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Co-occurring global change drivers, such as ocean warming and acidification, can have large impacts on the behaviour, physiology, and health
of marine organisms. However, whilst early-life stages are thought to be most sensitive to these impacts, little is known about the individual
level processes by which such impacts take place. Here, using mesocosm experiments simulating ocean warming (OW) and ocean acidification
(OA) conditions expected for the NE Atlantic region by 2100 using a variety of treatments of elevated pCO2 and temperature. We investi-
gated their impacts on bio-mineralization, microstructure, and ontogeny of Nucella lapillus (L.) juveniles, a common gastropod predator that
exerts important top-down controls on biodiversity patterns in temperate rocky shores. The shell of juveniles hatched in mesocosms during a
14 month long experiment were analysed using micro-CT scanning, 3D geometric morphometrics, and scanning-electron microscopy.
Elevated temperature and age determined shell density, length, width, thickness, elemental chemistry, shape, and shell surface damages.
However, co-occurring elevated pCO2 modified the impacts of elevated temperature, in line with expected changes in carbonate chemistry
driven by temperature. Young N. lapillus from acidified treatments had weaker shells and were therefore expected to be more vulnerable to
predation and environmental pressures such as wave action. However, in some instances, the effects of both higher CO2 content and elevated
temperature appeared to have reversed as the individuals aged. This study suggests that compensatory development may therefore occur,
and that expected increases in juvenile mortality under OA and OW may be counteracted, to some degree, by high plasticity in shell forma-
tion in this species. This feature may prove advantageous for N. lapillus community dynamics in near-future conditions.
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Introduction
Many marine organisms have evolved external shells that provide

protection against predation, desiccation and other inhospitable

abiotic factors, and prevent parasitism (Brusca and Brusca, 2003).

A damage or loss of shell-mass therefore diminishes the organ-

ism’s likelihood of survival (Parker et al., 2013). Marine external

shells are most frequently composed of a number of carbonated

forms including minerals such as calcium and magnesium, as well

as organic coatings (Vermeij, 1995).

Calcium carbonate (CaCO3) is the most common material in

marine shells and can occur in several forms with different chem-

ical and mechanical properties (Weiss et al., 2002). Shell CaCO3

composites are arranged in layers of varying complexity, each

consisting of a different form of CaCO3 (Falini et al., 1996).
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Aragonite and calcite are the two most common CaCO3 forms

(Suzuki and Nagasawa, 2013). Calcite is more structurally diverse

and more stable but requires comparatively more time and energy

to be produced than aragonite (Weiss et al., 2002). Calcite is also

mechanically weaker, and more resistant to corrosive effects of

low pH environments than aragonite, typically forming trigonal-

rhombohedrally shaped crystals, (Weiss et al., 2002). Conversely,

aragonite occurs in orthorhombic acicular crystals, often appear-

ing in parallel layers. Both materials vary in seawater solubility ac-

cording to variations in ocean carbonate chemistry and

temperature (Plummer and Busenberg, 1982,). For instance, CO2

driven acidification can cause reductions in CaCO3 saturation,

making calcification more energetically costly for individuals rely-

ing on aragonite and calcite (Feely et al., 2004). Under-saturation

of CaCO3 therefore increases the risk of fast rates of shell dissol-

ution, at which recovery may not take place (Nienhuis et al.,

2010). In addition, seawater magnesium carbonate (MgCO3) may

also become under-saturated because of carbonate chemistry

changes in seawater. The magnesium: calcium (Mg2þ:Ca2þ) ratio

in seawater influences organic calcification processes on a micro-

scopic level, so acidification can tip calcification towards the de-

position of specific forms (Ries, 2010). Low levels of Mg2þ favour

the formation of calcite, and high levels favour the deposition of

aragonite (Ries, 2010). Juvenile molluscs preferentially deposit

aragonite, possibly due to weaker controls over the early bio-

mineralisation processes (Weiss et al., 2002), and on approaching

maturity, calcite deposition increases. Differences in mineralisa-

tion over the individual life cycle can therefore lead to higher

mortality in juveniles due to predation or parasitism, because

shells are not yet as stable nor as thick as in adults. These shells

are also thought to dissolve more easily in conditions of lowered

pH, especially in or just after the settling process (Green et al.,

2004). Such conditions have been found increasingly often in

marine environments around the world as a consequence of glo-

bal climate change.

Changes in seawater temperature (i.e. ocean warming, “OW”)

and in carbonate chemistry and pH driven by increasing CO2

emissions (i.e. ocean acidification, “OA”) (IPCC 2014) are known

to impact the integrity and morphology of the shell of adult mar-

ine organisms (Nienhuis et al., 2010; Thomsen et al., 2010;

Melatunan et al., 2013). Some defence mechanisms such as

decreased shell growth rates to preserve energy (Findlay et al.,

2010) and increased calcification in a range of calcifying species

across taxa have been observed in acidified conditions (Ries et al.,

2009). However, whilst we have a good understanding of OW and

OA impacts on adult shell bearing organisms, our current under-

standing of how the same stressors and their interactions may im-

pact embryos and juveniles is still limited (Byrne and Przesllawski,

2013; Kurihara, 2008; Melatunan et al., 2013; Sanford et al., 2014).

The energetic implications of dealing with multiple stressors can

cause a reduction and/or reallocation of an organism’s energy

budget (Melzner et al., 2013) such that trade-offs among different

homeostatic processes caused by a given stressor can reduce the

individual’s ability to cope with another stressor (e.g. Calosi et al.,

2013). These interactions can lead to complex changes at the

individual-level and in species interactions, affecting the natural

structuring of biological communities (Queir�os et al., 2015). As

the survival of populations depends on the survival of their off-

spring (Widdicombe and Spicer, 2008), early-life stages (e.g.

Dupont and Thorndyke, 2009), on transgenerational responses

(e.g. Sunday et al., 2014) and species interactions are therefore

needed to scale up population and community level responses to

climate change and OA (Reusch, 2014, Sunday et al., 2014).

This study aimed to quantify the combined effects of OW and

OA as simulated through elevated CO2 content and temperature

treatments, on the shell development and growth of the juveniles

of the temperate marine gastropod Nucella lapillus (Linnaeus,

1758), a predator that exerts important top-down controls on the

biodiversity of North Atlantic temperate rocky shores (Trussel

et al., 2003). Nucella lapillus (hereafter “N. lapillus”) is an abun-

dant species in temperate shores of the North Atlantic that ex-

hibits a certain phenotypic plasticity in shell morphology and

colour depending on latitude, microhabitat, physiological stress,

and mechanical stresses such as those caused by wave actions and

predation. N. lapillus is a direct developer that predates on habitat

forming species such as barnacles and mussels, and has a great in-

fluence on benthic community structure and dynamics, habitat

complexity, and diversity (Trussel et al., 2003; Sanford et al.,

2014). In this study, shell length, width, thickness, density, crys-

tallization, chemical make-up, and overall shapes of juveniles

from different treatment combinations, at 3 and 9 weeks

post hatching, were examined. Animals were collected over a

14 month mesocosm experiment featuring multiple combinations

of elevated CO2 content and temperature treatments (simulating

various scenarios of OA and OW projected for the end to the 21st

century in the region), during which marked effects of both stres-

sors were observed in adult N. lapillus energetics and shell struc-

ture (Queir�os et al., 2015). Considering that N. lapillus is a direct

developer, we expected that if no phenotypic adjustment

occurred during embryonic and post-hatching ontogeny, juven-

iles hatched during the experiment would develop shells with sig-

nificant changes in growth patterns and chemistry, reflecting

impacts observed in the parental lineage. However, if develop-

mental acclimatisation was to occur, we expect no significant

changes to be observed at the levels of shell, as phenotypic buffer-

ing could favour the maintenance of this ecologically and physio-

logically important structure.

Material and methods
Specimen acquisition
Juveniles of N. lapillus were collected during the NERC-DECC

UK Ocean Acidification Research Programme’s mesocosm ex-

periments (Queir�os et al., 2015), carried out at Plymouth Marine

Laboratory’s Intertidal Mesocosm Acidification System (PML-

IMAS, Findlay et al., 2013) during 2011-2012. Mature individuals

from a native population at Mouth Batten, Plymouth (N50� 21’

30.29”, E-4� 7’ 50.07”) were collected and transferred to the

PML-IMAS where they were exposed to five different treatments

combining various temperature and pCO2 levels for 14 months

(Queir�os et al., 2015). During the experiment, the offspring

hatched from egg capsules laid in the mesocosm were maintained

in this system, and analysed in the present study. A detailed de-

scription of the set-up, carbonate chemistry parameters and of

how the experimental treatments were controlled can be found in

Queir�os et al. (2015). Briefly, five treatments combining seawater

pCO2 (380, 750 and 1000 ppm) at ambient temperature (A) and

two pCO2 treatments (380 and 750 ppm) at elevated temperature

were simulated. These treatments are hereafter referred to as

380A, 750A and 1000A, and 380T and 750T, respectively.

Ambient temperature was controlled to follow the seasonal cycle

at the population source conditions (typically between 9 and
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15 �C) and warming was simulated as a 2 �C offset above that

variation (Queir�os et al., 2015). Throughout the experiment, egg

capsules laid by adults in the treatment tanks were inspected on a

weekly basis, and hatched juveniles varying between one and 14

weeks of age were recorded and collected for later analyses. Out

of this collection, only those of 3 and 9 weeks of age were exam-

ined in the present study. The number of eggs and juveniles pro-

duced by the adults varied greatly between treatments, and in the

1000A treatment, only four individuals hatched in 14 months,

possibly as the result of metabolic depression observed in adult

N. lapillus (Queir�os et al., 2015). Due to the low replication level,

this treatment group was therefore excluded from the current

analysis. Twenty-four individuals from the other four (OA x

OW) treatments were collected at random and analysed, three

from each age group and treatment combination. All specimens

were stored dry or in minimal amounts of distilled water at –

80 �C before, in between and after analyses, and transported in li-

quid nitrogen where necessary.

Micro-CT scanning
Scanning was carried out at the Hellenic Centre of Marine

Research (Crete, Greece). Each individual was inserted into an in-

dividual pipette tip which was sealed airtight and positioned up-

right in the scan chamber of a micro-tomograph (Skyscan 1172,

Bruker, Belgium). The scan medium was always air, and no stains

were used. Specimens were scanned with a voltage of 59 kV and a

167 mA current for the acquisition of morphological and density

related data. Density measurement calibration was achieved ex-

perimentally and from past measurements of similar materials.

The micro-tomograph has a maximum resolution of 4000 x 2672

pixels (�0.8 mm per pixel). A filter with two layers of aluminium

foil was used to minimize excess charge. These settings were

optimized for the highest resolution (4,000x), an exposure time

of 1915 ms and between 0.85 and 1.3 mm zoom, depending on the

size of the specimen. Images were collected at full 360� rotation

with no random movement, and averaging every two images at

every rotation angle. Scanning parameters were recalibrated be-

fore each scan to ensure comparability between image sets (i.e.

individuals).

Reconstruction of scanned specimens
The micro-CT projections were reconstructed into cross-

sectional images of shells using a reconstruction software

(NRecon, Skyscan, Bruker, Belgium), which is based on a modi-

fied Feldkamp’s back-projection algorithm (Feldkamp et al.,

1984). This was accomplished as an automated function of the

scanning process using graphics processor unit reconstruction

(GPU recon). If specimens had inadvertently moved during

image acquisition, the scan was repeated. Reconstructed scans of

tilted specimens were straightened to achieve a uniform measure

of length and width in 3D view (Dataviewer, Skyscan, Bruker,

Belgium). Ten cross-sections of each shell (hereafter “slices”)

were reconstructed in pre-selected locations across the shell,

which were standardized across individuals to optimize compar-

ability between individual results (Figure 1).

Scan analysis and data extraction
Shell length, width, and thickness measurements were acquired

using Dataviewer (Bruker, 2014). Shell thickness was averaged

across the widest part of the shell (WP1) as well as the Mid-lip

slice (ML1; Figure 1). A 15 pixel thick band was selected from the

edge of the shell and inwards around the outside of each of the

ten slices for density measurements, using the software Image

J1.45S (National Institutes of Health, USA). This band ensured

that the selected area had been in immediate contact with the ex-

ternal conditions and not protected by soft tissue or body fluids.

Shell density was measured as the average 2D grey-scale pixel in-

tensity using the whole band.

The visual comparison of shell surface damage between indi-

viduals was accomplished in a volume rendering software

(CTVox, Skyscan, Bruker, Belgium), where a 3D visualization of

the shells as image stacks was produced, manipulating factors

such as opacity and lighting (Figure 2).

3D geometric morphometrics measurements
3D geometric morphometric methods were applied to the recon-

structed 3D scans (i.e. shell plastic model, see Figure 2) to investi-

gate potential changes in shell morphology associated with

phenotypic plasticity responses. Due to limits on computer mem-

ory during processing, scan file size was reduced and, conse-

quently, resolution also reduced by a factor of 16. This was

achieved using the Dataviewer resizing option prior to recon-

structing triangulated surfaces for each of the specimens using the

software Amira (FEI, 2013). Surfaces were reconstructed using

the ‘SurfaceGen’ option on the resampled dataset and the result-

ing models were saved in ‘Polygon File Format’ (.ply). Overall,

the scans were reduced in size by a factor of �64, but only a low

level of detail was lost post processing.

Surface models were then uploaded into software designed for

the analysis and interpretation of three-dimensional shapes

(Landmark editor, Wiley, 2007). Here, a series of type 1 and 2

landmarks were introduced in the form of single landmarks and

curves (Figure 2) on the lip, on minimum and maximum points

as well as on each end of and along the whorl.

By establishing this landmark protocol (Figure 2) in the first

shell and reproducing it in the others through correspondence of

each set of landmarks with those of the original specimen, com-

parable measures of shape could be applied to the distinct fea-

tures shared by all shells. Data points were exported from

Landmark into MorphoJ (Klingenberg, 2011) where models were

adjusted in a procrustes fit: a forced adjustment of all involved

models for the sake of comparability, before generating covari-

ance matrices and conducting procrustes analyses. These meas-

ures were taken in order to achieve optimal shape alignment

through scaling, rotation and translation of the models. Amira

(FEI, 2013), the programme used to make the original 3D mod-

els, was also used to measure the volume of each of the speci-

men’s shells.

Analysis of crystalline properties
At Plymouth University (Plymouth, UK), scanned specimens

were positioned on the bottom of cylindrical moulds with the

youngest shell part facing downwards and fixed in this position

on a thin layer of generic superglue. The mould was filled with

epoxy resin and left in a vacuum chamber to de-gas, until the

shells were enclosed inside and outside by the resin. The encased

specimens were left at 30 �C over night to allow the epoxy resin to

harden before sanding and polishing the formerly lower surface

off to the desired cross-section.
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Hand polishing was carried out using first abrasive paper

(P800 and P2500, FEPA P-grade), then 1 mm fine diamond paste

on a bench-top sander (Kemet Int. Ltd., UK) with a fabric disc as

foundation for the paste. Cross-sections were taken from compar-

able points in all shells. The surface of each cross-section was fur-

ther etched with hydrochloric acid for 45 s to improve the

exposure of a shell surface for visualization. Specimens were then

carbon coated in a carbon sputter-coater (K450X, EmiTech,

Quorum Technologies, UK) using carbon rods. Scanning electron

microscopic energy dispersive x-ray analysis (JEOL JSM-6610 LV,

JEOL, Tokyo, Japan) was used to determine the crystalline struc-

ture of each shell, and the relative thickness of homogenous and

Figure 1. (a) Cross-sectional image of a 9 week old Nucella shell taken with the micro-CT scanner, indicating the position of the horizontal
shell slices used for analysis. ELS¼ 3% from the top (posterior), AS1¼ 3% from the bottom (anterior), AS2¼ 4% from the bottom, AS3¼ 5%
from the bottom, WP1¼Widest Point, WP2¼WP1þ 1%, WP3¼WP1-1%, ML1¼Mid-Lip, ML2¼Mid-Lipþ1%, ML3¼Mid-Lip -1%. Lighter
grey indicates higher shell density, while black illustrates the background medium (air), not included in the analysis. 1 (b) and (c) are
horizontal slices which illustrate the differences in density throughout two randomly selected 3 week old shells. (b) is a shell from ambient
conditions (380 ppm CO2/9–15 �C), while (c) was exposed to elevated temperatures and CO2 input (750 ppm CO2/9–15þ2 �C). Grey scale
represents densities: lighter (green in online version): denser areas, darker (blue in online version): less dense areas. The scale bar below the
vertically cross-sectioned shell equates to roughly 0.5 mm.

Figure 2. Surface model of a shell, reconstructed using m-CT. The landmark protocol used in this study to evaluate shell morphology is
represented by the annotated curves and dots. S0–S3 are single landmarks while C1 and C2 represent curves.
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crossed-lamellar layers were recorded, as possible. Where more

than one crystal layer was present, x-ray spectra were selected

from each of the cross-sections in the outermost layer of crystals

to examine the most exposed regions. Images of each cross-

section were taken for further analysis at appropriate magnifica-

tion to determine crystal polymorph structure (Marxen et al.,

2008). The elemental ratio from each x-ray spectrum was re-

corded (for technique see Reed, 2005).

Statistical analysis
Shell weight, length, width, thickness, volume, and density data

sets were analysed separately and differences between treatment

and age groups investigated. All data were screened on whether

they met the assumptions of a linear model by assessing inde-

pendence of errors, homoscedasticity and normality of residuals.

Where assumptions were met, Analysis of Variance (ANOVA;

Fisher, 1925) was carried out for each response variable. Else,

datasets we analysed using Generalized Least Squares (GLS;

Cascetta, 1984) modelling, wherein the best fitting and most par-

simonious models were selected, based on Akaike’s Information

Criterion (AIC; Akaike, 1973). The combined effects of tempera-

ture, pH and age on the similarity structures of the aggregated

datasets (all response variables) were also investigated using

crossed Analysis of Similarity (ANOSIM; Clarke, 1993) and the

software Primer (Clarke and Gorley, 2014). This further step was

undertaken to investigate whole-individual responses between

treatments, allowing for consideration to be given to the potential

variability in specific responses of individuals within treatment

groups.

Additionally, similarity percentage tests (SIMPER; Clarke,

1993) were used to determine which variables most explained

observed variation in the chemical make-up of the shells (i.e.

elemental composition) between treatment and age groups.

Statistical difference in chemical make-up of shells was tested be-

tween individuals as well as treatment- and age groups. Mean

weights of each element within individual samples were then

compared in Primer and R using crossed ANOSIM tests and GLS

modelling. Out of all the elements (and element ratios) recorded

in the spectral analysis, a special focus was put on analysing the

magnesium:calcium ratios (Mg:Ca) because it is one of the factors

determining crystallization within the shells. Non-metric Multi-

Dimensional scaling (nMDS; Kruskal, 1964) was estimated based

on Euclidean distances to explore overall dissimilarities between

age and treatment groups. Unless otherwise specified, all data

analyses were carried out in R (R foundation, Vienna).

Results
Shell surface
Shells of individuals exposed to elevated pCO2 (i.e. 750 ppm,

Figure 3) exhibited overall a greater proportion of rough textures

and indentures on their surface than at ambient pCO2, in both

age groups, and this effect that was more pronounced under co-

occuring elevated temperature conditions (750T cf. 380A). This

can also be seen in the cross-sectional images in Figure 1, in

which the shell exposed to high temperature and elevated pCO2

(750T, Figure 1c) showed a distinctly more uneven surface than

the control shell (380A, Figure 1b).

Shell micro-structure and chemistry
Shells’ microstructures from individuals kept under control con-

ditions (380A) exhibited a structure of separation into a neatly

sorted crossed-lamellar (CL) inner layer of thin aragonitic CaCO3

sheets and a thin, grainy homogenous (H) outer layer (Figure 4,

380A, 1-3). Shells of individuals kept under the elevated tempera-

ture condition (380T) exhibited similar structures but the thick-

ness of the layers varied. Crossed-lamellar crystals varied in size

and neatness of layering and the H layers were smoother than in

the control treatment group (Figure 4, 380T, 1-3 cf. Figure 4,

380T). Shells kept at ambient temperature and elevated pCO2 had

lost the distinct layering and although both CL and H structures

were recognisable, the transitional phase contained both (Figure

4, 750A, 1). The biggest change in shell microstructure however

was found in 9 weeks old individuals exposed to high pCO2 at

ambient temperature and in shells of all ages where both tempera-

ture and pCO2 had been increased. Here, the newest shell parts

(closest to the growth edge at the lip) displayed a complete lack of

layering with a new crystal structure that resembled neither CL

nor H patterns found in other shells (Figure 4, 750T, 1-3).

Figure 3. Images of shell exteriors taken with the electron microscope (EM) to show examples of surface damage in 750T (left) and 750A
(right) shells.
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Although being most easily comparable to homogenous patterns,

these new structures had eroded bark-like surfaces and little to no

common direction of orientation of the crystals (Figure 4, 750T,

3). Some of the older parts of shells from elevated temperature

and pCO2 conditions displayed an unusually thin CL layer.

The CL structures in those shells exhibited equally chaotically ori-

ented crystals to what had been observed in 750A shells in both

layers, and H structures more closely resembling the bark-like

new structure than what had been recorded as H in 380A (Figure

4, 750T, 1). Crystal degeneration and deformation was stronger in

the outermost parts of the shell than those closer to the

columella.

The internal Mg:Ca ratio of the shells varied among individ-

uals of different ages and exposures to different temperatures

(p< 0.05, Figure 5a). Testing the other elements found within

shells with SIMPER analyses confirmed variations in Ca2þ to be

the greatest cause of dissimilarity between most sample groups,

especially between pCO2 treatments (65.7%) and age groups

(65.1%). Variations between temperature groups were found to

be due in equal parts to variation in oxygen, carbon, calcium, and

magnesium proportions. The remaining deviations between age

and CO2 groups can be explained through variations in oxygen

content, though all samples also contained traces of carbon and

sodium.

Shell density
Shell density was found to be significantly lower in all experimen-

tal treatments when compared to individuals kept under control

conditions. Exceptions to this pattern were 9 weeks old snails

Figure 4. Electron microscopy images of the crystallized structures within shells of the older group in lines according to treatments; columns
1 represents a view of both layers together, 2 shows a close-up of the crossed-lamellar layer, and column 3 are images of the homogenous
structures. The first picture depicting the 750T treatment represents a shell with no distinct difference between layers, the second in that line
shows an example of a shell with remnants of crossed-lamellar structuring and the third picture is a close-up of the bark-like structure.
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maintained at elevated temperature and pCO2 treatment, which

had the densest shells (750T). Exposure to elevated pCO2 alone

decreased shell density, but only in the 9 week old juveniles. The

effects of age and temperature on shell density in isolation were

less clear. The best GLS model included as main effects and inter-

actions temperature, age and CO2-content (Appendix 1,

Supplementary Table S1, p < 0.01, Figure 5b).

Shell growth and shape
Groups of similar age and pCO2 exhibited more variation shell

morphology (i.e. length and shape) at ambient than at warm con-

ditions, suggesting that temperature increased shell variability.

The best GLS model for shell length included temperature, pCO2

and age as main effects and interaction (p< 0.01, Appendix 1,

Supplementary Table S2), suggesting that the effects of CO2 and

temperature on the shell lengths of N. lapillus differed with age

(Figure 6a).

With regard to shell width, young shells of similar temperature

groups treated at elevated pCO2 levels (750A and 750T) were nar-

rower than those treated in control pCO2 conditions (380A and

380T), yet the opposite was true for old shells, which were wider

at higher CO2 (Figure 6b). Indeed, this effect was clear from the

Figure 5. The effect of exposure to elevated pCO2 and temperature,
in juveniles of N. lapillus of different age (weeks 3 and week 9 post
exposure) on shell (a) Mg2þ:Ca2þ ratios and (b) density which are
coded along the x-axis with a combination of pCO2 content (380 or
750 matm), temperature (A for ambient, T for elevated by 2 �C) and
age (3 and 9 weeks). Where the graph displays a Mg:Ca ratio of 0,
this is due to 0 specimens having been available for this analysis
from that treatment rather than a ratio of 0.

Figure 6. The effects of exposure to elevated pCO2 and temperature, in juveniles of N. lapillus of different age (weeks 3 and 9 post exposure)
on shell (a) length, (b) width and (c) thickness which are coded along the x-axis with a combination of CO2 content (380 or 750), temperature
(A for ambient, T for elevated) and age (3 and 9 weeks).
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GLS analysis of shell width, for which the best GLS model

included age and CO2 as main effects and interaction, but not

temperature (p� 0.05, Appendix 1, Supplementary Table S3).

Shell thickness
Similar to the patterns observed in other measurements, shells of

young individuals exposed to similar temperature treatments

were distinctly thinner when exposed to higher CO2 concentra-

tions, while older shells were thicker in high CO2 (Figure 6c). The

best GLS model included temperature, age, and CO2 as main ef-

fects and interaction (p< 0.05, Appendix 1, Supplementary Table

S4). Although temperature appeared to have an effect on shell

thickness, this effect was variable across age and CO2, and the ef-

fects of CO2 and shell age were greater.

3D geometric morphometric shape analysis
As expected from the previous analyses, individuals variation in

shell shape did not appear to be determined by any factor investi-

gated in isolation, but was instead was explained by the combin-

ation of factors investigated, as represented by in the principle

components (“PC”) biplot (Figure 7). PC1-3 represented the ma-

jority of the variance in both the younger (73.17%, Figure 7b)

and the older shells (77.22%, Figure 7a), representing mainly the

angle and width of the shell whorl, aperture shape and length and

the overall length, together creating the difference between nar-

rower or wider shells. Whilst only a loose separation of the 750T

individuals and those in the 380T treatment was apparent in the

younger age group, PC2 (representing the shape of the whorl)

clearly separated 750 ppm treatments (750A and 750T, positive

PC score) from the 380 ppm treatments (380A and 380T, negative

PC score) in the older age group. The latter likely reflects higher

procrustes distances estimated for older shells, indicating that

shell shape (as determined using landmark analysis) varied more

in these the older than in the younger age group.

These results were confirmed by a two-way crossed ANOSIM

analysis of externally measured data sets combined (length, width,

density and thickness), which revealed that age (ANOSIM, global

R¼ 0.217, p< 0.05) and CO2 content (ANOSIM, global

R¼ 0.208, p< 0.05) were the overall most deciding factors caus-

ing dissimilarities in shell variables. Differences in temperature,

and the interaction of temperature with other factors however

were not. All variables (lengths, width, density, and thickness)

contributed roughly equal amounts of variation to the dissimilar-

ities between groups (�20% each). Three-week old individuals

were more similar to each other in shape (Figure 8), roughly clus-

tering in the middle of the nMDS plot. Nine-week old individuals

were distributed more widely around the edges of the plot, ex-

hibiting greater variability in shape and in the relations between

the different shape variables, and highlighting the role of treat-

ments on shell development as time passed. The control group

(380A) had the least within-group variation when compared with

the others, with animals clustering in the centre of the nMDS

Figure 7. PC1 and PC2 of 9 week old shells to the left (a) and 3 weeks old shells to the right (b).

Figure 8. nMDS plot of similarities and dissimilarities between
individuals according to age and treatment groups.
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plot, while the most extreme 750T treatment led to greater dis-

similarity in external shell characteristics.

Discussion
While the majority of structural shell features in juveniles of the

gastropod N. lapillus appear to be influenced significantly by ele-

vated pCO2 and a two degree temperature offset on the tempera-

ture seasonal cycle, the impacts of these effects change as juveniles

develop. Overall, the effects of CO2 elevation and differences be-

tween age groups were evident, while higher temperatures ap-

peared to act as a modifier of juveniles’ responses to pCO2.

Differences in response between age groups may reflect how

younger individuals are likely less capable to maintain their

homeostasis and compensate for the increase in energy expend-

iture needed to upkeep shell structures. The differences observed

between age groups may also likely reflect potential differences in

parental investments in reproduction, given that the adults’ me-

tabolism and energy requirements were found to be significantly

affected by exposure to both elevated pCO2 and temperature dur-

ing the 14-month mesocosm experiment (Queir�os et al., 2015).

N. lapillus typically show a great deal of shell phenotypic plasticity

when exposed to OA and OW conditions and our findings are in

line with previous work showing shells’ plastic responses to be

more marked in individuals exposed to elevated temperature and

pCO2 conditions (Lardies et al., 2014). This may be a conse-

quence of individuals’ physiological trade-offs (Turner et al.,

2015), here specifically between shell formation and repair vs.

maintaining cellular metabolism and homeostasis. These findings

are particularly relevant for N. lapillus ecology, because external

shells provide a first barrier against predation, physiological and

mechanical stress. Compensatory processes involved in shell de-

position in N. lapillus may therefore prove beneficial under near

future ocean conditions.

A significant reduction of shell growth and thickness after ex-

posure to elevated pCO2 has also been observed in other species

(Barros et al., 2013, Sanford et al., 2014) and is thought to be

linked to associated alteration of carbonate chemistry and growth

inhibition in molluscs. Both of these effects make the organisms

more vulnerable to crushing predators, such as crabs (Hughes

and Elner, 1979) and might therefore lead to increased mortality

rates in affected populations. It is unclear whether N. lapillus

growth rates are affected by the higher CO2 content directly, yet

this study indicates that shell development was certainly modi-

fied. Importantly, and in contrast to previous studies, we found

that as N. lapillus grew, older juveniles exhibited potentially com-

pensatory responses. In older juveniles, shells were wider, longer

and thicker under elevated pCO2, potentially serving as a better

defence. Despite evidence for increased surface damage and dis-

solution, potentially higher calcification rates may therefore in

part have compensated for greater passive dissolution rates. This

finding agrees with Melatunan et al. (2013) who, while focusing

on adult gastropods, also found advantageous adaptations that

allowed shell shape and size changes in molluscs affected by an

offset in CO2 content. Whether increased shell size is seen as

adaptively advantageous overall is, however, not clear, because

larger shells may attract greater risk of crab predation (Cotton

et al., 2004).

In general, gastropod shells are strengthened gradually through

continuous calcification from within, leading to the thickening of

the existing shell walls with age, as well as the establishing of a

stronger microstructure in older shells (Weiss et al., 2002). Mg:Ca

ratios of calcifiers track the ratio of these minerals in seawater

(Ries et al., 2009). Concordantly, higher Mg:Ca ratios observed

here in the shells of individuals exposed to elevated pCO2 suggest

that this elemental ratio increased in in those treatments. Higher

Mg:Ca ratio in seawater is indeed known to favour the formation

of Mg rich aragonite, instead of calcite (Ries et al., 2009; Smith

et al., 2006), though seawater was not undersaturated for calcite

or aragonite during our experiments (Queir�os et al., 2015,

Supplementary Table S1). N. lapillus may therefore have a delayed

transition from aragonite to calcite in more energetically chal-

lenging conditions (such as OA) as the former is less energetically

demanding to deposit, particularly under in low pH scenarios

(Weiss et al., 2002). This mechanism could explain the wider,

longer and thicker shells observed in the older juveniles from the

high pCO2 treatments in relation to the control, as though

through this delay, more energy may have been available for the

potentially increased calcification rate needed to address the

greater shell damages observed in this treatment. Therefore, N.

lapillus may have the ability to compensate, at least at this early

stage of development, against the potential negative effects of car-

bonate chemistry conditions imposed by high CO2 on shell de-

position and dissolution. In line with recent findings (Fitzer et al.,

2016), the microstructure of the material deposited though this

compensation exhibited a more chaotic CaCO3 crystal formation.

CaCO3 microstructure strongly depends upon the presence of

specific types of proteins in the extrapallial fluids (Bozhi, 2011).

As these proteins are influenced by pH conditions (Thomsen

et al., 2010; Thompson et al., 2000), organisms have been

observed to alter crystallization patterns in high CO2 conditions

(Cusack et al., 2007). The main shell building protein in N. lapil-

lus is dermatopontin, which is ‘acid soluble’ (Suzuki and

Nagasawa, 2013). Based on our results it is likely that even though

these proteins are isolated from surrounding conditions, lower

pH in the paleal fluid may have been present in individuals

exposed to higher CO2 contents, affecting the quality of crystalli-

zation within the shell. In some cases, proteins sensitive to low

pH conditions can be substituted through the production of a

range of different, less pH susceptible proteins (Hüning et al.,

2012), but this does not seem to be the case here.

The most important functions of complex shell structures are

to provide structural support and protection from predator and

physical stresses (e.g. wave action), which may cause the shell to

crack or even break. The crossed-lamellar structures commonly

found in the shell of healthy N. lapillus individuals prevent cracks

in the shell from propagating through a constant change in crystal

orientation (Suzuki and Nagasawa, 2013). Therefore, a thicker

shell does not necessarily provide a better protection against pre-

dation if the cross-lamellar structure has disappeared, as we

observed in the shells of juvenile snails exposed to elevated pCO2,

which were exacerbated by an elevation in temperature. Bark-like

crystal shapes such as the ones found in the acidified samples in

this study seem to be a phenomenon not yet widely described in

the literature. Seeing as the current literature is still dominated by

short-term single stressors studies of adult specimens, our results

highlight the need to investigate the development of shell min-

eralogy and ultrastructure in juvenile molluscs under high tem-

perature and CO2 environments, over extended time periods, and

considering the cumulative effects of exposure (such as here and

in Dupont et al., 2013). Adult individuals transplanted into con-

ditions of elevated pCO2 exhibit distinctly different calcification

patterns in localized, newly built shell areas, including

Long-term exposure to elevated pCO2 9
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unorganized crystals with varying growth directions (Hahn et al.,

2011). However, the impact of high CO2 content (and high tem-

peratures) on shell physiology, as observed here, may still lead ju-

veniles to higher vulnerability to predation and physical damage,

despite the potential for adaptive processes taking place during

shell deposition. Crystallization processes are similar in many or-

ganisms, even in far related groups, such as brachiopods, suggest-

ing that the results from this study may be generalized to the

impacts of similar conditions on the shell formation of juveniles

of other species (Cusack et al., 2007).

Shell volume and weight were not impacted by exposure to ele-

vated pCO2 or temperature nor by the combination of the two

factors, and surprisingly neither differed significantly among

snails of different age classes in our experiment. Insignificant dif-

ferences in shell volume may be due to the differences in shell

shape we observed across treatments. A shape change may lead to

shells that are more stout or narrow, consequentially changing

shell size but not volume. Thicker shells in acidified treatments

were also less dense (as seen in adult N. lapillus, Queir�os et al.,

2015), possibly explaining the lack of significant changes in shell

weight. In our experiment, differences in shell shape were also

not consistent across age groups, indicating that as Nucella grow,

some compensatory responses seem to take place that affect its

shape. Younger shells of both control pCO2 treatments were most

antithetic to one another while in the older groups it were shells

from ambient pCO2 combined with elevated temperature, as well

as shells from elevated temperature combined with ambient tem-

perature treatments. Gastropod morphology varies with environ-

mental pressures such as predation, wave action and desiccation,

substrate, CaCO3 and O2 concentration and temperature

(Langerhans and Dewitt, 2002; Hollander et al., 2006; Queiroga

et al., 2011). Although water chemistry, pH, and temperature

have also been known to affect molluscs’ shell shapes (Melatunan

et al., 2013), the main factors influencing gastropods seem to be

more of a more mechanical nature, namely predation and wave

pressure (Queiroga et al., 2011; Langerhans and Dewitt, 2002).

Shell slandering and squatting as seen in Guerra-Varela et al.

(2009) prevents shells from being swept away by waves as well as

making it harder for predators to crush them. The findings we

observed here regarding shell shape further suggest that high CO2

contents will potentially make young N. lapillus more vulnerable

to both pressures, as shells became longer and stouter. Shells that

are structurally weakened in this way are more likely to become

easy prey to shell-crushing predators such as crabs (e.g.

Melatunan et al., 2013). The shell variability we observed within

treatment groups may be partly due to the fact that the embry-

onic development takes place within individual egg capsules

which can lead to variations in size and developmental rate

(Thorson, 1950). Differences in parental investment may also be

a deciding factor of variability within age groups (�Ordenes and

Antonio, 2012). In this study, the duration of elevated pCO2 and

temperature exposure of the adults at the time of reproduction

has not been taken into account because we could trace parental

links within the experimental replicate, but this could have driven

some of variation we observed within treatment groups that was

not assignable to specific the treatments. This is a factor that

should be considered in future studies.

The impact of elevated pCO2 and temperature treatments on

shell properties and growth pattern may lead to important impli-

cations for the size, shape, and structural integrity of shells in

adult N. lapillus in a future ocean. We observed very little

reproductive output in N. lapillus from our highest CO2 treat-

ment, though a congeneric Nucella species occurs and grows in

natural vents (Selin, 2010), and as Nucella are direct developers,

reliance on lateral input of individuals from adjacent areas seems

unlikely. Survival and viable reproduction of N. lapillus therefore

seems possible below or even up to 1000 ppm of CO2, though the

viability of offspring may be limited at this high level of pCO2

(Queir�os et al., 2015). At this most extreme pCO2 level, expected

in about a century according to projections reviewed by the IPPC

(2014) in which seawater CO2 may reach 1000 ppm, the combin-

ation of decreased investment in offspring by adults (4 juveniles

born in 14 months, compared to 280 that were born in control

conditions in the same time) and the observed impairment of the

protective shell structures of juveniles leading to increased juven-

ile mortalities paint a bleak picture for Nucella in the near future

ocean. Queir�os et al. (2015) found that sea warming may

counter-act metabolic depression caused by elevated pCO2 in

adult N. lapillus, and that decrease in prey acquisition due to lim-

ited chemo-sensory function under high CO2 may be counter-

acted by adaptive predatory behaviour, in the absence of preda-

tors. However, weakened shell structures that make N. lapillus

more vulnerable to predation may hinder the latter, both in

adults and juveniles, as the observed altered predation behaviour

requires more extensive foraging times and would therefore ex-

pose the individuals to predators for longer periods of time. It

follows that, overall, Nucella lapillus, and other calcifiers with

similar ecology are more likely to suffer from the effects of cli-

mate change and acidification than to benefit from it. N. lapillus’s

predation on important habitat forming species plays a key role

in the shaping the biodiversity of temperate rocky shores and so

these findings have potentially important consequences for the

structuring of these communities under near future ocean

conditions.

Conclusion
Queir�os et al. (2015) found that, considering a large number of

ecological processes, N. lapillus populations from highly product-

ive areas may be more likely to be able to compensate for the en-

ergetically costly effects of elevated pCO2 and temperature levels.

Nevertheless, changes to the shell development, morphology, and

composition of juvenile N. lapillus exposed to high pCO2 and

temperature conditions observed in this study may lead to higher

predation risks. Thus, though some populations may be expected

to be more heavily affected by OA and OW than others, consider-

ing the low dispersal rates of Nucella due to the direct develop-

ment, changes in distributional ranges may be foreseen through

this enhanced sensitivity of the juvenile stage. Sustainability of

populations in regions changing less within the near future and

in populations with exceptionally wide genome range could be

expected, as some phenotypic plasticity was observed, even within

our across-generation study (Lardies et al., 2014; Sunday et al.,

2014). However, even sub-lethal effects can affect communities in

composition and fitness (Parker et al., 2013), and sub-lethal

modifications that may be seen as adaptive, e.g. in behaviour,

may be detrimental within a community setting (Queir�os et al.,

2015). This study highlights that changes in CO2 content and

temperature may impact natural populations via effects on early-

life stages and developmental plasticity that are not evident in

adults, and a large gap remains about how population-level ef-

fects of OA and OW may scale to natural systems, in the context

of whole communities.

10 S. Rühl et al.

 at T
he M

arine B
iological A

ssociation of the U
K

 on January 16, 2017
http://icesjm

s.oxfordjournals.org/
D

ow
nloaded from

 

Deleted Text: s
Deleted Text: s
Deleted Text: s
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
http://icesjms.oxfordjournals.org/


Acknowledgements
This study was undertaken as part of a Master’s thesis, as an

added-value activity within NERC-DEFRA-DECC funded UK

Ocean Acidification Research Programme (grant agreement NE/

H01747X/1). Analyses of impacts on shell structure were sup-

ported by the Research Programme AcidiCO2ceans funded by the

Latsis Foundation (Greece). SR was awarded a Santander

Internationalization Postgraduate Scholarship that supported this

work. PC is supported by a NSERC Discovery Grant. Joana

Nunes, and other staff and students at Plymouth Marine

Laboratory are thanked for support provided during the meso-

cosm experiments at PML. Nafsika Papageorgiou (HCMR) is

thanked for her kind support and advice during the stay of SR at

HCMR. Glenn Harper, Peter Bond, Terry Richards, and Roy

Moate at Plymouth University are thanked for aiding with the de-

velopment of the methodology for specimens preparation and

subsequent electron microscopic imaging and x-ray spectra ac-

quisition. Andrew Foggo is thanked for support in travel through

Plymouth University.

Supplementary data
Supplementary material is available at the ICESJMS online ver-

sion of the manuscript.

References
Akaike, H. 1973. Information theory and an extension of the max-

imum likelihood principle. In 2nd International Symposium on
Information Theory, Tsahkadsor, Armenia, USSR, September 2-8,
1971. Ed. by Petrov, B.N. and Cs�aki, F. Akadémiai Kiad�o,
Budapest. 267–281.

Barros, P., Sobral, P., Range, P., Chicharo, L., and Matias, D. 2013.
Effects of sea-water acidification on fertilization and larval devel-
opment of the oyster Crassostrea gigas. Journal of Experimental
Marine Biology and Ecology, 440: 200–206.

Bozhi, J. 2011. Screening of molluscan extrapallial proteins on
CaCO3 crystallisation via microfluidics. PhD thesis, University of
Glasgow, Glasgow, UK.

Bruker. 2014. DATAVIEWER v1.5.1. Bruker microCT. Kontich,
Belgium.

Brusca, R. C., and Brusca, G. J. 2003. Invertebrates. Sinauer
Associates, Sunderland, MA, 2nd edn.

Byrne, M., and Przesllawski, R. 2013. Multistressor impacts of warm-
ing and acidification of the ocean on marine invertebrates’ life
histories. Integrative and Comparative Biology, 53: 1–15.

Calosi, P., Rastrick, S. P., Lombardi, C., de Guzman, H. J., Davidson,
L., Jahnke, M., Giangrande, A. et al. 2013. Adaptation and accli-
matization to ocean acidification in marine ectotherms: an in situ
transplant experiment with polychaetes at a shallow CO2 vent sys-
tem. Philosophical Transactions of the Royal Society of London
B: Biological Sciences, 368: 1627.

Cascetta, E. 1984. Estimation of trip matrices from traffic counts and
survey data: a generalized least squares estimator. Transportation
Research, 18: 289–299.

Clarke, K. R. 1993. Non-parametric multivariate analyses of changes
in community structure. Australian Journal of Ecology, 18:
117–143.

Clarke, B., and Gorley, R. 2014. Primer 6. PRIMER-E Ltd., Ivybridge,
UK.

Cotton, P. A., Rundle, S. D., and Smith, K. E. 2004. Trait compensa-
tion in marine Gastropods: Shell shape, avoidance behavior, and
susceptibility to predation. Ecology, 85: 1581–1584.

Cusack, M., Perez-Huerta, A., and Dalbeck, P. 2007. Common crys-
tallographic control in calcite biomineralisation of bivalve shells.
CrystEngComm, 9: 1215–1218.

Dupont, S., and Thorndyke, M. C. 2009. Impact of CO2-driven ocean
acidification on invertebrates early life-history–What we know,
what we need to know and what we can do. Biogeosciences
Discussions, 6: 3109–3131.

Dupont, S., Dorey, N., Stumpp, M., Melzner, F., and Thorndyke, M.
2013. Long-term and trans-life-cycle effects of exposure to ocean
acidification in the green sea urchin Strongylocentrotus droeba-
chiensis. Marine Biology, 160: 1835–1843.

Falini, S., Albeck, S., Weiner, S., and Addadi, L. 1996. Control of ara-
gonite polymorphism by mollusk shell macromolecules. Science,
271: 67–69.

Feely, R. A., Sabine, C. L., Lee, K., Berelson, W., Kleypas, J., Fabry, V.
J., and Millero, F. J. 2004. Impact of anthropogenic CO2 on the
CaCo3 systems in the oceans. Science, 305: 362–366.

FEI. 2013. Amira 5.5. Visualization Sciences Group. FEI Company,
Burlington, USA.

Feldkamp, L., Davis, L., and Kress, J. 1984. Practical cone-beam algo-
rithm. Journal of the Optical Society of America, 1: 612–619.

Findlay, H. S., Kendall, M. A., Spicer, J. I., and Widdicombe, S. 2010.
Post-larval development of two intertidal barnacles at elevated
CO2 and temperature. Marine Biology, 157: 725–735.

Findlay, H. S., Beesley, A., Dashfield, S., Mcneill, C. L., Nunes, J.,
Queir�os, A. M., and Woodward, E. M. S. 2013. UKOA Benthic
Consortium, PML intertidal mesocosm experimental environ-
ment dataset, (ed Laboratory PM), British Oceanographic Data
Centre-Natural Environment Research Council, UK.

Fisher, R. A. 1925. Statistical Methods for Research Workers. Genesis
Publishing Pvt Ltd., York University, Toronto, Ontario, Canada.

Fitzer, S. C., Chung, P., Maccherozzi, F., Dhesi, S. S., Kamenos, N. A.,
Phoenix, V. R., and Cusack, M. 2016. Biomineral shell formation
under ocean acidification: a shift from order to chaos. Scientific
Reports, 6.

Green, M. A., Jones, M. E., Boudreau, C. L., Moore, R. L., and
Westman, B. A. 2004. Dissolution mortality of juvenile bivalves in
coastal marine deposits. Journal of Limnology and
Oceanography, 49: 727–734.

Guerra-Varela, J., Colson, I., Backeljau, T., Breugelmans, K., Hughes,
R. N., and Rol�an-Alvarez, E. 2009. The evolutionary mechanism
maintaining shell shape and molecular differentiation between
two ecotypes of the dogwhelk Nucella lapillus. Evolutionary
Ecology, 23: 261–280.

Hahn, S., Rodolfo-Metalpa, R., Griesshaber, E., Schmahl, W. W.,
Buhl, D., Hall-Spencer, J. M., Baggini, C., Fehr, K. T., and
Immenhauser, A. 2011. Marine bivalve geochemistry and shell
ultrastructures from modern low pH environments.
Biogeosciences Discussions, 8: 10351–10388.

Hollander, J., Collyer, M. L., Adams, D. C., and Johannesson, K.
2006. Phenotypic plasticity in two marine snails: constraints
superseding life history. The Authors Journal Compilation, 19:
1861–1872.

Hughes, R. N., and Elner, R. 1979. Tactics of a predator, Carcinus
maenas, and morphological responses of the prey, Nucella lapillus.
The Journal of Animal Ecology, 48: 65–78.
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E., and Wright, J. M. 2013. Predicting the response of molluscs to
the impact of ocean acidification. Biology, 2: 651–692.

Plummer, L. N., and Busenberg, E. 1982. The solubilities of calcite,
aragonite and vaterite in CO2-H2O solutions between 0-90 �C,
and an evaluation of the aqueous model for the system CaCO3-
CO2-H2O. Geochimica E Cosmochimica Acta, 46: 1011–1040.

Queiroga, H., Costa, R., Leonardo, N., Soares, D., and Clearly, D. F.
R. 2011. Morphometric variation in two intertidal littorinoid
gastropods. Contributions to Zoology, 80: 201–211.

Queir�os, A. M., Fernandes, J. A., Faulwetter, S., Nunes, J., Rastrick, S.
P. S., Mieszkowska, N., Artioli, Y., et al. 2015. Scaling up experi-
mental ocean acidification and warming research: from individ-
uals to the ecosystem. Global Change Biology, 21: 130–143.

Reed, S. J. B. 2005. Electron Microprobe Analysis and Scanning
Electron Microscopy in Geology. Cambridge University Press,
Cambridge, UK.

Reusch, T. B. 2014. Climate change in the oceans: evolutionary versus
phenotypically plastic responses of marine animals and plants.
Evolutionary Applications, 7: 104–122.

Ries, J. B., Cohen, A. L., and McCorkle, D. C. 2009. Marine calcifiers
exhibit mixed responses to CO2-induced ocean acidification.
Geology, 37: 1131–1134.

Ries, J. B. 2010. Review: geological and experimental evidence for
secular variation in seawater Mg:Ca (calcite-aragonite seas) and
its effects on marine biological calcification. Biogeosciences, 7:
2795–2849.

Sanford, E., Gaylord, B., Hettinger, A., Lenz, E. A., Meyer, K., and
Hill, T. M. 2014. Ocean acidification increases the vulnerability of
native oysters to predation by invasive snails. Proceedings of the
Royal Society of Biological Sciences, 281: 1–8.

Selin, N. 2010. Peculiarities of the habitat of Nucella freycineti
(Mollusca: Gastropoda) at volcanogenic vent sites. Russian
Journal of Marine Biology, 36: 26–33.

Smith, A. M., Key, Jr, M. M., and Gordon, D. P. 2006. Skeletal min-
eralogy of bryozoans: Taxonomic and temporal patterns. Earth-
Science Reviews, 78: 287–306.

Sunday, J. M., Calosi, P., Dupont, S., Munday, P. L., Stillman, J. H.,
and Reusch, T. B. 2014. Evolution in an acidifying ocean. Trends
in Ecology & Evolution, 29: 117–125.

Suzuki, M., and Nagasawa, H. 2013. Shell structures and their forma-
tion mechanisms. Canadian Journal of Zoology, 91: 349–366.

Thompson, J. B., Palcoczi, G. T., Kindt, J. H., Michenfelder, M.,
Smith, B. L., Stucky, G., Morse, D. E., and Hansma, P. K. 2000.
Direct observation of the transition from calcite to aragonite
growth as induced by abalone shell proteins. Biophysical Journal,
79: 3307–3312.

Thomsen, J., Gutowska, M. A., Saphörster, J., Heinemann, A.,
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