
EEG Based Gesture Mimicking by An Artificial Limb 
Using Cascade-Correlation Learning Architecture 

 

Sriparna Saha, Amit Konar, Anuradha Saha,       
Arup Kumar Sadhu 

Electronics & Tele-Communication Engineering 
Department 

Jadavpur University, Kolkata, India 
sahasriparna@gmail.com, konaramit@yahoo.co.in, 

{anuradha.nsec, arup.kaajal}@gmail.com 

Bonny Banerjee#, Atulya K. Nagar* 
#Electrical & Computer Engineering Department 

#The University of Memphis, United States of America 
*Mathematics and Computer Science Department 

*Liverpool Hope University, United Kingdom 
#bonnybanerjee@yahoo.com, *nagara@hope.ac.uk 

 
 
 

Abstract—Patients with prosthesis defects find it is very 
difficult to perform day-to-day basic tasks which involve 
employment of their limbs. This motivates us to develop a system 
where an artificial limb is employed to mimic the arm gestures of 
the patients for assisting them. Towards developing this system, 
we have taken the help from the electroencephalography (EEG) 
signals acquired from the brain of the patients to build a bypass 
network (BPN) to direct the artificial limb. Since difficulties are 
already present in the arm movements of the patients (here 
subjects), thus only gestures of those subjects are not sufficient to 
build the proposed system. This research finds tremendous 
applications in rehabilitative aid for the disable persons. To 
concretize our goal we have developed an experimental setup, 
where the target subject (for training phase healthy subjects are 
taken into account) is asked to catch a ball while his/her brain 
(occipital, parietal and motor cortex) signals using EEG 
acquisition device and body gestures using Kinect sensor are 
simultaneously acquired. These data are mapped using four 
cascade-correlation learning architecture (CCLA) to train 
artificial limb (we have used Jaco robot arm) to move 
accordingly. Utilizing the mapping results obtained from these 
four CCLAs, a BPN is developed. When a rehabilitative patient is 
unable to catch the ball, then in that scenario, the artificial limb 
is helpful for assisting the patient to catch the ball with a high 
accuracy of 85.65%. The proposed system can be implemented 
not only for ball catching experiment but also in several 
applications where an artificial limb needs to perform a 
locomotive task based on EEG and body gesture.       

Keywords—human machine interface; gesture mimicking; 
rehabilitation; electroencephalography; Kinect sensor; Jaco robot 
arm; cascade- correlation learning architecture 

I. INTRODUCTION 
Gestures constitute an important medium for human beings 

to interact and communicate with the surroundings. Gestures 
are expressive body movements, involving the face and arms in 
majority of the cases. Gesture recognition i.e., interpretation of 
the different human gestures is a very important aspect of 
human computer interaction. It enables humans to efficiently 
communicate with machines using only sign language.   

Suppose a subject wants to bring a glass of water from a 
nearby table to drink, but unfortunately he/she is suffering 

from prosthesis damages in the arms, then it is not feasible for 
the patient (here subject) to bring the glass using his/her arms 
[1]. Similar problem is faced by the subject when he/she tries 
to do the same task having difficulties in the parietal region of 
the brain. But in the above two scenarios we can place an 
electroencephalography (EEG) acquisition device to record the 
occipital data of that subject while the subject is looking at that 
glass, and based on the EEG signal, a robotic arm (artificial 
limb) is employed to grip the glass. This is just a simple 
example of how to control an artificial limb using human brain 
signals, where the position of the target object (i.e., the glass) is 
stationary. This motivates us to implement our research work 
in the scenario where the position of the target is not fixed with 
respect to time. Thus we have outlined the work in such a 
manner where two subjects are involved, one is our target 
subject wearing a EEG sensor and concurrently whose motion 
is captured by a motion sensing device, Kinect and another 
subject is just throwing a ball towards the first subject. We can 
use this technique in several other cases which involves 
artificial limb to do some locomotive works based on brain 
signal and human gestures. The work finds tremendous 
importance in rehabilitative application areas where a subject is 
suffering from difficulties in parietal and/or motor cortex 
region(s) and due to this, prosthesis problems are faced by the 
subject.     

There are some existing literatures which deal with human 
machine interface (HMI) [2]. These papers show how 
information from gesture and brain signals can be utilized to 
instruct an artificial limb in several environments. Maheu et al. 
[1] states the advantages of Jaco arm to do tasks related to 
rehabilitation. Bhattacharyya et al. proposed how the efficient 
movement of robot can be done from the acquired EEG signals 
[3], [4]. All of these literatures are based on directing the robot 
using EEG signals. But to perform human like action the robot 
arm need to be train with body gestures simultaneously. Wang 
et al. shows how human hand gesture plays an important part 
for robot control [5]. For this purpose surface 
electromyography (sEMG) and Kinetic signals are taken form 
upper limb and classification is done by support vector 
machine (SVM). Teleoperation between double hand 
movements and double-arm robot manipulator is developed by 
Du et al. where human motion is captured by Kinect [6]. 



Multimodal interactions including speech, gesture etc. is 
carried out by Csapo et al. with Nao humanoid robot for HMI 
applications [7].  

The prediction of hand movements acquired using Kinect 
sensor from EEG signals obtained from respective parts of the 
brain is done by Datta et al. [8] using principal component 
analysis (PCA) for feature selection and regression analysis 
using back propagation neural network (BPNN). But the 
former paper does not train any robot to perform the task in 
case the subject is unable to do the same. Frisoli et al. [9] 
designed a system based on human gaze, where analysis on 
Kinetic data and EEG signals is done for neuro-rehabilitation 
of patients. The outcome of the former work is to direct a 
robotic upper limb exoskeleton based on the acquired data in 
real-time. In [10], Roy et al. has controlled not only position, 
but also velocity of an exoskeleton using state feedback PI 
controller. EEG signals containing the right motor intention, as 
captured from the human brain, is classified using Quadratic 
discriminant analysis (QDA) classifier and is fed to the 
controller for accurate movement. Another interesting 
application of  Kinect sensor along with EEG signal is to 
improve the life style of patients suffering from 
motor/communication impairments by training them through 
gaming technology [11]. The depth segmentation and RGB 
data obtained from Kinect sensor as well as EEG features 
including mean absolute value and variance unbiased estimator 
are utilized to classify hand grasping during gaming activity in 
[11]. Similar kind of experiment for tracking self-paced hand 
opening/closing has been carried out on stroke patients by 
using EMG sensors along with EEG and Kinect sensors [12]. 

To implement our novel system of gesture mimicking 
based on EEG signals for artificial limb movement, we require 
three devices, namely EEG acquisition device [2]–[4], [8]–[12], 
Kinect sensor [5]–[9], [11]–[14] and Jaco robot arm [1]–[4], 
[9]. For healthy subjects, when a ball is thrown, then they are 
instructed to catch the ball. The EEG signals from occipital, 
parietal and motor cortex regions are acquired using EEG 
acquisition device as well as the skeleton of the target subject is 
obtained using Kinect sensor while catching the ball. Now 
three mappings are done between occipital-parietal, parietal-
motor cortex and motor cortex-skeleton using four cascade-
correlation learning architectures (CCLA) [15] in the first 
training phase. The order of the mappings are in that fashion 
because first the subject sees the ball coming towards him/her 
using occipital region, then the parietal region plans how to 
catch the ball. Based on the planning the motor cortex region 
instructs the arms of the subjects accordingly. Upon getting 
these signals, the subject tries to catch the ball. For the next 
training phase, CCLA is employed to map between skeleton 
and displacements of the Jaco arm, such that in the absence of 
the parietal and motor cortex signals, the artificial limb is able 
to catch the ball. We have used CCLA as it has much better 
performance in terms of weight adaptation and randomness 
with comparison with BPNN. After the completion of the 
training phase, we have tested our proposed system for 
rehabilitative patients with damage in parietal and/or motor 
cortex regions. Former subjects due to disability are unable to 
plan and execute the movements of the hands, thus to provide 
assistance, Jaco robot arm is orchestrated to catch the ball. Here 

we have created a bypass network (BPN) using the data from 
occipital region of the patient. 

  The subsequent sections of this paper are organized as 
follows. Section II provides the technical overview of the 
proposed work providing details of the training and testing 
phases. The methodologies used are described in section III. 
The elaboration of the experimental results is given in section 
IV while section V concludes the proposed system.  

II. TECHNICAL OVERVIEW 
Fig. 1 depicts the schematic diagram of our proposed 

system.  The system utilizes three devices, namely  

 21-channel EEG signal acquisition device 
(manufactured by Nihon Kohden) [2]–[4], [8]–[12] to 
record the physiological signals from the brain. 

 Kinect 360 sensor [5]–[9], [11]–[14] (manufactured by 
Microsoft) to capture the body gesture of the subject in 
skeletal view by representing the body with twenty 
Cartesian joint co-ordinates in three dimensional space 
(3D). 

 Jaco robot arm [1]–[4], [9] (manufactured by Kinova) is 
manipulated based on the information obtained from 
EEG signal acquisition device and Kinect sensor. 

The system consists of two major parts: training phase and 
testing phase.  

A. Training Phase 
This phase consists of the steps needed to train the artificial 

limb. This phase is bifurcated into two parts: 

1) Training phase 1 (TP1): 
We have implemented the proposed system in such a 

fashion that the subject under consideration (ST) is asked to 
catch the ball thrown by a separate subject (SA). Now the target 
subject is wearing an EEG sensor [2]–[4], [8]–[12] to record 
physiological signals from the brain. Also his/her body 
gestures are captured by the Microsoft’s Kinect sensor [5]–[9], 
[11]–[14]. When the target subject notices a ball coming 
towards him/her then the occipital region in the brain gets 
activated. Now to catch the ball the parietal region of the brain 
planes how the body of the subject needs to be bent to catch 
that ball. Based on that signal from the parietal part of the 
brain, the motor cortex region instructs the arms of the subject 
to act accordingly. How the subject positioned his/her body to 
catch the ball, that gesture is accumulated by the Kinect sensor. 

To achieve this three mappings are done between 

 occipital signals (OSTP
T) and parietal signals (PSTP

T) to 
adapt weight matrix W1  using CCLA1 

 parietal signals (PSTP
T) and motor cortex signal (MSTP

T) 
to adapt weight matrix W2 using CCLA2 

 motor cortex signal (MSTP
T) and Kinetic data (KDTP

T) to 
adapt weight matrix W3 using CCLA3 

where TP is training phase and T denotes the target subject. 
The block diagram of this phase is depicted in Fig. 2. 



 
Fig. 1. Complete view of the proposed system for rehabilitative applications, 

(a) training phase, (b) testing phase. 

2) Training phase 2 (TP2): 
Now the second part deals how the end effector (i.e., 

gripper) of the Jaco robot arm, which needs to be placed in the 
exact position of the palm of the target subject, such that the 
Jaco robot arm [1]–[4], [9] is able to catch the ball instead of 

the target subject. For this purpose Kinetic data for the required 
gesture (KDTP

T) and mapped with displacement of Jaco robot 
arm (DJTP

T) using CCLA4 [15], [16] and after successful run of 
CCLA the weight matrix becomes W4. This architecture is 
given in Fig. 3. 

 

Fig. 2. Architecture of training phase 1. 

 
Fig. 3. Architecture of training phase 2. 

B. Testing phase (EP) 
After training the system with the above process, a BPN is 

formed such that when a ball is thrown to a rehabilitative 
patient (SR) suffering from damage in the parietal and/or motor 
cortex region(s), then based on the signals obtained from 
occipital region (OSEP

R), Jaco robot (DJEP
R)  is instructed. Thus 

trained weight matrices (W1 to W4) are taken into account to 
construct a BPN. This network is termed as bypass network as 
here displacement of Jaco robot is possible by bypassing the 
signals from parietal, motor cortex regions and the Kinetic data 
as shown in Fig. 4. 

III. METHOLOGIES USED 
This section illustrates the procedure for feature extraction 

(FE) and mapping employing CCLA. 

A. FE for EEG Signals (OS, PS and MS) 
Features of EEG signal are represented as the basic 

primitives of the signal itself. In the present paper, the 
significant information are extracted using Power spectral 
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density (PSD) from the filtered EEG signal, which contains 
signal power distribution in the occipital, parietal and motor 
cortex lobes. Mathematically, PSD is defined as a Fourier 
Transform of the autocorrelation sequence of the time series, 
which is given below.  
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Fig. 4. Architecture of testing phase. 

After FE, it is important to select the most significant EEG 
features without hampering the classification accuracy, if the 
feature dimension is high. PSD, being a high dimensional 
feature extractor, does not contain all important features. 
Therefore, we apply standard principal component analysis 
(PCA) to select a fewer significant features from a large pool 
of features to train the neural network.    

B. FE for Kinectic Data (KD) 
As already stated, the Kinect sensor can represent a human 

body using twenty body joint co-ordinates (JC), but for this 
proposed work, the changes occur in the arms along with upper 
body (except head) co-ordinates have the major impact while 
catching a ball. Also the transitions in those joints from initial 
state (when the subject first sees the ball coming) to goal state 
(when the subject is able to catch the ball) are irreverent as the 
degrees of freedom (DOF) for human arm (dofH=27 [17]) and 
Jaco robot arm (dofJ=7 including gripper [1]) are not 
comparable. Thus we are only concerned about the difference 
between the joint co-ordinates between initial state (ISKD) and 
goal state (GSKD). The required joints in 3D (x, y and z) are 
spine (S), shoulder center (SC), shoulder left (SL), elbow left 
(EL), wrist left (WL), hand left (HL), shoulder right (SR), 
elbow right (ER), wrist right (WR) and hand right (HR). The 
extracted feature matrix (FMKD) is given in (3). 

C. FE for Displacements of Jaco Robot Arm (DJ) 
Jaco robot arm is manufactured by Kinova and is a robotic 

manipulator with a three fingered gripper to grip an object 
(here ball). The arm has 7 degree of freedom (DOF) [1] with a 
maximum reach of 90 cm and has maximum linear speed of 20 
cm/s. For displacement of Jaco robot (DJ) from initial state 

(ISDJ) to goal state (GSDJ), we have to specify the following 
feature vector  FVDJ  using (4). 
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1 2 3 4 5 6DJFV J J J J J J                (4) 

where, 1 to 6 indicates the joint (J) number of the Jaco 
robot arm and θ denotes the desired angle of that respective 
joint needs to be rotated to act accordingly. The value of θ can 
be positive or negative based on whether it is anticlockwise or 
clockwise respectively. 

D. Mapping Using Cascade-Correlation Learning 
Architecture (CCLA) 
In the view of real-world problem, computational cost is 

the main bottleneck of the existing artificial neural network 
based learning algorithm (e.g., BPNN). The former limitation 
is overcome by employing the CCLA [15], which is an 
artificial neural network based algorithm, begins with 
minimum input and output nodes. Gradually the network trains 
and adds hidden layers to create a multi-layered neural 
network. All the hidden neurons have fixed weight (square 
connection) in the input side as shown in Fig. 5 and only the 
output side weights (crossed connections) are trained. The bias 
is fixed at +1. Unlike back-propagation [8], the CCLA trains 
the weights directly connected to the outputs, which results in 
incredible speed-up as compared to the BPNN. Also CCLA 
creates promising high-order feature detectors. The CCLA is a 
twofold idea:  

 One is the addition of cascade architecture to add fixed 
hidden layer one at a time to the network.  

 Another is the learning algorithm to install a hidden 
layer with a symmetric sigmoidal activation function 
such that the residual error signal is minimized which in 
turn maximizes the correlation between the new 
network's output. 

To train the weights directly connected to the output 
neurons, a single-layered learning algorithm (e.g., Widrow-
Hoff or "delta" rule, perceptron learning and resilient 
propagation (RPROP) algorithm [16]) is employed. In this 
paper, RPROP is selected for training. 
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New hidden layer is created by selecting a candidate unit 
(e.g., sigmoidal function, Gaussian function, radial basis 
function, etc.), which can be connected to all the pre-existing 
input, output and hidden layers. A number of passes is done to 
adjust and fix the input weights of the candidate unit. Finally 
the output of the candidate unit is connected to the network.  

 

Fig. 5. Block diadram of cascade-correlation learning architecture (square 
indicates fixed connection and crossed connections are trained). 
 

The input weights of the candidate unit are adjusted with an 
aim to maximize the sum over all the outputs covariance given 
in (5), 
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where, V be the candidate unit's value, Eo,p be the residual 
output error observed at output unit o in the pth  training pattern 
and , oV E are the average values of V, Eo respectively over all 
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in (6) to maximize Cv where, wi is the ith candidate units 
incoming weight. 
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where, σo be the correlation between the candidate value 
and output, fp

/ be the first derivative of the candidate unit's 
activation function with respect to the sum of its inputs for 
pattern p and Ii,p refers the input revived by the candidate unit 
from ith candidate for pattern p. A gradient descent to maximize 

Cv follows after computing v

i

C
w




 for each incoming 

connection. The new candidate unit is connected as an fixed 
and active part of the network as Cv stops improving. It is 
possible to employ a set of candidate units with randomly 
initialized input weights, instead of employing single candidate 
unit to install hidden layers in the network. When a set of 
candidate units are employed, they receive the same input, 
residual error and output, because the candidate units' outputs 
are not connected to the active network. Employing a set of 
candidate units is advantagious in two ways:  

 It reduces the chance of installing a useless neuron, 
which got stuck during training. 

 It can speed-up the training because of the simultaneous 
wide exploration of the weight-space. 

IV. EXPERIMENTAL RESULTS 
This section elaborates the experimental setup along with 

subject details, signals analysis from EEG and Kinect sensors. 
In addition, subsequent movement of the Jaco robot arm is 
shown. The section also shows the performance study of the 
proposed system with other existing literatures considering 
accuracy, precision, sensitivity, specificity and F1 score as the 
performance metrics and statistical test.   

A. Setup 
The experiment has been performed at Artificial 

Intelligence Lab, Jadavpur University, where the framework 
includes a Kinect sensor (Fig. 6 (a)) and a 21-channel wired 
EEG device (Fig. 6 (b)).  It has also been obvious from Fig. 
7(b) that Kinect data and EEG signals are recorded on two 
different computers with 8 GB RAM with CPU clock of 3.4 
GHz.  

B. Data Acquisition Using EEG and Kinect Sensors 
We have created 3 datasets with 24 healthy subjects (15 

men and 9 women). In each dataset, equal number of subjects 
are taken where gender ratio is 5:3 and for these 3 datasets the 
age groups are (25±2yrs), (28±2yrs) and (30±2yrs) in the 
training experiments. Among 24, 12 subjects (6 men and 6 
women) have been participated for the testing sessions.  

1) Using EEG Sensors 
In this experiment, EEG signals from electrode positions: 

P3, P4, Pz, C3, C4, Cz, O1 and O2 are recorded by using a 21-
channel stand-alone EEG device having a sampling rate of 200 
Hz and resolution of 100µV. Each subject is instructed to 
throw the ball to the opponent from eleven different positions. 

Initially the samples taken for eleven instances are 1400, 
3800, 1600, 1800, 1600, 1600, 1600, 1800, 1800, 2200, 2000 
respectively with sampling rate 200 Hz. EEG signals captured 
during the above mentioned eleven instances are pre-processed 
and further analyzed. Fig. 7-9 present the raw EEG signals 
acquired from occipital, parietal and motor cortex regions 
respectively during two different instances. Three following 
observations are noted from Fig. 7-9.  



 

Fig. 6. Total setup of the proposed work for rehabilitative applications: (a) 
Towards SA end, (b) Towards SR end. 

 
Fig. 7. Raw EEG signals recorded from O1 and O2 electrodes during 5th and 

6th instances. 

 There is a close parity in signal patterns recorded from 
the same set of electrodes for two different instances.  

 For each brain lobe (i.e., occipital, parietal and motor 
cortex), changes in signal pattern from their usual 
nature near about the same samples ensure the 
correlation between three brain lobes for a particular 
given instance. 

 Changes in EEG pattern in different lobes validate the 
well-known EEG signal modalities. From Fig. 7 and 8, 
sudden positive rise in signal amplitude ensures the 
liberation of P300 modality from occipital and parietal 
lobes, whereas from Fig. 9 de-synchronization of EEG 
signal from the usual pattern at the start of motor action 
and again synchronized with the original pattern after 
completion of the motor activity ensures the association 
of event-related desynchronization/synchronization 
(ERD/ERS) modality during movement-related tasks.  

 

Fig. 8. Raw EEG signals recorded from P3, P4 and Pz electrodes during 5th 
and 6th instances. 

 

Fig. 9. Raw EEG signals recorded from C3, C4 and Cz electrodes during 5th 
and 6th instances. 

Since, the raw EEG signals contain noise and eye-blinking 
artifacts, following two steps have been performed to make the 
EEG signal artifact-free. First, we designed a band pass filter 
having suitable pass band frequencies to filter the line noise. 
Here, we use a Chebyshev type 2 filter having variable pass 
band frequency. For visual signal, pass band of the above filter 
is selected from 3 to 13 Hz in order to pass necessary 
information involved in theta (3-7 Hz) and alpha (7-13 Hz) 
band. For motor imagery and execution, pass band frequency is 
so chosen that it includes sensorimotor (7-13 Hz) and beta (13-
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30 Hz) rhythm. Second, we perform independent component  
analysis (ICA) [18] to remove eye-blinking artifacts from the 
evaluated EEG signals. In this technique, the scalp-components 
having artifacts are rejected and the remaining artifact-free 
components are selected. 

 
Fig. 10. PSD features extracted from occipital lobe during eleven instances. 

 

Fig. 11. PSD features extracted from parietal lobe during eleven instances. 

Once pre-processing of EEG signal is done, features are 
extracted from the filtered EEG samples taken at eleven 
experimental instances. Fig. 10-12 present PSD feature 
discrimination of EEG signals recorded from occipital, parietal 
and motor cortex regions respectively during those instances. It 
is important to note from Fig. 10-12 that although PSD extracts 
more than several hundreds of features from each lobe, all 
features do not have significant values. For example, beyond 
80th feature (for occipital EEG) and beyond 260th feature (for 
parietal and motor cortex EEG), we get redundant features. 
Another interesting fact is that for three brain regions, almost 
all instances have overlapped features except for instance 2 and 
hence a few features have capability to discriminate all eleven 
instances. To overcome this problem, we apply standard PCA 
algorithm [8] which selects 12 features that correctly 
discriminate all eleven instances.  

 

2) Using Kinect Sensor 
The Kinect sensor basically has three sensors responsible 

for three types of outputs. 

 RGB (red, green and blue) video is obtained from RGB 
camera. 

 Depth map is obtained from IR (infrared) emitter and 
IR receiver. 

 Twenty body joint co-ordinates in 3D space are 
obtained based on RGB and Depth data using software 
development kit (SDK).  

 

Fig. 12. PSD features extracted from motor cortex during eleven instances. 

The skeletons obtained for eleven instances are shown in 
Table I. The RGB images taken by a separate camera placed 
perpendicular and parallel to Kinect to provide better 
visualization for the 1st instance for 5th subject is shown in Fig. 
13. This figure elaborates how the gesture for subject ST 
changes through ISKD → INS1

KD → INS2
KD → INS3

KD → GSKD. 
The corresponding FMKD obtained is given in (7). 

0.0094 0.0755 0.0498
0.0175 0.0515 0.0179
0.0177 0.0598 0.0548
0.0530 0.0332 0.0296
0.1177 0.4650 0.0850
0.1079 0.5912 0.1334
0.0023 0.0668 0.0471

0.0061 0.0070 0.1010
0.09404 0.4986 0.1082
0.0945 0.6190 0

KDFM
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                  (7)  

C. Parameters Settings for CCLA 
Table II shows the design of CCLA. The parameters set 

for RPROP [16] are Δmin=0.0001, Δini=0.01, Δmax=0.5, η =0.5 
and η+ =1.2.  



D. Displacement of Jaco Robot 
The Jaco robot arm including gripper is suitable for a 

person with disability of the parietal and/or motor cortex lobes. 
It can be attached to a wheelchair or somewhere else to assist 
the disabled person [9]. The RGB images taken by a separate 
camera placed parallel to Kinect (as Kinect’s RGB camera has 
only 8-bit VGA resolution) for better view and picture quality 
for the 1st instance for 10th subject is shown in Fig. 14. This 
figure shows how the Jaco moves for subject SR changes 
through ISDJ → INS1

DJ → INS2
DJ → GSDJ. The exact 

movements occur in different joints for Jaco whole 
accommodating the desired movement.  

TABLE I.  THE ELEVEN INSTANCES TAKEN FOR 5TH SUBJECT 

Initial State (ISKD) 

 
Eleven Goal States (GSKD) 

    

    

   

 

TABLE II.  TABLE XX DESIGN OF ALL THE CCLA BLOCKS 

Parameters CCLA1 CCLA2 CCLA3 CCLA4 
Input node 2×12 3×12 3×12 10×3 

Output node 3×12 3×12 10×3 1×6 

Passes 500 800 750 400 
Candidate units 40 60 50 30 
 

 
Fig. 13. RGB images for 1st instance for 5th subject ST.  

 

Fig. 14. RGB images for 1st instance for 10th rehabilitative patient SR.  
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E. Performance Analysis 
We have compared CCLA performances with BPNN [8], 

feed forward neural network (FFNN) [19], adaptive neural 
fuzzy inference (ANFI) [3], ensemble classifier using binary 
tree (ECBT) [20], linear support vector machine (LSVM) [20], 
support vector machine with radial basis function (RBFSVM) 
[21], AdaBoost-support vector (ASVM) [4], k-nearest neighbor 
(kNN) using the metrics including accuracy, precision, 
sensitivity, specificity and F1 score. The average results for 3 
datasets for these metrics are given in Table III.  

TABLE III.  COMPARISON OF PROPOSED WORK WITH EXISTING 
LITERATURES 

Algorithms Accuracy Precision Sensitivity Specificity F1 
Score 

CCLA 85.65 84.74 82.52 85.02 86.83 
BPNN 78.92 77.47 79.91 80.22 78.30 
FFNN 75.72 73.07 74.18 75.00 72.93 
ANFI 81.46 78.16 81.08 80.66 81.17 
ECBT 69.49 71.08 73.12 70.92 69.74 
LSVM 56.84 57.86 57.29 59.49 58.71 

RBFSVM 69.05 70.75 69.27 70.71 71.98 
ASVM 71.03 70.89 70.93 69.22 71.71 
kNN 66.57 66.75 67.52 69.31 65.68 

All the experiments are performed with Intel(R) core(TM) 
i7-4790 processor and 8 GB of DDR2-memory. For the 
training stage, the codes are written in Matlab R2012b and 
Microsoft Visual Studio 2010 version is employed to test the 
experiments in real-time with Jaco robot arm. 

F. Friedman’s Statistical Test 
The best of all the c algorithms, i.e., 1≤c≤C, is given rank 1 

and the worst is given rank D. The average ranking obtained by 
the cth algorithm over all d (1≤d≤D) datasets is Rc. 
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2 2
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( 1) 4
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c
c

D C CR
C C
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We have done this analysis based on accuracy values 
obtained for all the algorithms. Here, D=3 and C=9. In Table 
IV, it is shown that the null hypothesis has been rejected, as 
χ2

F=23.64 is greater than 15.51, the critical value of χ2 

distribution for C−1=8 DOF with 95% accuracy. 

TABLE IV.  PERFORMANCE ANALYSIS USING FRIEDMAN’S TEST 

Algorithm Dataset 1 Dataset 2 Dataset 3 Rc χ2 
CCLA 1 1 1 1.00 

23.64 

BPNN 3 2 3 2.67 
FFNN 5 4 4 4.33 
ANFI 2 3 2 2.33 
ECBT 6 6 6 6.00 
LSVM 9 9 9 9.00 

RBFSVM 7 7 7 7.00 
ASVM 4 5 5 4.67 
kNN 8 8 8 8.00 

V. CONCLUSION 
The proposed work implements a novel technique for 

mimicking arm gesture by an artificial limb based on signals 
from EEG sensor. In the first training phase, four mappings are 
done between three (occipital, parietal and motor cortex) brain 
signals and skeleton obtained from Kinect sensor. In the next 
training phase, another mapping is done to direct the Jaco robot 
based on the skeleton. All the four mapping are done using 
dedicated CCLA. In the testing phase, a BPN is created to 
employ the Jaco robot arm to assist a patient with prosthesis 
damages due to parietal and/or motor cortex region(s) for 
providing rehabilitative help. This system has huge scope in 
the development of rehabilitative aids for several tasks that 
needs to be performed daily basis. The system shows an 
accuracy of 85.65% which is very high in this concern domain. 

The novelty of the proposed system lies in the fact that it 
uses CCLA as this network shows much better performance 
dealing with the weight adaptation and randomness when 
compare with other neural networks including BPNN. For the 
real time implementation of the system, a proper selection of 
network has vital importance.  
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