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ABSTRACT 19 

Viruses are a major cause of coccolithophore bloom demise in both temperate and sub-20 

temperate oceanic regions. Here we observe the competitive interactions between two 21 

coccolithovirus strains, EhV-86 and EhV-207 during the infection of the cosmopolitan 22 

marine micro-alga Emiliania huxleyi. EhV-207 displayed a shorter lytic cycle and increased 23 

production potential than EhV-86, and was remarkably superior under competitive 24 

conditions. The observation of such clear phenotypic differences between genetically distinct, 25 

yet similar, coccolithovirus strains by flow cytometry and quantitative real time PCR allowed 26 

links to the burgeoning genomic, transcriptomic and metabolic data currently available to be 27 

made. We speculate on the tentative identification of the genetic source of the phenotypic 28 

variation observed and the factors driving their selection (such as the functional relevance of 29 

the encoded sphingolipid biosynthesis associated genes). This work illustrates that, even 30 

within a family, not all viruses are created equally and the potential exists for relatively small 31 

genetic changes to infer disproportionately large competitive advantages for one 32 

coccolithovirus over another, ultimately leading to a few viruses dominating the many. 33 

 34 
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INTRODUCTION 36 

Viruses are a major cause of coccolithophore bloom demise in both temperate and sub-37 

temperate oceanic regions (Bratbak et al., 1995; Martinez et al., 2007; Brussaard et al., 2008; 38 

Sorensen et al., 2009). Their role in regulating coccolithophore populations has been firmly 39 

established via studies of natural environmental systems (Wilson et al. 2002, Schroeder et al. 40 

2003, Martinez et al. 2007), and induced semi-natural blooms in the Norwegian fjords 41 

(Bratbak et al. 1993, Jacquet et al. 2002, , Pagarete et al. 2009, , Kimmance et al. 2014). In 42 

addition to the direct reduction in total cell abundance, the species-specific nature of viruses 43 

leads to the regulation of interspecies competition and succession within a mixed 44 

phytoplankton community (Brussaard, 2004; Fuhrman, 1999). 45 

 46 

Within a coccolithophore bloom, the success of specific coccolithovirus strains vary and is 47 

influenced, among other factors, by the type of host strains present and the physico-chemical 48 

environment in which they are found (Wilson et al., 2002a; Martinez et al., 2007, 2012; Rowe 49 

et al., 2011; Coolen, 2011). Under bloom conditions, there is typically an initial and diverse 50 

pool of low abundance virus (Sorensen et al. 2009) and host strains (Schroeder et al. 2003), a 51 

subset of which become more dominant than others as the bloom progresses (Martinez et al. 52 

2007; Sorensen et al. 2009), and an indication that some virus genotypes win over others 53 

(Pagarete et al, 2014, Highfield et al, 2014). Virus abundance and diversity is controlled by 54 

external (environmental) influences that drive evolutionary processes (Coolen et al. 2011; 55 

Martinez et al. 2012). However, the molecular diversity observed within samples is a mere 56 

snapshot of that particular time, and although useful, it does not reveal how and why 57 

coccolithovirus strains vary with regards to infection strategies and mechanisms. Given that 58 

there are clear genetic differences between coccolithovirus isolates (Allen et al. 2006, 59 

Nissimov et al. 2011, 2012, 2014, Pagarete et al. 2013) it is likely that within a mixed 60 



community of coccolithoviruses during bloom conditions, subtle variations in their 61 

phenotypic properties, i.e. infection and lysis rates, may have a profound impact on shaping 62 

the ultimate genetic richness and composition of the host and viral community.  63 

 64 

However, the fundamental question remains as to how differences in coccolithovirus 65 

phenotypes influence host growth dynamics, virus succession and population survival. A 66 

previous study by Bidle and Kwityn (2012) demonstrated that different Emiliania huxleyi 67 

strains vary in their susceptibility to infection by a single coccolithovirus strain, yet, to date, 68 

the significance of coccolithovirus strain-specific differences have not yet been fully 69 

investigated. Whether the enormous genetic potential contained within their large genomes 70 

(~400-500 MBs) produces variations in the infection strategies employed by different 71 

coccolithovirus strains, remains to be determined. Like in all other virus systems, intra-72 

familial competition among coccolithoviruses for successful infection and replication must 73 

exist. The molecular encoded components at the interface of this ongoing evolutionary 74 

struggle are currently unknown, yet our current whole genomic knowledge of a dozen 75 

coccolithovirus strains suggests their identification is now possible. 76 

  77 

Here we use an experimental approach to assess the phenotypic differences in two E. huxleyi 78 

virus (EhV) strains, and their manifestation during infection of a single host strain. Infection 79 

experiments were performed with two coccolithovirus strains which were originally isolated 80 

from the same location in the English Channel: EhV-86 and EhV-207, and have been shown 81 

previously to successfully infect the same host (E. huxleyi CCMP 2090) (Nissimov et al, 82 

2011; 2012), yet differ in genomic composition (Nissimov et al. 2014). For simplicity, it was 83 

decided that the focus would be to identify any potential differences in viral production and 84 

host lysis during infection, and not to consider host strain variability here. The main goal was 85 



to reveal the competitive interactions of two genetically distinct viruses infecting side by side, 86 

and assess the implications for host growth and virus productivity. Strain specific primers 87 

were designed for each coccolithovirus, and the change in EhV abundance was monitored for 88 

one week post- virus addition by means of quantitative real time PCR (qPCR) and Analytical 89 

Flow Cytometry (AFC). 90 

 91 

MATERIALS AND METHODS 92 

Culture conditions and experimental setup 93 

Prior to the start of the experiment, cultures of E. huxleyi CCMP 2090 were grown in filtered 94 

(30 kDa, TFF GE Healthcare), autoclaved natural seawater enriched with f/2 nutrients 95 

(Guillard 1975), in 2 L InforsMinifors chemostat bioreactors (INFORS UK Ltd). Cultures 96 

were maintained with a light and dark cycle of 16:8 hours, at a white light intensity of ~86 97 

µM photons m
-2

 s
-1

, and a temperature of 18°C, with continuous gentle mixing and aeration. 98 

Emiliania huxleyi abundance was measured daily using analytical flow cytometry (AFC, see 99 

below for protocol), and  when cellular density  reached 1.5 × 10
6 

cells mL
-1

 (i.e. beginning of 100 

exponential growth, µ = > 0.7), aliquots of 100 mL were distributed into 12 polystyrene, 101 

sterile, 250 mL tissue culture flasks (Greiner, CellStar). The 12 algal subculture flasks and 102 

nine additional flasks containing only f/2 media (controls; Table S1) were then returned to the 103 

same light and temperature conditions as above, and left to acclimatise for 48 h. 104 

 105 

The virus pathogens EhV strain EhV86 (Wilson et al. 2002) and EhV-207 (Nissimov et al. 106 

2012) were obtained from the Plymouth Marine Laboratory virus collection and for each EhV 107 

strain, a fresh batch of viral lysate was prepared prior to experiments to ensure a high amount 108 

of infective virions. For this, 500 mL of an exponentially growing E. huxleyi CCMP2090 109 

culture (~4 × 10
6
 cells mL

-1
) was infected with 5-10 mL of an EhV lysate stock. When the 110 



culture had lysed (complete loss of pigmentation, monitored using analytical flow cytometry, 111 

AFC, see below) lysates were gently vacuum-filtered through 0.2 µm pore size sterile filters, 112 

Millipore Express) to remove E. huxleyi cell debris, and stored in the dark at 4°C until 113 

required. On the day of the experiment (t0), the experimental flasks were set up to represent 114 

seven different treatments (A-G) as described in Table S1. Ten minutes before the first 115 

sampling point (t0), flasks 1-3 (A) were inoculated with EhV-86 lysate at a virus:host ratio of 116 

1:1; flasks 4-6 (B) were inoculated with EhV-207 at a virus:host ratio of 1:1; and flasks 7-9 117 

(C) were inoculated with a combination of both EhV-86 and EhV-207, providing an overall 118 

virus:host ratio of 1:1 (with a 1:1 ratio of each virus). Flasks 10-12 (D) were virus controls 119 

that contained no host (only culture media), but were inoculated with the same volume of 120 

EhV-86 lysate as flasks 1-3. Likewise, flasks 13-15 (E) contained only culture media and an 121 

inoculum of the same volume of EhV-207 lysate as flasks 4-6. Flasks 16-18 (F) contained 122 

only culture media and an inoculum of combined EhV-86 and EhV-207 lysates equivalent to 123 

that in flasks 7-9. Finally, flasks 19-21 (G) were the negative controls containing host culture 124 

with an addition of EhV-86 and EhV-207 lysates equivalent to treatments (C) and (F), 125 

however prior to addition lysates were inactivated through a series of treatments: autoclaving 126 

at 126°C, filter sterilization through 0.2 µm sterile cellulose acetate syringe filter (Gilson), 127 

followed by overnight exposure to UV light in a PCR station (Labcaire), prior to their 128 

addition to the control flasks. 129 

 130 

Sampling procedure 131 

Once experimental conditions were set up in the flasks the cultures were left for ten minutes 132 

to allow viruses to establish initial attachments/infections with the host cells. Then 3 mL of 133 

sample were taken out from each flask at the following time intervals: 0 (t0), 1 h (t1), 2 h (t2), 134 

3 h (t3), 4 h (t4), 8 h (t5), 12 h (t6), 24 h (t7), 48 h (t8), 72 h (t9), 96 h (t10), 120 h (t11), 144 135 



h (t12), and 168 h (t13). The 3 mL samples were then further divided into three sub-samples: 136 

1 mL was fixed with 0.5% (final conc.) glutaraldehyde for the enumeration of host abundance 137 

using analytical flow cytometry (AFC), and 1 mL was centrifuged at 20,000g for 30 sec., of 138 

which the top phase was carefully removed into a sterile, 2 mL Eppendorf polypropylene 139 

tube, fixed with 0.5% (final conc.) glutaraldehyde, and the pellet re-suspended in 1 mL of 140 

DNA free water and fixed in 0.5 % glutaraldehyde for the subsequent enumeration of free 141 

and attached VLPs respectively by AFC. All samples were snap frozen in liquid nitrogen 142 

(LN2) and stored at -80°C for further analysis. The same procedure was performed with the 143 

third 1 mL subsample, with the exception of the addition of the glutaraldehyde, as these 144 

samples were used for DNA extractions and subsequent quantitative real time PCR analysis.  145 

 146 

Enumeration of host and virus abundance 147 

All samples were analysed en masse following the conclusion of the experiment. Fixed, 148 

frozen samples were defrosted at room temperature and then analysed using AFC following 149 

standard protocols (Marie et al. 2000; Brussaard et al. 2004). Samples were analysed on a 150 

FACScan flow cytometer (Becton Dickinson, Oxford, UK) equipped with a 15 mW laser 151 

exciting at 488 nm and with a standard filter set up. Counts of E. huxleyi were conducted at 152 

high flow rate (~ 80 μL min
–1

) and files were analysed using WinMDI 2.8 software (Joseph 153 

Trotter, [http://facs.scripps.edu]. For virus analysis, sub-samples were diluted 500-fold with 154 

TE buffer (10 mmol L
-1

 Tris-HCL pH8, 1 mmol L
-1

 EDTA), stained with SYBR Green 1 155 

(Molecular Probes; Marie et al., 2000) at a final dilution of 5 × 10
-5

 the commercial stock, 156 

incubated at 80°C for 10 min in the dark, then allowed to cool for 5 min before flow 157 

cytometric analysis. Samples were analysed at a flow rate of ~ 20 µL min
-1

 and EhVs were 158 

identified on the basis of their RALS versus green fluorescence. Data files were analysed 159 

using WinMDI 2.8 software (as above). The two EhV strains could not be separated by their 160 



AFC profiles in the combined EhV-86 and EhV-207 treatments, as they gave identical 161 

fluorescence vs. scatter signatures. 162 

Probe design and optimisation  163 

The selection for specific primer probes for the two viruses EhV-86 and EhV-207 was 164 

performed on the IMG/ER analysis platform, in which the total protein coding genes of EhV-165 

86 and EhV-207 were BLAST searched against each other with a maximum E value of 1e
-05

 166 

and minimum percent identity of 40%. Following this analysis, EhV-86 and EhV-207 strain 167 

specific genes were identified (i.e. ehv290 [510 bp] and EQVG00465 [1059 bp], 168 

respectively) and selected for the design of strain specific PCR primers. The final sequence 169 

lengths that were to be amplified by PCR/quantitative real time PCR were 209 bp and 353 bp 170 

for EhV-86 and  EhV-207 respectively (primers sequence: qPCR(EhV-86)-F [5’-171 

GCACAACTTTCAACAATTCG-3’]; qPCR(EhV-86)-R [5’-172 

TCAGCTCAACTTTTGGATCA-3’]; qPCR(EhV-207)-F 173 

[5’CATAGGGTTGGCAATATTCA-3’] and qPCR(EhV-207)-R [5’-174 

TTCGAAACAACTTGGTCAAC-3’], Sigma-Aldrich Company Ltd). 175 

 176 

To first establish that the designed primers were strain specific, a standard PCR was 177 

performed on fresh lysate stocks of EhV-86 and EhV-207 with the primers for ehv290 (i.e. 178 

qPCR(EhV-86)-F and qPCR(EhV-86)-R) and EQVG00465 (i.e. qPCR(EhV-207)-F) and 179 

qPCR(EhV-207)-R). Reactions were conducted in a VWR JENCONS Uno Thermal Cycler in 180 

25 µL final volume reactions (unless otherwise stated). PCR reactions were set as follows: 1 181 

µL of virus lysate template (or ~50 ng µL
-1

 of extracted DNA) was mixed with 5 µL of 1 × 182 

PCR reaction buffer (Promega), 1.5 µL of 25 mM MgCl2, 0.1 µL of Taq DNA polymerase 183 

(Promega), 2 µL of 10 of each primer, 1.25 µL of 2 mM dNTPs and DNA-free molecular 184 

biology grade water (Sigma-Aldrich). PCR was conducted in triplicate and the conditions 185 



were as follows: an initial denaturation step at 95°C for 3 min, followed by 34 cycles at 95°C, 186 

60°C and 74°C for 30, 60 and 90 sec respectively, and a final cycle at 95°C, 60°C and 74°C 187 

for 30 sec, 5 min and 5 min respectively.    188 

 189 

DNA extraction from top phase and pellet samples 190 

Phenol-chloroform DNA extraction was performed on the samples intended for qPCR 191 

analysis based on the detailed protocol described by Schroeder et al, (2002). Briefly, 0.5 mL 192 

aliquots from the 1 mL top phase and pelleted sub-samples collected at the different time 193 

points during the experiment were placed into sterile tubes in a heating block at 90°C for 1 min 194 

and then transferred onto ice for a further minute, repeating this three times. Then to the tubes 195 

were added 20 μL 0.5 M EDTA pH 8.0 at a final concentration of 20 mM, 5 μL proteinase K at a 196 

final concentration of 50 μg mL-1, and 25 μL of 10% SDS at a final concentration of 0.5%, and 197 

incubated in a water bath for 1 h at 65°C. After the incubation the tubes were transferred onto ice 198 

and gently mixed with 60 μL of phenol. Then 500 μL of chloroform/isoamyl alcohol (24:1) was 199 

added to the tubes, mixed gently, after which they were centrifuged at 10,000 rpm for 5 min. 200 

After removing the top phase into a clean Eppendorf microfuge tube and adding 500 μL of 7.5 M 201 

ammonium acetate, they were left at room temperature for 30 min. A centrifugation step at 202 

10,000 rpm for 15 min followed after which the supernatants were placed into clean 2 mL 203 

Eppendorf tubes. To these tubes 1 mL of 100% ethanol (ETOH) was added, leaving them to 204 

precipitate for 3 h at 4°C, and then centrifuging them at 13,000 rpm for 30 min after which the 205 

supernatants were removed and discarded. Finally, the pellets were washed by centrifugation for 206 

10 min with 500 μL of 70% ETOH and air dried overnight. The genomic DNA pellets were re-207 

suspended in 50 μL of TE buffer and then quantified by spectrophotometer (i.e. NanoDrop) and a 208 

1% agarose gel electrophoresis. 209 

 210 

Quantitative real-time PCR  211 



Quantitative real-time PCR (qPCR) assays on extracted DNA samples were carried out in 212 

optical-grade 96-well plates in an ABI PRISM®7000 Sequence Detection System (Applied 213 

Biosystems, UK) with the Qiagen Quantifast Sybr Green PCR kit containing a ready to use 214 

master mix. The calibration curve (or standards) for the qPCR to which each experiment 215 

DNA sample was compared to consisted of triplicates of the serial dilutions (10
-1

 to 10
-10

) of 216 

amplified and gel extracted PCR products of ehv290 (for EhV-86) and EQVG00465 (for 217 

EhV-207) at initial DNA concentrations of 65.7 ng µL
-1

 and 57.4 ng µL
-1

 respectively (i.e. 218 

predicted DNA copy number of 2.91 × 10
11

 and 1.51 × 10
11 

µL
-1 

respectively). The 219 

calibration curve diluted samples were loaded each time on the same plate as the DNA 220 

samples from the experiment in order to reduce bias occurring due to small shifts in 221 

fluorescence signal from one 96 well plate to another. The reactions of both standards and 222 

samples consisted of 12.5 µL of Sybr Green master mix, 0.5 µL of primer qPCR(EhV-86)-F 223 

or qPCR(EhV-207)-F (at a final conc. of 0.2 µM), 0.5 µL of primer qPCR(EhV-86)-R or 224 

qPCR(EhV-207)-R (at a final conc. of 0.2 µM), 1 µL of template DNA (sample, standard, or 225 

NTC [no template control]) and 10.5 µL of RNAse free water (final volume of 25 µL). The 226 

thermal cycling conditions (on the ABI PRISM 7000 cycler) were as follows: an initial cycle 227 

of 95ºC for 10 min followed by 40 cycles at 95ºC for 30 sec and 60ºC for 30 sec. The 228 

automated generation of the calibration curve by the ABI PRISM 7000 sequence detection 229 

system allowed the logarithmic plotting of each standard concentration against the cycle 230 

number at which the detected fluorescence signal increased above the threshold value- CT. 231 

Then, the Sequence Detection System software calculated the target gene DNA copy number 232 

(or concentration) from the CT value obtained for each of the samples with unknown 233 

concentration. The calibration curve slope was used to determine the reaction efficiency (E) 234 

using the following equation: E= -1+10
(-1/slope)

. For instance, if E equalled to 1 then this meant 235 

a 100% product doubling in each amplification cycle. 236 



 237 

 238 

Oligonucleotide specificity 239 

PCR amplification of EhV-86, EhV-207 and EhV-86+EhV-207-combined lysates revealed 240 

that the newly designed qPCR primers were strain specific (Fig. S1). When each set of 241 

primers was used in a sample from which the target strain was not present (EhV-86 or EhV-242 

207), amplification was not detected; i.e. the amplification was specific to the set of primers 243 

used and only samples that had the target strain produced PCR amplicons. The amplified 244 

products of the EhV-86 and EhV-207 specific targets corresponded to the predicted size 245 

fragments of 209 and 353 bp for EhV-86 and EhV-207 respectively.  246 

 247 

Calibration curve efficiencies of the quantitative real time PCR sample analysis 248 

The calibration curves (Fig. S2) that were conducted to establish the optimum conditions for the 249 

qPCR analysis indicated that under the described PCR conditions, the serial dilutions of the 250 

known concentrations of ehv290 (for EhV-86)  and EQVG00465 (for EhV-207) PCR generated 251 

DNA was log-linear for both, with a correlation coefficient (R2) of 0.99. The calculated efficiency 252 

(E= -1+10
(-1/slope)

) of the reactions were 102.21 % and 88.70 % respectively. The calibration 253 

curves were interrogated to allow the accurate quantification of DNA template in both single 254 

and dual infection samples.  255 

 256 

RESULTS 257 

Genetically distinct viruses produce contrasting host lysis rates  258 

Emiliania huxleyi CCMP 2090 abundance increased steadily in all flasks during the first 24 h 259 

to an average (±SD) maximum of 2.6 × 10
6 

±4 × 10
5
cells mL

-1 
(Fig. 1). However, by day 3, 260 

both the EhV-207 and EhV-86+EhV-207-infected populations crashed dramatically, with a 261 



96 % loss of cells in these flasks from 2.48 × 10
6 

±2.73 × 10
5 

(SD) to 9.83 × 10
4
 ±2.87 × 10

4 
262 

cells mL
-1

 (SD). The crash was simultaneous between these two treatments (Fig. 1). In 263 

contrast, during the same time period (24-72 h post-addition of virus), there was a 14% 264 

increase in E. huxleyi abundance in the EhV-86 infected cultures to 3.15 × 10
6 

cells mL
-1 

265 

±1.41 × 10
5 

(SD). However by 96 h host density also began to decrease in the EhV-86 266 

infected cultures, but at a much slower rate (~17 % reduction in host cell density) compared 267 

to the EhV-207 and EhV-86+EhV-207-infected cultures (Fig.1). These differences were also 268 

evident from the fluorescence profiles of E. huxleyi derived during the AFC analysis (Fig. 2) 269 

in which the mean cellular red fluorescence (proxy for chlorophyll a) at 72 h post-infection, 270 

was much lower in the EhV-207 and EhV-86+EhV-207-infected cultures than in those 271 

infected only with EhV-86. By the end of the experiment (168 h), the majority of the E. 272 

huxleyi cells in the EhV-86 infected cultures had lysed (Figs.1, 2). However a small, 273 

relatively healthy (as indicated by high cellular red fluorescence observed during AFC 274 

analysis) host population remained in the EhV-86 infected cultures, and the average (±SD) 275 

cell abundance was 2.77 × 10
5
 (±6.89 × 10

4 
mL

-1
), as opposed to 2.52 × 10

2
 (±3.36 × 10

1 
mL

-
276 

1
) and 1.18 × 10

3 
(±1.24 × 10

3 
mL

-1
) in the EhV-207 and EhV-86+EhV-207-infected cultures 277 

respectively. With regards to the control cultures that contained inactivated EhVs, E. huxleyi 278 

abundance remained high at the end of the experiment with 4.32 × 10
6 

cells mL
-1 

±3.04 × 10
5 279 

(SD), (Fig. 1, 2).  280 

 281 

EhV abundance decreased in all non-control flasks two hours post-infection to an average 282 

(±SD) of 2.91 × 10
5 

±1.42 × 10
4 

mL
-1

 (Fig. 3). This suggests that by two hours post-virus 283 

addition, almost half (45%) of the inoculated EhVs were either attached to the host cell 284 

receptors or had penetrated into the cells for replication. The first round of mass EhV release 285 

from the infected cells in all treatments was 3 h post-addition (Fig. 3). After this point there 286 



appeared to be a separation between EhV treatments, with the samples containing EhV-207 287 

producing a higher number of virions compared to those containing EhV-86. However, this 288 

was not statistically significant until (8 h post-addition) when there was significantly more 289 

free EhVs in the EhV-207 and EhV-86+EhV-207 infected cultures than in the EhV-86 290 

infected treatments (P<0.05). The trend of significantly lower and slower virion 291 

production/release from the EhV-86 infected cultures continued until the end of the 292 

experiment 7 days post-addition (P<0.01). At this point, the amount of free EhV mL
-1 

in the 293 

EhV-86 infected cultures (5.19 × 10
7 

±3.88 × 10
6 

SD) was on average 92% less than in the 294 

EhV-207-infected (6.58 × 10
8 

±1.09 × 10
8 

SD) or EhV-86+EhV-207 (7.04 × 10
8 

±8.55 × 10
7 295 

SD) combined treatments (Fig. 3). Throughout the experiment, there was no difference in the 296 

number of EhV between cultures infected by EhV-207 and those infected with both EhV-297 

86+EhV-207 combined, with the exception of one hour post-infection, where the number of 298 

free EhVs in the combined virus treatment was significantly lower (P<0.05) (Fig. 3).   299 

 300 

Quantifying strain-specific differences in virus genome copy number  301 

Quantitative real time PCR analysis (qPCR) was used to determine EhV-86 and EhV-207 302 

genome copy number (GCN) in both cell-free and cell-associated fractions. Total GCN 303 

estimates were derived from a combination of the two fractions. Cell-associated GCN will 304 

include genomes found within virions adsorbed to the cell surface, unreleased intracellular 305 

virions, as well as unpackaged genomes undergoing replication. Cell-free GCN estimates, on 306 

the assumption that one virus genome copy is found per free floating virion, can be directly 307 

compared to the AFC measurements of non-cell associated virions. This comparison, of EhV 308 

virion abundance determined by AFC with genome copy number quantified by qPCR, 309 

revealed that there was a consistent 100-fold decrease in the predicted genome copy number 310 

detected by the qPCR method, a phenomena most likely caused due to inefficiencies during 311 



the phenol-chloroform DNA extraction step (Table S2). This reduction in apparent virus 312 

abundance was consistent throughout the experiment and was thus taken into consideration 313 

when interpreting the qPCR results of the dual virus infection treatments. In addition, the 314 

resolution of the qPCR was accurate only 12 h post-EhV addition at GCN higher than 10
3
 315 

mL
-1

, hence the qPCR results of t0 – t5 were below reliable detection levels and are not 316 

shown here. Regardless of whether the two virus strains were added to the host cultures 317 

combined or in isolation, EhV-207 and EhV-86 appeared to exhibit different infection 318 

dynamics, and the qPCR results revealed more than what was initially observed with the AFC 319 

analysis alone.  320 

 321 

In the single virus-addition treatments, EhV-207 exhibited faster infection than EhV-86 and 322 

replicated to produce new virions quicker; i.e. combined GCN was higher (Fig. 4). In the dual 323 

infection treatments (EhV-207 + EhV-86), the presence of EhV-86 did not appear to reduce 324 

the infection potential of EhV-207, and GCN produced was comparable to that in the EhV-325 

207-only infected treatments. In contrast, EhV-86 was affected by the presence of EhV-207 326 

in the dual infection treatments and the amount of EhV-86 GCN at the end of the experiment 327 

was 1000 fold less than in the single EhV-86 infected cultures ; i.e. 6 × 10
3
 ±2.86 × 10

3 
(SD) 328 

and 4 × 10
6
 ±1.28 × 10

6 
(SD) mL

-1
 respectively (Fig. 4). Thus, EhV-207 appeared to be not 329 

only a faster strain than EhV-86 with regards to its rate of infection under the conditions 330 

studied, but also a ‘superior’ strain that out-competed its EhV-86 rival to infect a host 331 

population when they were combined at equal abundance  332 

 333 

To gain a deeper understanding of the competitive interactions between the two EhVs, we 334 

also measured the GCN of each virus strain that was associated with the cellular fraction, 335 

with the assumption that the GCN in the pelleted fraction represents viruses or synthesised 336 



viral genomes within the cells or virus particles attached to the cell receptors (infecting or 337 

still attached). Throughout the experiment, the amount of cell-associated EhV-207 GCN in 338 

both dual and single virus treatments was higher than the amount of free EhV-207 GCN, with 339 

the exception of 168 h post-infection. At this point the average (±SD) amount of free and 340 

cell-associated EhV-207 GCN was equivalent: i.e. 6.9 × 10
6
 (±2.6 × 10

5
) and 5.59 × 10

6
 341 

(±1.01 × 10
6
) respectively (Fig. 4). In comparison, the amount of cell-associated EhV-86 342 

GCN in both dual and single virus treatments was also higher than the amount of free EhV-86 343 

GCN throughout the experiment, with the exception of 12 h post infection, where the average 344 

(±SD) amount of free and attached cell-associated EhV-86 GCN was equivalent: i.e. 1.27 × 345 

10
3
 (±1.85 × 10

2
) and 1.69 × 10

3
 (±8.6 × 10

2
) respectively (Fig. 4).   346 

 347 

The presence of EhV-86 in the dual infection treatments did not affect the amount of cell-348 

associated or free EhV-207, as the GCN of both fractions was similar to the GCN of the cell-349 

associated and free EhV-207 in the EhV-207 single virus treatments. At 48 h post-infection 350 

the average (±SD) cell-associated EhV-207 GCNs in the dual and single virus treatments 351 

were 5 × 10
7 

(±2.83 × 10
7
) and 4.47 × 10

7
 (±1.52 × 10

7
) respectively, while the average 352 

(±SD) free  EhV-207 GCNs in both the dual and single virus treatments were 3.89 × 10
6
 353 

(±2.62 × 10
5
) and 5.25 × 10

6
 (±7.07 × 10

4
)
 
respectively. In contrast, in the dual-infected 354 

treatments the presence of EhV-207 decreased the GCN of both cell-associated and free EhV-355 

86. At 12 and 48 h post-virus addition there were 72 % and 65 % less cell-associated EhV-86 356 

genomes, and 18 % and 42 % less free EhV-86 genomes in the dual infected treatments, 357 

respectively, in comparison with the single virus treatments (Fig. 4). 358 

 359 

By the end of the sampling period the cell-associated EhV-86 copy number in the dual 360 

infection treatments was more than three orders of magnitude lower than that of cell-361 



associated EhV-207. Similarly, the average GCNs of free EhV-86 in both the single and dual 362 

infected treatments were approximately 15 and 2500 times lower respectively, than the 363 

average GCN of free EhV-207 after 168 h (Fig. 4). 364 

 365 

DISCUSSION 366 

To date, potential differences in infection rates between coccolithovirus strains have been 367 

assessed briefly in only one previous study (Nissimov et al, 2013), and to our knowledge this 368 

is the first time where these dynamics have been investigated under controlled laboratory 369 

conditions that includes an in-depth quantitative coccolithovirus genome analysis. Strain-370 

specific genetic markers enabled us to differentiate production rates of two EhV strains 371 

during dual-strain E. huxleyi infection experiments. Assessment of the competitive 372 

interactions of these viruses during infection of the host identified major differences in their 373 

infection strategies. When infecting in combination, EhV-207 was not affected by the 374 

presence of EhV-86 whereas EhV-86 was quickly out-competed, and a significant reduction 375 

in free and cell-associated EhV-86 was seen two days after the initial infection. Thus, when 376 

infecting alongside EhV-207, the EhV-86 strain appeared to be “inferior” and its persistence 377 

in this experimental setup was under threat. The significance of the results here are 378 

fundamental in our understanding of how viruses interact with their hosts and with each 379 

other. They provide an insight into the complex and competitive interactions between viruses 380 

in the natural environment, interactions that we currently have a limited knowledge of.  381 

 382 

The losers and winners of the virus “fight club” – a numbers game 383 

Throughout the experiment EhV-207 appeared to be superior to EhV-86 (and perhaps more 384 

potent) in that it was a faster replicating virus with regards to its rate of infection and lysis of 385 

E. huxleyi CCMP 2090, regardless of the competition with EhV-86. As both virus strains 386 



were fresh lysates produced immediately prior to the experiment, and both AFC and qPCR 387 

analysis revealed no obvious differences between the physical properties of the two strains, 388 

this suggests that they were of equivalent abundance and provenance. An equivalent number 389 

of EhVs were added at the start of the experiment (in both single and dual-virus treatments) 390 

and by 2 h post-inoculation EhV abundance in all EhV treatments decreased to an identical 391 

amount, suggesting that at least initially, there was no advantage for EhV-207 with regards to 392 

adsorption kinetics. However, by 8 h there was significantly more EhV-207 than EhV-86; 393 

suggesting that EhV-207 was able to develop a fairly rapid competitive advantage following 394 

adsorption. The dramatic increase in EhV-207 24 h post-infection in both the single and dual-395 

virus treatments and the rapid decrease in E. huxleyi thereafter, demonstrates that the initial 396 

advantage following adsorption was not abated with time. If we consider this in the context of 397 

the combined-virus treatments, by generating a significant advantage over EhV-86 as early as 398 

8 h post-infection, EhV-207 was most likely responsible for the demise of the majority of the 399 

host cells, subsequently leaving EhV-86 less hosts for its own propagation.  400 

 401 

The mechanisms that allow EhV-207 to outcompete EhV-86 under these experimental 402 

conditions are currently not known and a future study combining a complete transcriptomic 403 

or microarray analysis during infection should be considered. Nevertheless, these results 404 

suggest that EhV-207 may have a shorter latent period within the host cells than EhV-86, and 405 

that under these experimental conditions, EhV-207 packages, assembles and releases new 406 

virus progeny much quicker than its EhV-86 rival. A second possible explanation to the EhV-407 

207 dominance is that the amount of EhVs produced per infected host cell (burst size) was 408 

much higher when hosts were infected by EhV-207 compared to EhV-86. Over multiple 409 

rounds of reinfection, this would quickly result in EhV-207 dominating EhV-86. However, 410 

only the second explanation explains the decreased productivity of EhV-86 in comparison 411 



with EhV-207 in the single virus infection treatments. Indeed, if the former were true, 412 

presumably with a longer reinfection cycle, EhV-86 would be expected to produce more, not 413 

less, progeny since the host cells would have longer to grow and therefore have a greater 414 

overall virus production potential. Lytic viruses typically exhibit a short latent period and a 415 

low burst size (Parada et al. 2006), however an extension of the latent period is a strategy 416 

employed by some temperate phage during periods of low multiplicity of infection and low 417 

host abundance (Wilson and Mann 1997, Parada et al. 2006). Although not measured directly 418 

here, we calculated the potential burst sizes of the two EhV strains (estimated as the ratio of 419 

the maximal number of viruses produced to the maximum cell concentration reached by the 420 

specific host before cell decrease (Jaquet et al. 2002), as 16.5 for EhV-86 and 248 for EhV-421 

207; thus, there was potentially over an order of magnitude difference in burst size between 422 

the two virus strains. Although limited, these calculations suggest that differences in burst 423 

size could be a critical factor in deciding the outcome of competition dynamics between virus 424 

strains. 425 

 426 

What strategies lytic viruses such as EhVs can utilise during periods of intense competition is 427 

as yet unknown, but it is clear that EhV-207 confers a competitive advantage over EhV-86 428 

(ultimately affecting burst size and/or lysis rates), and the cause of such an advantage will be 429 

encoded upon their respective genomes. With regards to this, EhV-207 has an extra tRNA not 430 

found in the genome of EhV-86 and also 49 genes (of which 47 have no assigned or predicted 431 

function) that have no homologs with EhV-86. Among these are two genes predicted to 432 

encode for glycosyl-transferases (data not shown). Although rare in viruses, glycosyl-433 

transferase encoding genes have been previously reported in bacteriophages, poxviruses, 434 

herpesviruses and baculoviruses (Markine-Goriaynoff et al., 2004). In some bacteriophages, 435 

glycosyl-transferases have the ability to modify the virus DNA in order to protect it from host 436 



restriction endonucleases, and in Chlorella viruses such as PBCV-1 they have been 437 

implicated in the synthesis of glycan components of the virus major capsid protein (Zhang et 438 

al., 2007). Hence the presence of these genes could be beneficial to EhV-207 and aid in its 439 

much increased rate of genomic assembly and capsid construction prior to release from the 440 

infected cells. It is unlikely that the genetic features unique to EhV-86 that EhV-207 does not 441 

contain (i.e. genes predicted to encode for a longevity-assurance (LAG1) family protein, a 442 

PDZ domain protein, a putative DNA-binding protein, a putative helicase, and 55 extra 443 

membrane proteins or proteins with an unknown function) act to inhibit the infection rate of 444 

EhV-86 (data not shown), although this cannot be ruled out at this stage. Alternatively, it is 445 

possible that the phenotypic difference observed is caused by functional variation in shared 446 

genetic components. 447 

 448 

Indeed, previous studies have reported that coccolithoviruses biochemically highjack the host 449 

sphingolipid biosynthesis pathway (Pagarete et al, 2009; Bidle and Vardi, 2011; Michaelson 450 

et al, 2010) and produce virally-encoded glycosphingolipids that in turn trigger ROS (reactive 451 

oxygen species), caspase activity and PCD (programmed cell death) in the infected host cells 452 

(Bidle et al, 2007; Vardi et al, 2009, 2012). The rate limiting step in this de novo sphingolipid 453 

biosynthesis pathway is the first step in the reaction where serine palmitoyltransferase cleaves 454 

palmitoyl Co-A or myristoyl Co-A with serine (Han et al, 2006; Monier et al, 2009). Recent 455 

protein structural analysis has suggested that there is a difference in the protein fold of the 456 

SPT enzyme encoded by different coccolithoviruses, that may affect the rate and efficiency of 457 

this first step in the virally-encoded sphingolipid biosynthesis pathway (Nissimov et al, 458 

2013). These potential differences between coccolithovirus strains in viral SPT activity in the 459 

first few hours post-infection may prove to be crucial in determining which strain dominates 460 

during competitive interactions such as those shown in this study.   461 



 462 

Another facet that is worthy of consideration is the possibility that a single host cell was 463 

simultaneously infected by both virus strains. In this case, an internal intra-cellular battle over 464 

the host cellular metabolic machinery would have occurred between the two viruses. Such a 465 

scenario although theoretically possible, is maybe less likely due to the mutual exclusion 466 

theory proposed by Luria and Delbruck (1943) in which was suggested that a virus particle 467 

that infects first a host cell alters it to the extent of which a second infection by another virus 468 

is unlikely. This was indeed shown to be the case in the co-infection of Chlorella by two 469 

closely related viruses PBCV-1 and NY-2A (Greiner et al., 2009). In this previous study, 470 

infection by the PBCV-1 virus depolarised the host cell membrane to exclude further 471 

infections by NY-2A. Genomic comparison among EhV strains (Allen et al, 2006, Nissimov 472 

et al, 2011a, 2011b, 2012a, 2012b, 2014, and Pagarete et al, 2013) suggests that many genes 473 

have indeed been transferred between closely related virus strains, possibly a result of co-474 

infection and retrovirus involvement (Nissimov J., PhD thesis; 2013). Hence it is not 475 

currently known whether mutual exclusion mechanisms such as the ones observed in 476 

Chlorella exist in coccolithoviruses, but it is worth considering and investigating further. 477 

Regardless of the mechanisms involved, EhV-86 appeared to be a poor competitor to EhV-478 

207 and lost the battle over infection and replication when placed into direct competition with 479 

its intragenus opponent.  480 

 481 

Finally, investigating the differences in free EhV GCN compared to the cell-associated EhV 482 

GCN revealed an aspect never previously observed in the study of coccolithovirus 483 

replication. For both EhV strains, cell-associated GCN was higher than the free GCN, 484 

suggestive that not all the newly synthesized genomes were able to be packed into virions and 485 

released from the cells. This is indicative of a nucleotide independent factor that limits the 486 



burst size of these two EhV strains and ultimately the amount of new virus progeny produced. 487 

The EhV virion consists of dsDNA genomic material encased within a protein shell 488 

(predominantly composed of the major capsid protein), enveloped by a lipid membrane. GCN 489 

clearly indicates the production of genomic material is not limiting, therefore either protein 490 

production or membrane lipid availability and integrity are the likely limiting factors. The 491 

latter is of particular interest considering the acquisition of the near complete pathway for the 492 

synthesis of sphingolipids from the host by the coccolithoviruses, and the prominent role of 493 

such lipids in the formation of membrane rafts to instigate virus release.  494 

 495 

The ecological significance of the virus “fight club” 496 

To date, virus-induced decline of algal populations in the natural environment are often 497 

viewed as a one dimensional battle between hosts and their viruses. However the additional 498 

element of competition between viruses is fundamental when trying to predict viral-induced 499 

impacts on primary productivity and the role of viruses as ecological drivers of diversity. 500 

Although a laboratory study, the results here may also be representative of natural systems, 501 

where indeed there is mounting evidence that such processes occur. For instance, natural 502 

coccolithophore  assemblages in the North Sea, Norwegian fjords, English coast, and the vast 503 

Atlantic Ocean, were characterised by extremely numerous and diverse co-occurring 504 

coccolithovirus communities (Wilson et al., 2002; Martinez et al., 2007, 2012, Rowe et al, 505 

2011, Nissimov et al, 2013). In a recent mesocosm experiment in the Norwegian fjord 506 

(Sorensen et al., 2009), it was observed that the number of distinct EhV genotypes decreased 507 

with the propagation of an E. huxleyi infection; i.e. early on during the development of the 508 

bloom the EhV community was more diverse, and there were more distinct EhV genotypes 509 

(detected by DGGE) than towards the end of the bloom (Martinez et al, 2007, 2012; Sorensen 510 

et al, 2009). Hence the dominance of certain coccolithovirus strains over others will be a 511 



direct consequence of competitive interactions and the specific phenotypic characteristics 512 

manifested during host-virus infection dynamics. Depending on the virus strain type/s present 513 

in a particular environment and its/their succession over other virus strains, such variation in 514 

phenotypic characteristics will affect the overall propagation of an infection, its outcome with 515 

regards to the demise of the host population, and subsequently the rates of carbon and 516 

nutrient recycling (Wilhelm and Suttle, 1999). Thus if we exclude other factors such as 517 

grazing and nutrient limitation from the equation, the ecological significance under the 518 

described scenario (i.e. EhV-207-like viruses dominating) would be a localised short-time 519 

rapid increase in the rate of carbon export and recycling of nutrients, but a reduced overall 520 

carbon and nutrient export, as the host population growth would be rapidly diminished. 521 

Alternatively, if EhV-86-like genotypes were to be hypothetically the “winners” of these 522 

competitive interactions, then this would have resulted in slower infection kinetics which 523 

would have allowed the host population to reach higher densities, resulting in a greater total 524 

amount of carbon and nutrient re-circulation, over a longer time scale. Ultimately, in a 525 

changing marine environment it is important to understand both the phenotypic and genotypic 526 

diversity changes that occur within a microbial community and how these changes affect 527 

globally important ecological and biogeochemical processes. 528 

 529 

The evolutionary significance of intragenus virus competition is the fuelling of the co-530 

evolutionary arms race between the host and its virus. During the described competition 531 

scenario, if the two strains were the only ones present in a given environmental niche, then an 532 

increase in the fitness of EhV-207 would have resulted in the decrease in fitness of EhV-86 to 533 

the point of its extinction or near extinction. Viruses possessing these phenotypes, will infect 534 

the most active coccolithophore species and/or strains in consistence with the “killing the 535 

winner” hypothesis (Thingstad and Lignell, 1997, Winter et al. 2010), essentially 536 



transforming the host “winners” to “losers” with time. Then, the new host “winners” will 537 

most likely be a sub-population that is resistant to EhV-207-like strains but possibly more 538 

sensitive to EhV-86-like strains (or other similarly low activity genotypes that have optimal 539 

infection strategies for these new host “winners”). This fits within the “virus-host stable co-540 

existence” theory in which was hypothesised the phenotypic plasticity of the algal hosts and 541 

their ability to recover post-virus infection, is what makes the co-existence of these hosts and 542 

their viruses possible, both on short and also on evolutionary time scales (Thyrhaug et al. 543 

2003).   544 

 545 

The emergence of novel viruses with niche-specific characteristics for infection, are to a large 546 

extent, a result of these competitive interactions. For instance, in plants, the occurrence of 547 

more than one RNA virus and their environmental association with their host is common 548 

(Roossinck, 2005). If these viruses are similar to one another then they will be in direct 549 

competition, whilst if they are not similar then they will not be. Indeed it was shown that 550 

plant RNA virus evolution occurs due to “survival of the fittest” scenario, during which 551 

closely related viruses increased the positive selection of some of these viruses over others 552 

(Roossinck and Palukaitis, 1995). Thus, the competitive interactions between the closely 553 

related coccolithoviruses EhV-86 and EhV-207 may not only drive the fitness and evolution 554 

of their hosts, but also their own.  555 

 556 

The competitive interactions displayed here by coccolithoviruses raise exciting questions 557 

with regards to the ability of these different strains to evolve strategies for the utilisation of 558 

new resources; i.e. the infection of a new host. Recently it was shown that resource 559 

competition between bacteriophages (i.e. competition over host availability for infection and 560 

replication) promoted the evolution of novel bacteriophage phenotypes with the ability to 561 



utilise new hosts, suggesting that this sort of competition was essential for driving the 562 

evolution of host range expansion (Bono et al., 2013). Although coccolithoviruses are 563 

fundamentally different from bacteriophages with regards to their rate of mutation (much 564 

slower), a similar resource competition over a larger time scale may explain the large range 565 

of susceptible infectious hosts to some coccolithovirus strains (personal observations).  566 

 567 

Furthermore, resource expansion depends most likely also on whether a virus is an r or a K 568 

strategist, and the type of trade-offs adapted by viruses and their hosts; a concept that has 569 

been applied recently to viruses from the classical life history theory (De Paepe and Taddei, 570 

2006, Winter et al, 2010,) . The question of whether a particular virus strain is an r strategist, 571 

whereby able to quickly utilize its resource in order to produce abundant virus progenies 572 

(usually characterised by a lower percentage of potent virus particles and therefore poor 573 

competitors); or a K strategist, whereby the emphasis is on fewer but highly potent, 574 

competitive virus progenies, remains to be seen. Based on the classical description of K and r 575 

selection theory one would have expected that EhV-86 would have been a better competitor 576 

than EhV-207 as it is characterised by slower multiplication rates. However it appears that 577 

the latter is a stronger competitor that utilises the available resources quicker and produces a 578 

larger number of progeny. Hence both viruses studied here, under optimal conditions, employ 579 

aspects of both an R and a K specialist. However, additional factors such as the potential 580 

trade-off between high multiplication rates and increased virion decay rates (De Paepe and 581 

Taddei, 2006), should also be considered in future studies, particularly under resource-582 

limiting conditions.  583 

 584 

CONCLUSIONS 585 



Whether a particular coccolithovirus strain (and all its associated genomic, proteomic, and 586 

metabolomic characteristics) will proliferate, is determined by its ability to co-evolve with 587 

one or more host genotypes and outcompete other viruses less fit in a particular environment. 588 

One can only imagine the complexity of the interactions described here in naturally occurring 589 

blooms where at any given time there are many different coccolithophore genotypes (and 590 

subsequently phenotypes) and an even larger number of distinct coccolithoviruses, often 591 

experiencing annual variable environmental conditions. The dominance of a select few virus 592 

genotypes at the end of a bloom or an infection event is a paradox of which the drivers still 593 

remain anonymous. However specific characterisation of coccolithovirus genotypes and 594 

phenotypic interrogation of their infection dynamics, in tandem with the analysis of their 595 

phylogenetic history and functional biodiversity, can shed new light on coccolithovirus 596 

evolution and ultimately their role in microbial oceanography.  597 
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 742 

Fig. 1. Emiliania huxleyi CCMP 2090 average cells mL
-1

 (triplicates ±SD) following 743 
infection by EhV-86 (red line) EhV-207 (blue line), and combined EhV-86 and EhV-207 744 

(green line). Control cultures containing inactivated viruses are shown by theblack line. The 745 
first measurements of the host cultures  taken one day before the addition of the virus stocks 746 
(i.e. t -24 h).  747 
 748 

 749 

 750 
 751 

 752 

 753 

 754 

 755 



 756 

Fig. 2. Flow cytometry plots of red (chlorophyll) fluorescence versus side scatter at 0 h and 757 
168 h during the time course experiment for infected (EhV-86, EhV-207 or combined EhV-758 
86&EhV-207 co-infected) and control Emiliania huxleyi cultures. 759 
 760 



 761 

 762 

Fig.  3. Average density mL
-1

of EhV-86 (red line), EhV-207 (blue line), and combined EhV-763 

86&EhV-207 (green line) during the time-course experiment. Data points represent triplicate 764 
measurements (±SD). The abundance of free EhVs was enumerated using AFC (green 765 
fluorescence vs side scatter).  766 
 767 
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 775 

Fig. 4. EhV-86 (A) and EhV-207 (B) virus copy number averages (triplicates ± SD) from 776 

Emiliania huxleyi cultures infected with either EhV-86 (single infection), EhV-207 (single 777 
infection) or combined EhV-86&EhV-207 (combined infection), 12 h, 24 h, 48 h and 168 h 778 
post infection; performed with qPCR strain specific primers for the discrimination of one 779 

coccolithovirus strain from the other.  780 
 781 
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 793 
 794 



Table S1.Virus treatments A-G and their initial volume* at the beginning of the experiment 795 

(t0). Each treatment was performed in triplicate (i.e. a total of 21 flasks; 12 containing E. 796 
huxleyi CCMP 2090 at a cellular density of 1.5 × 10

6
 mL

-1
). + indicates the presence of EhV-797 

86, EhV-207, or host in a given flask, – indicates inactivated virus. 798 
 799 

Flask n
o
 

Volume of f/2 

media (mL)* 
EhV-86 EhV-207 

E.huxleyi 

host 

Experimental  

treatment 

 

     1 100 + 

 

+ 

 2 100 + 

 

+ A 

3 100 + 

 

+ 

 4 100 

 

+ + 

 5 100 

 

+ + B 

6 100 

 

+ + 

 7 100 + + + 

 8 100 + + + C 

9 100 + + + 

 10 100 + 

   11 100 + 

  

D 

12 100 + 

   13 100 

 

+ 

  14 100 

 

+ 

 

E 

15 100 

 

+ 

  16 100 + + 

  17 100 + + 

 

F 

18 100 + + 

  19 100 - - + 

 20 100 - - + G 

21 100 - - + 

  800 

 801 

 802 

 803 

 804 

 805 

 806 

 807 

 808 

 809 
 810 
 811 



Table S2. Free, unattached, average (triplicate) EhV abundance and virus copy number 812 

(VCN) per mL, detected by analytical flow cytometry (AFC) and quantitative polymerase 813 
chain reaction (qPCR) respectively, 12 h and 168 h post-addition of viruses; either EhV-86 or 814 
EhV-207. 815 
 816 

Analysis type AFC qPCR AFC qPCR 

time (h) 

EhV-86 

(solo free) 

EhV-86 

(solo free) 

EhV-207 

(solo free) 

EhV-207 

(solo free) 

12 7.92 × 10
5
 1.40 × 10

3
 1.30 × 10

6
 2.14 × 10

4
 

168 5.19 × 10
7
 4.51 × 10

5
 6.58 × 10

8
 6.71 × 10

6
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 832 



 833 

Fig. S1. Gel electrophoresis of PCR products conducted with primers specific to EhV-86 and 834 
EhV-207. The products are amplified regions from lysates taken from three different culture 835 
conditions: EhV-86 infected host (A), EhV-207 infected host (B), and host infected 836 

simultaneously by both EhV-86 and EhV-207 (C). In the last two lanes to the right (top and 837 
bottom) are the control DNA free water samples.  838 
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A B C DNA H
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DNA H
2
O A B C 

EhV-86 primers 

EhV-207 primers 

1 kbp    100 bp 



 850 

Fig. S2. Calibration curve for the qPCR amplification of known amounts of purified DNA of 851 

EhV-86 (ehv290) and EhV-207 (EQVG00465). CT= cycle number, (log CO= known 852 

concentrations of purified EhV-86 (A) and EhV-207 (B) DNA products.  853 
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