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Demonstrative logic, the study of demonstration as opposed to persuasion, is the subject of Aristotle’s two-
volume Analytics. Many examples are geometrical. Demonstration produces knowledge (of the truth of
propositions). Persuasion merely produces opinion. Aristotle presented a general truth-and-consequence
conception of demonstration meant to apply to all demonstrations. According to him, a demonstration,
which normally proves a conclusion not previously known to be true, is an extended argumentation
beginning with premises known to be truths and containing a chain of reasoning showing by deductively
evident steps that its conclusion is a consequence of its premises. In particular, a demonstration is a
deduction whose premises are known to be true. Aristotle’s general theory of demonstration required a
prior general theory of deduction presented in the Prior Analytics. His general immediate-deduction-
chaining conception of deduction was meant to apply to all deductions. According to him, any deduction
that is not immediately evident is an extended argumentation that involves a chaining of intermediate
immediately evident steps that shows its final conclusion to follow logically from its premises. To illustrate
his general theory of deduction, he presented an ingeniously simple and mathematically precise special case
traditionally known as the categorical syllogistic.

Introduction

This expository paper on Aristotle’s demonstrative logic is intended for a broad
audience that includes non-specialists. Demonstrative logic is the study of
demonstration as opposed to persuasion. It presupposes the Socratic knowledge/
opinion distinction—separating knowledge (beliefs that are known to be true) from
opinion (beliefs that are not so known). Demonstrative logic is the subject of
Aristotle’s two-volume Analytics, as he said in its first sentence. Many of his
examples are geometrical. Every non-repetitive demonstration produces or confirms
knowledge of (the truth of) its conclusion for every person who comprehends the
demonstration. Persuasion merely produces opinion. Aristotle presented a general
truth-and-consequence conception of demonstration meant to apply to all
demonstrations. According to him, a demonstration is an extended argumentation
that begins with premises known to be truths and involves a chain of reasoning
showing by deductively evident steps that its conclusion is a consequence of its
premises. In short, a demonstration is a deduction whose premises are known to be
true. For Aristotle, starting with premises known to be true and a conclusion not
known to be true, the knower demonstrates the conclusion by deducing it from the
premises—thereby acquiring knowledge of the conclusion.

It often happens that a person will ‘redemonstrate’ a proposition after having
previously demonstrated it—perhaps using fewer premises or a simpler chain of
reasoning. The new argumentation has a conclusion already known to be true; so
knowledge of the truth of the conclusion is not produced. In this case, the new
argumentation is still a demonstration. In an even more extreme degenerate case of
repetitive demonstrations, the conclusion actually is one of the premises. Because the
premises are already known to be true, so is the conclusion. Here the demonstration
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neither produces nor reconfirms knowledge of the truth of the conclusion. Of course,
such degenerate demonstrations are pointless. Aristotle does not discuss the
fascinating issue brought to light by these phenomena. Accordingly, this essay
generally eschews such issues. However, it should be noted that if the conclusion is
not known to be true but occurs among the premises, then the premises are not all
known to be true—thus, there is no demonstration. In general, as others have said, if
the conclusion is among the premises, either there is a degenerate demonstration that
is epistemically pointless or there is no demonstration at all—the most blatant case of
petitio principii or begging-the-question.

As Tarski emphasised, formal proof in the modern sense results from refinement
and ‘formalisation’ of traditional Aristotelian demonstration (e.g. 1941/1946/1995,
p. 120; 1969/1993, pp. 118–119). Aristotle’s general theory of demonstration required
a prior general theory of deduction presented in the Prior Analytics. His general
immediate-deduction-chaining conception of deduction was meant to apply to all
deductions. According to him, any deduction that is not immediately evident is an
extended argumentation that involves a chaining of immediately evident steps that
shows its final conclusion to follow logically from its premises. To illustrate his
general theory of deduction, he presented an ingeniously simple and mathematically
precise special case traditionally known as the categorical syllogistic. He
painstakingly worked out exactly what those immediately evident deductive steps
are and how they are chained—with reference only to categorical propositions, those
of the four so-called categorical forms (defined below). In his specialised theory,
Aristotle explained how we can deduce from a given categorical premise set, no
matter how large, any categorical conclusion implied by the given set.1 He did not
extend this treatment to non-categorical deductions, thus setting a programme for
future logicians.

The truth-and-consequence conception of demonstration

Demonstrative logic or apodictics is the study of demonstration (conclusive or
apodictic proof) as opposed to persuasion or even probable proof.2 Demonstration
produces knowledge. Probable proof produces grounded opinion. Persuasion merely
produces opinion. Demonstrative logic thus presupposes the Socratic knowledge/
belief distinction.3 Every proposition that I know [to be true] I believe [to be true], but
not conversely. I know that some of my beliefs, perhaps most, are not knowledge.

1 People deduce; propositions imply. A given set of propositions implies every proposition whose information is

contained in that of the given set (Corcoran 1989, pp. 2–12). Deducing a given conclusion from given premises is seeing

that the premise set implies that conclusion. Every set of propositions has hidden implications that have not been

deduced and that might never be deduced. After years of effort by many people over many years, Andrew Wiles finally

deduced the Fermat proposition from a set of propositions which had not previously been known to imply it. Whether

the Goldbach proposition is implied by the known propositions of arithmetic remains to be seen.
2 As the words are being used here, demonstration and persuasion are fundamentally different activities. The goal of

demonstration is production of knowledge, which requires that the conclusion be true. The goal of persuasion is

production of belief, to which the question of truth is irrelevant. Of course, when I demonstrate, I produce belief.

Nevertheless, when I have demonstrated a proposition, it would be literally false to say that I persuaded myself of it.

Such comments are made. Nevertheless, they are falsehoods or misleading and confusing half-truths when said

without irony or playfulness.
3 There is an extensive and growing literature on knowledge and belief. References can be found in my 2007

encyclopedia entry ‘Knowledge and Belief’ (Corcoran 2007b) and in my 2006b article ‘An Essay on Knowledge and

Belief’.

2 John Corcoran
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Every demonstration produces knowledge of the truth of its conclusion for every
person who comprehends it as a demonstration.4 Strictly speaking, there is no way for
me to demonstrate a conclusion to or for another person. There is no act that I can
perform on another that produces the other’s knowledge. People who share my
knowledge of the premises must deduce the conclusion for themselves—although they
might do so by autonomously following and reconfirming my chain of deduction.5

Demonstration makes it possible to gain new knowledge by use of previously
gained knowledge. A demonstration reduces a problem to be solved to problems
already solved (Corcoran 1989, pp. 17–19).

Demonstrative logic, which has been called the logic of truth, is not an exhaustive
theory of scientific knowledge. For one thing, demonstration presupposes discovery;
before we can begin to prove, we must have a conclusion, a hypothesis to try to
prove. Apodictics presupposes heuristics, which has been called the logic of
discovery. Demonstrative logic explains how a hypothesis is proved; it does not
explain how it ever occurred to anyone to accept the hypothesis as something to be
proved or disproved. As is to be expected, Aristotle makes many heuristic points in
Posterior Analytics, but perhaps surprisingly, also in Prior Analytics (e.g. A 26). If we
accept the view (Davenport 1952/1960, p. 9) that the object of a science is to discover
and establish propositions about its subject matter, we can say that science involves
heuristics (for discovering) and apodictics (for establishing). Besides the unknown
conclusion, we also need known premises—demonstrative logic does not explain how
the premises are known to be true. Thus, apodictics also presupposes epistemics,
which will be discussed briefly below.

Demonstrative logic is the subject of Aristotle’s two-volume Analytics, as he said
in the first sentence of the first volume, the Prior Analytics (Gasser 1989, p. 1; Smith
1989, p. xiii). He repeatedly referred to geometry for examples. However, shortly
after having announced demonstration as his subject, Aristotle turned to deduction,
the process of extracting information contained in given premises—regardless of
whether those premises are known to be true or even whether they are true. After all,
even false propositions imply logical consequences (cf. A 18); we can determine that a
premise is false by deducing from it a consequence we already know to be false. A
deduction from unknown premises also produces knowledge—of the fact that its
conclusion follows logically from (is a consequence of) its premises—not knowledge
of the truth of its conclusion.6

In the beginning of Chapter 4 of Book A of Prior Analytics, Aristotle wrote the
following (translation: Gasser 1991, 235f):

Deduction should be discussed before demonstration. Deduction is more general.
Every demonstration is a deduction, but not every deduction is a demonstration.

4 Aristotle seemed to think that demonstration is universal in the sense that a discourse that produces demonstrative

knowledge for one rational person does the same for any other. He never asked what capacities and what experiences

are necessary before a person can comprehend a given demonstration (Corcoran 1989, pp. 22–23).
5 Henri Poincaré (Newman 1956, p. 2043) said that he recreates the reasoning for himself in the course of following

someone else’s demonstration. He said that he often has the feeling that he ‘could have invented it’.
6 In some cases it is obvious that the conclusion follows from the premises, e.g. if the conclusion is one of the premises.

However, in many cases a conclusion is temporarily hidden, i.e. cannot be seen to follow without a chaining of two or

more deductive steps. Moreover, as Gödel’s work has taught, in many cases a conclusion that follows from given

premises is permanently hidden: it cannot be deduced from those premises by a chain of deductive steps no matter how

many steps are taken.
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Demonstrative logic is temporarily supplanted by deductive logic, the study of
deduction in general. Deductive logic has been called the logic of consequence.
Because demonstration is one of many activities that use deduction, it is reasonable
to study deduction before demonstration.

Although Aristotle referred to demonstrations7 several times in Prior Analytics,
he did not revisit demonstration per se until the Posterior Analytics, the second
volume of the Analytics. Deductive logic is the subject of the first volume.

It has been said that one of Aristotle’s greatest discoveries was that deduction is
cognitively neutral: the same process of deduction used to draw a conclusion from
premises known to be true is also used to draw conclusions from propositions whose
truth or falsity is not known, or even from premises known to be false.8 Tarski (1956/
1983, p. 474) makes this point in his famous consequence-definition paper. The same
process of deduction used to extend our knowledge is also used to extend our
opinion. Moreover, it is also used to determine consequences of propositions that are
not believed and that might even be disbelieved—or even known to be false. Finally,
although Aristotle does not explicitly say so, deduction is used to show that some
propositions known to be true imply others known to be true, thus revealing that
certain demonstrations have redundant premises. There is no justification for
attributing to Aristotle, or to any other accomplished logician, the absurd view that
no demonstration has a ‘redundant’ premise—one that is not needed for the
deduction of the conclusion.9

Another of his important discoveries was that deduction is topic neutral: the same
process of deduction used to draw a conclusion from geometrical premises is also
used to draw conclusions from propositions about biology or any other subject.
Using the deduction/demonstration distinction, his point was that as far as the
process is concerned, i.e. after the premises have been set forth, demonstration is a
kind of deduction: demonstrating is deducing from premises known to be true.

Deduction is content independent in the sense that no knowledge of the subject
matter per se is needed. (cf. Tarski 1956/1983, pp. 414–415.) It is not necessary to
know the numbers or anything else pertinent to the subject matter of arithmetic in
order to deduce ‘No square number that is perfect is an even number that is prime’
from ‘No prime number is square’. Or more interestingly, it is not necessary to know
the subject matter to deduce ‘Every number other than zero is the successor of a
number’ from ‘Every number has every property that belongs to zero and to the
successor of every number it belongs to’.

7 As will be seen below, it is significant that all specific demonstrations mentioned in Prior Analytics are geometrical and

that most of them involve indirect reasoning or reductio ad absurdum. Incidentally, although I assume in this paper

that Prior Analytics precedes Posterior Analytics, my basic interpretation is entirely compatible with Solmsen’s

insightful view that Aristotle’s general theory of demonstration was largely worked out before he discovered the class

of deductions and realised that the latter includes the demonstrations as a subclass (Ross 1949, pp. 6–12, esp. 9).
8 Of course, demonstration is not cognitively neutral. The whole point of a demonstration is to produce knowledge of its

conclusion. It is important to distinguish the processes of deduction and demonstration from their respective products,

deductions and demonstrations. Although the process of deduction is cognitively neutral, it would be absurd to say that

the individual deductions are cognitively neutral. How can deductions be cognitively neutral when demonstrations are

not? After all, every demonstration is a deduction. See the section below on Aristotle’s general theory of deduction.
9 Otherwise, we would not have known that the argumentations in Euclid using the Parallel Postulate were

demonstrations until 1868 when Beltrami proved its independence—thereby establishing the consistency of non-

Euclidean geometry (Church 1956, p. 328). In general, judging whether an argumentation is a deduction cannot require

a proof of the independence of the premises. I am indebted to one of the referees for alerting me of the need for

explicitly making this point.

4 John Corcoran
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Moreover, he also discovered that deduction is non-empirical in the sense that
external experience is irrelevant to the process of deducing a conclusion from
premises. Diagrams, constructions, and other aids to imagining or manipulating
subject matter are irrelevant potential hindrances to purely logical deduction (Prior
Analytics 49b33-50a4, Smith 1989, p. 173).10 In fact, in the course of a deduction, any
shift of attention from the given premises to their subject matter risks the fallacy of
premise smuggling—in which information not in the premises but intuitively evident
from the subject matter might be tacitly assumed in an intermediate conclusion. This
would be a non-sequitur, vitiating the logical cogency of reasoning even if not
engendering a material error.11

Aristotle did not explicitly mention the idea that deduction is information
processing, but his style clearly suggests it. In fact, his style has seemed to some to
suggest the even more abstract view that in deduction one attends only to the logical
form of the argument, ignoring the content entirely.12

For Aristotle, a demonstration begins with premises that are known to be true
and shows by means of chaining of evident steps that its conclusion is a logical
consequence of its premises. Thus, a demonstration is a step-by-step deduction whose
premises are known to be true. For him, one of the main problems of logic (as
opposed to, say, geometry) is to describe in detail the nature of the deductions and
the nature of the individual deductive steps, the links in the chain of reasoning.
Another problem is to say how the deductions are constructed, or ‘come about’ to
use his locution. Curiously, Aristotle seems to have ignored a problem that deeply
concerned later logicians, viz., the problem of devising a criterion for recognising
demonstrations (Gasser 1989).

Thus, at the very beginning of logic we find what has come to be known as the
truth-and-consequence conception of demonstration: a demonstration is a discourse or
extended argumentation that begins with premises known to be truths and that
involves a chain of reasoning showing by evident steps that its conclusion is a
consequence of its premises. The adjectival phrase ‘truth-and-consequence’ is
elliptical for the more informative ‘established-truth-and-deduced-consequence’.

Demonstratives and intuitives

Following the terminology of Charles Sanders Peirce (1839–1914), a belief that is
known to be true may be called a cognition. A person’s cognitions that were obtained
by demonstration are said to be demonstrative or apodictic. A person’s cognitions
that were not obtained by demonstration are said to be intuitive. In both cases, it is
convenient to shorten the adjective/noun combination into a noun. Thus, we will

10 Other writers, notably Kant and Peirce, have been interpreted as holding the nearly diametrically opposite view that

every mathematical demonstration requires a diagram.
11 Of course, this in no way rules out heuristic uses of diagrams. For example, a diagram, table, chart, or mechanical

device might be heuristically useful in determination of which propositions it is promising to try to deduce from given

premises or which avenues of deduction it is promising to pursue. However, according to this viewpoint, heuristic aids

cannot substitute for apodictic deduction. This anti-diagram view of deduction dominates modern mainstream logic.

In modern mathematical folklore, it is illustrated by the many and oft-told jokes about mathematics professors who

hide or erase blackboard illustrations they use as heuristic or mnemonic aids.
12 This formalistic view of deduction is not one that I can subscribe to, nor is it one that Aristotle ever entertained. See

Corcoran 1989. The materialistic and formalistic views of deduction are opposite fallacies. They illustrate what Frango

Nabrasa (personal communication) called ‘Newton’s Law of Fallacies’: for every fallacy there is an equal and opposite

fallacy—overzealous attempts to avoid one land unwary students in the other.
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speak of demonstratives instead of demonstrative cognitions and of intuitives (or
intuitions) instead of intuitive cognitions. In his 1868 paper on cognitive faculties,
Peirce has a long footnote on the history of the words ‘intuition’ and ‘intuitive’.
Shortly after introducing the noun, he wrote (1992, pp. 11–12), ‘Intuition here will be
nearly the same as ‘‘premise not itself a conclusion’’’.

Although no two persons have the same belief, people often believe the same
proposition. Thus, the distinction between my belief that two is prime and its
propositional content—the same as the propositional content of your belief that two
is prime—applies to cognitions.

Just as individual deductions are distinguished from the general process of deduction
through which they are obtained, individual intuitions are distinguished from the
general process of intuition through which they are obtained. Moreover, just as
individual attempts to apply deduction are often arduous and often erroneous,
individual attempts to apply intuition are often arduous and often erroneous. Not every
intuition is ‘intuitively obvious’ and not every belief thought to be an intuition actually
is one (Tarski 1969/1993, p. 110, p. 117). Intuitions may be said to be self-evident or
immediate in any of several senses, but usually not in the sense of ‘trivial’, ‘obvious’,
‘easy’, or ‘instant’. The processes of deduction and intuition are equally fallible in the
sense that there is no guarantee that attempts to apply them will always succeed.

Some writers subdivide intuitives into those that involve sense perception
essentially and those known purely intellectually. The ancient physician Galen (129–
216 CE), wrote the following (Institutio Logica I.1, Kieffer 1964, p. 31; translation by
James Hankinson, personal communication).

Of evident things, everyone knows some through sense perception and some
through intellection. These are known without demonstration. But things known
neither by perception nor by intuition, we know through demonstration.

As philosophers have pointed out, it is often difficult for people to determine with
certainty exactly which of their intuitions are perceptual and which are intellectual,
or equivalently in Galen’s terms, which of their intuitions are perceptions and which
intellections. For clarity it should be noted that other writers use different
terminology for the two subclasses. They call intuitives known perceptually
‘inductions’ and they restrict ‘intuition’ to intuitives known intellectually.

It is impossible to have informative demonstrative knowledge without intuitive
knowledge.13 This point was made by Plato, Aristotle, Galen, Leibniz, Pascal, and
many others including Tarski (1969/1993, p. 117). However, it is also difficult for
people to determine with certainty exactly which of their cognitions are intuitive and
which are demonstrative. Peirce said in the 1868 paper that there is no evidence that
we have the ability to determine, given an arbitrary cognition, whether it is intuitive
or demonstrative (1992, p. 12). In former times it was held that axioms and
postulates should all be intuitive, but now it is clear that this restriction is
impractical.

13 This passage refers to informative knowledge. It should not be taken to exclude the possibility of uninformative

demonstrative knowledge not based on intuitive premises. For example, we have uninformative demonstrative

knowledge of many tautologies, e.g. that every even number that is prime is a prime number that is even. Aristotle’s

syllogistic did not recognise tautologies and thus did not recognise the role of tautologies in deduction, which was one

of Boole’s revolutionary discoveries.

6 John Corcoran
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For Aristotle’s view of how intuitive cognitions are achieved, it is difficult to
improve on Hintikka’s excellent account in his 1980 article ‘Aristotelian Induction’
(Corcoran 1982). Hintikka’s view agrees substantially with that of Beth (1959, p. 34).14

It is widely agreed, at least verbally, that demonstratives are preferable to
intuitives in the sense that if it is possible to demonstrate a proposition known
intuitively, then is better to do so. If the attempt to demonstrate an intuitive is
successful, then—according to this terminology—the cognition that had been an
intuitive did not become a demonstrative for that knower, even if all of the premises
used in the demonstration were intuitives. Whether a given cognition is intuitive or
demonstrative depends on how it was obtained. Presumably, in such cases it would
be preferable to take as premises only other intuitives. Either way, it is rare for these
supposed preferences to be exercised and even rarer for an alleged exercise of them to
be supported by argumentation.

Aristotle’s general theory of deduction

Aristotle’s general theory of deduction must be distinguished from the categorical
syllogistic, the restricted system he created to illustrate it. The latter will be sketched in the
next section ‘Aristotle’s Theory of Categorical Deductions’. The expression ‘immediate-
deduction-chaining’ can be used as an adjective to describe his general theory, which is
based on two insights. The first is that in certain cases a conclusion can be seen to follow
logically from given premises without recourse to any other propositions; these can be
called immediate deductions15 in the sense that no proposition mediates between the
premises and conclusion in the process. The second insight is that the deductions
involving mediation are chainings of immediate deductions.

Over and above the premises and conclusion, every deduction and thus every
demonstration has a chain-of-reasoning that shows or makes evident that the (final)

14 It is important to understand how this terminology is to be used. For purpose of discussion, let us assume for the

moment that once a person has a cognition, it is never lost, forgotten, or renounced. Let us further assume that people

start out devoid of cognitions. As each cognition is achieved, it is established as an intuitive or as a demonstrative. For

a given person, no cognition is both. However, I know of no reason for not thinking that perhaps some of one person’s

intuitive cognitions are among another person’s demonstratives. A seasoned investigator can be expected to have a far

greater number of intuitive cognitions than a neophyte.

In order to understand the truth-and-consequence conception of demonstration, it is useful to see how an ‘apparent’

demonstration fails. Any non-repetitive argumentation that does not have the potential to become a demonstration for

me in my present state of knowledge either has a premise that I do not know to be true or it has a chain of deduction

that I cannot follow—that does not show me that the conclusion follows from its premises. The trouble is with the

premise set or with the chain of deduction—the data or the processing.

Now, if I have a non-repetitive demonstration that I wish to share with another person who does not know the

conclusion, the situation is similar. The premises must all be (contents of) the other person’s cognitions. And the other

person must be able to follow the chain of deduction to its conclusion and, through it, come to know that the

conclusion is a logical consequence of the premises.

None of the above should be taken to deny the remarkable facts of deductive empathy, without which teaching of

logic would be impossible, and demonstrative empathy, without which teaching of mathematics would be impossible.

Under demonstrative empathy, I include the ability to follow an argumentation whose premises and conclusion are

known to me to be true and conclude that it would have demonstrated the conclusion if I had not already known it. As

a practical matter, I must have demonstrative empathy in order to teach others the mathematics I know. Under

deductive empathy, I include the ability to follow an argumentation whose premises are known by me to imply its

conclusion and judge that it would have shown that the conclusion follows if I had not already known it. Further

pursuit of this important topic would take us away from the immediate task.
15 Aristotle called an immediate deduction a teleios syllogismos or a complete syllogism, where by complete he meant that

nothing else is required to see that the conclusion follows (Aristotle, 24b22, Boger 2004, p. 188, Smith 1989, p. 110, p. 115).
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conclusion follows logically from the premises—and thus that assertion of the
premises is also virtual assertion of the conclusion.16 An Aristotelian direct deduction
based on three premises p1, p2, and p3, having the conclusion fc, and having a chain-
of-reasoning with three intermediate conclusions ic1, ic2, and ic3, can be pictured as
below. The question mark prefacing the conclusion merely indicates the conclusion
to be deduced. It may be read, ‘Can we deduce?’ or ‘To deduce’. Here QED simply
marks the end of a deduction much as a period marks the end of a sentence.17

Direct deduction schema
p1
p2
p3
?fc
ic1
ic2
ic3
fc

QED

Note that in such an Aristotelian deduction the final conclusion fc occurs twice:
once with a question mark as a goal to be achieved and once followed by QED as a
conclusion that has been deduced—thus following the format common in Greek
mathematical proofs (Smith 1989, p. 173). Having a fully expressed goal at the outset is
one of the important differences between a deduction and a calculation. Aristotle gives
us a ‘formal system’ but not a calculus. The conclusion is not found by applying rules to
the premises. Also, note that intermediate conclusions are also used as intermediate
premises. This picture represents only a direct deduction; a picture for indirect
deduction is given below—after we consider a concrete example of a direct deduction.

Direct deduction 1
1. Every quadrangle is a polygon.
2. Every rectangle is a quadrangle.
3. Every square is a rectangle.
? Some square is a polygon.
4. Every square is a quadrangle. 3, 2
5. Every square is a polygon. 4, 1
6. Some polygon is a square. 5
7. Some square is a polygon. 6
QED

16 In the case of immediate deductions, I must count a single link as a ‘degenerate’ chain-of-reasoning. The act of

deducing the conclusion from the premises is more than just the conclusion and premises. The conclusion follows

without any act, but for me to deduce it, to see that it follows, requires an act.
17 In a demonstration, it would be appropriate to take the QED marking the end of a deduction as an abbreviation of the

traditional Latin quod erat demonstrandum (that which was to be demonstrated, or more properly, that which was

required to be demonstrated), referring to the last intermediate conclusion. However, that would be inappropriate with

deductions since a deduction is not necessarily a demonstration. Fortunately, those who prefer to take it as an

abbreviation of Latin are free to use quod erat deducendum (that which was to be deduced, or more properly, that

which was required to be deduced).

8 John Corcoran
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The example is from Aristotle’s categorical syllogistic, which is restricted to
propositions in the four categorical subject-copula-predicate forms. In the samples
below of categorical propositions, the subject is ‘square’, the predicate ‘polygon’, and
the copula the rest.18 Taking the subject to be ‘every square’, the predicate to be ‘a
polygon’ or ‘is a polygon’, or the copula to be ‘is’ or ‘is a’ is a common segmentation
fallacy.19 Today, we would say that the copula is a logical or formal constant and
that the subject and predicate are non-logical or contentful constants.

Every square is a polygon.
No square is a polygon.
Some square is a polygon.
Some square is not a polygon

Since there are no ‘truth-functional constants’, there is no way to form negations,
double negations, conjunctions, or any other ‘truth-functional combinations’ of
categorical propositions.20 Aristotle took the contradictory opposite of a proposition
to serve some of the purposes we are accustomed to assigning to the negation. Using
‘CO’ to abbreviate ‘contradictory opposite’, we have the following pairings.

‘Some square is not a polygon’ is the CO of ‘Every square is a polygon’, and vice
versa.

‘Some square is a polygon’ is the CO of ‘No square is a polygon’, and vice versa.

In every case, the contradictory opposite of a categorical proposition is logically
equivalent to its negation; but the negation is not a categorical proposition. For example,
‘Some square is not a polygon’ is logically equivalent to ‘Not every square is a polygon’.
The negation of a given proposition contains the entire given proposition as a proper
part. Thus, the double negation of a proposition contains its negation as a proper part.
Today we have a law of double negation, that the negation of the negation of a
proposition is distinct from but logically equivalent to the proposition. For Aristotle,
however, every categorical proposition is the contradictory opposite of its own
contradictory opposite. In his categorical syllogistic, there is no such thing as a double
negation. His concept of contradictory opposition is entirely syntactic, or structural.

The picture for an indirect deduction, or reductio-ad-impossibile, resembles but is
significantly different from that for a direct deduction. Indirect demonstrations are
called proofs by contradiction. In such a deduction, after the premises have been
assumed and the conclusion has been set as a goal, the contradictory opposite of the

18 In Greek as in English, in a categorical sentence such as ‘Every square is a rectangle’, the subject ‘square’ divides the

copula ‘Every . . . is a’. Aristotle reworded his Greek in an artificial way so that the copula was entirely between the

subject and predicate, which he called ‘terms’ (using the Greek word for terminal, endpoint, and end). He also moved

the predicate to the front. For example, ‘Every square is a rectangle’ would be worded ‘Rectangle belongs to every

square’. See the section ‘Colloquial and formalised languages’ in Corcoran 2003.
19 Breaking a sentence in a way that does not correspond to the constituents of the proposition it expresses, e.g. taking

‘No number is a square if it is a prime’ to be a categorical sentence with ‘number is a square if it’ as subject.
20 A proposition that is a truth-functional combination of a set of propositions is composed of those in the set in such a

way that its truth-value is determined by those of the propositions in the set. For example, ‘zero is even if one is odd’ is

a truth-functional combination of the two propositions ‘zero is even’ and ‘one is odd’, but ‘zero is even because one is

odd’ is a non-truth-functional combination. Aristotle did not make this distinction.

Aristotle’s Demonstrative Logic 9
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conclusion is assumed as an auxiliary premise. Then, a series of intermediate
conclusions are deduced until one is reached which oppositely contradicts a previous
proposition. To represent a simple indirect demonstration, *fc (the contradictory
opposite of the final conclusion) is added as a new assumption,21 the @ indicates
auxiliary assumption, and the X indicates that the last intermediate conclusion ic3
oppositely contradicts one of the previous intermediate conclusions or one of the
premises or even, in extremely rare cases, the auxiliary assumption (Corcoran 1988).
@ can be read ‘Assume as an auxiliary assumption’ or ‘Assume for purposes of
reasoning’. X can be read ‘A contradiction’, or more literally ‘Which contradicts a
previous proposition’, where the relative pronoun refers to the last intermediate
conclusion.22

Indirect deduction schema
p1
p2
p3
?fc

@*fc
ic1
ic2
ic3
X

QED

Indirect deduction 1
1. Every quadrangle is a polygon.
2. Every rectangle is a quadrangle.
3. Every square is a rectangle.
? Some polygon is a square.
4. Assume: No polygon is a square.
5. No quadrangle is a square. 1, 4
6. No rectangle is a square. 2, 5
7. Some rectangle is a square. 3
8. Contradiction. 7, 6
QED

21 It would be misleading and confusing to some to use *p for the contradictory opposite of p since the same notation is

widely used for the negation of p. Moreover, the tilde * is normally a symbol of the object language. But even in

formalisations of categorical syllogistic, the sign for contradictory opposition is metalinguistic: **p is exactly p.
22 In an indirect deduction, it would be inappropriate to take the QED marking the end of a deduction as an abbreviation

of the traditional Latin quod erat deducendum (that which was to be deduced) referring to the last intermediate

conclusion because the last intermediate conclusion is usually not the conclusion to be deduced. For a discussion of the

unusual cases where it is, see Corcoran 1988. Euclid avoided this awkwardness by repeating the final conclusion just

after reaching his contradiction so that indeed the QED could always be taken as referring to the last intermediate

conclusion. However, it would be less artificial to drop the idea of referring to the last intermediate conclusion by

regarding QED as mere punctuation marking the end of a deduction.

In the example indirect deduction, the conclusion being deduced occurs only once, where it is prefaced by the question

mark; it does not occur as an intermediate conclusion. However, Aristotle’s proof that every conclusion deducible directly

from given premises can also be deduced indirectly probably depends on the possibility of having the stated conclusion

occurring twice, the second time as an intermediate conclusion. See the diagram on page 115 in Corcoran 1974a.

10 John Corcoran
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Like demonstration, deduction also makes it possible to gain new knowledge by
use of previously gained knowledge. However, with deduction the reference is to
knowledge that a conclusion follows from premises and not to knowledge of the truth
of its conclusion. Again like demonstration, deduction reduces a problem to be
solved to problems already solved. However, here the problem to be solved is ‘seeing’
that the conclusion follows from the premises. The problems already solved are
seeing that the conclusions of the rules of deduction follow from their respective
premises. According to Aristotle, a ‘hidden’ conclusion is seen to follow by means of
chaining evidently valid arguments connecting that conclusion to premises.

Aristotle’s theory of categorical deductions

As an illustrative special case of his general theory of deduction, Aristotle’s theory
of categorical deductions also had two types of deduction, direct and indirect.
However, the categorical deductions used only categorical propositions and were
constructed using exactly eight specific ‘rules of deduction’. Of the eight, seven are
formal in the special sense that every two ‘applications’ of the same rule are in the
same logical form (Corcoran 1974a, p. 102, 1999, pp. 511–512). The remaining
rule amounts to the rule of repetition for categorical propositions. All eight are
formal in the sense that every argument in the same form as an ‘application’ of a
given rule is an ‘application’ of the same rule. Of the seven, three involve only one
premise; four involve two premises. Those involving only one premise can be called
conversions, because the terms in the premise occur in reverse order in the
conclusion.23 Following Boole’s usage, those involving only two premises can be
called eliminations, since one of the terms in the premises is ‘eliminated’, i.e. does not
occur in the conclusion.

Three conversions
Every square is a rectangle. No circle is a rectangle. Some square is a rectangle.
Some rectangle is a square. No rectangle is a circle. Some rectangle is a square.

Two universal eliminations
Every rectangle is a polygon. No rectangle is a circle.
Every square is a rectangle. Every square is a rectangle.
Every square is a polygon. No square is a circle.

Two existential eliminations
Every rectangle is a polygon. No rectangle is a circle.
Some square is a rectangle. Some polygon is a rectangle.
Some square is a polygon. Some polygon is not a circle.

23 From Aristotle’s point of view (Corcoran 2006a), the conclusions of the last two are [outer] converses of their respective

premises in one modern sense of ‘converse’ (Corcoran 1999, p. 189). Moreover, the conclusions are logical equivalents

of the premises. However, in the first case, the conclusion is neither a converse nor an equivalent of the premise.

Furthermore, the first rule is rather artificial. From Aristotle’s point of view, it is not immediately evident that

‘Some square is a rectangle’ follows from ‘Every square is a rectangle’: the reversal of terms is necessary. Anyway,

Aristotle’s deduction of an existential conclusion from a universal premise has been mindlessly and unfairly criticised

(Corcoran 1974a, p. 104, p. 126; Smith 1989, pp. xxv–xxvi). It involves what has been called existential import

(Corcoran 2007a).

Aristotle’s Demonstrative Logic 11
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Aristotle collected what he regarded as evidently valid categorical arguments
under the eight rules—although he did not refer to them as rules of deduction.
Aristotle seemed to think that every other valid categorical argument’s conclusion
was ‘hidden’ in the sense that it could not be seen to follow without chaining two
or more of the evidently valid arguments. Moreover, he believed that any
categorical conclusion that follows logically from a given set of categorical
premises, no matter how many, was deducible from them by means of a deduction
constructed using only his eight rules. In other words, he believed that every
categorical conclusion hidden in categorical premises could be ‘extracted’ by
applying his eight rules in a direct or indirect deduction. He had good reason for
his belief and, as far as I know, he might have believed that he had demonstrative
knowledge of it, as argued forcibly in Smiley’s paper 1994. Aristotle’s belief has
since been established using methods developed by modern mathematical logicians
(Corcoran 1972).

Certain features of Aristotle’s rules are especially worth noticing. Each of
the four forms of categorical proposition is exemplified by a conclusion of one
of the four two-premise rules, giving them a kind of symmetry. In addition, in
the seven rules just schematised, existential negative propositions such as
‘Some polygon is not a circle’ are treated in a very special way. In the
above schematisation, there is only one occurrence of an existential negative,
even though there are three occurrences of the existential affirmative. Moreover,
although there are conversions for the other three, there is no conversion for the
existential negative. Most strikingly, the existential negative does not occur as a
premise. This means that no existential negative can be used as a premise in a direct
deduction.

Direct versus indirect deductions
In Aristotle’s general theory of deduction, direct and indirect deductions are

equally important. As we will see below, both occur in the scientific and
philosophical discourse that Aristotle took as his data. Thus, any theory of
demonstrative reasoning that omitted one or the other would be recognised by its
intended Greek audience as inadequate if not artificial.

However, it is natural—especially for a logician—to ask the purely theoretical
question whether it is necessary to have both direct and indirect deductions in
Aristotle’s special theory, his categorical syllogistic. This question divides into
two. First, is every conclusion deducible directly from given premises also
deducible indirectly from the same premises? If so, direct deductions are not
necessary. Second, is every conclusion deducible indirectly from given premises
also deducible directly from the same premises? If so, indirect deductions are not
necessary. By careful investigation of the details, it is easy to answer yes to the
first question and no to the second: yes, every conclusion deducible directly from
given premises is also deducible indirectly from the same premises; no, not every
conclusion deducible indirectly from given premises is also deducible directly from
the same premises.

To see that every direct deduction is replaceable by an indirect deduction
having the same premises and conclusion, compare the following two easy
deductions.

12 John Corcoran
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1. No circle is a rectangle. 1. No circle is a rectangle.
2. Every square is a rectangle. 2. Every square is a rectangle.
? No square is a circle. ? No square is a circle.
3. No rectangle is a circle. 1 3. Assume: Some square is a circle.
4. Every square is a rectangle. 2 4. No rectangle is a circle. 1
5. No square is a circle. 3, 4 5. Every square is a rectangle. 2
QED 6. No square is a circle. 4, 5

7. Contradiction. 6, 3
QED

The direct deduction on the left was transformed into the indirect deduction on
the right by adding two lines. Between the presentation of the conclusion goal and
the first intermediate conclusion, I inserted the assumption of the contradictory
opposite of the conclusion. Between the final conclusion and QED, I inserted
‘Contradiction’. Thus, from a direct deduction I constructed an indirect deduction
with the same conclusion and the same premises. It is evident that this can be done in
every case, as Aristotle himself noted (Prior Analytics 45a22–45b5; Corcoran 1974b,
p. 115; Smith 1989, p. 154).

Now, let us turn to the second question: is every conclusion deducible indirectly
also deducible directly so that indirect deductions are not necessary? Consider the
following indirect deduction.

1. Every square is a rectangle.
2. Some polygon is not a rectangle.
? Some polygon is not a square.
3. Assume: Every polygon is a square.
4. Every polygon is a rectangle. 3, 1
5. Contradiction. 4, 2
QED

It is obvious that neither premise is redundant; each is essential with respect to the
other for the conclusion: the conclusion does not follow from either one of the two
alone. Thus, any deduction of the conclusion from themmust use both of them. Notice
that one of the premises is an existential negative. In this case, the existential negative
was oppositely contradicted by the intermediate conclusion. In a direct deduction, one
of the seven schematised rules would have to apply to the existential negative by itself or
in combination with the other premise or with an intermediate conclusion. However, as
we noted above, none of those rules apply to an existential negative premise. Therefore,
no direct deduction of this conclusion is possible from these premises.

The reasoning just used to show that this conclusion cannot be deduced from these
premises by a direct deduction can be applied in general to show that no conclusion can
be deduced directly from a set of premises containing an existential negative—unless of
course the existential negative is redundant or the conclusion is one of the premises.

Thus, in Aristotle’s categorical syllogistic, direct deductions are in a sense
superfluous, whereas indirect deductions are indispensable.24 For more detail, see
Corcoran and Scanlan 1982.

24 Ironically perhaps, there are modern symbolic logic texts whose deductions are exclusively indirect (Jeffrey 1967/

1991).
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Geometric background

It is difficult to understand the significance of Aristotle’s logic without being aware
of its historic context. Aristotle had rigorous training and deep interest in geometry, a
subject that is replete with direct and indirect demonstrations and that is mentioned
repeatedly in Analytics. He spent twenty years in Plato’s Academy, whose entrance is
said to have carried the motto: Let no one unversed in geometry enter here. The fact
that axiomatic presentations of geometry were available to the Academy two
generations before Euclid’s has been noted often. David Ross (1923/1959, p. 47)
pointed out ‘there were already in Aristotle’s time Elements of Geometry’. According
to Thomas Heath (1908/1925/1956, Vol. 1, pp. 116–117), ‘The geometrical textbook
of the Academy was written by Theudius of Magnesia . . . [who] must be taken to be
the immediate precursor of Euclid, and no doubt Euclid made full use of Theudius . . .
and other available material’. The central importance of mathematics in Aristotle’s
thought and particularly in his theory of demonstration has been widely accepted
(Beth 1959, pp. 31–38).

Aristotelian paradigms

On page 24 of his influential 1962 masterpiece The Structure of Scientific
Revolutions, Thomas Kuhn said that normal science ‘seems an attempt to force nature
into the preformed and relatively inflexible box that the paradigm supplies’.
Continuing on the same page, he added two of the most revealing sentences of the
book.

No part of the aim of normal science is to call forth new sorts of phenomena;
indeed those that will not fit the box are often not seen at all. Nor do scientists
normally aim to invent new theories, and they are often intolerant of those
invented by others.

The fact that he used words having pejorative connotations has not been lost on
some scientists who regard Kuhn’s book as unfairly derogatory and offensive. He
spoke of scientific revolutions as ‘paradigm shifts’, which suggests unflattering
comparison to figure-ground shifts in cognitive psychology, structure-ambiguity
shifts in linguistics, and gestalt shifts in Gestalt psychology. In some cases, such as
the Copernican Revolution, which is the subject of Kuhn’s previous 1957 book, the
comparison might seem somewhat justified.

If we replace Kuhn’s words ‘science’, ‘nature’, and ‘scientist’ by ‘logical theory’,
‘demonstrative practice’, and ‘logician’, we would not be far off. The history of logic
even to this day is replete with embarrassingly desperate attempts to force logical
experience into inflexible paradigms. Many of these attempts were based on partial
understanding or misunderstanding of the relevant paradigm.25 However, many
were based on solid scholarship and insight. Many saw genuine inadequacies in
the relevant paradigm, but failed to address them. However, many disputed

25 One of the more ridiculous was to insist that a singular such as ‘Socrates is a Greek’ was an ellipsis for a universal

‘Every Socrates is a Greek’. This absurdity was designed to perpetuate the illusion that Aristotle’s paradigm required

that every proposition be categorical. The illusion was based on mistaking Aristotle’s particular illustration of his

general theory of deduction to be that general theory.

14 John Corcoran
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well-founded aspects. Some were indeed pathetic in the wisdom of hindsight.26 In
contrast, a few were ingenious and will be remembered as solid contributions to
logical wisdom, if not to mainstream logic. In the latter category, I put William of
Ockham’s brilliant attempt to account for empty terms in the framework of
Aristotle’s categorical logic (Corcoran 1981).

It would be a serious mistake to think that by ‘inflexible paradigms’ I have in
mind only those traceable to antiquity, although only ancient paradigms are relevant
in this essay. For two millennia, logic was dominated by at least three paradigms
apparently carrying Aristotle’s imprimatur. Two of them are treated in this essay: the
theory of categorical deductions and the truth-and-consequence theory of
demonstration. A third important paradigm, Aristotle’s logical methodology,
including his method of establishing independence, is beyond the scope of this
essay. It has been treated elsewhere (Corcoran 1974a, 1992, 1994b). Thus, nothing has
been said in this essay about one of Aristotle’s most lasting contributions: his method
of counterarguments for establishing independence—that is, for producing knowl-
edge that a conclusion does not follow from given premises.

Deductive logic has made immeasurable progress since Aristotle’s theory of
categorical deductions. More and more arguments have been subjected to the same
kind of treatment that Aristotle gave to the categorical arguments. In retrospect, the
explosive increase in the field reported in the 1854 masterpiece by George Boole
(1815–1864) merely served to ignite a chain reaction of further advances that
continues even today (Corcoran 2006a). Aristotle’s system did not recognise
compound terms (as ‘triangle or square’) or equations (as ‘1þ 2¼ 3’). Boole’s
system recognises both. Unlike other revolutionary logical innovators, Boole’s
greatness as a logician was recognised almost immediately. In 1865, hardly a decade
after his 1854 Laws of Thought and not even a year after his tragic death, Boole’s
logic was the subject of a Harvard University lecture ‘Boole’s Calculus of Logic’ by
C. S. Peirce. Peirce opened his lecture with the following prophetic words (Peirce
1865/1982, pp. 223–224).

Perhaps the most extraordinary view of logic which has ever been developed with
success is that of the late Professor Boole. His book . . .Laws of Thought . . . is
destined to mark a great epoch in logic; for it contains a conception which in
point of fruitfulness will rival that of Aristotle’s Organon.

Aristotle’s special theory of categorical deductions recognised only four logical
forms of propositions. It recognised only dyadic propositions involving exactly two
[non-logical] terms. Today, infinitely many forms are accepted, with no limit to the
number of terms occurring in a single proposition. In fact, as early as his famous
1885 paper ‘On the Algebra of Logic: A Contribution to the Philosophy of

26 Boole’s attempt to force Aristotle’s syllogistic into the equational logic mold could be seen to be pathetic once one sees

that it led Boole into his ‘solutions fallacy’ and blinded him to Aristotle’s indirect deductions. Boole never even

attempted to fit indirect deductions into his mold. Frege has a tangled explanation that indirect deductions are

disguised direct deductions. Several decades later, Tarski (1941, pp. 157–159) still told his readers that the expressions

‘indirect proof’ and ‘proof by reductio ad absurdum’ indicate direct proofs that use a certain logical law that he calls

‘the so-called LAW OF REDUCTIO AD ABSURDUM’. On the same page, he alleged ‘Proofs of this kind may quite

generally be characterised as follows: we assume the theorem to be false, and derive from that certain consequences

which compel us to reject the original assumption’—not a bad description of a genuine indirect deduction, but nothing

like the direct deduction he had given as an example.

Aristotle’s Demonstrative Logic 15
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Notation’, Peirce recognised in print simple propositions having more than two
terms (1992, pp. 225–226). Examples are the triadic proposition that the sign ‘7’
denotes the number seven to the person Charles and the tetradic proposition that one
is to two as three is to six. Peirce revisited the topic in his 1907 manuscript
‘Pragmatism’ (1998, pp. 407–408), where he presented his now well-known triadic
analysis of propositions about giving such as ‘The person Abe gives the dog Rex to
the person Ben’.

Given Aristotle’s interest in geometry and his historically important observations
about the development of the theory of proportion (analogia), it is remarkable that in
the Organon we find no discussion of tetradic propositions or proportionality
arguments such as the following.

1 : 2 :: 3 : 6. 1 : 2 :: 3 : 6. 1 : 2 :: 3 : 6.
? 3 : 6 :: 1 : 2. ?1 : 3 :: 2: 6. ? 2 : 1 :: 6 : 3.

A significant amount of logical research was needed to expand the syllogistic to
include the capacity to treat premise-conclusion arguments composed of conditionals
whose antecedents and consequents are categorical propositions. The following is an
easy example.

Direct deduction 2
1. If every rectangle is a quadrangle, then every quadrangle is a polygon.
2. If every square is a rectangle, then every rectangle is a quadrangle.
3. Every square is a rectangle.
? Some square is a polygon.
4. Every rectangle is a quadrangle. 2, 3
5. Every quadrangle is a polygon. 1, 4
6. Every square is a quadrangle. 3, 4
7. Every square is a polygon. 6, 5
8. Some polygon is a square. 7
9. Some square is a polygon. 8
QED

Aristotle’s theory recognised only three patterns of immediate non-repetitive one-
premise deductions and only four patterns of immediate two-premise deductions;
today many more are accepted. In particular, Aristotle never discerned the fact
pointed out by Peirce that to every deduction there is a proposition he called a
leading principle (1992, p. 201) to the effect that its conclusion follows from its
premises. It never occurred to Aristotle to include in his system such propositions as,
for example, that given any two terms, if one belongs to all of the other, then some of
the latter belongs to some of the former.

The simple linear chain structures of Aristotle’s deductions have been augmented
by complex non-linear structures such as branching trees and nested27 linear chains.

27 One nesting never considered by Aristotle but familiar in modern logic is the subdeduction. In the course of a

deduction, an auxiliary subconclusion is set forth as a subgoal to be achieved on the way to achieving the initially

chosen conclusion to be reached. Perhaps the simplest example is the case where the initial conclusion is a conjunction

P&Q and the two subgoals are the two conjuncts P and Q. The syllogistic does not have conjunctions and, thus, has no

need for such strategies. However, it is a kind of miracle that Aristotle’s categorical deductions do not need indirect

subdeductions, which are indispensable in modern systems. In the course of one indirect deduction, it might occur to

16 John Corcoran
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Moreover, his categorical syllogistic has been subjected to severe criticism.
Nevertheless, the basic idea of his demonstrative logic, the truth-and-consequence
theory of demonstration, was fully accepted by Boole (Corcoran 2006a). It has
encountered little overt opposition in its over two-thousand-year history. It continues
to enjoy wide acceptance in the contemporary logic community (Tarski 1969/1993).
Perhaps ironically, Peirce never expressed full acceptance and, in at least one place,
he seems to say, contrary to Tarski and most modern logicians, that diagrams are
essential not only in geometrical demonstrations (Peirce 1998, p. 303) but in all
demonstration (1998, p. 502).

Conclusion

Aristotle’s Analytics contains a general theory of demonstration, a general theory
of deduction, and a special theory of deduction. The first two, described by him in
broad terms in Prior Analytics and applied in Posterior Analytics, have had a steady,
almost unchallenged, influence on the development of the deductive sciences and on
theorising about deductive sciences. Tradition came to regard Aristotle’s as ‘the
notion of demonstration’. As Tarski (1969/1993, pp. 118–120) implies, formal proof
in the modern sense results from a refinement and ‘formalisation’ of traditional
Aristotelian demonstration. The third, the special theory described by Aristotle in
meticulous detail, has been subjected to intense, often misguided censure and, in a
sense, equally intense and equally misguided praise. Quite properly, it has been
almost totally eclipsed by modern logic.

As indicated by the title, my focus has been on Aristotle’s theory of
demonstration. The reader has two main questions to confront, one exegetical and
hermeneutic, and the other factual. The first is whether Aristotle has been fairly
represented here. In this regard it is important to note that I have not said that my
version of Aristotle’s theory is the only one reasonably attributable to him. The
factual question is whether the theory attributed to Aristotle is true: is demonstration
as it was described here? Have I described what people do in demonstrating
propositions to themselves?

Major commentators and historians of logic have failed to notice that a general
theory of demonstration is to be found in Analytics. Łukasiewicz (1951/1957) asserted
that the Analytics did not reveal its purpose. He evidently skipped its first sentence—
perhaps in his haste to get to ‘technical’ details.

Likewise, major commentators and historians of logic have failed to notice that a
general theory of deduction is to be found in Prior Analytics. Without a scintilla of
evidence, Łukasiewicz (1951/1957, p. 44) said that Aristotle believed that ‘the
categorical syllogistic is the only instrument of proof’.28 It has been widely observed
that Aristotle’s definition of deduction is much more general than required for the
categorical syllogistic, but rarely do we find Aristotle credited with a general theory
of deduction. For example, writing in the Encyclopedia Britannica, Lejewski (1980,

the reasoner to set a subgoal and see that the best way of achieving the subgoal is indirect reasoning and so to begin an

indirect subdeduction inside the initial indirect deduction (Corcoran 1974a, pp. 116–117).
28 This is especially ironic because elsewhere in the same book Łukasiewicz said the Prior Analytics contains no

instrument of proof at all. His view is that Prior Analytics presents an axiomatic theory whose underlying logic is

presupposed but not presented.
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p. 58) noticed the wider definition. Instead of taking it as a clue to a wider theory, he
criticised Aristotle’s definition as being ‘far too general’.

Finally, major commentators and historians of logic have even failed to notice
that a special theory of deduction is to be found in Prior Analytics. In fact, the above
remark notwithstanding, Łukasiewicz did not even notice that there is any theory of
deduction to be found anywhere in Analytics. He knew that every axiomatic or
deductive science presupposes an underlying logic specifying how deduction from its
basic premises is to be conducted. Instead of recognising that identification of the
nature of underlying logics was Aristotle’s goal in Prior Analytics, he took Aristotle
to be presenting an axiomatic science whose presupposed underlying logic was
nowhere to be found in Analytics. More recently, Lejewski made the same mistake
when he wrote (1980, p. 59), ‘Aristotle was not aware that his syllogistic presupposes
a more general logical theory, viz., the logic of propositions’. According to the view
presented here, Aristotle’s categorical syllogistic includes a fully self-contained and
gapless system of rules of deduction: it presupposes no other logic for its cogency.

In several previous articles listed in the References, I give my textual basis,
analysis, interpretation, and argumentation in support of the statements made above.
My interpretation of Aristotle’s general theory of demonstration agrees substantially
with those of other logically oriented scholars such as Evert Beth (1959, pp. 31–51).
Moreover, there are excellent articles by John Austin, George Boger, Michael
Scanlan, Timothy Smiley, Robin Smith, and others criticising the opponents of my
approach to Aristotle’s special theory of categorical deduction and treating points
that I have omitted.29 This article was intended not to contribute to the combined
argument, which, though not perfect, still seems conclusive to me. Rather, my goal
was to give an overview from the standpoint of demonstration.30 This limited
perspective brings out the genius and the lasting importance of Aristotle’s
masterpiece in a way that can instruct scholars new to this and related fields.

Acknowledgements
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This essay is based on my lecture at the Coloquio Internacional de Historia de la
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29 Timothy Smiley’s 1973 work on the categorical syllogistic agrees in all essentials with mine. He independently

discovered his main points about the same time that I discovered mine. It is an insignificant accident that my earliest

publication on this subject predates his.
30 In this article I presented what I take to be the most basic and simplest of the theories of demonstration responsibly

attributable to Aristotle. There are several passages, usually disputed and obscure, in which Aristotle seems to further

elaborate his views of the nature of the ultimate premises of a demonstration, our knowledge of them, and what a

deduction of a consequence from them shows. Here are some representative examples. He says that the ultimate premises

must be ‘necessary’ and known to be such, that it is impossible to demonstrate any of them using others as premises, and

that the deductions must show that the facts referred to in the respective premises are the ‘causes’ of those referred to in the

respective conclusions. These passages tend to deflect attention from the deep, clear, useful, and beautiful aspects of the

Analytics. None of these ideas have yet played any role in the modern understanding of demonstration. To have raised

suchmurky and contentious issues would havemade it difficult if not impossible to leave the reader with an appreciation of

the clear and lasting contribution Aristotle made to our understanding of demonstration.
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PUC/CL has a rich tradition of excellence in logic, both in mathematics and
philosophy. Its distinguished logic faculty hosts the annual international logic
conference named in honor of Rolando Chuaqui (1935–1994), the great Chilean
logician. Under Chuaqui’s leadership, PUC earned the distinction of being the first
university to confer the honorary doctorate on Alfred Tarski (Feferman and
Feferman 2004, 353). I am grateful to Prof. Manuel Correia for organising the
colloquium and for his attentive and warm hospitality. I am also grateful to other
santiaguino professors, especially to the mathematician Renato Lewin. I will always
be grateful to Roberto Torretti for his warm and generous introduction and for his
gracious hospitality. This essay owes much to informative discussions with Pierre
Adler, George Boger, Elizabeth Compton, Manuel Correia, Newton da Costa, John
Foran, Gabriela Fulugonio, James Gasser, Josiah Gould, Steven Halady, James
Hankinson, David Hitchcock, Forest Hansen, Amanda Hicks, John Kearns, Daniel
Merrill, Joaquin Miller, Mary Mulhern, Frango Nabrasa, Carlo Penco, Saci Pererê,
Walther Prager, Anthony Preus, José Miguel Sagüillo, Michael Scanlan, Robin
Smith, Thomas Sullivan, Roberto Torretti, Kevin Tracy, Jiyuan Yu, and others. The
HPL Editor John Dawson and his two anonymous referees made many useful
suggestions. The article borrows from my encyclopedia entries cited in the references,
especially from ‘Demonstrative Logic’, ‘Knowledge and Belief’, and ‘Scientific
Revolutions’. Parts of this paper were presented to Prof. Jiyuan Yu’s University of
Buffalo Aristotle Seminar, the Buffalo Logic Colloquium, the University of Buffalo
Philosophy Colloquium, Evergreen State College, and Canisius College.
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