, f(aM) = aM
′

.
• For any function symbol g of arity n in ó, for any n-uplet−→a of elements
of |M|, f(gM(−→a )) = gM

′

(f(−→a )).
• For any relation symbol R of arity n > 0 in ó, for any n-uplet −→a of
elements ofM, −→a ∈ RM iff f(−→a ) ∈ RM′

.
• For any predicate symbol p of arity 0 in ó, pM = pM

′

.

We shall say that M SHom M′ iff there is a strong homomorphism
fromM ontoM′. Note that SHom is not an equivalence relation, but that,
once again, Inv(SHom) = Inv(Sim(Inv(SHom))),Sim(Inv(SHom)) being the
smallest equivalence relation containingSHom. Themotivation for choosing
S = SHom has to do with the overgeneration problem. Because cardinality
quantifiers should not all count as logical, it is tempting to suggest that
logical operations should be insensitive to cardinality issues. This is precisely
what is achieved by the shift from Iso to SHom. The injectivity requirement
is left out, so that similarity relations are allowed which identify different
objects. These intuitive motivations fit in the conceptual analysis which has
been set in the previous section. In terms of generality, Feferman’s choice
for S fares indeed better than Iso, because every isomorphism is a strong
homomorphism, while the converse is false. A reason for not looking below
SHom is nevertheless still to be provided. In terms of lack of content, Iso-
invariance neutralizes empirical content, and, as we have just seen, SHom-
invariance neutralises both empirical content and “numerical” content, at
level of finite and infinite cardinalities. This makes sense if logic is taken
to be both formal and blind to numbers. The claim might however seem a
bit too strong: the (set-theoretic) reasons to reject Qℵ1 do not necessarily
constitute reasons to reject ∃!5 as well.
An other independent reason for choosing SHom is the following. SHom
allows for comparisons between all domains, in contrast with Iso which
might connect only domains of the same size. Because of this special feature,
one can hope that a SHom-invariant operation really means the same thing

13Casanovas (2007) recently proposed a detailed analysis of the various versions of in-
variance under homomorphisms that could be used. In particular, he makes it clear that
the criterion is quite sensitive to the type-theoretic setting (functional or relational) in which
the operations are expressed. Casanovas also puts forward a notion of invariance under
homomorphism of its own that cuts across first-order logic itself. This notion of invariance
could be analyzed as invariance under a similarity relation in our sense (see Bonnay, 2006, for
a detailed discussion). However, we do not consider as very attractive an invariance criterion
which bans operations which are definable in pure first-order logic.
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on every domain. In particular, a quantifier acting like ∃ on finite domains
and like ∀ on infinite ones is Iso-invariant, but it is not SHom-invariant.
The following claim is now lurking around:

SHom thesis for logicality. An operation Q is logical iff it is SHom-
invariant.

Actually, this is not the view that Feferman (1999) upholds. He rather
supports the following:

Monadic SHom thesis for logicality. An operation Q is logical iff it is
ë-definable from monadic SHom-invariant operations.

Judging from the consequences, The monadic SHom thesis looks far more
plausible than the simpler SHom thesis:

Theorem 2.4. An operation QM acting on a domainM is SHom-invariant
iff it is definable in L−

∞,∞.
14

Theorem 2.5 (Feferman, 1999). An operation Q is ë-definable from
monadic SHom-invariant operations iff it is definable in FOL−.

Theorem 2.4 shows that SHom overgenerates nearly as much as Iso. It
characterizes the same infinitary language, except that equality has to be
dropped from the stock of logical constants. Now, this is not so significant a
change, because, as shown by Quine (1986, p. 63), identity can be simulated
in a quantificational language. It can be defined in a Leibnizian spirit as the
greatest congruence relation for the language under consideration. In FOL,
this works only if the number of extra-logical expressions is finite, but in
L−
∞,∞, even the qualification is unnecessary.
The interest of SHom as used in the SHom thesis for logicality is thus
quite limited. Things are different with Feferman’s thesis. Feferman’s claim
yields a nice characterization result, but only at the cost of putting additional
constraints on the characterization. First, invariance concerns a restricted
class of operations, the monadic ones. Then, some more machinery is
needed to get polyadic operations from these, which is why typed ë-calculus
comes into play. As a consequence, it is not sufficient to motivate the shift
from Iso to SHom. Feferman needs two more arguments to support his
thesis: one to justify the restriction to monadic operations, another one
in favor of the logicality of the class of ë-terms which is used. Feferman
does not explictly discuss the second point, but the lack of argument here
is relatively harmless. Since SHom-invariance is preserved by ë-definability,
if one is to accept SHom for monadic types, one should accept the closure
under ë-definability. But the first point is more tricky: if SHom enables
one to disregard exactly the features of objects which logic disregards, why

14This answers an open question raised by Feferman (1999, question 6.1 p. 47). L− is the
equality free version of L. The proof is omitted here.
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should one demand more than that and restrict the application of SHom-
invariance? Feferman’s argumentation is based on linguistic datas. He
considers that “natural language evidence supports the view of quantifiers
as, first and foremost, monadic operators” (1999, p. 47). Following ideas put
forward byMontague, Barwise andCooper (1981) have shown thatmonadic
generalized quantifiers provide very efficient tools for a formal semantics of
natural language sentences. Sentences are basically formed by combining a
verb phrase and a noun phrase. In the sentence

Most critics are pedantic.

the semantic interaction of the noun phrase “Most critics” with the verb
phrase “are pedantic” is commanded by the determiner of the noun phrase.
“Most” is construed as a quantifier of type 〈1, 1〉 which applies to the two
predicates provided by “critics” and “pedantic”. Inmore complex sentences,
like

Most critics reviewed just four films.

a polyadic quantifier of type 〈〈1, 1〉, 2〉 has to be constructed out of the
monadic quantifiers “Most” and “Four”. The centrality of monadic quan-
tification boils down to the fact that polyadic quantifiers are obtained in
general by lifting monadic quantifiers in one way or the other.
This line of argument raises two questions. First, why should natural
language evidence come into play in a characterization of logic? Second,
does the fact about lifting really support the restriction to ë-definability from
genuine monadic logical quantifiers?
Answers to these questions have to take into account another linguistic
fact. This fact is stated by Keenan and Westerståhl: “On [ . . . ] natural
notions of expressive power, monadic quantifiers are not sufficient to express
quite common constructions [ . . . ] involving polyadic quantifiers ” (1997,
p. 890). Relevant cases include branching quantification:

Quite a few of the boys in my class and most of the girls in your
class have dated each other.

or reciprocals, such as exemplified by

Most of the boys in your class like each other.

As a consequence, the claim that monadic quantification is all there is to
natural language quantification can be sustained only if quite powerful ways
of lifting monadic quantifiers are used. In particular, ë-definability, which
is used in the monadic SHom thesis, will not do the job. As a consequence,
any defender of the thesis faces a dilemma:

• Either natural language evidence is relevant to the project of a char-
acterization of logicality. But then, logic should be expressive enough
to account for how polyadic quantifiers can be defined from monadic
ones. This is not compatible with Feferman’s account of logic, as shown
by theorem 2.5.
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• Or the semantics of complex natural language sentences is not relevant
to this projet. But then, there is no good reason for the restriction to
monadic quantification.

One could try to escape the dilemma by arguing that natural language
evidence is relevant as long as monadicity is concerned, but that liftings do
not have to be provided by purely logical means. In this case, the argument
from natural language unfortunately appears quite ad hoc. There is still hope
that one could come up with a characterization of logicality which would be
purely in terms of invariance and would not rely on type restrictions. The
next section is devoted to a further exploration of this route.

§3. Constraints on similarity relations. Now we go back to generalized
invariance and introduce two constraints on similarity relations suitable to
characterize logical operations. The first one, closure under definability is
meant to qualify the idea of maximal generality in our framework. The
second one, absoluteness, is meant to complement the idea that logical
notions are (nearly) devoid of content.

3.1. Some interesting similarity relations. First, we shall introduce some
similarity relations that will be used below, in order to give an idea of the
kind of proposals that can be made. We shall actually highlight two kinds
of similarity relations: a first family of very liberal similarity relations, a
second family of similarity relations which are “local” variations on the idea
of “being isomorphic”. In what follows,M = 〈M,R1, . . . , Rn, a1, . . . , am〉
and M′ = 〈M ′, R′

1, . . . , R
′
n, a

′
1, . . . , a

′
m〉 are arbitrary structures (without

functions, for the sake of simplicity), equipped with n relations and m
constants.

Definition 3.1 (Univ). The similarity relation Univ is defined by
M Univ M′ iffM andM′ have the same signature.

Intuitively,Univ is the universal similarity relation, which identify any two
structures to which an operator of a given type could be applied to. It is the
smallest element of K.

Definition 3.2 (Bool). The similarity relation Bool is defined by
M Bool M′ iff for all i ∈ {1, . . . , n} such that Ri in M and R′

i in M′

are 0-ary relations, we have Ri = R
′
i .

Intuitively, Bool is the boolean similarity relation, which identify any two
structures whose boolean part is identical, that is any two structures which
agree on extensions of 0-ary relations.

Definition 3.3 (App). The similarity relation App is defined by
M App M′ iff for all i ∈ {1, . . . , n}, j1, . . . , jk ∈ {1, . . . , m}, we have
that (aj1 , . . . , ajk ) ∈ Ri iff (a

′
j1
, . . . , a ′jk ) ∈ R

′
i where m is the arity of Ri

and R′
i .
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Intuitively, App is the smallest similarity relation respecting functional
application. Two structures which are App-similar satisfy exactly the same
atomic formulas of a language whose signature is the signature of the struc-
tures, and also exactly the same ∆0 formulas of that language. App respects
booleans as a special case of functions applied to zero arguments.
We now define some less liberal similarity relations which refine on Iso by
requiring the identity of formal features only at a local level. Two structures
M andM′ are locally similar if there is an isomorphism between two sub-
structures ofM andM′. For example, a structureM containing a copy
of Z will be locally similar in this sense to another ordered structure con-
taining a copy of Z as well. This idea cannot make sense as a criterion of
similarity, because the other parts ofM andM′ can be very different. One
has to guarantee that any local similarity can be extended to other parts of
the structures as well. This leads to similarity relations which are far less
demanding than Iso.

Definition 3.4 (Partial isomorphism). LetM andM′ be two structures,
and f : |M| → |M′| a function. f is a partial isomorphism betweenM and
M′ iff there are two substructures A and A′ ofM andM′ such that f is an
isomorphism between A and A′.

The idea of local resemblance can be captured by requiring the existence of
families of partial isomorphisms satisfying certain properties. In particular,
we can require that it is always possible to extend the partial isomorphisms in
any direction a finite number of times. We get the following definition where
the ordinal α is a parameter precising what is meant by “always possible”:15

Definition 3.5 (α-isomorphism). Let α be an ordinal, M and M′ two
structures, an α-isomorphism I fromM toM′ (notation I :M ≈α M′) is
a sequence

I0 ⊇ I1 ⊇ · · · ⊇ Iâ ⊇ · · · ⊇ Iα

s.t. for any â ≤ α, Iâ is a non-empty set of partial isomorphisms, and if
â + 1 ≤ α and f ∈ Iâ+1, then for any a ∈ |M| (resp. b ∈ |M′|), there
is a partial isomorphism g ∈ Iâ such that f ⊆ g and a ∈ dom(g) (resp.
b ∈ rng(g)).

By requiring that partial isomorphisms can be infinitely extended, we get:

Definition 3.6 (Potential isomorphism). A potential isomorphism I be-
tween two structuresM andM′ (notation I :M ≈p M′) is a non empty
set of partial isomorphisms such that:

for all f ∈ I and a ∈ |M| (resp. b ∈ |M′|), there is a g ∈ I with
f ⊆ g and a ∈ dom(g) (resp. b ∈ rng(g)).

15We use Feferman’s (1972) definitions.
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Here are corresponding similarity relations. For an ordinal α, the simi-
larity relation Isoα is defined byM Isoα M′ iff there is an α-isomorphism
betweenM andM′. The similarity relation Isop is defined byM Isop M′ iff
there is a potential isomorphism betweenM andM′. These similarity rela-
tions are standard tools inmodel theory; they are used as semantic correlates
of elementary equivalence for certain languages. Note however that the shift
from results about elementary equivalence to results about invariants is not
trivial. For example, consider Isoù. Two structures are Isoù-similar iff they
satisfy exactly the same sentences of FOL. However, if we look at the logic
of Isoù -invariants operators, we will not get FOL: there are Isoù-invariant
operators (e.g., “being infinite”) which are not definable in FOL.
Finally, note that these similarity relations are linearly ordered by ≤:

Fact 3.7. Univ ≤ Bool ≤ App = Iso0 ≤ Isoα ≤ Isoα′ ≤ Isop ≤ Iso,
where α and α′ are ordinals such that α ≤ α′.

We also have:

Fact 3.8. App ≤ SHom ≤ Iso

But ≤ is only a partial ordering. In particular, Isop and SHom are unre-
lated. First, SHom � Isop: let A = 〈{1, 2, 3}, {1, 3}〉 and B = 〈{1, 2}, {1}〉
be two structures, we have A SHom B but we do not have A Isop B. Sec-
ond, Isop � SHom. If we look atM = 〈Q,≤〉 andM′ = 〈R,≤〉, we have
M Isop M′ but we do not haveM SHom M′. This highlights the fact
that Isop and SHom correspond to two really different weakenings of Iso.
By shifting to SHom, one keeps a global similarity relation, but liberalizes
over Iso by discarding equality. By shifting to Isop, one goes from a global
to a local idea of similarity, and there is no special treatment for equality. It
would be possible to define and study “equality-free” versions of Isop and
the Isoα .

3.2. Closure under definability and generality. This section is devoted to
an enquiry into the limits of generality in the framework of generalized
invariance, and it will rely upon the particular similarity relations we have
just introduced as special landmarks.

3.2.1. Generality in our framework. The generality argument character-
izes logic as the most general theory in our conceptual scheme. In Klein’s
setting, there is a correspondence between groups of transformation and the
generality of invariants: the bigger the group (i.e., in our setting, the lower
the associated similarity relation), the more general the invariants. Because
all considered groups are groups of transformations, the minimal element,
which corresponds to maximal generality, is the groups of all one-one and
onto transformations, corresponding in our setting to the similarity relation
Iso (or Auto if the domain is kept fixed). By generalizing the idea of in-
variance under a group of transformations to the idea of invariance under a
similarity relation, we have opened up a domain of new similarity relations
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which do not correspond to any group of transformation in Klein’s sense.
As a consequence, Iso is no longer the lowest element with respect to the
ordering ≤ on S: we have seen that Isop ≤ Iso, Isoù ≤ Iso, App ≤ Iso, etc.
What happens to the formalization of the idea of maximal generality in this
setting? Two questions should be answered:

• Why do similarity relations provide a more liberal notion of similarity
than Kleinian groups of transformations?

• How can the requirement of generality be applied in the new setting?
Which is the similarity relation whose invariants are the most general
notions, can it be used as a logicality criterion?

Concerning the first point, it is important to distinguish two parameters
that determine the liberality of a similarity relation:

(i) the amount of extra-structure which has to be preserved.
(ii) the degree to which structure is to be preserved.

What do we mean by “extra-structure”? Invariance under bijection (Iso)
is more liberal than invariance under homeomorphism, because invariance
under bijection allows for arbitrary switchings of elements of the domains,
whereas homeomorphisms are continuous transformations which preserve
some implicit structures of the domains thought of as sets of points, namely
their topological structure. In this sense, homeomorphisms preserve some
extra-structure which is not explicit on the structures considered, whereas
the similarity relation Iso, corresponding to invariance under bijection, is
only sensitive to the explicit formal features of the structures to which the
operators are applied. For this reason, Iso is indeed the lowest similarity
relation with respect to the first parameter: no extra-structure is preserved
under Iso.
However, by thinking in terms of similarity relations instead of groups
of transformation, we discover the significance of an other parameter: the
degree to which structure (implicit “extra-structure” or explicit structure)
is to be preserved. Iso reflects full formal similarity: two structures which
are isomorphic are exactly identical to one another as structures, the only
difference consisting in the nature of the elements of their domains. On the
contrary, we have seen that two structures which are potentially isomorphic
are not fully identical: they are just similar in the sense that they are always,
so to speak, locally isomorphic. Isop is thus lower than Iso, because it
is more liberal than Iso with respect to the second parameter of liberality,
namely the degree to which structure preservation is required. Note that the
two parameters are independent. One could think of a potential version of
homeomorphisms for example, in which partial preservation of the implicit
topological structure would be required.
Now which is the smallest similarity relation in S, i.e., which is the simi-
larity relation which is the most liberal with respect to both parameters? By
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definition, it is Univ. But of course, in some sense, Univ is a trivial relation
of similarity, which discards all the formal features of structures. It comes
therefore as no surprise that Inv(Univ) is a very meager class of operators: it
will contain only trivial operators which contain either all the structures of
a given signature, or none of them.
There is an important conceptual lesson to be drawn from this trivial
mathematical fact. In the setting of generalized invariance, it does not
make sense to require full generality without qualification, because the most
general notions are as much useless as they are general. We do not think
that this is an unwelcome feature of the framework. On the contrary this is
as it should be; there is no reason why requiring utmost generality should
not result in a total loss of content. Logical notions are the most general
notions which deal with certain kind of features; but in order to make sense
of the generality of logic, one has to say what matters to logic. For example,
the difference between true and false is central to the project of defining what
logical consequence is: in this respect, it seems fair to restrict one’s attention
to similarity relations which do not conflate true and false, i.e., to similarity
relations which preserve the boolean parts of structures (these are the S such
that Bool ≤ S). The class of operators Inv(Bool) is just the class of all truth-
functions: this is as expected. One can try to go a bit higher than Bool. It
seems fair as well to consider only similarity relations S such that App ≤ S:
functional application is the semantic correlate of syntactic concatenation,
and it seems a very basic semantic feature of languages, nearly as basic as
the difference between being true and being false. Logic should therefore be
sensitive to functional application as well. Inv(App) is the class of operators
which are ë-definable from Inv(Bool), and, again, this is not a surprise.
3.2.2. Introducing closure under definability. All this seems to be fairly lim-
ited: we do not go really further than propositional logic, and the correspon-
dence between similarity relations and classes of operators is so immediate
that the conceptual gain of the invariance approach seems to be dangerously
close to zero. We now wish to introduce two constraints on generality that
will prove to be much more substantial.
First, if we accept that the operations ofFOL are indeed logical operations,
we have to choose a similarity relation that is sensitive to basic set-theoretic
features of the structures. In particular, it is clear that if we think that
the existential quantifier is logical, two structures 〈M,P〉 and 〈M ′, P′〉 such
that P is a non-empty subset of M and P′ is the empty set should not be
considered as logically similar. One way to capture this very minimal kind
of structural similarity would be to say that for two structures to be logically
similar, it must be impossible to see that they are different just by looking
at an arbitrary individual in one of the structures. Or, that if two structures
M andM′ are similar, then if we pick an arbitrary individual say a in |M|,
it must be possible to pick another individual a ′ inM′ such that a and a ′
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share the same properties. A similarity relation satisfying this property is a
relation S such that Iso1 ≤ S.
Second, the invariants of a similarity relation should be closed under
definability. Let us explain this. Given a similarity relation S, Inv(S) is
the class of S-invariant operators. We are interested in the class Inv(S) as
the putative class of logical operators. This means that we want to use the
operators in Inv(S) as building blocks for the logical part of a language. Now,
given a language, it is possible to define in it certain operators in a purely
logical way. For example, let us consider the classK of operators containing
just the existential and universal quantifiers, the operator for equality and
the boolean operators. The logic associated with K is just FOL. Now, in
FOL, it is possible to define new logical operators. For example, the purely
logical formula “∃x, y, z ((Px ∧ Py ∧ Pz) ∧ (x 6= y ∧ x 6= z ∧ y 6= z))”
defines the operator Q≥3 (“there are at least three”), which is the class of all
structures of the form 〈M,P〉 where P is a subset ofM containing at least
three elements. Even if Q was not in K , it was “implicitly” there, because it
is definable in a language based on K .
Operators which are definable in a purely logical manner are logical. We
just do not see how a non-logical element could creep in the logical elements
of the definition and make the defined operator non logical. This is what we
might call the principle of closure under definability:

Principle of closure under definability. An interpreted symbol defin-
able only by means of logical constants is a logical constant.

Le us make this mathematically precise. Let K be a class of operators.
The logic LK associated with K consists in first-order variables and logical
constants interpreted by operators in K . For any signature ó, we thus
obtain a language LK (ó) with extra-logical symbols corresponding to ó,
whose interpretation varies freely, and logical symbols whose interpretation
is taken from K and is kept fixed. For example, let Q ∈ K be a class of
structures of the form 〈M,R〉 where R ⊆ M ×M , LK contains a logical
symbol Q which is interpreted by Q. To recall the point made in the proof
of Fact 1.2, the clause forQ in the recursive definition of satisfaction for LK
is the following one:

M � Qx, y φ(x, y) [ó] iff Q(M, ‖φ(x, y)‖M,ó)

where ‖φ(x, y)‖M,ó is the interpretation of φ overM according to ó, that
is the set of pairs 〈a, b〉 of elements ofM such that

M � φ(x, y) [ó][x := a][y := b].

Conversely, given a logic L and an operator Q—for simplicity, we assume
the type of Q is the same as before—we shall say that Q is definable in L iff
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there is a sentence φQ of L(R) such that:

Q(〈M,R〉) iff 〈M,R〉 �L φQ

Closure under definability can be construed as an operation on classes of
operators which adds to a given classK of operators all the operators which
are definable from operators in K in this sense. More precisely, we define a
function C : K → K by taking C (K) to be the class of operators definable
in LK . C ◦ Inv : S → K is the composition of Inv with C . To simplify
notations, we shall denote this function by CInv.
We are interested in similarity relationsS which induce classes of operators
Inv(S) providing a stock of denotations for logical constants. If we accept the
principle of closure under definability, we should require that these similarity
relations be such that CInv(S) = Inv(S).16 To put in another way, as long
as invariant operators are used as building blocks of the logical part of a
language, we should not consider similarity relations whose invariants are
not closed under definability. This requirement is far from being trivial. In
particular, it is not satisfied by Isoù , the similarity relation corresponding to
elementary equivalence in FOL.

Fact 3.9. CInv(Isoù) > Inv(Isoù).

The proof is an elementary exercise in model theory:

Proof. We shall consider the operator Q≥ℵ0 . Q≥ℵ0 is Isoù-invariant: let
〈M,P〉 and 〈M ′, P′〉 be two structures such that we have Q≥ℵ0(〈M,P〉) but
not Q≥ℵ0(〈M

′, P′〉) (thus, |P| ≥ ℵ0 where as |P
′| < ℵ0). There is an integer

n such that |P′| = n, but then it is not the case that 〈M,P〉 Ison+1〈M
′, P′〉,

hence it is not the case that 〈M,P〉 Isoù〈M
′, P′〉. We shall now consider

the operator Q′ defined by the sentence “R is an equivalence relation ∧
∃xQ≥ℵ0y xRy” (Q

′ picks out the relational structures 〈M,R〉 such that
R is an equivalence relation with an infinite equivalence class). Since
Q≥ℵ0 ∈ Inv(Isoù), we have that Q

′ ∈ CInv(Isoù). It is now sufficient
to show that Q′ is not Isoù-invariant. We construct two L(R)-structures
M = 〈M,R〉 andM′ = 〈M,R′〉 such that:

• The interpretation of R on both models is an equivalence relation.
• M contains an infinite number of R-equivalence classes of arbitrarily
big finite cardinality, but no infinite equivalence class.

• M′ is just asM but it contains also an infinite equivalence class.

It is clear thatM Isoù M′. But we have that Q′(M′), whereasM is not
in Q′. ⊣

16Note that CInv(S) = Inv(S) is stronger than the principle of closure under definability
itself, because it encapsulates the assumption that logical operations are to be characterized
in terms of invariance.
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Here is now the theorem that tells us what are the consequences of our
requirements on the range of available similarity relations:17

Theorem 3.10. Isop is the lowest similarity relation S such that Iso1 ≤ S
and CInv(S) = Inv(S).

If S is an equivalence relation, we have that CInv(S) = Inv(S) if and only
if Sim(CInv(S)) = S. Thus, Theorem 3.10 tells us that Isop is the smallest
similarity relation extending Iso1 which is a fixed point for Sim ◦CInv.18 Or,
in more vernacular terms, Isop is the lowest similarity relation extending
Iso1 which is closed under definability. As a consequence, if we accept both
the preceding argument according to which a good similarity relation S for
logicality must satisfy Iso1 ≤ S, and the argument in favor of the principle
of closure under definability as well, then we should only be interested in
similarity relations S such that Isop ≤ S ≤ Iso. Note also that Iso is a
fixed point for Sim ◦CInv. Since Iso is the greatest similarity relation we
consider, Iso is trivially the greatest fixed point for Sim ◦CInv. Because of
the conceptual interest of closure under definability, it would be nice to know
more about the structure of fixed points for Sim ◦CInv between Isop and Iso.
3.2.3. What happens to the Galois connection. At a conceptual level, it
seems thus quite natural to close Inv(S) under definability. But, on the
mathematical level, things get much more complicated. As a matter of
fact, the shift from Inv to CInv breaks the symmetry between classes of
operators and similarity relations. The Galois connexion is lost. We had
that Inv(S) ≤ Inv(Sim(Inv(S))). This property is preserved:

Fact 3.11. For any similarity relation S,CInv(S) ≤ CInv(Sim(CInv(S))).

Proof. Inv(S) ≤ CInv(S), therefore Sim(Inv(S)) ≤ Sim(CInv(S)) by
monotonicity of Sim. Moreover CInv(S) = CInv(Sim(Inv(S)), since
Inv(S) = Inv(Sim(Inv(S))). Therefore CInv(S) ≤ CInv(Sim(CInv(S))). ⊣

We had also the other direction, namely Inv(Sim(Inv(S))) ≤ Inv(S). This
property is lost:

Fact 3.12. There are similarity relationsS such thatCInv(Sim(CInv(S)))�
CInv(S).

Proof. Take S to be Iso1. CInv(Iso1) is just the class of operators defin-
able in FOL. Therefore, Sim(CInv(Iso1)) is Isoù. We have seen earlier an
example of operator, Q≥ℵ0 which is in Inv(Isoù) (and therefore, a fortiori, in
CInv(Isoù)). But Q≥ℵ0 is not definable in FOL, hence it does not belong to
CInv(Iso1). ⊣

The lesson to be drawn is that closure under definability is a very strong
requirement in the context of the invariance approach. It breaks the nat-
ural symmetry between similarity relations and classes of operators. This

17The proof is given below.
18We are indebted to Henri Galinon for the suggestion to think in terms of fixed points.
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symmetry is recovered for a limited class of similarity relations, namely the
fixed points of Sim ◦CInv, for which we do have that CInv(Sim(CInv(S))) ≤
CInv(S). Among those fixed points, Isop plays a special role as the smallest
one for which Inv(Isop) is not too meager (but note that App is also a fixed
point).
3.2.4. Closure under level 1 projection. At the heart of Theorem3.10, there
is a more elementary fact19 which has its own conceptual interest. In order
to force Isop ≤ S, we do not need the full power of closure under definability.
Closure under projection, which is the restriction of closure definability to
existential quantification, is actually sufficient.
We shall label Pr the function which, given an operator Q consisting
in a class of structures of the form 〈M,R1, . . . Rn, a1, . . . am, b〉 yields the
operator Pr(Q) defined by Pr(Q)(〈M,R1, . . . Rn, a1, . . . , am〉) iff there is a
b ∈M such that Q(〈M,R1, . . . Rn, a1, . . . , am, b〉). A class of operators K is
closed under level 1 projection iff for all Q ∈ K , Pr(Q) ∈ K . We then define
what it means for a similarity relation to commute with projections (this is
the main idea involved in potential isomorphisms and bisimulations).

Definition 3.13 (commutation with level 1 projections). A similarity re-
lation commutes with level 1 projections iff, for any structures A, B such
that A S B, for any expansion A, a of A by a constant a ∈ A, there is a
b ∈ B such that A, a S B, b.

The main fact behind 3.10 is precisely that closure under definability with
respect to existential quantification is equivalent to the back and forth mech-
anism expressed by commutation with projections:

Fact 3.14. For any similarity relation S, Inv(S) is closed under level 1
projection iff S commutes with level 1 projections.

Before proving Fact 3.14, let us establish the link with potential isomor-
phisms:

Fact 3.15. For any similarity relation S such that App ≤ S, if Inv(S) is
closed under level 1 projection, then Isop ≤ S.

Proof. Let S be a similarity relation such that App ≤ S and Inv(S) is
closed under level 1 projection. We want Isop ≤ S. Let A, B be two
structures such that A S B. We need to show that A Isop B. By definition
of Isop, this amounts to finding a non empty set I of partial isomorphisms
betweenA et B satisfying the back and forth property. We set I = {f : A→
B/A, a1, . . . , an S B, f(a1), . . . , f(an)}. By hypothesis, A S B, therefore I
is non-empty, since it contains the empty function. Now I has the back and
forth property, since S commutes with level 1 projections, (by fact 3.14).
Finally, since App ≤ S, the f in I are partial isomorphisms. ⊣

19We are indebted here to Johan van Benthem for showing to us what the core of our
previous somewhat inelegant proof was.
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Theorem 3.10, that we recall here, follows from fact 3.15:

Theorem. Isop is the lowest similarity relation S such that Iso1 ≤ S and
CInv(S) = Inv(S).

Proof. Let S be a similarity relation such that Iso1 ≤ S and CInv(S) =
Inv(S). We show first Isop ≤ S. Since Iso1 ≤ S, Q∃ ∈ Inv(S). As
a consequence, for all Q, if Q ∈ Inv(S), then Pr(Q) ∈ CInv(S). But
CInv(S) = Inv(S), therefore Inv(S) is closed under level 1 projection. Iso1 ≤
S implies trivially App ≤ S, therefore fact 3.15 tells us that Isop ≤ S.
It remains to check that CInv(Isop) = Inv(Isop). It is sufficient to show
that ≡LInv(Isop) , the relation of elementary equivalence for the logic LInv(Isop)
whose logical constants denote Isop-invariant operators, is Isop. The proof
is by induction on the complexity of formulas. The induction hypothesis is
the following one:

IfM,−→a Isop M′,
−→
a ′ thenM � φ(−→a ) iffM′

� φ(
−→
a ′ )

The crucial step is the case where φ is of the form Q−→x ø(−→x ,−→y ).

WeassumeM,−→a Isop M′,
−→
a ′ . Wehave to show thatM � Q−→x ø(−→x ,−→a )

iffM′
� Q−→x ø(−→x ,

−→
a ′ ).

Now assumeM � Q−→x ø(−→x ,−→a ). We wantM′
� Q−→x ø(−→x ,

−→
a ′ ). Since

Q is Isop-invariant, it is sufficient to show that

〈M, ‖ø(−→x ,−→a )‖M〉 Isop 〈M
′, ‖ø(−→x ,

−→
a ′ )‖′M〉.

We take as potential isomorphism I between these two structures the set of

finite partial isomorphisms betweenM,−→a andM′,
−→
a ′ . I is non-empty and

has the back and forth property. We need to show that the f ∈ I are indeed

partial isomorphisms for 〈M, ‖ø(−→x ,−→a )‖M〉 and 〈M ′, ‖ø(−→x ,
−→
a ′ )‖′M〉.

But this is precisely what the induction hypothesis says: by definition of

potential isomorphism, we have thatM,−→a ,
−−−−−→
Dom(f) Isop M′,

−→
a ′ ,

−−−−→
Rng(f),

and therefore for any sequence−→c of elements ofDom(f) and its image
−−→
f(c),

a sequence of elements of Rng(f), we do have thatM � ø(−→c ,−→a ) iffM′
�

ø(
−−→
f(c),

−→
a ′ ). ⊣

To conclude on the mathematical background of Theorem 3.10, here is
the proof for Fact 3.14:

Proof. Let M be a structure and S a similarity relation. We note
Orb(S,M) the orbit of M with respect to S, i.e., the class of structures
M′ such that there is a S-path fromM toM′. Orb(S,M) is an operator.
There are two directions:

(i) If S commutes with level 1 projections, Inv(S) is closed under projec-
tion. We assume Q ∈ Inv(S), we want to show Pr(Q) ∈ Inv(S), i.e,
for any structures A and B such that Pr(Q)(A) and A S B, we have
Pr(Q)(B).
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(a) Q ∈ Inv(S)
(b) A S B
(c) Pr(Q)(A)
(d) Q(A, a) for an a ∈ A by (c) and the definition of Pr.
(e) A, a S B, b for a b ∈ B by (b) and commutation for S.
(f) Q(B, b) by (a) and (e).
(g) Pr(Q)(B) by definition of Pr and (f).

(ii) If Inv(S) is closed under level 1 projection, S commutes with level 1
projections. LetA andB be two structures such thatA S B. Let a ∈ A,
we need to find a b ∈ B such that A, a S B, b.
(a) A S B
(b) Orb(S,A, a) ∈ Inv(S) by definition of Orb.
(c) Pr(Orb(S,A, a)) ∈ Inv(S) by closure under projection for Inv(S)
and (b).

(d) Pr(Orb(S,A, a))(A) by definition of Pr.
(e) Pr(Orb(S,A, a))(B) by (a), (c) and (d).
(f) Orb(S,A, a)(B, b) for a b ∈ B , by definition of Pr and (e).
(g) A, a S B, b by definition of Orb and (f). ⊣

The discussion of the philosophical significance of Theorem 3.10 for the
revision of Tarski’s thesis will be postponed until the last section. But it
shall be already clear that the generality approach can be up to some point
rescued from trivialization.

3.3. Formality revisited.

3.3.1. Formality and lack of content. Is the formality argument bound to
fall into the trap of overgeneration? Or is it possible to use the setting of
generalized invariance to prevent it from falling into that trap? Following
the diagnosis proposed at the end of the previous section, the problem
with the formality argument is that it fails to distinguish between logic and
mathematics. The point is not that any account of logicality should lead to
a refutation of logicism; this assumption would be as ad hoc as the opposite
one. The point is rather that it is not legitimate to seek a characterization of
logicality on the basis of a property—namely formality—which is obviously
common to logic, set-theory and mathematics in general. Logicism might
come as a consequence of the conceptual analysis of what it is to be logical.
But it should not be the starting point of such an analysis. Which kind of
strengthening of formality should one consider?
Let us go back to the intuition relating logicality and formality. Logic is
expected to be non committing. Logical truths are tautologies which do not
put any constraint on how the world should be. Logical notions have no
empirical basis. The concept “cat” is an empirical concept; mastering this
concept involves special recognitional abilities, like being able to distinguish
a meowing animal from a barking animal. On the contrary, the concept
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associated with existential quantification does not require any mundane
abilities: it is sufficient to be able to tell the difference between an empty set
and a non empty set.
The basic intuition underlying the formality argument could then be
rephrased as: “Logical notions are (nearly) deprived of content”, or “logical
notions are non substantial”. But the shift from lack of content to formality
might not be as innocuous as it seems: being formal means being deprived
of any kind of content which is sensitive to the identity of objects. But the
overgeneration problem stems from the fact that formal notions are far from
being deprived of content, full stop. “Being of size ℵ1” is a formal notion
conveying a richmathematical content or a rich set-theoretical content. Now
the problem is that this might be a dead-end. If one construes the concept
of “content” in a sufficiently liberal way, no notion is absolutely deprived
of content. “Being non-empty”, which is synonymous with “being of car-
dinality at least 1” also conveys a bit of set-theoretical content, just like
“being of cardinality at least ℵ1”. Still, there is a difference between “being
of cardinality at least 1” and “being of cardinality at least ℵ1”: the content
of the second notion is clearly more problematic than the content of the first
notion. In particular, as we explained earlier, the second notion depends on
the exact extent of the set-theoretical universe (again, see Feferman, 1999,
p. 38), whereas the first notion does not. A non-empty set living in a given
model M of ZFC will remain non-empty, no matter how you shrink or
extendM into a smaller or bigger model of ZFC.
To sum up, we do not wish to argue that logical notions are fully deprived
of set-theoretic content, but we would like them to be free from problematic
set-theoretic content.
3.3.2. Absoluteness and lack of problematic set-theoretic content. How
could we make sense of the idea of problematic set-theoretic content, in the
setting of generalized invariance? The idea is that if the only difference be-
tween two formally identical structures is set-theoretically problematic, these
two structures should be logically similar. Iso itself does not pass the test.
Given amodelM of ZFC and a structure 〈A,P〉 inM, the question whether
〈A,P〉 belongs toQℵ1 is the question whetherM � 〈A,P〉 Iso 〈card(A),ℵ1〉.
But this similarity is problematic from a set-theoretic point of view. It might
be the case that the answer is negative inM—becauseM is not rich enough
to contain a bijection between the set P and the cardinal ℵ1—and positive in
a generic extension ofM, in which such a bijection exists. Therefore, Iso is a
typical example of a set-theoretically problematic similarity relation, whose
extension depends on the specific features of the model of set theory one is
working with.
So, basically, what we expect from a notion of similarity suitable for a
characterization of logicality is that it does not suffer from the same defects
as Iso. How can we capture this? As remarked by Feferman (1999), the
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notion of absoluteness, introduced byGödel (1940), gives at least a necessary
condition for being insensitive to problematic set-theoretical features:

Definition 3.16 (persistent formula). Let T be a theory in the language
of set theory, a formula P(x1, . . . , xn) is persistent with respect to T iff for
any modelsM = 〈M,∈〉 andM′ = 〈M ′,∈′〉 ofT such thatM is a submodel
ofM′ and if a ∈′ b and b ∈ M then a ∈ M , ifM � P(a1, . . . , an) then
M′

� P(a1, . . . , an) (where the a1, . . . ,an are elements ofM ).

Definition 3.17 (absolute formula). Let T be a theory in the language of
set theory, a formula P(x1, . . . , xn) is absolute with respect to T iff both
P(x1, . . . , xn) and ¬P(x1, . . . , xn) are persistent.

Typically, the formulas “x is transitive”, “x is an ordinal”, “x is a limit
ordinal” are absolute with respect to ZFC, whereas “x is a cardinal” or “x
is of size ℵ1” are not absolute with respect to ZFC. We now apply the idea

20

to the case in point, namely to similarity relations:21

Definition 3.18 (absolute similarity relation). A similarity relation S is
absolute with respect to T iff S is definable in T by a formula which is
absolute with respect to T .

Isop is absolute with respect to ZFC (essentially because it depends on the
existence of finite partial isomorphisms), but Iso is not (Iso is persistent, but
not absolute, because an isomorphism can appear when the model grows
bigger).
On the syntactic side, Kreisel and Feferman proved (see Feferman, 1968)
that absolute formulas with respect to a theory T are ∆1 with respect to T .
This provides another argument for absoluteness. Our definition of what
it means to be logically similar has to be cashed out in set-theoretic terms.
But even if this point it granted, it is desirable that the definition remains
as simple as possible, so that the distinction between the more elementary
realm of logic and set-theory is preserved. Requiring that the definition of
the notion of logical similarity is ∆1 amounts precisely to requiring that we
do not rely too heavily on unbounded quantification over sets.
Since our plan is to use absoluteness as a requirement on similarity rela-
tions, we should therefore ask which kind of similarity relations meet this
requirement. Before answering the question, we shall introduce a few no-
tations. When Q is an absolute operator, φQ(x) is an absolute formula
defining it. Similarly, for an absolute similarity relation S, we note φS(x, y)
an absolute formula defining S. φIso(x, y) is a (persistent) formula of ZFC
for “x and y are isomorphic”. Similarly, φIsop will be an (absolute) formula

20We are indebted here to Gabriel Sandu, who draw our attention to Barwise’s papers on
absoluteness and suggested that we should apply the idea to our similarity relations.
21Similarity relations are relations on the set-theoretic universe V . The theories T we

consider are supposed to be true in V .
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of ZFC for “x and y are potentially isomorphic”. We use the notation
“S ≤ Iso ” for the formula ∀x, y φIso(x, y)→ φS(x, y). By “model of ZFC”
we mean a transitive set in which the axioms of ZFC are true. A CTM is
a countable (and transitive) model of ZFC. Here is now the answer to our
question, provided by the following theorem:

Theorem 3.19 (Barwise, 1973, p. 31). Isop is the greatest similarity rela-
tion S such that S is absolute with respect to ZFC and ZFC ⊢ “S ≤ Iso ”.

Theorem 3.19 provides a characterization of Isop which is dual to the one
provided by theorem 3.10. Isop was the lowest similarity relation closed un-
der definability, it appears now to be the greatest absolute similarity relation.
Note that ifS is an absolute similarity relationwith respect toZFC, defined
by a formula φS(x, y), then for any transitive modelM of ZFC and for all
structuresA andBwhich are elements ofM, wewill have thatM � φS(A,B)
iffA S B. So in particular, the difference between Iso and Isop whichmatters
to us is that being potentially isomorphic is determinately true or false in all
transitive models, whereas being isomorphic is not. From a conceptual of
view, the absoluteness requirement will be all the more cogent if transitive
models of set theory are granted a special status.22 After all, consider a
straightforward realist view about sets, according to which there is one and
only one intended model of ZFC, V, the universe of all sets. Maybe then
absoluteness is not as natural a requirement as we said it is. What seems
‘problematic’ with operations like Qℵ1 might be nothing more than a side-
effect of unfortunate limitations on our knowledge of set theory, rather than
a problem withQℵ1 itself. A dual point can be made if there are no intended
models of set theory at all. Consider non transitive models of ZFC. A set
can be infinite in onemodel and have a non standard integer as its cardinality
in another model, so that Q≧ℵ0

would look just as problematic asQℵ1 . Now
consider the following view. Our intentions are unable to pick out exactly
one model of ZFC as the intended model of set theory, so that the naive
realist picture is wrong. But it would be equally wrong to consider that all
models fit our intentions. All well-founded models fit our intentions, none
of which doing it better than the others. In this case, we shall be particularly
happy with the absoluteness requirement: it expresses the idea that ‘being
logically similar’ should have a determinate truth-value in all models of set
theory that fit our intentions.
Before closing this section, let us say a word about the relationship be-
tween absoluteness as a property of similarity relations versus absoluteness
as a property of operators. Absoluteness has been studied in the literature
on set-theoretic logics (see the presentation in Väänänen, 1985). In this
framework, absoluteness is applied to the satisfaction relation of a logic
defined in set-theory. If the syntax is finitary, this amounts to requiring

22We are grateful to an anonymous reviewer for making this point.
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that the operators interpreting the logical constants are themselves absolute.
What is the connection with our approach, in which absoluteness is applied
to similarity relations? Is this equivalent, i.e., is the class of Iso-invariant
absolute operators the same as the class of Isop-invariant operators? Using
the ideas of the proof of theorem 3.19, one can show that Isop-invariance is
a necessary condition for an Iso-invariant operator to be absolute:

Theorem 3.20. Let Q be an operator absolute with respect to ZFC, if

ZFC ⊢ ∀x, y (φIso(x, y)→ (φQ(x)↔ φQ(y)))

then

ZFC ⊢ ∀x, y (φIsop(x, y)→ (φQ(x)↔ φQ(y))).

However, the converse is not true, there are operators Q definable in ZFC
with ZFC ⊢ ∀x, y (φIsop(x, y) → (φQ(x) ↔ φQ(y))) such that Q is not
absolute (Väänänen, p.c.). Using the notation Abs for the class of absolute
and provably Iso-invariant operators, this means that Abs  Inv(Isop), i.e.,
Isop does not provide a characterization in terms of invariance of Abs. Does
this mean that we should look for a better candidate than Isop? Or should
absoluteness be cashed out as a constraint which applies directly to invariant
operators? What happens if we choose a weaker set theory? We leave these
questions open for future research.

§4. A new thesis for logicality. To sum up, the previous section has been
devoted to a critical examinationof generality and formality as intuitive char-
acterizations of logicality. As a result, two constraints on similarity relations,
closure under definability and absoluteness, have been proposed. In both
case, Isop, the similarity relation corresponding to potential isomorphism,
plays a special role as the lowest or the greatest similarity relation satisfy-
ing these constraints modulo some mild additional assumptions. Does this
justify a revision of Tarski’s thesis in which Isop would replace Auto or Iso?

4.1. Logical operators and invariance under potential isomorphism. First,
we present a modified version of the generality argument, in which we take
into account the fact that maximal generality would lead to triviality:23

The mild generality argument

MG.1 Logic deals with very general notions, but not only with trivial
notions.

MG.2 The truth-functions, functional application and first-order exis-
tential quantification are logical operators.

MG.3 The good notion of invariance for logicality is to be provided by
a similarity relation S such that S is closed under definability.

23Our revised arguments have lost some of the elegant simplicity of the formality and the
generality arguments. We think that they could be rephrased in more vernacular terms, but
at the cost of either of clarity or brevity.



32 DENIS BONNAY

MG.4 The good notion of invariance for logicality is to be provided by
the lowest similarity relation compatible with MG.2 and MG.3.

The logical notions are the Isop-invariant notions.

MG.1 corrects G.1 by demanding that some non-trivial notions be recog-
nized as logical. This takes into account the fact that G.1 escaped triviality
just because of the lack of generality of the Kleinian setting in which the
generality argument took place. MG.2 and MG.3 provide the needed con-
straints. Some notions which are commonly assumed to be logical have to be
invariants of the similarity relation to be chosen. Moreover, this similarity
relation should abide by the principle of closure under definability. MG.4
captures the idea of maximal generality, because the ordering on the class
of similarity relations mirrors the generality of the associated theories. The
conclusion of the mild generality argument follows then from its premisses
by theorem 3.15. Note that, as remarked in paragraph 3.2.1, the shift from
Iso to Isop is perfectly in line with the Kleinean picture Tarski had in mind.
Invariance under isomorphism as we defined it is Tarski’s invariance under
bijection: what is preserved by isomorphism is the structure explicit in logi-
cal operations and extra-structure (e.g., topological structure) is disregarded.
The same holds with Isop-invariance: what is preserved under potential iso-
morphism is the structure explicit in logical operations and extra-structure
(e.g., topological structure) is disregarded.
The formality argument should also be modified, to take into account
the fact that logical notions should not encapsulate any problematic set-
theoretical content:

The lack of content argument

LC.1 Logic dealswithnotionswhich are deprivedof non formal content
and of problematic set-theoretic content.

LC.2 The good notion of invariance for logicality is to be provided by
a similarity relation S such that S ≤ Iso.

LC.3 The good notion of invariance for logicality is to be provided by a
similarity relation S such that S is absolute with respect to ZFC.

LC.4 The good notion of invariance for logicality is to be provided by
the greatest similarity relation S satisfying LC.2 and LC.3.

The logical notions are the Isop-invariant notions.

LC.1 supplements the premiss F.1 of the formality argument by dismissing
contents which are properly set-theoretical. LC.2 captures the first part of
LC.1, it is the counterpart in our setting of F.2 and F.3. LC.3 captures the
second part of LC.1. We have seen in the previous section that absoluteness
is a natural way to formalize independence with respect to which sets exists.
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LC.3 thus sets the limits of the identification of logic and mathematics:
the logician might use the resources provided by set theory, but he should
refrain from using notions whose extension is problematic. The requirement
of absoluteness is relative to ZFC, because we take it to be the standard
background set theory. This point is debatable. If the aim is really to
minimize the dependency of logic on set theory, it would be wiser to choose
a weaker set theory (e.g., KP). LC.4 claims that the constraints stated by
LC.2 and LC.3 are jointly not only necessary but also sufficient to determine
which is the good similarity relation for logicality. The formality argument
has it that LC.2 is sufficient on its own. But LC.2 is unable to do justice
to the idea that logic is not the same as mathematics. It is therefore more
plausible that LC.2 is sufficient if is supplemented by a criterion reflecting
the specific feature of logic inside the formal sciences. This is precisely the
role of the absoluteness requirement put forward by LC.3, and this gives us
hope that the overgeneration problem might be solved. The conclusion of
the lack of content argument follows from its premisses by theorem 3.19.
Starting from different intuitions, we still recover the convergence of the
generality and the formality argument. The mild generality argument and
the lack of content argument both support the following thesis:

Isop thesis for logicality. An operator Q is logical iff Q is Isop-
invariant.

Tarski’s thesis and the Isop thesis disagree on the similarity relation to be
chosen to characterize the invariance properties of logical constants. They
do not completely disagree though.24 The two theses yield the same result
on structures which are not too big. As a matter of fact, ifM andM′ are at
most countable structures,M IsoM′ if and only ifM Isop M′. The nature
of the disagreement between a proponent of Tarski’s thesis and an advocate
of our revised version of it could be put in the following way. Both agree
that, concerning small “surveyable” structures, two structures are logically
similar iff they are formally similar. This accounts for the generality of
logic, which does not take into account any special feature of the domains
of the structure, and for the formality of logic, which is insensitive to the
identity of the objects. When it comes to bigger structures, the proponent of
Tarski’s thesis thinks that the natural way to extend this similarity relation is
to require again full formal similarity: two structures are logically similar iff
they are isomorphic. On the contrary, the proponent of the Isop thesis thinks
that this is going to grant a significance to logically unsignificant differences.
For him, what is essential in the similarity relation acting on small structures
is the idea of an arbitrary ù-long inspection of the structures. Two big
structures should be considered as logically similar as long as they pass this

24We are indebted here to Gila Sher for the suggestion to discuss the common part of the
two theses.
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test, and differences coming only from cardinality issues involving higher
infinites should not come into play. This is the reason why two structures
are logically similar if and only if they are potentially isomorphic.

4.2. The logic of invariance under potential isomorphism. The last para-
graph has been devoted to an ex ante justification of the Isop-thesis for
logicality. Ex post, we have to look into the consequences of the thesis,
in order to see whether the conflict with some of our intuitions regarding
logicality has been solved, or if the overgeneration problem is still there. To
give some examples, the quantifier Qℵ0 (“there are exactly ℵ0 x such that
. . . ”), Q>ℵ0 (“there are uncountably many x such that . . . ”) are not Isop-
invariant. Q∃ of course, and Q≥ℵ0 (“there are infinitely many x such that
. . . ”) are Isop-invariants. QWF , the unary relational quantifier testing
whether a relation is well-founded, is Isop-invariant as well. More gener-
ally, what is the logic of Isop-invariance? In abstract model theory, Isop-
invariance, as a relation of elementary equivalence, is known as the Karp
property:25

Definition 4.1 (Karp property). A logic L has the Karp property iff, for
all structuresM,M′, ifM Isop M′, thenM ≡L M′

Since Isop is closed under definability, the Karp property provides a bound
on the expressivity of any logic whose logical constant abide by the Isop
thesis:

Fact 4.2. Let L be a logic whose logical constants denote Isop invariant
operators, L has the Karp property.

There is an analogon to the “functional completeness” results for L∞,∞

with respect to invariance under bijection and L−
∞,∞ with respect to invari-

ance under homomorphism:

Theorem 4.3 (Barwise, 1973). An operator Q is Isop-invariant iff for any
setM , QM is definable in L∞,ù.

Note however that this kind of result is weaker than Feferman’s result for
FOL− and invariance under homomorphism restricted to monadic oper-
ators. His result establishes the global definability of invariant operators:
there is one formula of FOL which defines the operation QM of an opera-
tor Q, whatever M . By contrast, the three results for Iso, SHom and Isop
bear only upon the local definability of invariant operators: for every set
M , there is a (different) formula defining the operation QM . Obviously,
global definability implies local definability, but the converse is not true in
general. QWF is Isop-invariant. It is locally definable in L∞,ù (every order
type is definable in L∞,ù), but it is not globally definable in L∞,ù: every

25We are indebted here to Dag Westerståhl for suggesting us to make more explicit the link
with standard results in abstract model theory.
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formula φ(R, . . . ) which has arbitrarily big well-founded models admits a
non well-founded model.
How could we recover global definability for Isop-invariance? First note
that, similarly to what happens with Feferman’s result, the restriction to
monadic operators would make things easier:

Theorem 4.4. The class of operators ë-definable from monadic Isop-
invariant operators is globally definable in Lℵ1,ù.

Proof. We shall just sketch the proof, which relies on the same idea as
Feferman’s proof for his Theorem 5.14 (1999, p. 42). It is sufficient to show
that each monadic Isop-invariant operator is definable in Lℵ1,ù. Let Q be
such an operator. Q is a class of structures of the form 〈M,P1, . . . , Pn〉where
each Pi for i ∈ {1, . . . , n} is unary. Since Q is Iso-invariant, the fact that
a given modelM is or is not in Q is fully determined by the cardinality of
each boolean compound of the P1, . . . , Pn. But sinceQ is Isop-invariant, we
have more than that: its behavior must be uniform with respect to boolean
compounds of infinite cardinality. Therefore the behavior of Q is fully
determined by the value belonging to {0, . . . , n, . . . ,ℵ0} associated with each
boolean compound—this values correspond to the cardinality of the set up
to potential isomorphism. Each value is described by a sentence of Lℵ1,ù

(either “there are exactly n objects” or “there are infinitely many objects”).
There are 2n different boolean compounds, so there are only ℵ2

n

0 = ℵ0
different possibilities. Hence, Q can be described by a disjunction of size ℵ0
of Lℵ1,ù-formulas, which is again a formula of Lℵ1,ù. ⊣

However, for the reasons mentioned in section 2, we do not think that
the restriction to monadic operators is conceptually motivated. Is there
a natural logic L extending L∞,ù such that Isop-invariant operators are
globally definable in L? This is an open question. We have seen that global
definability in L∞,ù failed for QWF . In a sense, it would be sufficient to
drop QWF and related operators to recover global definability. Let us see
this. In abstract model theory, a logic L is said to be bounded if and only
if, for any L-sentence φ(R, . . . ) having only models with well-ordered R,
there is an ordinal α such that the order type of R is always less than α. By
extension, we shall say that a class K of operators is bounded iff the logic
LK associated with it is bounded. The following is a mere rephrasing of
Lindström’s theorem:

Theorem 4.5. If K is a bounded class of operators such that Inv(Iso1) ≤
K ≤ Inv(Isop), K is globally definable in L∞,ù.

Proof. It is sufficient to check that the standard proof of Lindström’s
theorem can be adapted. We give a sketch, following the proof by Flum
(1985, Theorem 3.1, p. 106). One assumes for contradiction that there is a
quantifier Q in K such that Q cannot be defined in L∞,ù. For each ordinal
α, there is a sentence ÷α ofL∞,ù which is the disjunction of the formulas φ

α
M
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describing the α-isomorphism type of the structuresM such that Q(M).
By hypothesis, none of the ÷α defines Q. This means that for each α, there
are α-isomorphic models Aα and Bα such that Q(Aα) but not Q(Bα). By
coding partial isomorphisms (this is doable in LK because Inv(Iso1) ≤ K)
and by using the logical constant Q denoting Q, one gets an LK -sentence ø
which is true exactly in the modelsM = 〈V,W,R, I, . . .〉 (where V and W
are unary, R and I binary), such that:

• the V -part ofM is in Q, theW -part ofM is not in Q
• R is an ordering
• I is a function and for each a in the field of R, the image I (a) of a by
I is a non-empty set of partial isomorphisms between the V -part and
theW -part ofM.

• The sequence I (a) with a in the field of R has the back and forth
property.

For each ordinal α, ø has a model in which R is well-ordered of order type
α. SinceLK is bounded by hypothesis, ø has a non-well-ordered modelM

′.
Its V -part is in Q, but its W -part is not. BecauseM′ is not well-ordered,
there is an infinite descending sequence with respect toR. Hence, theV -part
ofM′ and the W -part ofM′ are potentially isomorphic. This contradicts
K ≤ Inv(Isop). ⊣

This theorem says that any not too meager class K below Inv(Isop) which
does not contain QWF and similar operators is globally definable in L∞,ù.
In the other direction, would it be sufficient to add something like QWF or
a fixed point operator to L∞,ù in order to get global definability for the full
class Inv(Isop)?

4.3. Logic, mathematics and the overgeneration problem. The overgenera-
tion problem presented in the first section follows from the collapse of logic
onto mathematics that results from Tarski’s thesis. The incentive to revise
Tarski’s thesis comes from the need to account for the intuitive difference be-
tween logic and mathematics. Now that we have put forward a conceptually
motivated alternative to Tarski’s thesis, the question is: what is the picture of
the relationship between logic and mathematics according to the Isop thesis
for logicality, and does it look right? Here are a few facts following from the
Isop thesis which are relevant to the discussion:

26

(i) The issue of the logicality of cardinality quantifiers is addressed in a
selective way: only quantifiers which do not distinguish among infinite
cardinals pass the test.

(ii) All arithmetical truths are logical truths.
(iii) Not all mathematical truths are logical truths.

26We omit here the precise meaning of these statements and their mathematical
justifications.
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(iv) Second-order logic is not a genuine logic.27

Even if L∞,ù is much more powerful than FOL, the shift from Iso to Isop
seems more significant than the shift from Iso (and L∞,∞) to SHom (and
L−
∞,∞). The Isop thesis for logicality sets the boundary between logic and
mathematics somewhere between arithmetic and set theory. Regarding the
“natural logic” underlying natural language, this seems to be a reasonable
place to draw the line. On the one hand, the language of arithmetic indeed
belongs to natural language. Number words are regular words, on a par
with other determiners and adjectives. The mastery of logical consequence
in natural language requires some arithmetical abilities. For example, the
inference from “three men and two women came” to “five men and women
came” (we assume the group reading for the second sentence) seems to be a
logical inference that any competent speaker should accept. The difference
between the finite and the infinite is also in the lexicon: “finitely many” or
“an infinite number of” are perfectly standard determiners, which do not
belong only to the highly specialized language ofmathematicians. Moreover,
the inferences associated with the distinction between the finite and the
infinite seem also to be part of the semantic competence of speakers, at
least up to some point. For example, a competent speaker should recognize
that the sentence “many French movies favor introspection” does not imply
the sentence “infinitely many French movies favor introspection”. On the
other hand, set theory proper, and its specific questions, like the Continuum
Hypothesis or Large Cardinals axioms clearly lack a counterpart in everyday
discourse. The notions they involve do not belong at all to our basic semantic
competence. As a matter of fact, even if the notions of “set” or “belonging
to” can be conveyed in ordinary English, it seems highly implausible that a
competent speaker should be able, on the basis of its semantic competence,
to accept or reject the Continuum Hypothesis.
As a consequence, even if Isop-invariance is quite liberal, specially if one
has in mind FOL as the standard target, it seems that the overgeneration
problem is at least eased, if not solved, by the shift from Iso-invariance to
Isop-invariance. Moreover, the fact that we do not get exactly FOL does not
seem to be a problem to us. After all, linguists know that a lot of arguments
which are intuitively valid in English cannot be adequately formalized in
FOL. Consider the following one:

Most French movies favor introspection.
Most French movies are commercial failures.

27As a matter of fact, Second-order logic can express cardinality properties which are not
invariant under potential isomorphism, and, for that reason, is out of the picture of logical
operations that we drew here. However, a systematic development of generalized invariance
to higher-order operations is still missing.
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There are French movies which favor introspection and which are
commercial failures.

The determiner “Most” is not definable in FOL, but (at least on countable
models, which seem to be sufficient for the kind of examples we consider) it is
Isop-invariant and definable in L∞,ù. Because the greater expressive power
of L∞,ù compared to FOL is indeed useful to formalize natural language
arguments, it seems to us that we should not be too quick in considering
that any criterion yielding a logic more expressive than FOL overgenerates.
In this respect, at least some of the extra expressive power provided by Isop
invariant operators seems to be a reason to accept the Isop thesis, rather
than a reason to reject it.
As a consequence of the adoption of the Isop thesis, arithmetic turns out to
be a part of logic. In this sense, logicism might seem to be partly vindicated.
But this “logicization” of arithmetic is not different from the “logicization” of
mathematics that ensues from Tarski’s thesis. Arithmetical truths are logical
truths, but this does not come as the result of the kind of successful reduction
of arithmetical truths to a class of more elementary logical truths that Frege
tried to accomplish. What we have seen is rather that, according to a certain
characterization of what logic is, arithmetic de facto belongs to the realm of
logic. Even if there is no reduction here, the result is not totally deprived
of interest. We have shown that arithmetical notions have in common with
the more elementary logical notions a number of properties that grant them
a special place in our conceptual scheme. Not only are they devoid of non
formal content, but they are devoid of problematic set-theoretical content
(they are absolute) and they belong to the smallest (closed under definability)
family of notions which are extremely general without being trivial.
The interpretation of Theorem 3.10 seems particularly interesting to us.
What the theorem tells us is that, if we try to characterize logicality in terms
of invariance and if we accept the principle of closure under definability, we
are “automatically” going to embrace the arithmetical notions as soon as we
embrace the most elementary logical notions. Negatively, this could raise
suspicion: after all, why should the logicality of the existential quantifier
and the seemingly innocuous principle of closure under definability have
something to do with the logicality of arithmetical notions? More precisely,
the suspicion would be that similarity relations and closure principles do not
interact well together, and that the strength of Theorem 3.10 mirrors the
inadequacy of the framework of generalized invariance to capture logicality.
Positively, if we think that characterizing logicality in termes of neutrality
with respect to certain types of differences between structures is a good idea,
Theorem 3.10 is a consequence that has to be accepted. In this case, the
lesson would be something like: as soon as the elementary logical notions
are there, the arithmetical notions are “potentially” there. This idea receives
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its precise mathematical formulation from the principle of closure under
definability.28

Do all Isop-invariants match our intuitions regarding which operations
are logical? The well-foundedness quantifier is a case in point. As we said,
it is invariant under potential isomorphism, but it does not seem to belong
to the ‘natural logic’ underlying our semantic competence. The same thing
goes with ‘ordinal quantifiers’ such as ‘being isomorphic to α’, for a given
ordinal α, which are invariant under potential isomorphism as well (two well
orderings are potentially isomorphic iff they are isomorphic). Again, this
reflects the power of the principle of closure under definability which gives
us not only standard arithmetic but all of ordinal arithmetic as well. We
shall not try to argue that such notions are necessary to formalize natural
language arguments. Still, there might be a sense in which ordinal arithmetic
is a natural extension of arithmetic which is not plagued by the uncertainties
of cardinal arithmetic. In any case, the fact that ordinal arithmetic comes in
one piece with arithmetic and that arithmetic itself comes in one piece with
existential quantification on behalf our the principle of closure seems to us
to be an interesting consequence of the approach, even though one might
object that the ghost of overgeneration is still with us.

Conclusion. Tarski’s thesis for logical operators provides a necessary cri-
terion of logicality. However, because of the overgeneration problem, this
criterion does not seem to be sufficient. Our aim has been to find an alter-
native criterion, based on a strengthening of the requirement of invariance.
At the conceptual level, the two arguments in favor of Tarski’s thesis were
shown to be flawed. We have suggested that the generality argument should
be relocated within the setting of generalized invariance, and supplemented
with a constraint of closure under definability. The formality argument
would be fine as it stands, if ‘empirical’ (non formal) content was all there is
to content. Our proposal has been to turn the argument into a more general
“lack of content argument” in which absoluteness plays a crucial role. The
revised arguments support an alternative view on logicality, according to
which logical operations are invariant under potential isomorphism.
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