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ABSTRACT 23 

 24 

Comparative studies of closely related taxa can provide insights into the evolutionary forces that 25 

shape genome evolution and the prevalence of convergent molecular evolution. We investigated 26 

patterns of genetic diversity and differentiation in stonechats (genus Saxicola), a widely 27 

distributed avian species complex with phenotypic variation in plumage, morphology, and 28 

migratory behavior, to ask whether similar genomic regions have become differentiated in 29 

independent, but closely related, taxa. We used whole-genome pooled sequencing of 262 30 

individuals from 5 taxa and found that levels of genetic diversity and divergence are strongly 31 

correlated among different stonechat taxa. We then asked if these patterns remain correlated at 32 

deeper evolutionary scales and found that homologous genomic regions have become 33 

differentiated in stonechats and the closely related Ficedula flycatchers. Such correlation across a 34 

range of evolutionary divergence and among phylogenetically independent comparisons suggests 35 

that similar processes may be driving the differentiation of these independently evolving lineages, 36 

which in turn may be the result of intrinsic properties of particular genomic regions (e.g., areas of 37 

low recombination). Consequently, studies employing genome scans to search for areas 38 

important for reproductive isolation or adaptation should account for corresponding regions of 39 

differentiation, as these regions may not necessarily represent speciation islands or evidence of 40 

local adaptation. 41 

  42 

 43 

 44 

  45 
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INTRODUCTION 46 

 47 

Evolutionary biologists seek to understand the genetic basis of speciation and the degree to which 48 

the divergence of lineages may involve independent changes on similar loci (Seehausen et al. 49 

2014). Genomic sequencing has made it possible to examine patterns of differentiation across the 50 

genomes of organisms at different stages of divergence. Recent comparative studies of genome-51 

wide patterns of variation, or “genomic landscapes,” have identified areas of the genome that are 52 

conspicuously differentiated relative to the genomic baseline among closely related taxa 53 

(Ellegren et al. 2012; Ruegg et al. 2014; Burri et al. 2015; Wang et al. 2016). It remains uncertain 54 

whether these regions are functionally important in speciation, and whether they typically arise 55 

during speciation-with-gene-flow or as a consequence of selection in allopatry. 56 

Most empirical studies have used F-statistics (Wright 1965) and other measures that 57 

compare allele frequencies between two populations to infer the magnitude of differentiation 58 

across the genome. These statistics are influenced by levels of within-population genetic variation 59 

and are therefore classified as “relative” measures of divergence (Hedrick 2005). Genomic outlier 60 

regions of high differentiation were first described as “islands of speciation” in the face of gene 61 

flow (Turner et al. 2005) and hypothesized to harbor loci that were important for reproductive 62 

isolation (Nosil et al. 2009; Feder et al. 2012). However, subsequent studies have identified 63 

alternate mechanisms by which isolated genomic regions of elevated differentiation can be 64 

generated in allopatry, and thus independently of gene flow (e.g., Noor and Bennett 2009; Turner 65 

and Hahn 2010; White et al. 2010; Cruickshank and Hahn 2014). For example, post-speciation 66 

selective sweeps or background selection, especially in regions of reduced recombination, can 67 
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drive the differentiation of these loci relative to the rest of the genome (Nachman and Payseur 68 

2012; Cruickshank and Hahn 2014; Burri et al. 2015).  69 

 Selective sweeps bring beneficial alleles to high frequency in a population, greatly 70 

reducing genetic diversity at linked sites via “hitchhiking” (Smith and Haigh 1974; Kaplan et al. 71 

1989).  The magnitude of the hitchhiking effect is influenced by recombination rate, in addition 72 

to the strength of selection, with areas of low recombination experiencing greater linkage and a 73 

commensurate reduction in diversity across larger sections of a chromosome (Begun and 74 

Aquadro 1993; Charlesworth et al. 1997; Nielsen 2005). This reduction in local within-75 

population genetic diversity results in high differentiation as measured by FST (Charlesworth 76 

1998; Keinan and Reich 2010; Cruickshank and Hahn 2014). Recurrent sweeps in similar 77 

genomic regions across independent populations may be caused by selection for different 78 

advantageous alleles at the same locus, or by selection on different but tightly linked loci. 79 

Alternatively, they could result from the adaptive introgression of globally advantageous 80 

mutations transmitted among populations by gene flow, followed by sweeps due to local 81 

adaptation (see Roesti et al. 2014; Delmore et al. 2015). A similar pattern could also arise from 82 

the increased establishment probability of beneficial mutations linked to selected sites in areas of 83 

low recombination (Yeaman et al. 2016). These related processes can result in corresponding 84 

areas of low genetic diversity and high differentiation in independent population comparisons.  85 

Similarly, background (or purifying) selection purges deleterious alleles as they arise and 86 

may also independently generate similar genomic landscapes of diversity and differentiation 87 

across populations (Charlesworth 2013; Burri et al. 2015; Wang et al. 2016). Under this scenario, 88 

a neutral variant that emerges in a population will subsequently disappear if it is linked to a 89 

deleterious mutation, a process that reduces nucleotide diversity (Charlesworth et al. 1993; 90 
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Charlesworth et al. 1997; Stephan et al. 1998). As recombination rates decrease, linkage extends 91 

over larger genetic distances and the probability of a neutral variant associating with a deleterious 92 

mutation (and thus being purged) is higher. Therefore, areas of low recombination will generally 93 

exhibit a greater reduction in genetic diversity due to background selection (Charlesworth et al. 94 

1993; Nordborg et al. 1996). If highly conserved genomic regions (e.g., of great functional 95 

importance) and/or areas of low recombination are similar across species, the effect of 96 

background selection may cause, or contribute to, parallel genomic landscapes of diversity and 97 

differentiation in comparisons of independently evolving lineages (Nordborg et al. 1996; 98 

Andolfatto 2001; Cruickshank and Hahn 2014).  99 

 The effects of background selection and selective sweeps on linked neutral loci have 100 

collectively been referred to as “linked selection” (Turner and Hahn 2010; Cutter and Payseur 101 

2013; Cruickshank and Hahn 2014). The frequency with which parallel signatures of linked 102 

selection occur in closely related taxa and the contributions of background selection and selective 103 

sweeps in shaping genomic landscapes remain actively debated (Keinan and Reich 2010; Burri et 104 

al. 2015). In addition, the degree to which this parallelism may extend beyond a few well-studied 105 

species complexes is currently unknown. 106 

 Genome-wide scans of two independent groups of closely related bird species, Ficedula 107 

flycatchers and Phylloscopus warblers, have identified conspicuous peaks of relative divergence 108 

(i.e., genomic regions with very different allele frequencies) in pairwise comparisons of 109 

congeners that coincide with “valleys” of absolute divergence (i.e., regions with few sequence 110 

differences, not influenced by within-population genetic diversity) (Burri et al. 2015; Irwin et al. 111 

2016). This inverse relationship is inconsistent with the speciation-with-gene-flow paradigm, in 112 

which regions of high relative divergence are resistant to gene flow and therefore should show 113 



 

 

6 

high absolute divergence (Noor and Bennett 2009; Nachman and Payseur 2012; Cruickshank and 114 

Hahn 2014). This suggests that post-speciation selection—not divergence-with-gene-flow—115 

generates differentiation peaks in these systems. Within their respective species complexes, 116 

flycatchers and warblers show signatures of selection in similar genomic areas (Burri et al. 2015; 117 

Irwin et al. 2016), but neither the specific type of selection, nor their contribution to the 118 

speciation process, has been fully characterized. Furthermore, these studies primarily test the 119 

correspondence of divergent regions using correlation-based methods, which can be strongly 120 

affected by pseudoreplication due to linkage. 121 

 Here, we characterize the course of genome-wide molecular evolution in a well-studied 122 

group of birds, the Saxicola stonechats (Urquhart 2002; Collar 2016a, 2016b). This genus began 123 

diversifying during the late Miocene (8.2 million years ago; Illera et al. 2008) and currently 124 

comprises 15 recognized species (51 named taxa including subspecies; Gill and Donsker 2016). 125 

Some taxa are restricted to small islands, while others span continents, and they range from long 126 

distance migrants to year-round residents (Baldwin et al. 2010). The well-documented 127 

evolutionary diversity in this clade makes Saxicola a powerful system for studying independently 128 

evolving lineages across a gradient of differentiation, phenotypic variation, and life histories. We 129 

examine five stonechat taxa at disparate stages of divergence, including two that likely still 130 

exchange genes and two that diverged ~3.7 million years ago (Illera et al. 2008). These taxa show 131 

variation in morphology and behavior (e.g., body size and migratory direction), and we survey 132 

both island and continental taxa, which are likely to have varied demographic histories. 133 

 Our primary research focus is to investigate the extent to which genome evolution is 134 

correlated in independently evolving, but closely related, taxa. We ask: Have the same regions of 135 

the genome become differentiated over time in independent stonechat lineages? If so, what role 136 
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has natural selection played in driving this correlated differentiation? We further ask if evolution 137 

is correlated at a deeper scale, between stonechats and two Ficedula flycatchers (Sætre and 138 

Sæther 2010). Both genera belong to the family Muscicapidae. We posit that any loci that are 139 

differentiated in both genera are unlikely to arise from parallel ecological selection pressures and 140 

instead stem from intrinsic properties of those genomic regions. Finally, we examine the effects 141 

of life history and demography on the genome by comparing patterns of genetic diversity and 142 

differentiation between continental and island taxa. We hypothesize that an island taxon will 143 

show a weaker overall effect of selection on the genome, reflecting the theoretical prediction of 144 

increased drift with a smaller effective population size. Our goal is to shed light on the processes 145 

that influence the most conspicuous features—the high “peaks” and low “valleys”—of stonechat 146 

genomic landscapes. The results underscore the degree to which broad patterns of genetic 147 

diversity and differentiation are correlated across evolutionary time.  148 

 149 

METHODS 150 

Study system and sampling 151 

We included five stonechat taxa in this study: Saxicola rubicola rubicola from Austria (European 152 

stonechat); S. rubicola hibernans from Ireland (European stonechat); S. torquatus axillaris from 153 

Kenya (African stonechat); S. maurus maurus from Kazakhstan (Siberian stonechat); and S. 154 

dacotiae dacotiae from Fuerteventura Island, Spain (Canary Islands stonechat) (Gill and Donsker 155 

2016). Using mitochondrial DNA, Illera et al. (2008) estimated that African stonechats diverged 156 

from the remaining four taxa about 3.7 mya, Siberian stonechats subsequently split from the 157 

remaining three about 2.5 mya, and Canary Islands stonechats diverged from European 158 

stonechats about 1.6 mya. Illera and colleagues could not distinguish Austrian and Irish 159 
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stonechats using mitochondrial DNA. We expect that Canary Islands stonechats have diverged 160 

from other taxa without gene flow because this taxon occurs on an oceanic island, and the 161 

present-day ranges of Kenyan and Siberian stonechats lead us to expect no ongoing gene flow 162 

between these and the other taxa. Conversely, we expect that Austrian and Irish stonechats likely 163 

still exchange genes because of their close geographic proximity, lack of mitochondrial 164 

divergence, and evidence of breeding dispersal between the British Isles and continental Europe 165 

(Helm et al. 2006).  166 

Most of the 262 stonechats included in this study originated from a common-garden 167 

experiment that Eberhard Gwinner initiated in 1981 at the Max-Planck Institute in Andechs, 168 

Germany, except for Canary Islands stonechats, which were directly sampled in the wild (Table 169 

S1). For the other species, most birds were taken into captivity as nestlings, except for Irish 170 

stonechats (~50% captured on winter territories). The remaining sampled individuals were 171 

offspring of these captive stonechats, hatched between 1988 and 2006. Despite the inclusion of 172 

captive birds, relatedness within the pools was low (Table S1). Detailed descriptions of breeding 173 

and raising conditions are published elsewhere (Gwinner et al. 1987; Helm 2003; Helm et al. 174 

2009). 175 

The inclusion of second-generation progeny in our study could potentially lower 176 

measured levels of genetic diversity relative to a comparable sample of wild individuals. 177 

However, we find average genetic diversity (π) to be highest in Siberian stonechats, the species 178 

for which we incorporated the most captive-bred birds; this suggests that any putative bias is 179 

small and potentially negligible for the purposes of this study.  180 

 181 

Draft reference genome 182 
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We assembled the genome of a male Siberian stonechat (S. maurus) collected in Kazakhstan 183 

(44.59º N, 76.609º E) and housed at the Burke Museum (UWBM# 46478). We generated one 184 

fragment library with insert sizes of 180 base pairs (bp) and two mate-pair libraries (insert sizes: 185 

3 and 8 kilobases), and we sequenced each of them on one Illumina HiSeq 2500 lane (obtaining 186 

101-bp paired-end reads). We assembled the draft reference genome using the ALLPATHS-LG 187 

algorithm (Gnerre et al. 2011) and used HaploMerger (Huang et al. 2012) to improve the 188 

assembly by merging homologous scaffolds and removing those resulting from the erroneous 189 

split of two haplotypes into separate scaffolds. The final Siberian stonechat assembly comprised 190 

2,819 scaffolds, with a total scaffold length of 1.02 Gb and an N50 scaffold size of 10.0 Mb. Half 191 

of the final assembly is represented in 24 scaffolds, and 75% in 65 scaffolds. Ambiguous bases 192 

(N’s) make up 4.4% of its total length. 193 

We assembled scaffolds from our stonechat reference genome into draft chromosomes by 194 

mapping them to the Ficedula albicollis genome assembly, version 1.5 (RefSeq accession 195 

GCF_000247815.1) (Kawakami et al. 2014) and used SatsumaSynteny (Grabherr et al. 2010) to 196 

align the Saxicola draft genome to the F. albicollis assembly. Because these species are 197 

phylogenetically close and synteny is relatively conserved among birds (Ellegren 2010), this 198 

method allowed us to position 97.1% of the stonechat reference genome in the presumed correct 199 

order. Inversions and other chromosomal rearrangements occur in birds (Backström et al. 2008), 200 

so it is possible that a small percentage of the genome may be ordered or oriented incorrectly.  201 

 202 

Resequencing of five stonechat taxa 203 

We extracted genomic DNA from stonechat blood or tissue samples using a salt extraction 204 

protocol and selected 49-56 individuals (ntotal = 262, including both males and females) from each 205 
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of the five stonechat taxa for sequencing (Table S1). We created five pooled libraries, one per 206 

taxon, from equimolar aliquots of DNA using the Illumina TruSeq DNA kit and sequenced them 207 

on an Illumina NextSeq 500 (Table S2). 208 

 We used BWA-MEM (Li 2013) to align sequences to our reference genome and 209 

performed refinement and quality control steps with Picard 210 

(http://broadinstitute.github.io/picard/) and the Genome Analysis Toolkit (GATK) (McKenna et 211 

al. 2010), including filtering by mapping quality and removing duplicate sequences (Supporting 212 

information). Sequences mapped to the draft reference genome at a mean per-pool coverage 213 

between 13.8x and 26.1x, and mean mapping quality was between 45-46 for all taxa (Table S2). 214 

Although this level of coverage is insufficient to sequence every individual at every locus, the 215 

goal of our pooled sequencing strategy was to estimate population allele frequencies by sampling 216 

a subset of chromosomes in a pool. Gautier et al. (2013) found that allele frequencies of 217 

individual SNPs estimated with 10-50x pool coverage (pool size = 30) were strongly correlated 218 

with estimates derived from separate individual-based (n = 20) sequencing at 1x-6x (r = 0.93) and 219 

6-10x (r = 0.94) per individual. Additionally, the effects of pool-derived sampling error are 220 

greatly reduced in window-based analyses where variation and differentiation are summarized 221 

across groups of SNPs (Kofler et al. 2011a). Because we use a windowed approach and therefore 222 

do not rely on the frequencies of individual SNPs, we are confident that we can accurately assess 223 

and compare genome-wide patterns of genetic variation with this level of coverage. 224 

 225 

SNP-based phylogeny and inter-taxa divergence 226 

Although we used an existing mitochondrial phylogeny (e.g., Illera et al. 2008) as a basis for our 227 

study approach and design, we also constructed a phylogenetic tree for the five focal stonechat 228 
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taxa using nuclear markers. This step was designed to confirm the mitochondrial findings and 229 

serve as a basis for phylogeny-based inference. We used Pied and Collared Flycatchers (Ficedula 230 

hypoleuca and F. albicollis) as outgroups. We constructed a maximum likelihood tree with 231 

RAxML (Stamatakis 2014), using 16,876,859 fixed single-nucleotide polymorphisms (SNPs) 232 

from across the nuclear genome, of which 330,592 were polymorphic among the stonechat 233 

ingroup (Supporting information). We applied the Lewis correction, following the 234 

recommendation of Stamatakis (2014), for ascertainment bias resulting from the exclusion of 235 

invariant sites.  236 

 We generated mean genome-wide FST and dXY pairwise distance matrices for the five 237 

focal stonechat taxa and displayed them graphically using principal coordinate analyses 238 

performed with the ape package in R (Paradis et al. 2004).  239 

 240 

Pooled population genomic analyses 241 

We analyzed sequence data with the software packages npstat (Ferretti et al. 2013) and 242 

Popoolation2 (Kofler et al. 2011b), designed specifically for the analysis of pooled sequencing 243 

data. With npstat we calculated: (1) Tajima’s D, to test for rare variants as a signal of directional 244 

or purifying selection or large-scale demographic effects; (2) π, an estimate of genetic diversity, 245 

which is derived from the number of pairwise sequence differences among members of a 246 

population; and (3) Fay and Wu’s H, a statistic related to Tajima’s D but sensitive only to high 247 

frequency derived alleles, thus influenced by positive selection but not by background selection 248 

(Fay and Wu 2000). We polarized alleles using the Collared Flycatcher.  249 

 We then used Popoolation2 to calculate pairwise FST among all pairs of taxa. We also 250 

estimated dXY (Nei and Li 1979; Cruickshank and Hahn 2014), a measure of absolute divergence, 251 
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as AXBY + AYBX, where A and B are the frequencies of the two alleles at a locus and X and Y 252 

denote the two groups being compared.   253 

For all analyses, we excluded bases within 5 bp of indels to reduce the probability of 254 

including erroneous genotypes due to misalignments. We calculated all metrics for 50-kb non-255 

overlapping windows (Supporting information), within which we only considered sites with 256 

minor allele counts ≥ 2 and coverage between half and three times that of the pool’s average. We 257 

only retained windows in which at least 40% of bases (i.e. 20 kb) satisfied this coverage criterion. 258 

For dXY, we calculated the windowed value by summing over the window and dividing by the 259 

total number of sites with sufficient coverage (variable or not). We calculated standardized 260 

nucleotide diversity for each taxon by dividing π by the maximum dXY value from all pairwise 261 

comparisons involving that taxon (following Irwin et al. 2016). 262 

 263 

Correlation analyses 264 

We first quantified the similarity of genome-wide patterns of genetic diversity and divergence 265 

using Spearman rank correlations. Although the p-values of these tests are affected by 266 

pseudoreplication due to the inclusion of genetically linked loci, they are nonetheless a valuable 267 

summary of genome-wide similarity and provide a means to compare the results of the present 268 

study with previous work.  269 

 270 

Identification of genomic outlier regions 271 

We identified regions of the stonechat genome showing consistently elevated or lowered values 272 

of Tajima’s D, π, Fay and Wu’s H, FST, and dXY, and therefore may be important in the 273 

divergence of stonechat lineages. In particular, we wanted to determine whether any genome-274 
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wide similarities revealed by the correlation analyses were driven by a relatively small number of 275 

genomic regions. We applied a kernel-based smoothing algorithm across 50-kb windows (box 276 

density with bandwidth of 30; see Supporting information) and compared this smoothed line with 277 

25,000 smoothed lines obtained after permuting the order of the windows (see Ruegg et al. 2014). 278 

We called outlier locations where the observed smoothed line was more extreme than the most 279 

extreme smoothed value from the null (permutation) distribution. We merged outlier regions 280 

separated by four windows or fewer (i.e. by <200 kb). Because the effective population size of 281 

the Z chromosome is smaller than that of the autosomes, baseline levels of variation and 282 

differentiation are different from those of autosomes (Charlesworth 2001). We therefore 283 

permuted windows of the Z chromosome and autosomes separately (see Fig. S1, Supporting 284 

information).  285 

  286 

Concordance of genomic outlier regions within Saxicola 287 

Once outlier regions were identified, we assessed their overlap among stonechat taxa. For each 288 

pairwise comparison, we counted the number of outlier regions that showed any degree of 289 

overlap between the two datasets. By considering each region separately, we account for 290 

autocorrelation of their constituent windows due to linkage. Although this approach addresses the 291 

pseudoreplication that would have resulted from treating the multiple windows within the same 292 

outlier region as independent observations, it is important to note that it does not address the 293 

larger-scale possibility that multiple outlier regions could be clustered together, e.g. due to a very 294 

large region of reduced recombination. 295 

 We then tested whether the observed number of overlapping regions was significantly 296 

greater than expected under the null hypothesis of no association in outlier positions between 297 
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datasets, using a custom permutation test. While holding the number and size of outlier regions 298 

constant, we randomly permuted their locations across the genome 1,000 times and measured the 299 

degree of overlap under these simulated scenarios. The p-value of the test was the proportion of 300 

simulations under which the number of overlapping outlier regions was equal to or greater than 301 

the observed value; we thus accounted for the varying number and size of outlier regions in each 302 

comparison. We applied a false discovery rate correction to each series of tests (Benjamini and 303 

Hochberg 1995) and considered tests with corrected p-values less than 0.05 to be statistically 304 

significant.  305 

 For each comparison, we calculate the proportion of outlier regions in one genomic 306 

landscape also present in the other (and vice versa) and report the greater of these two values. 307 

Thus, if landscape 1 shows 10 peaks and landscape 2 shows 50 peaks, and 9 out of 10 peaks in 308 

landscape 1 are also present in landscape 2, our outlier similarity score will be 9/10 = 0.90.  309 

 Previous studies have used scatterplots and correlation analyses as the primary manner of 310 

assessing association between outlier regions in independent comparisons (e.g., Burri et al. 2015; 311 

Irwin et al. 2016). However, these tests are affected by autocorrelation due to genetic linkage. By 312 

considering each outlier region as a single unit, our permutation approach overcomes this issue 313 

by treating each contiguous outlier region (instead of each 50-kb window) as an independent 314 

observation. 315 

 316 

Correspondence of genomic landscapes between Saxicola and Ficedula 317 

To test for conservation of genomic landscapes at a deeper level of divergence, we compared 318 

stonechat genomic landscapes to those of the genus Ficedula. We calculated FST, dXY, and π for 319 

Pied Flycatchers (F. hypoleuca) and Collared Flycatchers (F. albicollis). We downloaded reads 320 
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from the Sequence Read Archive (project ERP007074; accession PRJEB7359; 321 

http://www.ncbi.nlm.nih.gov/sra) for 10 individuals of each species (Smeds et al. 2015) (Table 322 

S3), and processed reads for quality as described for the stonechat analysis (Supporting 323 

information). 324 

 We filtered, trimmed and aligned Ficedula reads to the stonechat draft reference genome 325 

so that we could directly compare the locations of outlier regions between genera, using the same 326 

tools in GATK and Picard as for stonechat sequences (Supporting information). To calculate FST, 327 

we first generated a VCF file with UnifiedGenotyper from GATK and filtered raw variants with 328 

the VariantFiltration tool (settings: QD < 2.0 || FS > 60.0 || MQ < 40.0). We then calculated FST 329 

with VCFtools (Danecek et al. 2011) from the resulting SNPs across 50-kb non-overlapping 330 

windows. We estimated dXY from minor allele frequencies obtained in ANGSD (Korneliussen et 331 

al. 2014), using a custom script to calculate 50 kb windowed averages. We only included sites 332 

that had genotype calls for at least 5 out of 10 individuals per species and retained windows for 333 

which at least 40% of bases satisfied this criterion.  334 

 335 

RESULTS 336 

 337 

SNP-based phylogeny and inter-taxa divergence 338 

The Maximum Likelihood (ML) phylogeny built on fixed nuclear sites showed high support for 339 

the placement of the Canary Islands stonechat as the sister taxon to the European stonechat 340 

(Austria and Ireland) (Fig. 1 A). The clade comprising European, Canarian, and Kenyan 341 

stonechats, to the exclusion of Siberian stonechats, was also strongly supported. This nuclear 342 

phylogeny contradicted the existing mtDNA topology. We verified that this result was not an 343 
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artifact of sparse taxon sampling or choice of outgroup by constructing an ML tree with 344 

cytochrome-b consensus sequences obtained from Austrian, Irish, Kenyan, and Siberian pools; 345 

not enough mitochondrial sequence was recoverable for Canarian stonechats. Here, Kenyan 346 

stonechats were placed as the sister lineage to the remaining stonechats, in agreement with past 347 

mitochondrial studies (not shown). 348 

We calculated mean genome-wide FST and dXY to further examine relationships among 349 

stonechat taxa. The first two principal coordinate axes calculated from a distance matrix of mean 350 

pairwise FST (explaining a total of 87% of variance; 47% in first axis) revealed Siberian 351 

stonechats to be approximately equidistant from the other taxa in terms of overall allele 352 

frequency differentiation (Fig. 1 B). Stonechats from Austria and Ireland were extremely similar 353 

(with only 7 fixed differences out of 10,164,331 sites with FST > 0, or 7 x 10-5 %), reflecting their 354 

geographic proximity and common evolutionary history. In contrast, Kenyan and Canary Islands 355 

stonechats were most different (1,251,605 fixed differences out of 12,401,462 sites with FST > 0, 356 

or 10.09%). Overall, Canary Islands stonechats were strikingly dissimilar to even their closest 357 

evolutionary relatives (Austria vs. Canary Islands: 782,967 fixed differences from 12,754,086 358 

variable sites, or 6.14%). European stonechats were more similar genome-wide to Siberian and 359 

Kenyan stonechats than to those from the Canary Islands, their sister lineage (Austria vs. Siberia: 360 

244,623 fixed out of 15,168,199 variable, or 1.61%; Austria vs. Kenya: 640,425 fixed out of 361 

12,032,148 variable, or 5.32%). 362 

 The principal coordinate analysis based on dXY (68% of variance explained by first two 363 

axes; 41% by the first) was similar to the one based on FST, except that Kenyan stonechats were 364 

closer to European stonechats than to Siberian stonechats (Fig. 1 C). This is consistent with the 365 
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nuclear tree (Fig. 1 A). Again, Austria and Irish stonechats were nearly identical. Canary Islands 366 

stonechats were distant from all stonechat taxa, but most similar to the European taxa. 367 

 368 

Shared regions of high differentiation show low genetic diversity, except in Canary Islands 369 

stonechats 370 

Measures of divergence were strongly correlated among stonechats. DXY showed strong 371 

correlations across genomic windows (Fig. 2 A-B), and dXY outlier regions were highly similar 372 

(Fig. 2 D; Figs. S2 and S3, Supporting information); mean outlier similarity scores, averaged 373 

across all comparisons, were 0.85 for low dXY outliers and 0.79 for high dXY outliers (Fig. S4, 374 

Supporting information). FST was also significantly correlated in all comparisons, but the strength 375 

of this correlation varied (Fig. 3 A-D). The association was greatest in comparisons including 376 

Siberian stonechats (Fig. 3 A), but FST was also correlated among independent comparisons (i.e. 377 

with no shared taxon) (Fig. 3  B-C). Overall FST outlier similarity was lower than dXY for both 378 

peaks and valleys (means of 0.31 and 0.24, respectively), indicating that approximately one-third 379 

of FST peaks were shared (Fig. 3 E and Fig. S5, Supporting information). Across all comparisons, 380 

windows with the lowest FST showed the most consistent associations. Of note, outlier regions 381 

showed significant overlap in several comparisons where the four taxa being compared were all 382 

different (Fig. 3 E), implicating common processes in independent stonechat lineages in the 383 

generation of differentiation landscapes.  384 

 Generally, regions of high FST showed low genetic diversity, both within (π) and between 385 

(dXY) stonechat taxa. FST and dXY were strongly negatively correlated, especially in comparisons 386 

including Siberian stonechats (Fig. 4 A-B), and FST peaks overlapped strongly with dXY valleys 387 

(Fig. 4 A). FST valleys also overlapped with dXY valleys in some comparisons. Regions of 388 
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reduced absolute divergence also showed reduced nucleotide diversity (Fig. S6, Supporting 389 

information). Reductions in diversity occurred in the same genomic windows among stonechats, 390 

even after standardizing for levels of between-population diversity (Figs. S7, S8 and S9, 391 

Supporting information). Note that, due to the high similarity between Austrian and Irish 392 

stonechats, we do not present comparisons of Irish stonechats with non-Austrian stonechats.   393 

However, these patterns of genetic variation were often weaker, absent, or even reversed 394 

for Canary Islands stonechats. Across the genome, FST and dXY were positively correlated, despite 395 

the lowest-FST windows showing high dXY (Fig. 4 C). Canary Islands stonechats showed the 396 

weakest associations in diversity correlations (Fig. S6 A,D and Fig. S7 B,D, Supporting 397 

information). Standardized nucleotide diversity (π/dXY) was negatively correlated between 398 

Canary Islands and Siberian stonechats (Fig. S7 D, Supporting information), indicating that the 399 

regions of the Siberian stonechat genome that showed the greatest diversity reductions were, in 400 

fact, relatively more diverse in Canary Islands stonechats than the rest of the genome (Fig. S9, 401 

Supporting information). No π/dXY valleys regions were shared between Canarian stonechats and 402 

other stonechat taxa (Fig. S7 E, Supporting information). 403 

 404 

Evidence of selection and effects of demography 405 

Among stonechats, genomic regions of high differentiation (FST), low absolute divergence (dXY), 406 

and low genetic diversity (π) coincided with significant decreases in Tajima’s D and Fay and 407 

Wu’s H (Fig. 5 and Fig. 6). Fay and Wu’s H showed strong associations with FST only in 408 

comparisons including Siberian stonechats. Fay and Wu’s H outlier regions were relatively 409 

infrequent but coincided with low Tajima’s D and π when they occurred, except in Canary Island 410 

stonechats (Fig. S10, Supporting information). Tajima’s D outlier regions were generally shared 411 
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across stonechats (Fig. S11, Supporting information), Some distinct low-H outlier regions 412 

occurred in only one taxon (e.g., chromosomes 4A and 6) (Fig. S12, Supporting information). 413 

Overall, in addition to lacking genetic diversity, outlier regions contained more low frequency 414 

alleles than the rest of the genome, which is highly suggestive of a role of positive and/or 415 

background selection in shaping differentiation patterns. 416 

The genomic baseline value of Tajima’s D can be biased downward by demographic 417 

effects, particularly a population expansion. All stonechat taxa had median Tajima’s D between -418 

0.5 and -1.1, with the exception of Canary Islands stonechats, at -2.8 (Fig. S13, Supporting 419 

information). Negative values suggest that all five stonechat taxa have experienced past 420 

demographic expansion events, with the signal especially strong in the insular Canary Islands 421 

stonechats. 422 

  423 

Correspondence of genomic landscapes between Saxicola and Ficedula 424 

Genome-wide patterns of genetic diversity and differentiation were also correlated between 425 

stonechats and flycatchers. Absolute divergence was correlated between the two genera (ρ = 426 

0.37-0.49, Fig. 2 C-D); dXY outlier similarity was 0.48-0.52 between stonechats and flycatchers. 427 

Flycatchers and stonechats shared a significant number of FST peaks and valleys, but only for a 428 

subset of stonechat comparisons (Fig. 3 E). Genome-wide correlations of FST were significant but 429 

weak (Fig. 3 F-G), and the strongest correlations occurred with Siberian stonechats. Finally, 430 

within-population genetic diversity (π) was strongly correlated between stonechat and flycatcher 431 

populations; some stonechat-flycatcher correlations were as strong or stronger than stonechat-432 

stonechat correlations (Fig. S7 E-G, Supporting information). Overall, these results suggest that 433 

common processes are working independently and in parallel to influence genetic variation in 434 
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similar regions of the genome in both genera, although the association between genera is weaker 435 

than within Saxicola. 436 

 437 

DISCUSSION 438 

 439 

We examined patterns of genetic diversity and differentiation in an avian radiation and identified 440 

regions shared among stonechat taxa that were characterized by low within-population diversity, 441 

low absolute inter-taxon divergence, and high (or, in some cases, low) differentiation. These 442 

patterns are consistent with signatures of natural selection. We found that many stonechat outlier 443 

regions also appeared in the closely related genus Ficedula. In this genus, genomic regions of 444 

low genetic diversity and high differentiation are associated with infrequent recombination (Burri 445 

et al. 2015), which suggests that one possible explanation for the parallel patterns of 446 

differentiation in these genera is conserved (or convergently evolving) variation in recombination 447 

rate (see Singhal et al. 2015). Overall, our results are consistent with linked selection (positive 448 

selective sweeps and/or background selection) shaping large-scale patterns of genomic variation 449 

in Muscicapid birds. The presence of Fay and Wu’s H valleys in differentiation outlier regions 450 

supports a role of positive selection in at least some cases. Despite a strong signal of similarity in 451 

genomic landscapes, we also found evidence for substantial lineage-specific evolution: Siberian 452 

stonechats appear to have experienced the strongest effects of selection, while drift may have 453 

shaped Canary Islands stonechats’ genomes.  454 

 455 

Discordance in nuclear and mitochondrial phylogenies 456 
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The phylogenetic tree constructed with SNPs from across the nuclear genome (Fig. 1 A) was 457 

highly supported at all nodes, yet it is not fully concordant with previous trees constructed from 458 

mitochondrial DNA sequences (Illera et al. 2008; Woog et al. 2008; Zink et al. 2009). These 459 

placed Kenyan stonechats (instead of Siberian, as in our reconstruction) as the sister lineage to 460 

the remaining stonechats. Branch support for a sister relationship of Siberian stonechats and the 461 

European/Canary Islands clade varied by study and tree-building algorithm. Mito-nuclear 462 

discordance could be a sign of past admixture, sex biased gene flow, or other biological 463 

phenomena (see Toews and Brelsford 2012). This well-resolved nuclear phylogeny serves as a 464 

basis for testing broader questions about genome-scale differentiation in this complex: For 465 

example, it helps explain why mean dXY between European and Kenyan stonechats is relatively 466 

low compared to Siberian stonechats (Fig. 1 C). Finally, although sparse taxon sampling (5 taxa) 467 

and choice of outgroup could potentially introduce biases (e.g., Stervander et al. 2015), our 468 

cytochrome b-only tree (not shown) was consistent with previous mitochondrial studies, which 469 

achieved near-complete taxon sampling (e.g., Illera et al. 2008). The topology differences we find 470 

between mitochondrial and nuclear-based phylogenies are therefore unlikely to be artifacts of 471 

sampling. We note, however, that high bootstrap support does not always indicate a correct 472 

species tree (e.g., Suh 2016); further investigation into the larger Saxicola clade (e.g., using gene 473 

tree-based methods and demographic modeling; Nater et al. 2015) will be required to obtain a 474 

better understanding of their phylogenetic affinities. 475 

 476 

Congruent genomic landscapes across a speciation continuum 477 

Patterns of within- and between-population genetic diversity in stonechats show high levels of 478 

parallelism across multiple scales of evolutionary divergence. We found outliers in comparisons 479 



 

 

22 

of highly similar taxa in the same regions as comparisons at deeper levels of divergence. The 480 

parallel reductions in dXY are highly suggestive of selection before divergence (Cruickshank and 481 

Hahn 2014), and analogous patterns in standardized nucleotide diversity (π/dXY) indicate that 482 

common selective forces have continued to reduce diversity on the branches leading to present-483 

day taxa (see Irwin et al. 2016). 484 

Reductions in Fay and Wu’s H in some outlier regions suggest that positive selection has 485 

played a role in driving some of these regions of low genetic diversity and high differentiation. 486 

Some H outliers are present in multiple taxa, while others occur in only one (as in Ficedula, Burri 487 

et al. 2015), suggesting that localized selective sweeps may not have occurred in all groups, or 488 

that sweeps occurred too far in the past for detection using this method. 489 

  Pairwise comparisons that include Siberian stonechats show the most conspicuous FST 490 

peaks, which coincide with regions of low within-population diversity (π). Together, strongly 491 

reduced within-population genetic diversity in specific genomic regions and corresponding peaks 492 

of differentiation are consistent with Siberian stonechats experiencing the strongest effects of 493 

selection in outlier regions. Most of the larger outlier regions also showed significant decreases in 494 

Fay and Wu’s H, suggesting that positive selective sweeps have contributed to this pattern. As 495 

temperate zone breeders and obligate long-distance migrants, Siberian stonechats are expected to 496 

generally show a faster pace of life, larger clutch sizes, and higher metabolic rates, along with a 497 

range of specializations associated with a strongly migratory lifestyle (Wikelski et al. 2003; 498 

Tieleman et al. 2009; Baldwin et al. 2010; Robinson et al. 2010). It is possible that a combination 499 

of these factors has led to a strong footprint of selection on the Siberian stonechat genome. 500 

Kenyan and Canarian stonechats showed the highest genome-wide FST. Notably, 501 

however, we also observed conspicuous FST valleys in the same locations as the FST peaks of 502 
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other pairwise taxon comparisons (Fig. 5 and Fig. S5, Supporting information). In other words, 503 

these taxa are differentiated across the vast majority of the genome, but they show low 504 

differentiation (FST) in regions of low absolute divergence (dXY). This pattern is not unique to this 505 

comparison: Austrian and Irish stonechats, and occasionally others, show valleys in similar areas. 506 

FST valleys may occur where dXY (between-group variation) is reduced but π (within-group 507 

variation) remains high, especially in Canary Islands stonechats, but more work is needed to 508 

understand this phenomenon. 509 

 510 

Correlation of genomic variation between genera 511 

Genomic landscapes of genetic diversity and differentiation in stonechats are significantly 512 

correlated with those in Pied and Collared Flycatchers. These results contrast with recent findings 513 

in other passerine birds, for example greenish warblers (Irwin et al. 2016). Nucleotide diversity in 514 

greenish warblers is only weakly correlated with that in outgroup comparisons (π: Pearson’s r = 515 

0.19). We found a stronger association in nucleotide diversity between stonechats and flycatchers 516 

(π: Spearman’s ρ = 0.47-0.60, excluding Canary Is.). Saxicola and Ficedula share certain aspects 517 

of their life history (e.g., they are insectivores, and the flycatchers and most stonechats are 518 

migratory), but the hypothesis that these parallel signatures of selection and differentiation are 519 

due to shared ecological selection pressures on the same loci appears unlikely. Burri et al. (2015) 520 

demonstrated a clear link between low recombination and areas of high differentiation in 521 

Ficedula, which suggests that low recombination might also contribute to shared differentiation 522 

outliers within Saxicola. Although initial evidence suggested that avian recombination landscapes 523 

change drastically over time (Backström et al. 2010), recent work has shown that recombination 524 

landscapes can be conserved in birds across millions of years of evolution (Singhal et al. 2015). It 525 
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is therefore possible that coincident areas of low recombination, in combination with linked 526 

selection, may play a role in shaping the broad patterns of landscapes of genomic variation and 527 

differentiation across both closely related and deeply diverged taxa. However, direct measures of 528 

recombination rates in stonechats are needed to test this hypothesis. While recombination is 529 

reduced in close proximity to avian centromeres (Backström et al. 2010), centromeres do not 530 

explain the recombination deserts in the centers of acrocentric chromosomes (e.g. 4A, 9, 10, 11, 531 

12, 13, and 18; Knief and Forstmeier 2015) (Kawakami et al. 2014; Burri et al. 2015). These 532 

regions frequently show high differentiation among flycatchers (Burri et al. 2015) and stonechats.  533 

Decreases in Fay and Wu’s H in a subset of outlier regions and a subset of taxa suggest 534 

that positive selection has also contributed to this convergent genomic evolution. Indeed, Irwin et 535 

al. (2016) favor positive selection as the likely driver of differentiation landscapes in greenish 536 

warblers, citing exceedingly low nucleotide diversity in differentiation peaks; in one comparison 537 

in that study, regions with FST > 0.9 showed just 6.7% the nucleotide diversity of regions with FST 538 

< 0.6. We found diversity reductions in stonechats and flycatchers to be less severe: between 539 

Austrian and Siberian stonechats, which show the greatest reduction in nucleotide diversity in FST 540 

peaks, π in regions with FST above the 95% percentile was reduced to 30-34% of that of regions 541 

with FST below the 50th percentile. In Ficedula flycatchers, this statistic was 43-50%. Therefore, 542 

we consider background selection, in concert with reduced recombination, to be an additional 543 

plausible driver of correlation in genomic landscapes. 544 

 Conserved variation in mutation rate is another possible driver of this correlation. Irwin et 545 

al. (2016) found weak correlations in dXY between greenish warblers and more distant 546 

comparisons (Pearson’s r = 0.07-0.14), which does not support this explanation. In contrast, we 547 

found reasonably strong correlations in dXY between stonechat and flycatcher genera (Spearman’s 548 
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ρ = 0.37-0.49). Therefore, we cannot rule out a further contribution of conserved variation in 549 

mutation rate to these patterns. 550 

 551 

Genomics and demography of Canary Islands stonechats 552 

Canary Islands stonechats’ genomic landscapes differed from those of the other stonechats. The 553 

valleys of standardized nucleotide diversity (π/dXY) seen in other taxa were completely absent, 554 

suggesting that selection has not reduced diversity across the genome in a heterogeneous way. In 555 

fact, this ratio was elevated in the same regions in which it was reduced in the other taxa. 556 

Tajima’s D was highly negative genome-wide and showed lower variance than in other 557 

stonechats. Combined, these results are most consistent with a demographic history that included 558 

a severe population bottleneck (erasing existing patterns of variation), followed by a substantial 559 

population expansion. Previous research has found evidence of founder effects and/or bottlenecks 560 

in Canary Island birds (Barrientos et al. 2009; Barrientos et al. 2014; Spurgin et al. 2014). The 561 

evidence for a bottleneck and expansion and the marked homogeneity of genetic diversity across 562 

the genome in Canary Islands stonechats suggest that genetic drift has played a dominant role in 563 

its divergence from other stonechats, possibly overpowering selection (see Hansson et al. 2014; 564 

Spurgin et al. 2014; Gonzalez-Quevedo et al. 2015; Illera et al. 2016). The unusual pattern seen 565 

in standardized nucleotide diversity may be explained by this prevalence of drift over selection. 566 

Because selection has not reduced π in the outlier regions shared by other stonechats, this statistic 567 

shows little variation across the genome of Canary Islands stonechats. This unusual pattern 568 

therefore results from the lack of a reduction in within-population diversity (π) in areas where 569 

between-population diversity (dXY) is still reduced, presumably due to selection in the ancestral 570 

stonechat.  571 
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 572 

Evidence of lineage-specific evolution 573 

Despite striking similarities in the genomic landscapes of stonechats, we also find lineage-574 

specific evolution. At the broadest levels of our analysis, in which we compare genera, we 575 

identified conspicuous differentiation peaks that appear in Ficedula but not Saxicola (e.g., on 576 

chromosomes 3, 8, 10, 11, 12, 13, and 18; Fig. S14, Supporting information, shows chromosome 577 

13), and vice versa (e.g., on chromosomes 6, 7, 17, and 20; Fig. S15, Supporting information 578 

shows chromosome 20). These outlier regions should be further examined from a functional 579 

perspective, as they appear to have resulted from evolutionary processes specific to a particular 580 

lineage. The most conspicuous outlier regions shared between these systems should likewise be 581 

examined (e.g., on chromosomes 1, 1A, 2, 3, 4, and 4A; Figs. S16 and S17, Supporting 582 

information, show chromosomes 1A and 4A).  583 

 584 

Conclusion 585 

Few former studies (Burri et al. 2015; Lamichhaney et al. 2015; Irwin et al. 2016; Vijay et al. 586 

2016) have examined genome-wide patterns of differentiation in more than two avian taxa, yet 587 

comparative studies of closely related species have great potential to shed light on genome 588 

evolution (Cutter and Payseur 2013). We find parallel patterns of selection in the stonechat 589 

complex—likely occurring both before and after speciation—and evidence of demography 590 

potentially overwhelming signatures of selection in one species. In addition, this study suggests 591 

that parallel genomic processes are operating in independent evolutionary systems to drive the 592 

differentiation of similar genomic regions across genera. We hypothesize that linked selection 593 

coupled with areas of low recombination, which may be conserved across these taxa, have shaped 594 
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these broad patterns. Whether concordant outlier regions actually contribute to reproductive 595 

isolation or are otherwise consequential in the speciation process is unknown. Therefore, we 596 

recommend that outlier markers obtained through genome scans and their relevance to speciation 597 

be interpreted with caution. Importantly, our comparative method also identified differentiation 598 

outlier regions that are not widely shared; these may harbor loci important in lineage-specific 599 

evolution and should be examined closely. As genomic comparisons among radiations 600 

accumulate, we will be able to compare the congruence in genomic landscapes and potentially 601 

reveal the phenomena that drive genomic differentiation over evolutionary time. 602 
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FIGURE CAPTIONS 855 

 856 

Figure 1. (A) Maximum likelihood phylogenetic tree constructed with RAxML from fixed sites 857 

across the stonechat nuclear genome, with two Ficedula species used as outgroups. Branch labels 858 

denote bootstrap support from 100 rapid bootstrap iterations. This topology places Siberian 859 

stonechat (S. maurus) as the sister lineage to the remaining taxa, in contrast to previous trees 860 

based on mitochondrial DNA. Canary Islands stonechats are most closely related to European 861 

stonechats. Illustrations (males shown) are reproduced with permission from Handbook of Birds 862 

of the World Alive (Collar 2016a, 2016b). (B, C) Biplot of two principle coordinate axes derived 863 

from analyses of: (B) mean FST and (C) mean dXY. Axes are labeled with percent of variance 864 

explained.  865 
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Figure 2. Correlation of dXY among stonechats and flycatchers (Ficedula hypoleuca and 866 

albicollis, or “Hyp.” and “Alb.”). (A,B,C) show scatterplots where each point represents one 50-867 

Kb genomic window. Orange lines are best-fit lines, and the Spearman’s rank correlation rho (ρ) 868 

coefficient is given. (D) shows outlier similarity scores, which quantify the number of low-dXY 869 

“valleys” shared among different comparisons. Some comparisons including Irish stonechats are 870 

not shown because of their similarity to Austrian stonechats. All tests were significant after 871 

applying a false discovery rate correction. Cells with yellow backgrounds indicate that four 872 

independent taxa are being compared. Letters in the upper right of cells show which cells 873 

correspond to the scatterplots in sections A-C. 874 

  875 
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Figure 3. Correlation of FST among stonechats and flycatchers (Ficedula hypoleuca and 876 

albicollis, or “Hyp.” and “Alb.”). (A,B,C,D,F,G) show scatterplots where each point represents 877 

one 50-Kb genomic window. Orange lines are best-fit lines, and the Spearman’s rank correlation 878 

rho (ρ) coefficient is also given. (E) shows outlier similarity scores, which quantify the number of 879 

high-FST “peaks” shared among different comparisons (upper triangle of matrix) and the number 880 

of low-FST “valleys” shared among different comparisons (lower triangle of matrix). Some 881 

comparisons including Irish stonechats are not shown because of their similarity to Austrian 882 

stonechats. Cells with an ‘X’ indicate tests that were not significant after applying a false 883 

discovery rate correction. Cells with yellow backgrounds indicate that four independent taxa are 884 

being compared. Letters in the upper right of cells show which cells correspond to the scatterplots 885 

in the other sections. 886 

 887 

  888 
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Figure 4. Correlation of FST and dXY among stonechats and flycatchers (Ficedula hypoleuca and 889 

albicollis, or “Hyp.” and “Alb.”). (A) shows outlier similarity scores, which quantify the number 890 

of low-dXY “valleys” that coincide with either high-FST “peaks” (top row) or low-FST “valleys” 891 

(bottom row). (B,C) show scatterplots where each point represents one 50-Kb genomic window. 892 

Refer to Figs. 2-3 for details. 893 

 894 

  895 
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Figure 5. Genomic statistics calculated across stonechat and flycatcher chromosomes 1A and 4A. 896 

Yellow and blue boxes indicated shared peaks and valleys, respectively. From top to bottom, the 897 

statistics and box details are: FST among stonechats (peaks shared by 3 or more comparisons), FST 898 

between flycatchers (peaks that also overlap with shared stonechats peaks), dXY among 899 

stonechats (valleys shared by 3 or more comparisons), dXY among flycatchers (valleys that also 900 

overlap with shared stonechats valleys), Tajima’s D (valleys shared by 2 or more taxa), 901 

nucleotide diversity (π) (valleys shared by 2 or more taxa), and Fay & Wu’s H (valleys shared by 902 

2 or more taxa).  903 

  904 
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Figure 6. Correlation of FST and dXY with Tajima’s D and Fay & Wu’s H among stonechats and 905 

flycatchers (Ficedula hypoleuca and albicollis, or “Hyp.” and “Alb.”). (A) shows outlier 906 

similarity scores, which quantify the number of high-FST “peaks” that coincide with low Tajima’s 907 

D (top section) and low Fay & Wu’s H (bottom section). Within each section, the top (No. 1) and 908 

bottom (No. 2) rows show the results for each of the two taxa being compared. This is necessary 909 

because Tajima’s D and Fay & Wu’s H are single-population statistics, while FST and dXY 910 

compare two populations. All comparisons were significant after applying a false discovery rate 911 

correction. (B,C) show scatterplots where each point represents one 50-Kb genomic window. 912 

Refer to Figs. 2-3 for details.  913 
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SUPPORTING INFORMATION 
 
Correlated patterns of genetic diversity and differentiation across an avian family 
 
Benjamin M. Van Doren, Leonardo Campagna, Barbara Helm, Juan Carlos Illera, 
Irby J. Lovette, and Miriam Liedvogel 

 
 
ADDITIONAL METHODS 
 
Draft Reference Genome 
To extract DNA from Siberian stonechat (S. maurus) muscle tissue, we used the Gentra 
Puregene Tissue kit, following the protocol for fixed tissue. Gel electrophoresis revealed 
the DNA to be composed of highly intact molecules (all visible >10 kb). The 
ALLPATHS-LG algorithm (Gnerre et al. 2011) used 90.1% of the fragment library (total 
506,475,396 reads), covering the genome at a mean depth of 46.9x. Combined, the two 
mate-pair libraries comprised 923,232,904 reads; ALLPATHS-LG used 20.7% of these 
reads, which covered the genome at 19.6x. This initial assembly required 147.50 hours on 
a 64-core computer with 512 GB of memory (1735.37 hours of CPU time). ALLPATHS-
LG grouped 39,301 contigs into 4,396 scaffolds, with a total scaffold length of 1.027 Gb. 
The N50 scaffold size was 8.02 Mb, and 4.6% of bases were ambiguous (N’s).  
 We then used HaploMerger (Huang et al. 2012) to improve the assembly by 
merging homologous contigs and removing those that had arisen from the erroneous split 
of two haplotypes. HaploMerger requires “soft-masking” repetitive elements in the 
genome, which we did with RepeatMasker version open-4.0.2 (Smit et al. 2013-2015). 
HaploMerger has been used to improve a number of genome assemblies in this manner 
(e.g., Derks et al. 2015; Davey et al. 2016). After running the original assembly through 
the Haplomerger pipeline using default settings (and manually breaking two scaffolds 
that HaploMerger indicated may have been misjoined), the final Siberian stonechat de 
novo assembly comprised 2,819 scaffolds, with a total scaffold length of 1.020 Gb; the 
N50 scaffold size increased to 10.0 Mb compared to the original assembly. We verified 
that the majority of removed scaffolds had fragment library coverage of less than 5x. 
Haplomerger therefore appears to have been successful in removing a large number of 
small scaffolds that likely represented duplicates (i.e., heterozygous regions). The 1,577 
removed scaffolds spanned only 7.4 Mb (0.7% of the original assembly).  
 To assess completeness of the reference genome, we used NCBI command-line 
‘blastn’ to search for 5561 ultraconserved elements identified by Faircloth et al. (2012) 
from an analysis of chicken, anole, and zebra finch. The final assembly contained 5486 
(98.7%) of these ultraconserved elements. Because they are interspersed throughout the 
entire genome, this percentage can be considered an approximation for the completeness 
of the draft assembly; a value of 98.7% is evidence that the assembly covers nearly the 
entire Siberian stonechat genome. 
 
Sampling 
Most birds used in this study originated from the common-garden stonechat study that 
Eberhard Gwinner initiated in 1981 at the Max-Planck Institute in Andechs, Germany. 
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Specifically, parental populations originated from the following locations: Austrian 
stonechats from Lower Austria (48°14’N, 16°22’E); Irish stonechats from Iveragh 
Peninsula near Killarney, in the County of Kerry, Ireland (c. 52°N, 10°W); African 
stonechats from Lake Nakuru region, Kenya (0°14’S, 36°0’E), and Mount Meru region, 
Tanzania (3°50’S, 36°5’E); and Siberian stonechats from the vicinity of Naursum 
National Park (c. 51.5°N, 63°E), Kazakhstan. All blood samples for the Canary Islands 
stonechat were collected directly in the field between 2013 and 2016 at various locations 
on Fuerteventura, Canary Islands, Spain (Barranco de Mal Nombre, Fimbapaire, Norte de 
Fenimoy, Barranco de Jacomar, Barranco Gran Valle, Barranco de Los Canarios, 
Barranco de Vinamar). 
 
Pooled sequencing 
We selected between 49 and 56 individuals (including both males and females) from each 
stonechat taxon based on a careful assessment of DNA quantity via Trinean DropSense 
96 multi-channel spectrophotometer (Trinean, Ghent, Belgium) and quality (check for 
integrity on a 2% agarose gel), and we created one library of pooled DNA for each taxon 
following the Illumina TruSeq DNA kit. Each library included an equimolar aliquot of 
DNA from each individual. We multiplexed 4 of the 5 five groups on one lane of an 
Illumina NextSeq sequencer (151-bp paired end reads), and ran the fifth with three 
unrelated samples on a second lane. Thus, each group was sequenced on approximately 
one-fourth of a lane. 

We demultiplexed raw sequence data from the sequencer with the ‘bcl2fastq’ 
utility by Illumina, using default settings. This utility generates ‘.fastq’ files after 
removing reads showing a 10% or greater error rate in the adapter sequence or more than 
1 error in the barcode. It also masks adapter sequences extending into reads. We then 
used the program ‘skewer’ to conduct the following additional quality control measures 
on reads: trim the 3’ end until quality ≥ 20 is reached; and remove reads with normalized 
error rate > 0.1 (default), indel error rate > 0.03 (default, based on comparison with 
known adapter sequence), mean base quality < 20, or >15% ambiguous bases (N’s). 
Approximately 1% of the demultiplexed reads failed these criteria and were removed. 
 We used BWA-MEM (Li 2013) to align the pooled sequences to the reference 
genome, marking shorter split hits as secondary. We then converted the alignments to 
compressed BAM format using ‘samtools view,’ specifying a minimum mapping quality 
of 20. We sorted BAM files with ‘samtools sort’ and merged them across lanes using 
Picard’s ‘MergeSamFiles’ (Picard: http://broadinstitute.github.io/picard/). Following this, 
we marked duplicate reads using Picard’s MarkDuplicates utility; performed local 
realignment using the Genome Analysis Toolkit (GATK; RealignerTargetCreator and 
IndelRealigner) (McKenna et al. 2010; DePristo et al. 2011); and fixed mate information 
in Picard (FixMateInformation). Finally, we took the resulting 5 BAM files (one per 
taxon) and used ‘samtools mpileup’ to construct an mpileup file comparing the bases in 
overlapping reads at each position of the genome across populations.  

Mapping quality for all stonechat taxa was high (Table S2). Mean mapping 
quality was lower for Ficedula species (hypoleuca: 35.64; albicollis: 35.82), but a high 
proportion of reads from these species were successfully mapped to the stonechat 
reference genome (hypoleuca: 0.93; albicollis: 0.95). This high mapping rate suggests 
that we are not introducing substantial bias by aligning flycatcher reads to the stonechat 
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reference genome. We detected bacterial DNA contamination in some of the stonechat 
pools; these sequences did not map to the reference and were thereafter ignored. 
 
Mapping to Ficedula chromosomes 
We assembled scaffolds from the stonechat assembly into draft chromosomes by 
mapping them to the Ficedula albicollis genome assembly, version 1.5 (RefSeq accession 
GCF_000247815.1; http://www.ncbi.nlm.nih.gov/assembly/GCF_000247815.1; 
http://www.ncbi.nlm.nih.gov/genome/?term=txid59894[orgn]) (Kawakami et al. 2014). 
We used SatsumaSynteny (Grabherr et al. 2010) to align the Saxicola draft genome to the 
F. albicollis assembly. This method unambiguously placed nearly all scaffolds of 
sufficient size (> 10 Kb) on a F. albicollis chromosome, with 85% of scaffolds mapping 
to single chromosomes across >70% of their extents. In the rare cases (~1%) where 
scaffolds mapped to more than one Ficedula chromosome across greater than 20% the 
scaffold length, we assigned the scaffold to the chromosome with the greatest amount of 
sequence aligned (always a majority of the scaffold). SatsumaSynteny thus allowed us to 
position scaffolds from the stonechat genome in the correct order and orientation along 
the chromosomes, assuming that synteny is conserved in these taxa (Ellegren 2013). This 
assumption appears robust given the high conservation of sequence within scaffolds. 
SatsumaSynteny successfully mapped 97.1% of the stonechat reference genome to a 
Ficedula chromosome. Most unmapped scaffolds had not passed the 10 Kb threshold. 
 
Coverage heterogeneity 
To rule out the possibility that variation in coverage could be driving differentiation 
patterns, we compared read depth in FST outlier regions to read depth outside of those 
regions. We selected the comparison of Irish and Siberian stonechats because this 
comparison showed arguably the most conspicuous FST peaks, and therefore any effect of 
coverage should be most pronounced. Because allele frequencies in adjacent 50 Kb 
windows are autocorrelated due to linkage and therefore contribute to pseudoreplication, 
we subsampled the genome at a ratio of 1:10. We used t-tests to test for differences inside 
and outside of outlier regions. Read depth was not significantly different within and 
outside of FST peaks for both taxa (Irish: t = 0.78, df = 118.37, P = 0.44; Siberian: t = 
0.89, df = 119.56, P = 0.39). Specifically, for Irish stonechats, mean within-peak 
coverage was 26.01 and mean outside-of-peak coverage was 26.38. For Siberian 
stonechats these values were 15.08 and 15.23, respectively.  
 
Phylogeny 
We aligned raw reads from Pied and Collared Flycatcher re-sequencing data to the 
stonechat genome in order to call genotypes. We then selected 16,876,859 sites across the 
genome which satisfied the following criteria: minimum coverage of 5 in all populations; 
fixation of a single allele at the locus (allowing a maximum count of 1 of another allele 
because of the possibility for sequencing error); and variation in the fixed allele among 
the 7 taxa. Using these SNPs, we generated a phylogenetic tree with RAxML v. 8.2.6 
(Stamatakis 2014) on CIPRES (http://www.phylo.org). We applied the Lewis correction, 
following the recommendation of Stamatakis (2014), for ascertainment bias resulting 
from the exclusion of constant sites and using 100 bootstrapped replicates to assess 
branch support.  
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Choice of window size and bandwidth size for genome-wide scans 
We used a window size of 50 Kb for our genomic analyses because it provided us 
sufficiently fine resolution across the genome while still averaging over hundreds of 
SNPs per window. We felt it was important not to rely heavily on allele frequencies of 
individual SNPs because of the random variation in allele frequencies introduced by our 
pooled sequencing approach. We conducted a sensitivity analysis (not shown) and found 
that we identified fewer and larger outlier regions as we increased window size, but that 
the level of overlap detected between genomic landscapes did not systematically vary. 
We feel that this justifies a window size of 50 Kb because it allows us to capture 
relatively small outlier regions while keeping the number of regions to a manageable size 
for this whole-genome analysis of multiple taxa. 

We selected a bandwidth of 30 because it allowed us to identify relatively small 
regions of differentiation while still providing a benefit by smoothing out apparent noise 
in the data. We conducted a sensitivity analysis (not shown) and found that the median 
size of outlier regions identified by our analysis stayed relatively constant until a 
bandwidth of about 50, after which we observed an increase. Therefore, we do not 
believe that we are biased towards detecting large outlier regions by using a bandwidth of 
30. We also did not observe any systematic effect of bandwidth size on the level of 
overlap detected between genomic landscapes. 
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SUPPLEMENTARY FIGURES 
 
Figure S1. Boxplots comparing FST and π between the Z chromosome and autosomes. 
Outlier values are not shown. Under neutral expectation, the equilibrium level of neutral 
variability is proportional to the effective population size, and the effective population 
size of the Z chromosome is expected to be three-fourths that of the autosomes because 
females only have one copy (Charlesworth 2001). We used a t-test for ratios (t.test.ratio 
function in the mratios package) to test whether the ratio of π on the Z chromosome to π 
on the autosomes was significantly different from 0.75 (Djira et al. 2012). Stonechats and 
flycatchers showed π ratios between 0.74-0.83; Kenyan, Siberian and Canary Islands 
stonechats and Pied Flycatchers (Ficedula hypoleuca) had π ratios that did not 
significantly differ from 0.75, while Austrian and Irish stonechats and Collared 
Flycatchers (Ficedula albicollis) showed slightly more diverse Z chromosomes than 
expected by theory. In all cases, FST on the Z chromosome was elevated over that of the 
autosomes, with ratios in stonechats between 1.04-1.29, and a much higher ratio in 
flycatchers of 1.80.  
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Figure S2. Genome-wide landscape of dXY for pairwise comparisons of stonechats and 
Pied and Collared Flycatchers (Ficedula albicollis and F. hypoleuca). All stonechat 
comparisons showed very similar genomic landscapes of dXY. Many outlier regions were 
also shared with Ficedula, especially on the larger chromosomes. For clarity, 
comparisons including Irish stonechats are not included (with the exception of Austria-
Ireland), because of the high degree of similarity between Austrian and Irish taxa. The 
colored lines are kernel-based density smoothers. Individual points represent 50-Kb 
windows; scaffolds alternate dark gray and light gray coloring. Chromosomes (based on 
alignment to Ficedula albicollis) are delineated by thick dark gray or light gray lines on 
the upper border of each plot and are labeled above this line. Z* indicates a flycatcher Z 
chromosome linkage group that could not be exactly placed in the flycatcher genome 
assembly. Shaded orange rectangles show dXY peaks and blue rectangles show dXY 
valleys. 
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Figure S3. DXY across stonechat chromosome 1A. All stonechat comparisons show very 
similar fluctuations, including two pronounced valleys. The largest valley is also apparent 
in the comparisons of Pied and Collared Flycatchers (Ficedula albicollis and F. 
hypoleuca). Blue rectangles indicate significant dXY valleys. See Figure S2 for other 
details. For clarity, comparisons including Irish stonechats are not included (with the 
exception of Austria-Ireland) because of the high degree of similarity between Austrian 
and Irish populations. 
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Figure S4. Correlation of high dXY regions among stonechats and flycatchers (Ficedula 
hypoleuca and albicollis, or “Hyp.” and “Alb.”). Matrix shows outlier similarity scores, 
which quantify the number of high-dXY “peaks” shared among different comparisons. 
Some comparisons including Irish stonechats are not shown because of their similarity to 
Austrian stonechats. All tests were significant after applying a false discovery rate 
correction. Cells with yellow backgrounds indicate that four independent taxa are being 
compared.  
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Figure S5. Genome-wide landscape of FST for pairwise comparisons of stonechats and 
Pied and Collared Flycatchers (Ficedula albicollis and F. hypoleuca). Pairs including 
Siberian stonechats showed the most conspicuous peaks; other comparisons showed less 
distinct outlier regions. Some comparisons (e.g., Kenya-Canary Is.) showed FST valleys in 
the same regions as the FST peaks of other comparisons. Shaded orange rectangles show 
FST peaks and blue rectangles show FST valleys. See Figure S2 for other details. 
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Figure S6. Correlation of nucleotide diversity (π) and dXY among stonechats and 
flycatchers (Ficedula hypoleuca and albicollis, or “Hyp.” and “Alb.”). (A) shows outlier 
similarity scores, which quantify the number of low-dXY “valleys” that coincide with low 
π “valleys” in the two taxa being compared (top row and bottom row). The top (No. 1) 
and bottom (No. 2) rows show the results for each of the two taxa being compared. This 
is necessary because π is a single-population statistic, while FST and dXY compare two 
populations. All comparisons were significant after applying a false discovery rate 
correction. (B,C,D) show scatterplots where each point represents one 50-Kb genomic 
window. Refer to Figs. 2-3 for details.  
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Figure S7. Correlation of nucleotide diversity (π) and standardized nucleotide diversity 
(π/dXY) among stonechats and flycatchers (Ficedula hypoleuca and albicollis, or “Hyp.” 
and “Alb.”). (A,B,C,D,F,G) show scatterplots where each point represents one 50-Kb 
genomic window. (E) shows outlier similarity scores, which quantify the number of 
π/dXY valleys shared among different comparisons (upper triangle of matrix) and the 
number of π valleys shared among different comparisons (lower triangle of matrix). Refer 
to Figs. 2-3 for details. 
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Figure S8. Genome-wide landscape of π for five stonechat taxa. Canary Islands 
stonechats generally did not share the valleys present in the genomes of the other taxa. 
See Fig. S2 for other details. 
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Figure S9. Genome-wide landscape of standardized nucleotide diversity (π/dXY) for five 
stonechat and two flycatcher taxa. Canary Islands stonechats did not share the valleys 
present in the genomes of the other taxa. See Fig. S2 for other details. 
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Figure S10. Correlation of nucleotide diversity (π) with Tajima’s D and Fay & Wu’s H 
stonechats. Shown are outlier similarity scores, which quantify the number of low Fay & 
Wu’s H “valleys” that coincide with low π (top section) and low Tajima’s D (bottom 
section). Refer to Figs. 2-3 for details.  
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Figure S11. Genome-wide landscape of Tajima’s D for five stonechat and two flycatcher 
taxa. Austrian, Irish, Siberian, and Kenyan stonechats shared similar genomic landscapes 
of Tajima’s D. Canary Islands stonechats showed a different pattern, with very low 
Tajima’s D across the entire genome. See Fig. S2 for other details. 
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Figure S12. Genomic landscape of Fay and Wu’s H for each of five stonechat taxa. See 
Fig. S2 for other details. 
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Figure S13. Boxplot of Tajima’s D for five stonechat taxa. Each data point represents one 
50-Kb window. Canary Islands stonechats showed the lowest median Tajima’s D. 
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Figure S14. FST across stonechat chromosome 13, including Pied and Collared 
Flycatchers (Ficedula albicollis and F. hypoleuca). The Ficedula comparison shows a 
distinct peak, which is not present in any stonechat comparison. This suggests that the 
evolutionary processes driving differentiation in this chromosome are potentially unique 
to Ficedula. See Fig. S2 for other details. 
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Figure S15. FST across stonechat chromosome 20, including Pied and Collared 
Flycatchers (Ficedula albicollis and F. hypoleuca). Comparisons including the Siberian 
population show a distinct peak at the right end of the chromosome. Notably, this peak is 
absent in Ficedula, suggesting that the evolutionary processes driving divergence in this 
chromosome are potentially unique to the stonechat radiation. Also note that the Kenya-
Canary comparison shows a valley in the center of the chromosome, where there is a 
peak in other comparisons. See Fig. S2 for other details. 
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Figure S16. FST across stonechat chromosome 4A, including Pied and Collared 
Flycatchers (Ficedula albicollis and F. hypoleuca). Comparisons including Siberian 
stonechats, Ficedula, and Austria-Ireland show a distinct peak. The other comparisons 
show a valley in the same region. See Fig. S2 for other details. 
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Figure S17. FST across stonechat chromosome 1A, including Pied and Collared 
Flycatchers (Ficedula albicollis and F. hypoleuca). Comparisons including Siberian 
stonechats and Ficedula show a distinct peak. Other comparisons show a valley in the 
same region. See Fig. S2 for other details. 
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SUPPLEMENTARY TABLES 
 
Table S1. Origin, sex, and relatedness information of stonechats included in this study. Kinship matrices were calculated with the 
kinship function in the R package kinship2 (Therneau and Sinnwell 2015) using a pedigree of captive stonechats, and values presented 
are the mean (+SD) values from each kinship matrix. Inbreeding coefficients were calculated with the calcInbreeding function in the 
R package pedigree (Coster 2013). IQR stands for interquartile range. 

 Origins Sex Relatedness 

 
Direct from wild Hatched in captivity Male Female Mean kinship SD kinship Median kinship IQR kinship Mean inbreeding SD inbreeding 

Austria 1 48 27 22 0.014 0.045 0 0 0.006 0.018 
Ireland 27 27 26 28 0.009 0.043 0 0 0.002 0.012 
Kenya 1 50 18 33 0.009 0.039 0 0 0.012 0.05 
Siberia 0 52 30 22 0.033 0.064 0 0.0625 0.005 0.017 
Canary 56 0 38 18 - - - - - - 
  



Table S2. Summary of alignment of Illumina 150-bp reads from five stonechat taxa to the 
draft reference genome. Mapping quality is given after filtering out alignments with a 
mapping quality of 20 or lower. 
 
Taxon Reads Mapped Mean (Median) Coverage Mean Mapping Quality 
Kenya 98,758,285 13.8 (12.7) 45.61 
Ireland 185,976,416 26.1 (24.8) 45.26 
Austria 135,110,173 18.8 (17.7) 45.14 
Siberia 107,623,583 14.9 (13.9) 45.80 
Canary Islands 176,167,216 24.7 (23.9) 45.64 
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Table S3. Ficedula individuals included in the study (data from the Sequence Read 
Archive, or SRA, project ERP007074, published in Smeds et al. (2015)). 

Species SRA Run Mean coverage of Ficedula albicollis genome 
F. hypoleuca ERR637490 16x	

 ERR637491 12x	
 ERR637492 11x	
 ERR637493 11x	
 ERR637494 13x	
 ERR637495 16x	
 ERR637496 18x 
 ERR637501 14x	
 ERR637503 14x	
 ERR637504 12x	

F. albicollis ERR637505 14x	
 ERR637506 14x	
 ERR637508 10x	
 ERR637511 16x	
 ERR637512 15x	
 ERR637513 14x	
 ERR637515 11x	
 ERR637519 12x	
 ERR637522 11x	
 ERR637523 13x	
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