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Abstract 

Marine protected areas (MPAs) are commonly employed to protect ecosystems from threats like 

overfishing. Ideally, MPA design should incorporate movement data from multiple target species to 

ensure sufficient habitat is protected. We used long-term acoustic telemetry and network analysis to 

determine the fine-scale space-use of five shark and one turtle species at a remote atoll in the 

Seychelles, Indian Ocean, and evaluate the efficacy of a proposed MPA. Results revealed strong, 

species-specific habitat use in both sharks and turtles, with corresponding variation in MPA use. 

Defining the MPA’s boundary from the edge of the reef flat at low tide instead of the beach at high 

tide (the current best in Seychelles) significantly increased the MPA’s coverage of predator 

movements by an average of 33.8%. Informed by these results, the larger MPA was adopted by the 

Seychelles government, demonstrating how telemetry data can improve shark spatial conservation by 

affecting policy directly. 

Introduction  

Marine ecosystems provide highly valuable services, including food production, climate regulation 

and nutrient cycling [1,2]. However, the sustainability of these services is threatened globally by 

factors such as overfishing, pollution, and habitat degradation [3,4]. Predators help promote 

ecosystem diversity and stability by exerting strong, top-down forces that shape communities over 

large spatio-temporal scales [5–7]. Sharks, for instance, occupy high trophic levels in most marine 

food webs, are typically well connected trophically, and can elicit strong avoidance behaviours in 

prey [8–10]. Yet most fisheries target large predators, potentially exacerbating the impacts of 

overfishing on ecosystem stability by selectively removing influential predators like sharks and tuna 

[2].  

Fishing pressure on sharks has increased to the point where an estimated 63–273 million 

sharks are caught each year [11], with some populations appearing to have undergone 

significant declines [12,13]. A common tool to combat overfishing, especially in tropical 

ecosystems, is the designation of marine protected areas (MPAs), which can be very effective 

depending on their size, level of restriction and associated enforcement [14,15]. The initial 

design of an MPA should be informed by the movements and habitat use of the target 

species, to ensure it covers sufficient critical habitat to be effective [16,17]. Yet such 

information is rarely available at the point of inception and MPA boundaries can be 

established with limited information, making them less likely to succeed [18,19]. To conserve 

ecosystem services MPA design should also consider multiple species [20,21], as efficacy 

will likely vary between species with different behaviours, life history traits and vulnerability 

to fishing pressure [15].  
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Most declines in shark populations have been inferred from Atlantic and Pacific fisheries, 

which have historically kept the most comprehensive catch records [7,11,22]. For instance, 

catch rates for some shark species in the Atlantic Ocean are estimated to have declined by 

over 90% [12,23], with similar declines (>70%) also indicated for the Pacific Ocean [22,24]. 

Data on Indian Ocean shark populations are severely deficient by comparison, but available 

reports suggest declines in this region, for example in the Seychelles, may be similarly severe 

[25,26]. Shark fishing in the Seychelles has long been of strong socio-economic importance, 

but has intensified in recent years, following a temporary European Union (EU) ban on 

import of local swordfish Xiphias gladius, and persecution of sharks after two fatal shark 

attacks in 2011 [25,27]. Yet the relative importance of shark to Seychelles fisheries has 

decreased by an order of magnitude in the past 70 years [25]. Thus, even now with stocks 

seemingly depleted, there is intense, unregulated fishing pressure on sharks in the Seychelles 

[25], and associated impacts to their ecosystem services could be severe. Consequently shark 

populations in Seychelles require some level of precautionary management to promote their 

sustainability. 

In the Seychelles most MPAs have been established to protect seabird colonies, coral reefs or 

turtle species [28] – the beaches of Seychelles host one of the world’s largest nesting 

populations of the critically endangered hawksbill turtle Eretmochelys imbricata [29]. 

However, the largest MPA in the Seychelles currently extends only 1 km from Mean High 

Water (MHW) and others to only 400 m, and may be ineffective for protecting vulnerable, 

wide ranging groups such as sharks and turtles, which may be exposed to exploitation over 

larger areas [30,31]. Therefore, while these MPAs may be effective in protecting some target 

species, they may not achieve the wider goal of sustaining ecosystem functionality in the 

long-term [30]. 

Presently there is insufficient data concerning the behavioural ecology of sharks in the 

Seychelles [32] to predict whether an MPA designed for turtles or reefs would also be 

effective for predators such as sharks. A combined appreciation of shark behaviour, habitat 

use and population structure can help frame the scale at which management efforts may be 

required [15]. Consequently the present study analysed detailed, long-term movements of 

hawksbill turtles and five shark species at a remote atoll in the Seychelles, specifically 

investigating whether an MPA designed for reefs and turtles would also be sufficient for the 

local sharks, and if not how could it be adjusted to accommodate them. 
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Methods 

Study site 

The study focused on the islands of D’Arros and St Joseph in the Amirantes , Seychelles 

(Supplementary Material, Fig. S1), where existing data suggest these islands may provide rare, critical 

habitat in the Seychelles for a variety of species, including important nesting and foraging habitat for 

the regions’ recovering turtle populations [32–34]. D’Arros Island (S 05°24’, E 53°17’) is a small 

sand cay (1.6 km
2
) situated on a patch reef (3.6 km

2
), while St Joseph (22 km

2
; S 05°25’, E 

53°20’) is one kilometre east, separated by a channel of 60–70 m depth. St Joseph Atoll has 16 small 

islands atop an uninterrupted reef flat that encloses a shallow (3–9 m), access-restricted lagoon of 5 

km
2
. The flats surrounding St Joseph lagoon are largely exposed at low tide, causing temporary 

isolation of the lagoon from the outer reef. Up to 2 m of water covers the flats at high tide.  

Animal telemetry 

Between August 2012 and March 2015 a total of 116 sharks of five different species (blacktip reef 

Carcharhinus melanopterus, sicklefin lemon Negaprion acutidens, grey reef Carcharhinus 

amblyrhynchos, tawny nurse Nebrius ferrugineus, silvertip shark Carcharhinus albimarginatus) and 

25 hawksbill turtles were tagged with acoustic transmitters (either V13 180 s nominal delay or V16 

120 s nominal delay, Vemco Ltd, Bedford, Canada; see Supplementary Material for details). Sharks 

and turtles were tracked using an array of 88 acoustic receivers (VR2W, Vemco Ltd) (Supplementary 

Material, Fig. S1), with tags detected within 165 m ± 33 (SD) of the receiver, as determined by range 

testing. However, to accommodate the staggered deployment of acoustic receivers the study was 

restricted to 67 receivers active November 2013 – November 2015, providing an effective sample of 

110 tagged individuals (see Supplementary Material for details).  

Network analysis 

Network analysis was used to determine animal space-use, with receivers being treated as nodes and 

pairs of subsequent pings between nodes treated as a connection between those nodes [35]. Several 

network metrics were used to describe each network (see Supplementary Material for details). In 

brief, ‘occupancy’ provides a measure of how much time individuals spent at each receiver location. 

‘Connectivity’ is the proportion of other nodes to which there is a connection. ‘Transit’ represents the 

extent to which a node is part of a corridor of movement as opposed to an area of occupancy. ‘Node 

density’ measures the extent of the array occupied, and ‘edge density’ provides a measure of mobility 

within the network, both ranging 0–1.  
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To test whether the observed movements were different from random, random networks were 

generated (see Supplementary Material for details) and their node metrics were tested against those of 

the real tracks using Wilcoxon matched-pairs signed rank tests.  

Each receiver location was designated a habitat type: lagoon (habitat within St Joseph Atoll, including 

the flats), coastal reef (sloped reefs bordering islands), plateau (flat-bottomed areas of patchy reef 

rubble and seagrass beds) or drop-off (the edge of the Amirantes plateau, before it drops to hundreds 

of metres). To reveal differences in space use between habitats for each species, node metrics were 

grouped according to habitat type and had their values compared to those of the same habitat type in 

the random networks. This was achieved by calculating a randomisation index:  

𝑅𝑛𝑑𝑖  =  
𝑂𝑚 − 𝑅𝑚

𝑅𝑚

 × 100 

Where Om is the observed and Rm the random metric. Mean values were then plotted for each node 

metric in each habitat type, according to species. For each individual a residency index was 

calculated, representing the percentage of days during its track that it was detected within the array: 

𝑅𝑒𝑠𝑖  =  
𝐷𝑑

𝐷𝑎𝑙

 × 100 

 Where Dd is days detected and Dal is days at liberty. 

Grid occupancy analysis 

The data were further used to evaluate the potential efficacy of two MPA designs. Each design had its 

boundary radius restricted to 1 km as this matches the current best in Seychelles for the UNESCO 

World Heritage Site of Aldabra Atoll. The first MPA model, the null MPA, matches the Aldabra 

designation with the boundary being formed by 1 km from the beach at MHW (Fig. 1). The second 

proposed MPA keeps the same boundary radius of 1 km, but instead measures it from the edge of the 

reef flat at the lowest astronomical tide (Fig. 1). Due to the extensive reef flats at D’Arros and St 

Joseph, which are exposed at low tide and can exceed 1 km width, this forces the boundary to include 

all of the lagoon and coastal reefs, some of which remain exposed in the null MPA (Fig. 1). The 

smaller null MPA encompasses an area of approximately 42.3 km
2
, while the larger proposed MPA 

covers approximately 64.9 km
2
 (~50% increase in area).  

 

Grid occupancy analysis was used to evaluate the efficacy of both MPAs (see Supplementary Material 

for details). In brief, the array was divided into 0.5 km grid squares, and the number of days each 
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individual occurred within each grid square was summed. Using the boundaries of both MPAs, it was 

then possible to calculate the percentage of their track each individual would have spent within the 

boundaries of each MPA.  

 

Figure 1: A map showing boundaries of the two MPAs: 1 km from the high tide mark (smaller null 

MPA, red) and 1 km from the low tide mark (larger proposed MPA, green). Map created in ArcGIS, 

using satellite imagery from LAND INFO Worldwide Mapping and ETOPO2v2 bathymetry data.  

 

 

Results 

During the study period 110 tagged individuals of six different species were tracked: blacktip reef (n 

= 25), grey reef (n = 22), sicklefin lemon (n = 20), tawny nurse (n = 6), silvertip sharks (n = 13), and 

hawksbill turtle (n = 24), providing over 50,477 tracking days (Table 1). A range of juveniles and 

adults was tagged for each species, apart from silvertip sharks and hawksbill turtles, all of which were 

juvenile. Mean track duration across all sharks (n = 86) was 484 days ± 265 (SD), with 64.0% of 

tracks lasting more than a year. Mean turtle track (n = 24) duration was 368 days ± 210 (SD), with 

62.5% of tracks lasting more than a year. All shark species showed a bias towards females amongst 
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tagged individuals (Table 1), while sex determination was not undertaken for the juvenile turtles as it 

can only be achieved through costly and potentially invasive procedures (laparoscopy and blood 

sampling). Full details of all results are available in the Supplementary Material, with pertinent details 

reported here. 

Table 1: Summary data for the 110 tags (86 sharks and 24 turtles) used for data analysis. The curved 

carapace length was used as the corresponding total length (TL) for turtles. RI = residency index. 

Species n TL range (cm) Mean TL (cm) Sex ratio (m:f) Liberty Range (days) Mean Liberty (days) Mean RI 

Blacktip 25 77    -   130 107.6 1.0  :  2.6 34   -  753 563.8 54.2 

Grey 22 84    -   158 127.5 1.0  :  6.3 49   -  746 473.2 20.1 

Lemon 20 109  -   213 168.1 1.0  :  2.3 3     -  755 589.6 64.0 

Nurse 6 155  -   274 210.3 1.0  :  2.0 79   -  749 559.3 50.1 

Silvertip 13 79    -   120 95.7 1 .0 :  3.3 11   -  349 154.1 22.1 

Hawksbill 24 36    -   71 46.7 n/a : n/a 6     -  756 367.6 28.6 

Species-specific habitat use 

All metrics of the real networks of all species were statistically different from those generated by the 

random networks (Supplementary Material, Tables S1 and S2). Blacktip reef sharks displayed very 

restricted movements (Fig. 2), with 99.8% of all detections occurring within the confines of St Joseph 

Atoll, residency that is reflected by their very high occupancy of lagoon habitats compared to random 

networks (Fig. 3). Movements were highly focused on the eastern end of the lagoon (Fig. 2), 

consistent with their very low edge density of 0.09, versus 0.72 for the random sharks. 

For the sicklefin lemon sharks 98.8% of all detections occurred within the atoll (Fig. 2), with elevated 

occupancy of lagoon habitats in real versus random networks (Supplementary Material, Fig. S2). 

However, lemon sharks were also recorded making wider movements across the Amirantes plateau, 

including to Desnoeufs Island 94 km south of D’Arros (Fig. 2). This is reflected in their high node 

and edge densities of 0.84 and 0.15, respectively, revealing much greater use of the array than 

blacktip reef sharks. One tagged lemon shark was also caught by fishermen at Marie-Louise 80 km 

south of D’Arros, while another was caught at Bird Island, 300 km away across deep water (>1,000 

m). All lemon sharks recorded moving across the plateau (n = 9) were ≥ 177 cm, whereas smaller 

individuals remained exclusively within the confines of the atoll and its coastal reefs.  

In contrast, grey reef sharks were largely recorded along the coastal reefs and drop-offs (62.1% and 

30.4% of detections, respectively), and not at all in the atoll (Fig. 2), with elevated occupancy of drop-

off and coastal reef habitats in real versus random sharks (Fig. 3). One grey reef shark tag was 

returned from the reefs of D’Arros by fishermen. 

The tawny nurse sharks displayed a range of movements similar to the lemon sharks (Fig. 2), reflected 

by similar node and edge densities (0.76 and 0.12 respectively). The majority of nurse shark 
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detections (70.0%) occurred within the atoll, with regular movement throughout. Almost all (98.1%) 

of nurse shark detections within the lagoon were from individuals <200 cm (n = 3), whereas 84.0% of 

all nurse shark detections outside the lagoon were from individuals >200 cm (n = 3). These larger 

nurse sharks frequently travelled more widely across the plateau (Fig. 2).  

Silvertip sharks showed the most restricted movements (node density 0.13, edge density 0.01), 

producing fragmented networks that almost exclusively associated with the drop-off (96.5% of all 

silvertip detections in drop-off habitats (Fig. 2)). Real silvertip sharks occupied drop-off habitats 

much more than random sharks, even transiting along the drop-offs more than random sharks did 

(Supplementary Material, Fig. S2). Four of the 19 tagged silvertip sharks are known to have been 

caught by fishermen, contributing to their low mean time at liberty (Table 1). 

Hawksbill turtles displayed movements largely restricted to the atoll (Fig. 2), with 99.0% of all 

detections occurring in lagoon habitats. Hawksbill movement were highly focused, with 

comparatively few connections made (edge density was only 0.03, node density 0.46). Hawksbill 

turtles also displayed very high occupancy of lagoon habitats compared to random networks (Fig. 3).  

Apart from silvertip sharks along the drop-offs, all real networks displayed lower connectivity in all 

habitats than random networks for all species, revealing that all tracked individuals displayed more 

directed movement between nodes than their random counterparts (Fig. 3; Supplementary Material, 

Fig. S2). This is also consistent with the universally low edge densities for all species, which are 

significantly lower than their random counterparts (Supplementary Material, Table S2).  
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Figure 2: Networks displaying species-specific detection frequency at each receiver (node colour) 

and how often each receiver was connected by subsequent detections (edge colour). Receivers with no 

detections marked with ʘ. BT = blacktip reef, LM = lemon (a: fine-scale, b: broad-scale), GR = grey 

reef, TN = tawny nurse, ST = silvertip, HB = hawksbill. Maps created in ArcGIS, using satellite 

imagery from LAND INFO Worldwide Mapping and ETOPO2v2 bathymetry data. 
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Figure 3: Charts showing, for three species that exemplify the different patterns observed, the mean 

percentage difference between the actual node metrics and those from the randomly generated 

networks (n = 100 per species), with nodes grouped by habitat type. BT = blacktip reef, GR = grey 

reef, HB = hawksbill. Positive deviations denote where actual metric values were higher for that 

habitat than random, and vice versa. Please note the different scales on the y-axes. Error bars represent 

the standard error of the mean. 

 

MPA Use 

Grid occupancy analysis revealed that overall the proposed (larger) MPA increased coverage of 

predator movements by 33.8% ±150.3 (SD) compared to the null (smaller) MPA, with all species 

apart from silvertip sharks displaying a significant increase in coverage from the larger MPA (see 

Supplementary Material, Table S3). Although a high percentage (89.9%) of blacktip reef shark tracks 

occurred within the boundaries of the smaller MPA, 98.7% occurred within the larger MPA (Fig. 4). 

Similarly for lemon sharks, 83.5% of recorded tracks occurred within the smaller MPA versus 96.5% 

for the larger MPA (Fig. 4).  

Grey reef sharks overall received very poor coverage from both MPAs, but still received a significant 

increase in coverage from the larger MPA (26.6% of time in the smaller versus 32.8% inside the 

larger; Fig. 4). This increase is largely driven by greater coverage of smaller individuals patrolling 
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coastal reefs: two of the smallest grey reef sharks (79 cm and 99 cm) had their coverage more than 

double from 47% to 98%. 

Nurse sharks also receive a significant increase in coverage from the smaller to larger MPA (from 

63.7% to 82.9%). Silvertip sharks spend very little time in either MPA (2.7% and 4.0%), with no 

significant difference between the two, as movements are largely focused along the offshore drop-offs 

(Fig. 2). Hawksbill turtles received similar coverage from the smaller MPA (84.9%) to blacktip reef 

sharks, and had significantly higher coverage from the larger MPA (99.1%, Fig. 4). 

Figure 4: Box plots of the proportion of their recorded track each species spent inside the small MPA 

(white, 1 km from high tide) and the larger MPA (hatched, 1 km from low tide). BT = blacktip reef, 

LM = lemon, GR = grey reef, TN = tawny nurse, ST = silvertip, HB = hawksbill.  

 

MPA management 

An early form of the results presented here was communicated to the Ministry of Environment, 

Energy and Climate Change, Seychelles, to demonstrate the value of habitat provided by D’Arros and 

St Joseph, and to indicate the increased efficacy of the larger MPA for protecting sharks. This in part 

contributed to the Seychelles government formally adopting the larger MPA and declaring D’Arros 

and St Joseph a Special Reserve (International Union for the Conservation of Nature, IUCN, Category 

1a) with a no-take zone extending 1 km from the low tide mark [36]. An implementation plan was 
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also agreed where the Save Our Seas Foundation would provide facilities (e.g. a patrol boat) to 

promote enforcement.  

Discussion 

While efforts have been made to assess the efficacy of existing MPAs (e.g. [14,37,38]), this study is 

novel in using the dynamic habitat use of sharks and turtles to inform the design of an MPA at a 

remote atoll in the Indian Ocean. In particular, the telemetry-based network and grid occupancy 

analyses allowed complex animal movements to be collapsed into a few axes that could be more 

easily interpreted within and between species in relation to spatial areas. An early form of the data on 

habitat use presented here was used not only to emphasise the importance of D’Arros and St Joseph as 

important habitat worthy of protection, but also to justify having a boundary beyond the 1 km from 

MHW used elsewhere in the Seychelles, informing the subsequent adoption of the Special Reserve 

[36]. Moreover, this model has also since been used to propose extension of the MPA around Aride 

Island in the Seychelles from 400 m offshore to 1 km [39].  

In light of global threats to marine ecosystems, conservation efforts are increasingly turning to spatial 

management options, with over 9,000 MPAs having been declared to date [19]. A recent review of 

MPAs that have successfully increased biomass found that the chances of MPA success increased 

with the designation of a no-take zone, effective enforcement, age, size and isolation [14]. Yet over 

90% of MPAs still permit some level of fishing, and the median size is only 4.5 km
2
, leaving 

significant gaps in coverage [19,31]. By comparison the D’Arros and St Joseph Special Reserve is 

isolated, will not permit any fishing, will be over 65 km
2
, and will have effective enforcement, all of 

which suggest it has the potential to be effective.  

Although an MPA of 1 km from MHW at D’Arros and St Joseph may have still been effective in 

protecting juvenile hawksbill turtles and some shark species, a change in definition to delineate the 

boundary according to the low tide mark predicts a significant increase in protection for all tracked 

species bar the silvertip shark. This increase can be explained by an understanding of movements and 

local topography – extending the boundary from the low tide means it starts at the edge of the wide 

reef flats that surround the islands, forcing the boundary out beyond the coastal reefs and covering the 

lagoon, the two habitats used most frequently by the majority of tracked species. The smaller MPA 

would not have covered all of the lagoon or outer reefs (Fig. 1), leaving many sharks frequently 

exposed to fishing pressure. Indeed, shark finning has previously been recorded in the lagoon [40]. 

From the recorded tracks, it appears as though D’Arros and St Joseph may provide important nursery 

habitats for sharks within the Amirantes and across the Seychelles. Juveniles of blacktip reef, sicklefin 

lemon, grey reef and tawny nurse sharks were all found to display long-term, perennial use of the 

lagoon and coastal reef habitats, fulfilling previously established nursery criteria [41]. The confined, 
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access-restricted habitat provided by the lagoon presumably provides refuge from predation alongside 

foraging opportunities, as suggested for similar shark nurseries in the Bahamas [42]. Consequently, its 

protection through the designation of a more effective MPA is particularly important and may help 

promote survival and recruitment into regional populations, especially if larger individuals of certain 

species disperse broadly upon reaching maturity. 

The differences in habitat use between the hawksbill turtles and different shark species corresponds 

with the varied efficacy of the MPA between species, highlighting the importance of understanding 

movements of multiple species in order for MPA design to be effective. Given the historic focus on 

turtle conservation in the Seychelles, following intense exploitation for their shells and meat [29], the 

hawksbill turtles were the basis from which the null MPA was assessed, with the sharks being used as 

the justification for its extension. Although protected nationwide in Seychelles since 1994, hawksbill 

turtles are critically endangered in every ocean basin [43], and there is still some level of poaching in 

Seychelles [34].  

Effective management of sicklefin lemon shark populations is particularly important as they are 

considered Vulnerable on the IUCN Red List and have been exploited to extirpation in several areas, 

including India and Thailand [44]. Consistent with previous work in Seychelles [32,45], smaller 

lemon sharks displayed high fidelity to lagoon habitats within MPA boundaries, but larger individuals 

of both lemon and nurse sharks adopted broader movements across the Amirantes plateau. Similarly 

most grey reef and silvertip sharks favoured particular drop-off habitats, receiving little coverage from 

either MPA.  

The more extensive distribution of larger lemon, grey reef and nurse sharks means that certain 

individuals remain exposed to fishing exploitation, and reveals the need for alternative management 

strategies. Potential nurseries such as St Joseph Atoll may be maintained by relatively few mature 

females; in Atol das Rocas off Brazil it is estimated that a population of ~100 juvenile Atlantic lemon 

sharks Negaprion brevirostris could be maintained by as few as 5–7 mature females [46]. 

Consequently, even infrequent shark finning events, as have been reported within St Joseph Atoll 

[40], pose significant risk to shark population stability. Although the MPA should prevent finning 

events in the lagoon, the risk is further realised by the capture of tagged lemon sharks at Marie-Louise 

and Bird Island. These captures emphasise that for wider ranging species management tools like the 

MPA need to be coupled with broader fisheries management strategies in order to reduce mortality of 

wider ranging adults and be effective at promoting recruitment [15,47], such as catch quotas, size 

limits, time/area closures, or even a larger shark sanctuary that covers at least the Amirantes. 

Furthermore, MPAs need to be linked with reduced fishing capacity to ensure that effort is not simply 

displaced [47]. Indeed, the mean increase in coverage of 33.8% ±150.3 (SD) across all individuals 

comes at the expense of a 50% increase in area, which may incur a greater cost to local fishing 
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capacity. However, this masks the fact that while some species (e.g. silvertip) receive little to no 

increase in coverage, the absolute coverage of the larger MPA for other species (e.g. blacktip reef, 

lemon) starts to approach 100% for most individuals, suggesting the change in boundary may be 

particularly valuable for the species using the atoll as a refuge or nursery, with recruitment benefits 

potentially outweighing the raw ratio of increase between coverage and MPA size.  

In summary, the present study reveals how a detailed understanding of habitat use, determined with 

acoustic telemetry and network analysis, was used to inform the design of a no-take MPA at the point 

of inception, defining its boundaries to enhance its efficacy significantly. This highlights the 

importance of an evidence-driven approach to MPA design, and the value of incorporating multiple 

species over the long-term. Our study emphasises how an MPA designed for one species (e.g. turtles) 

may not be as effective for others (e.g. sharks), and could therefore fall short of protecting the 

ecosystem as a whole. Even when the larger MPA in this study is in place, however, broader 

management efforts will need to be framed at regional scales, as movements of certain species and 

size classes continue to traverse MPA boundaries and the high seas. 
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