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Žarko Kovač1*, Trevor Platt2, Shubha Sathyendranath2, Mira Morović1, and Thomas Jackson2
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We examine a model of the rate of phytoplankton production in the ocean and its dependence on depth. The model is analysed as a function of
photosynthesis parameters and it is shown that: (i) production profiles with depth are determined uniquely by the parameter values; (ii) daily water
column production is not uniquely determined by the parameter values; (iii) a unique combination of parameters exists for which the model best
fits a measured production profile. An inverse procedure is developed to recover photosynthesis parameters from measured profiles of primary
production, and its performance tested by application to profiles of primary production collected at the Hawaii Ocean Time Series. For each
profile tested, the method is successful in recovery of the photosynthesis parameters. The method can be applied to the estimation of photosyn-
thesis parameters from data on in situ production profiles, which have been collected globally for more than half a century, thereby augmenting the
world archive of these parameters for application in ecosystem modelling and estimation of primary production from remotely sensed data.
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Introduction
In the history of measurements of primary production in the ocean,
an important milestone was the introduction of the C14 method in
1952, which allowed precise estimates of photosynthetic rate to be
made at sea (Steemann Nielsen, 1952; Barber and Hilting, 2002).
At the beginning, the typical implementation of the method was
to construct profiles of in situ production through the photic zone,
yielding an estimate of primary production for the entire water
column and for the period of incubation with the tracer (Peterson,
1980). Many such experiments were performed, with the result that
there is a rich archive of data on water column production by the
in situ method from stations scattered throughout the world ocean
(Buitenhuis et al., 2013).

An alternative implementation of the tracer method is to incu-
bate the samples in a controlled light gradient so that the photosyn-
thesis response curve (light saturation curve) can be established, and
the photosynthesis parameters recovered (Platt and Gallegos, 1980).
Although this method has more generality than the in situ method,
and is now more usually preferred, the world archive on primary

production in the ocean still has far more entries of data collected
by the in situ method than by any other.

In several areas of biological oceanography, the photosynthesis
parameters are essential data. For example in the estimation of
primary production using data on visible radiometry collected
by instruments in Earth orbit (ocean colour), an essential step
is the assignment of the photosynthesis parameters (Platt and
Sathyendranath, 1988, 1993). A similar assignment step is required
for numerical models of the marine ecosystem (Platt and
Sathyendranath, 1991; Franks, 2002; Gentleman, 2002). But at the
world scale, there is a lamentable paucity of in vitro data, given the
historical dominance of the in situ method (Buitenhuis et al., 2013).

The question then arises whether the photosynthesis parameters
might be recovered from data collected by the in situ method, using
an inverse procedure? If that were possible, we could exploit the
more-numerous in situ databases to augment the sparse database
on photosynthesis parameters recovered from the photosynthesis
light curve. Here, we establish such an inverse procedure. We
show that it is possible to recover the photosynthesis parameters
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from in situ profiles of primary production, and we demonstrate the
utility of the method by applying it to profiles of primary production
collected at the Hawaii Ocean Time Series (HOT). Using the
retrieved parameters, the water column production for the HOT
data could be calculated to within 10% of the measured value. Of
course, the retrieved parameters could also be employed in other
applications, such as the estimation of water column production
from remotely-sensed data on ocean colour, as we illustrate with
an example, and as input data in numerical models of the marine
ecosystem.

Matrix model
It is convenient, and computationally efficient, to introduce a
matrix formalism for the calculations in this paper. The formalism
is essentially a discrete version of the analytical production model
put forward by Platt et al. (1990). In the analytical model phyto-
plankton primary production is modelled by expressing mathemat-
ically the photosynthesis–irradiance relationship through the use of
the photosynthesis–irradiance function pB(E). The pB(E) function
gives the amount of carbon assimilated, per unit time and unit
biomass, as a function of available irradiance. Primary production
at depth z and time t is then expressed as P(z,t) ¼ B(z)pB(E(z,t)),
where B(z) is the time-independent biomass and E(z,t) is the irradi-
ance. This expression is integrated over time and depth to yield the
production of the water column. Here we cast the established analyt-
ical model into a matrix form.

Let the model have N vertical levels at depths zn, labelled by the
index n and J time intervals labelled by the index j. The depth z is
taken positive downwards and the index n increases with depth
such that zn , zn+1. The total water column depth is calculated as
follows: Z ¼ ZN + (ZN2 ZN21)/2. Each time interval equals
DT ¼ D/J, where D is the integration period. We label the light
intensity at depth zn at time jDT as Enj ¼ E(zn, jDT) and collect all
the light intensities into an irradiance matrix E (size N × J),
whose elements equal Enj. A total description of the light conditions
in the model is thus gathered into a single matrix. Now the photo-
synthesis light function pB(E) (Platt and Jassby, 1976) is used on
each element of the irradiance matrix to calculate the instantaneous
rates of production normalized to phytoplankton biomass (indexed
as chlorophyll concentration B): pB

nj = pB(Enj). More formally, pB[·]
can be regarded as an elementwise operator that acts on the irradi-
ance matrix to give the biomass-normalized production matrix, and
we write PB = pB[E]. Each row of this matrix equals the time evolu-
tion of biomass-normalized production at the depth zn and each
column equals the vertical profile of biomass-normalized produc-
tion at time jDT. To calculate the absolute values of production
pnj = B(zn) pB(Enj), each row of the biomass-normalized produc-
tion matrix has to be multiplied by the corresponding biomass
value. First the biomass vector b (size N × 1) is defined, such that
each element in it equals the biomass at a certain depth bn ¼

B(zn), where B(z) is the biomass profile. Next the biomass
matrix B (size N × N) is defined as a diagonal matrix Bnm ¼

dnmbn (where dnm is the Kronecker delta), which holds the values
of the biomass profile on its main diagonal. Multiplying the
biomass matrix with the biomass-normalized production matrix,
we obtain the production matrix:

P = BPB. (1)

The production matrix holds all the information that is needed to
calculate the daily production profile pT (size N × 1), or the daily

water column production PZ,T. By defining the time vector t (size
J × 1), whose elements are all equal tj ¼ DT, temporal integration
is achieved simply by:

pT = Pt, (2)

and the daily production profile calculated. To calculate PZ,T,
vertical integration of pT is required. We define the vertical
increment vector as a row vector z (size 1 × N) whose elements
equal vertical increments around each depth zn ¼ Dzn, with
Dzn = (zn+1 − zn−1)/2 for n ¼ 2,3, . . ., N21. The first vertical in-
crement is Dz1 = (z1 + z2)/2, and the last is DzN ¼ zN 2 zN21.
For z we have

∑N
n=1 zn = Z. Daily water column production is

now given by:

PZ,T = zPt. (3)

Equations (1), (2) and (3) form the basis of the matrix model for cal-
culating primary production. To calculate the irradiance matrix, a
light model is required to supply the values of Enj. Here we use a
simple model of the form:

Enj = E0j exp(−Kzn), (4)

where E0j marks the surface PAR at time jDT and K is the diffuse at-
tenuation coefficient for downwelling irradiance (Kirk, 2011).

Optimization
The model presented above is implemented in an optimization pro-
cedure in which the model results are compared with measurements
to extract optimal values of model parameters for given measure-
ments. The optimization procedure should provide an estimate of
the parameters for which the model results best match the measure-
ments under the given model assumptions. A basic treatment of op-
timization problems in oceanography can be found in Glover et al.
(2011), while a more advanced treatment of inverse modelling and
data assimilation is found in Wunsch (1996) and Bennett (2005).

The key element in this model is the pB(E) parameterization,
which is determined uniquely by two parameters, the initial slope
aB and the assimilation number PB

m (Platt et al., 1977). Their ratio
equals the photoadaptation parameter Ek = PB

m/a
B. The pB(E)

function can be written as pB(E|aB, PB
m) to indicate that it is a func-

tion of light intensity depending on two parameters. Let us assume
that we have measurements of the biomass profile b̃, attenuation co-
efficient K̃, and surface PAR Ẽ0j, where j ¼ 1,2, . . ., J. We denote a
measured value of a variable x as x̃. These measurements also give
information on the integration length D, model depths zn, and
number of time increments J. From the biomass vector b we have
B. Using the optical model (4) we can calculate the irradiance
matrix E. We can then treat the model equation (2) as being depend-
ent only on aB and PB

m and write:

pT (aB, PB
m) = BPB(aB,PB

m) t. (5)

Let us also assume that we have a measured daily production profile
consisting of incubations at N depths which have been carried out
over the incubation period D. We gather all the measurements
into a vector p̃T (size N × 1) with each element given by P̃T(zn).
The notation P̃T (zn) is used to indicate the measured daily produc-
tion at depth zn. The model production given by (5) can be indicated
by pT (aB, PB

m). Subtraction of the measured from the modelled
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profile yields the error profile:

DpT (aB,PB
m) = pT (aB, PB

m) − p̃T , (6)

which gives the difference between the modelled and the measured
production at each depth. The error depends only on aB and PB

m

since everything else is fixed. If we wish the model profile to
match as closely as possible the measured profile, we need to minim-
ize the difference between the two. The Euclidian norm of the error
profile ||DpT || is taken as a measure of the difference and it is written
as a function of the parameters:

P(aB, PB
m) = ||DpT(aB,PB

m)||. (7)

Fixing b̃, K̃ , Ẽ0t, and p̃T by measurement gives the error as a function
ofaB and PB

m. To find the smallest error, the minimum ofP has to be
found in the space spanned by aB and PB

m (parameter space). At the
point where P reaches its minimum value, the parameters reach
their optimal values (under given assumptions of the model) and
the model profile matches the measured profile as well as it can.

To give a measure of the accuracy of the estimated parameters
that is not dependent on the specific application relative model
errors are needed. We define the relative model error of daily
water column production as:

R(aB, PB
m) =

PZ,T (aB, PB
m)

P̃Z,T

− 1, (8)

which gives the percentage error in daily water column production.
We also define the relative profile error as:

r(aB,PB
m) =

P(aB, PB
m)

||̃pT ||
, (9)

which relates the error function to the norm of the measured daily
production profile ||̃pT ||. This error gives the relative distance
between the modelled and the measured profile and shows how
much the two profiles resemble each other. These two errors (8, 9)
enable the comparison of model fitnesses resulting from the appli-
cation of the inverse procedure to different sets of measurements.

In cases where the model assumptions are not strongly violated,
we want to find the values of parameters that give as low a value of the
errorP as possible. To do so all that remains to be done is to choose
an optimization algorithm to carry out the search for the minimum.
Irrespective of the algorithm, the final result should be the optimal
parameter combination O = (â, P̂m) for which P has a minimal
value. The optimization procedure indicates which one of the
variety of model profiles best describes the measured profile. That
the profiles are indeed determined by the photosynthesis parameters
is shown in Appendix.

Parameter space analysis
In real applications the values b̃, K̃ , Ẽ0t, and p̃T will be given by mea-
surements, and the goal is to estimateaB and PB

m based on these mea-
surements. Because the search is performed on only two parameters,
we can view the model results as being dependent only onaB and PB

m.
In the plane spanned by aB and PB

m, a plot of daily production
PZ,T (aB,PB

m) yields contour lines that do not intersect (Figure 1a).
The same value for PZ,T can be obtained through the entire range
of parameter values, and there appears to be no constraint on

them. If the model is to give a certain value for PZ,T, any combination
of parameters that lies on that contour line will do just as well as
any other. This emphasizes that the measurement of daily water
column production does not enable the determination of the para-
meters. Nor does it allow us even to constrain the range of possible
parameter values.

For the parameters to become uniquely determined, additional
information needs to be taken into account. It is provided by p̃T,
which holds information about the profile of daily production.
The influence of the measured production profile is taken into
account by the error function P(aB, PB

m). When the error function
P(aB,PB

m) is plotted in the plane spanned by aB and PB
m, the plot

also yields contour lines that do not intersect (Figure 1b). But
unlike the contour lines of PZ,T, some of the contour lines of P are

Figure 1. (a) Contour plot of daily water column production PZ,T in the
parameter space. Contours in darker colour have higher values of PZ,T.
(b) Contour plot of the error function PER in the parameter space.
Contours in darker colour have higher values of PER. An area with low
values of PER surrounding the minimum can be seen.
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closed. The closed contour lines enclose other contour lines with
lower values ofP, implying the existence of an area in the parameter
space where the model performs better than outside it. All the points
in the area enclosed by a certain contour are those for which the
model outperforms the ones in the area outside it. Closure of
contour lines also implies setting ranges on aB and PB

m, which
could not have been done for the case of PZ,T.

To see why this occurs, let us rewrite the error function slightly. It
is related to the scalar product between the modelled and the mea-
sured profiles p̃T · pT , under the following expression:

P =
������������������������������
||pT ||2 − 2p̃T · pT + ||p̃T ||2

√
, (10)

where pT = pT (aB, PB
m) and P = P(aB, PB

m). The higher the value
of the scalar product p̃T · pT , the smaller the value of P. It is
obvious that for a particular value of P there will be more than
one pT. In fact all the profiles with the same Euclidean distance from
p̃T form a hypersphere around the measured profile. What is seen in
the parameter space are the contours joining the values of the para-
meters that correspond to these model profiles on a specific hyper-
sphere. That is why there are closed contour lines of P in the
parameter space. As the Euclidean distance of the model profile
pT from the measured profile p̃T gets smaller, the volume inside
the hyphersphere becomes smaller and there are fewer parameter
combinations remaining on the hyphersphere. That is the reason
for the surfaces enclosed by contours in the parameter space
having a lesser extent as P becomes smaller. By requiring P to go
to zero we also require p̃T · pT to reach its highest value. Ideally, if
the model could fit the measured profile perfectly, the error function
would equal zero. In that case the scalar product p̃T · pT reaches a
maximum and the right-hand side of (10) vanishes. The ideal case
would be achieved if we took a model profile with a pre-specified
set of parameters, instead of a measured profile, and then formed
the error.

Taking both considerations into account, namely one contour
line of PZ,T and one of P, we see that they intersect at two points
(Figure 2). Let these points be labelled by X and Y. Since X and Y
belong to both contour lines the following holds: PZ,T(X) ¼
PZ,T(Y) and P(X) = P(Y). This means that the model will give
the same daily production and the same error for two different com-
binations of parameters. Knowing that some of the contour lines of
P are closed, whereas none of the PZ,T are, when we consider
smaller and smaller values of P we see that the two points, X and
Y, converge to the point O, which is then the minimum of P. That
point is the optimal estimate of parameters for the given measured
daily production profile p̃T . The contour line of PZ,T to which O
belongs will not necessarily correspond to the contour line of P̃Z,T .
Setting the condition that PZ,T (O) = P̃Z,T could be considered
as a constraint on the search in the parameter space. Owing to the
nature of the measurement of primary production, that constraint
is not necessary, and variation of PZ,T(O) around P̃Z,T is allowed.

Limitations
The first limitation of the inverse method comes from the production
model we use. Because the photosynthesis parameters are assumed to
be independent of depth, aB

= aB(z) and PB
m = PB

m(z), and leaving
aside the possible influence of photoinhibition, the normalized daily
production has to decline with depth, which is expressed as:

PB
T(zn) . PB

T (zn+1). (11)

The validity of this condition can be proved as follows. Let us
consider the irradiances at any two vertical levels zn and zn+1, at
time jDT. The corresponding elements of the irradiance matrix
are Enj and E(n+1)j. Due to the decrease of irradiance with depth, it
is always valid that the irradiance at depth zn is higher than the
irradiance at depth zn+1. For the light model used we have
E(n+1)j = Enj exp(−K(zn − zn+1)). Therefore, for any two elements
of the irradiance matrix, it holds that Enj . E(n+1)j. The production
normalized to biomass is calculated for these two irradiances as
pB

nj = pB(Enj) and pB
(n+1)j = pB(E(n+1)j). The pB(E) is a positive

increasing function for E . 0, has a negative curvature
∂2 pB(E)/∂E2 , 0, and an asymptote limE�1 pB(E) = PB

m (Platt
et al., 1977). For Enj . E(n+1)j it gives pB

nj . pB
(n+1)j. Total daily

production normalized to biomass PB
T(zn) is a sum of pB

nj over
j = 1, 2, ..., J. Comparing PB

T (zn) with PB
T (zn+1) we see that

every element of the sum for the zn level is greater than the cor-
responding element of the sum for the zn+1 level. Therefore, we
conclude that the daily production normalized to biomass at level
zn will be greater than the daily production normalized to bio-
mass at level zn+1, and that is what condition (11) says. In simple
terms, for the case of vertically uniform parameters the profile
of production normalized to biomass always decreases with increas-
ing depth.

Vertical uniformity of parameters can be expected for a mixed
layer. For the case of vertical non-uniformity of parameters, the con-
dition (11) can be violated and there is no reason to expect a model
with vertically uniform parameters to perform well. We can justify
the application of our procedure by considering whether or not
the measurements were carried out in the mixed layer. We can
also justify the procedure by the goodness of fit between the
model and the measurements, given by the value of the relative
profile error r, and by considering the relative model error of daily
water column production R. If the condition (11) is satisfied by
the measured profile of production normalized to biomass, and

Figure 2. Intersecion of two contour lines, one belonging toP and the
other to PZ,T. The value ofP is arbitrary, while the value of PZ,T equals the
measured daily water column production P̃Z,T . Reducing the error
function value causes the points X and Y to converge onto the optimal
point O. That is the point with the smallest value of P.
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the errors are low, we can be confident in the recovered optimal
values of parameters.

In case the parameter values increase with depth, the condition
(11) may be violated. If this happens we are certain that the para-
meters have changed in the vertical, because nothing else could
cause an increase in the biomass-normalized production with
depth. By simply calculating the differences for the measurements
P̃B

T(zn) − P̃B
T (zn+1), with n ¼ 1,2, . . ., N 2 1, we can see whether or

not the parameters have indeed changed with depth. If the difference
is positive, they are either fixed of decreasing, but in case the differ-
ence is negative they are increasing. When relying on a database of
productivity profiles, the condition (11) can be used as an easy
test for checking the justifiability of applying the inverse procedure
to obtain the values of parameters.

The other limitation of the inverse method comes from the
relation between irradiance and the photoadaptation parameter
Ek = PB

m/a
B. For low values of irradiance E ≪ Ek, the pB(E) func-

tion is determined by the initial slope aB, and as a first approxima-
tion we have pB(E) ≈ aBE. For high values of irradiance E ≫ Ek,
pB(E) is determined only by PB

m and we have pB(E) ≈ PB
m. In the

intermediate range where E is around Ek, the pB(E) function is deter-
mined by both parameters. For a given irradiance matrix E, let us
label the highest value of irradiance that it contains as Emax, and
the lowest value, different from zero, as Emin. A zero value for irradi-
ance does not interest us because it results in no production in our
model. We distinguish three possibilities (Figure 3):

(a) Emax , Ek

In this case the biomass-normalized production matrix PB is deter-
mined only by aB and we can write PB≈ aBE. The model daily pro-
duction profile equals pT = aBBEt. As a consequence we can
determine only aB by the inverse procedure. Any value for PB

m can
be taken because it has no influence on pT. This happens in the
area of the parameter space where the parameter combinations
yield a high value for Ek and is the reason why the contour lines of
P and PZ,T are parallel with the ordinate. In this region we obtain
high values of PB

m and low values of aB.

(b) Emin , Ek , Emax

For Ek in this range of irradiances both of the parameters can be
determined. Model daily production profile is given by (2) and
depends on both parameters. This occurs throughout most of the
parameter space and the parameter combinations yield realistic
values for Ek, that are also expected to be obtained as a result of mea-
surements of the P2E curve.

(c) Ek , Emin

In this case we are confronted with the situation in which the
biomass-normalized production matrix PB can be written in first
approximation as PB ≈ PB

mU, where U is a unit matrix of the same
size as PB. The model daily production profile now equals
pT = PB

mBUt, and we can determine PB
m only, because aB has a

low influence on pT. Unlike the first case (a), this occurs in the
area of the parameter space where the parameter combinations
yield a low value for Ek. That happens for combinations of low PB

m

with high aB and explains why the contour lines of P and PZ,T are
parallel with the abscissa in this region.

When these conditions will be satisfied depends on the model
irradiances. The lowest value of irradiance will occur at the greatest

model depth, at the time of lowest surface irradiance. This value can
become higher than the photoadaptation parameter (condition (c))
for shallow clear waters and incubations carried out in the interval
around noon, on a cloud-free day. Surface irradiance will be high,
saturation will occur during the whole interval of incubation and
production will not be light-limited at any depth. Only PB

m can be
determined in this case.

At the other extreme, the highest value of irradiance will occur
at the shallowest model depth, at the time of highest surface irradi-
ance. This value can become smaller than the photoadaptation
parameter (condition a) if the incubations are carried out on an
overcast day. The effect will be strengthened still further if the
water is turbid. Light will be strongly attenuated and production
will be light-limited at all model depths. Then, onlyaB can be deter-
mined. This is likely to be the case in deep eutrophic waters.

For all the remaining cases (and these are in fact the vast majority
of cases encountered), the parameters can be recovered successfully.

Figure 3. (a) Plots of pB(E) curves in accordance with the second
limitation of the method. (b) Division of the parameter space into three
areas based on the ability of the method to recover the parameters. In
the a area, the method can only recover aB, whereas in the c area, only
PB

m . Both parameters can be recovered in the b area. In this plot, Ek

equals the slope of the line passing through the origin. Contours of P
are shown in the background.
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In practice, for incubations carried out over the entire course of the
day, light conditions will provide production values that range both
below saturation and above it. Light saturation will occur at shallow
depths and those measured values of production will be used for es-
timation of PB

m. The values of production at greater depths will be
used to estimateaB. If we are to recover both parameters well, phyto-
plankton should experience the whole range of light intensities,
from light limiting to saturating.

Applications
We tested the inverse method on a dataset from the Hawaii Ocean
Time Series (HOT). The data are publicly available at hahana.
soest.hawaii.edu/hot/hot-dogs/. Details about the HOT data can
be found in Karl and Lukas (1996) and Karl et al. (2001). Some
recent publications using HOT primary production data include
Luo et al. (2012) and Nicholson et al. (2012). We found that data
from 169 HOT cruises were suitable for testing the inverse
method. At the time we accessed the dataset it consisted of 237
cruises, meaning that we used 71% of the available data. The data
are not seasonally clustered. Starting from January the number of
profiles per month is 15, 16, 13, 15, 14, 11, 12, 13, 15, 19, 14, 12.
All of cruise data we used had measurements of surface PAR,
carried out at 10 min intervals during the entire incubation
period D. Surface PAR was given inmE m22 s21 and the conversion
to W m22 was done using Smith and Morel’s procedure (Morel and
Smith, 1974). Most of the incubations were carried out from sunrise
to sunset. Sampling depths were at 5, 25, 45, 75, 100, 125, 150
and 175 m. All the chlorophyll profiles were measured at 8 depths,
75 production profiles were measured at 8 depths, and 94 at
6 depths (lacking measurement at 150 and 175 m). One per cent
light level was given for 128 cruises, from which the diffuse
attenuation coefficient was calculated. For the remaining cases
the average value of 0.0436 m21 for K was used. As for the re-
mainder of the HOT dataset it had no surface PAR, or optical mea-
surements required by the method. In other words, the 29% of the
profiles we did not use were incomplete, within the requirements of
the model.

Before applying the inverse procedure we tested all the normal-
ized production profiles against the condition given by (11). For
79 profiles it was violated at the first vertical level. We assume that
that is due to photoinhibition, which is not accounted for in this
model. The error in parameter estimation caused by this violation
is small, because the effect is limited only to the first vertical level.
Some profiles violate this condition at greater depths, but this
occurs only rarely.

Let us denote each cruise with l, where l ¼ 1,2, . . ., 169 (these
numbers do not correspond to the HOT cruise numbers). The
given data allowed formulation of the error function (7) for each
cruisePl(aB,PB

m), and with it the recovery of optimal values of para-
meters (âB, P̂B

m)l = Ol and the optimal value of the photoadapta-
tion parameter (Êk)l, as their ratio. Measured chlorophyll profiles
gave b̃l and consequently Bl, whereas production profiles gave
(p̃T)l. Using measured surface PAR (Ẽ0t)l, together with K̃l, we cal-
culated the irradiance matrix for each cruise El. It is worth mention-
ing that the irradiance matrix El is calculated only once for each
cruise. To calculate the production matrix Pl we took the equation
of Platt et al. (1980):

pB(E) = PB
m 1 − exp

−aBE

PB
m

( )
. (12)

The production matrix for each cruise:

Pl = Bl pB[El|aB, PB
m], (13)

is recalculated every time the optimization algorithm requires the
calculation of the error function Pl(aB,PB

m). Finally, the Nelder–
Mead method (Nelder and Mead, 1965) was used as an optimization
method for locating the minimum of the error function Pl. A de-
scription of the mathematical properties of the method in low di-
mensional cases can be found in (Lagarias et al., 1998). Lewis et al.
(2000) give a survey of a number of classical direct search
methods for unconstrained optimization, including the Nelder–
Mead method. In our application values for the reflection, expan-
sion, contraction, and shrink coefficient were set to 1, 2, 0.5, and
0.5, respectively. These are the standard values for the Nelder–
Mead method. Optimization was performed without any additional
constraints and convergence to the optimal point Ol was achieved
for each cruise. Examples of optimal model profiles and measured
profiles are given in Figure 4. Model profiles are calculated with
optimal values of parameters for each cruise pT(Ol) by using (5).

Figure 4. Examples of optimal model profiles (thick lines) and
measured profiles (thin lines) for HOT cruises: 13, 29, 47, 82, and 214.
Optimal values of parameters for these cruises are: aB ¼ 0.25,
PB

m = 4.33 (cruise 13); aB ¼ 0.01, PB
m = 2.88 (cruise 82); aB ¼ 0.24,

PB
m = 9.57 (cruise 29);aB ¼ 0.28, PB

m = 7.53 (cruise 47) andaB ¼ 0.33,
PB

m = 10.02 (cruise 214).aB is given in mg C m2 (mg Chl W h)21 and PB
m

is given in mg C (mg Chl h)21.
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The distribution of recovered parameters and the distribution of
the photoadaptation parameter are shown in Figure 5. There are
some outliers, but the distributions resemble a normal distribution.
By careful inspection of the cruise data for which the outliers occur,
we see that they correspond to cases for which the normalized pro-
duction profiles have peaks at depth. These peaks violate condition
(11), pointing to vertical non-uniformity of parameter values.
Parameters attain high values as the optimization procedure
attempts to fit the measured profile of production. Our interest
here was not to interpret this particular dataset to provide an explan-
ation for these values, but only to show the efficiency of the inverse
method in parameter recovery. To interpret these values fully, a
careful analysis of each cruise from an oceanographic perspective
would be required, which is beyond the scope of this paper.

It is worth showing the relative model errorof daily water column
production (8), and the relative error of the model profile (9), when
the model is run with optimal parameter values for each cruise. The
optimal parameter combination Ol is taken in calculation of the pro-
duction matrix for each cruise separately Pl ¼ pB[El|Ol]. Then, the

errors R(Ol) and r(Ol) are calculated (8, 9). These are shown in
Figure 6, expressed as percentages. For 85% of cruises the value of
PZ,T does not exceed the measured daily water column production
P̃Z,T by more than +5%, with the relative profile errors r(Ol)
below 20% of the norm of the measured production profile. The
mean value of r(Ol) is 11.6%, with a standard deviation of 6.6%.
The minimum value is 2.7% and the maximum value is 27.2%.
The mean value of R(Ol) is 20.6%, with a standard deviation of
2.2%. The minimum value is 210.2% and the maximum is 2.6%.
Low values of R(Ol) show that this simple model can give accurate
estimates of water column production when the model is run with
optimal values for parameters. The product of the relative error of
water column production at the optimal point R(Ol) and the mea-
sured water column production of that cruise gives the amount, pre-
dicted by the model, of excess/deficit carbon assimilated in the
entire water column. As for the profiles of daily production, the
error r(Ol) does not have a straightforward interpretation. It can
be visualized as the relative deviation of the model profile from
the measured production profile. The spread of points indicates
that there is no simple relation between R(Ol) and r(Ol). For most
cruises, the model gives a low error for both, but there are also
cruises when this does not occur, emphasizing that the model can
give an accurate value for PZ,T regardless of P.

This happens because condition (11) is violated at the first verti-
cal level. The first vertical level could be ignored and the error calcu-
lated with information from the remaining vertical levels. For the
profiles that have 8 points in the vertical, disregarding one would
mean throwing away 12.5% of data and 16.6%, for the case of pro-
files with 6 points in the vertical. We performed this calculation and
found that the results for some cruises yielded unrealistically high
values for Ek, whereas the remaining distributions were only slightly
altered. Higher values for Ek were obtained because the measured
value of production from the first vertical level helps constrain the
magnitude of PB

m. Increasing PB
m causes a proportional increase in

Ek. A considerable amount of information on PB
m is lost if measured

production from the first vertical level is lacking.

Discussion
We may regard the inverse procedure presented here from two
points of view: first it can be seen as a way to recover the

Figure 5. Histograms of recovered parameter values for all the cruises.
Abscissa corresponds to parameter values and the ordinate gives
percentage of cruises that fall into a certain interval of parameter values.
(a) Distribution of the initial slope aB. (b) Distribution of the
assimilation number PB

m . (c) Distribution of the photoadaptation
parameter Ek.

Figure 6. Plot of R(Ol)vs. r(Ol). Points above the dashed horizontal line
represent those model results for which P̃Z,T is overestimated by the
model. Points below the line are those for which P̃Z,T is underestimated.

Recovery of photosynthesis parameters from in situ profiles of phytoplankton production Page 7 of 11

 by guest on February 26, 2016
http://icesjm

s.oxfordjournals.org/
D

ow
nloaded from

 

http://icesjms.oxfordjournals.org/


photosynthesis parameters when measurements of in situ produc-
tion profiles exist; and second as a means of optimizing the model
to perform as well as possible under the given limitations of both
the model and the measurements. Both interpretations are useful,
but from a practical standpoint, what is really important are the
errors. Considering that errors are rather low (Figure 6), the
inverse procedure can be declared successful within the range of
its applicability. The extension of the range of applicability is
limited heavily by the number of vertical levels at which the produc-
tion profile is sampled. If there were more vertical levels, a more
complex model (for example with depth-dependent parameters)
for calculating production could be used. Historically, most of the
profiles that were routinely measured at stations all over the world
had measurements at a pre-specified number of depths, which
hardly ever exceeded 10 in number. Also, surface PAR was rarely
measured on these cruises. Even nowadays it is difficult to find data-
sets with a high vertical resolution of production and chlorophyll
profiles, which also have measurements of surface PAR and of
optical properties. We decided to use a simple model given the lim-
itations imposed by the small number of sampling depths.

One way of avoiding the constraints imposed by the need for ver-
tical uniformity of parameters would be to assume some functional
form for the vertical dependence of parameters. But that would
merely shift the issue from the estimation of photosynthesis para-
meters to the estimation of the parameters that would occur in
these functions. In the case of vertical uniformity of photosynthesis
parameters, a large number of vertical levels is not required, since
there are only two parameters that need to be estimated. Vertical
variation of parameter values in the model would require in situ
measurements at more vertical levels, to capture this variation prop-
erly, if indeed it occurs in situ. Nevertheless, we see that the error
in the estimation of daily water column production of our model,
with vertically uniform parameters, does not exceed more than
10% for the HOT dataset. Using vertically uniform parameters,
similar results have been obtained by Herman and Platt (1986).
Note that, for E . Ek, it is essential only to capture the right value of
PB

m, and for E , Ek, the important parameter is aB.
However, if we seek representative values for photosynthesis

parameters of the entire population, it is natural to estimate the
parameters simultaneously for the entire population, as is done
here. With the usual application of the in vitro method, where the
phytoplankton are sampled at a single depth, this cannot be done.
Even if samples are taken from a number of depths, the parameters
are still estimated for each depth separately. When using the in vitro
method, it is assumed implicitly that the parameters extracted at a
single depth are suitable for the entire water column. Instead, we
find that it is more suitable to search for the optimal parameter com-
bination in the way presented in this paper. One advantage of having
just a single set of parameter values for the entire population is that
those values represent the optimal photosynthesis parameters of the
population, with respect to the measured production profile. When
calculating water column primary production, it is better to have
one value of parameters estimated from incubations at a number
of depths (in situ), than one value estimated from multiple incuba-
tions at a single depth (in vitro). In a sense, with this approach, the
water column is treated as a compound photosynthetic system
(Talling, 1957). A similar approach was followed by Siegel et al.
(2001) to estimate the parameters for their model of the production
profile, and by Behrenfeld and Falkowski (1997) in their vertically
generalized production model. However, these approaches do not
use the fundamental parameters of the photosynthesis– irradiance

function (aB and PB
m), but altered parameters, tailored for use in

the models, and having limited scope for application outside
them. Siegel et al. (2001, Section 5.3) and Behrenfeld and
Falkowski (1997, Relative vertical distribution model section) ac-
knowledge the discrepancies between the parameters of their
model and the parameters of the photosynthesis–irradiance func-
tion.

For example, the model developed by Behrenfeld and Falkowski
(1997) to estimate primary production at large scales by remote
sensing, uses a parameter PB

opt, based on the analysis of water
primary production profiles measured in situ. This parameter is
the maximum chlorophyll-normalized production observed in
any particular profile of daily primary production. Since, in the
course of a day, the available light varies from zero near dawn to a
maximum, typically at local noon in the absence of clouds, and
back to zero around dusk, the phytoplankton would have been light-
limited during parts of the day, and possibly light-saturated at some
other parts of the day. So, PB

opt would lie somewhere between PB
m and

aB: it would tend towards aB if light remained low throughout the
day, and towards PB

m if light levels remained at saturating values
for most of the day, but would always remain less than PB

m because
of low light levels at dawn and dusk. The interpretation of PB

opt is
therefore difficult, since it is representative only of the variable
light conditions that existed at the time of the in situ primary pro-
duction measurements. On the other hand, our model uses precisely
aB and PB

m, and that is one characteristic setting it apart from other
models of the production profile. Also, the photosynthesis para-
meters of our model can now be estimated from both in situ and
in vitro data, as opposed to other models which can use only in
vitro or in situ estimated parameters, but not both. The PB

m and aB

retrieved in our model are true parameters of photosynthesis–
irradiance models. They are designed to answer the “what-if” ques-
tion: if we want to know what would the primary production be if
the light level were such and such, the two parameters can be used
to provide the answer.

A straightforward way of testing the precision of the inverse
method would be to measure the production profile simultaneously
with the P–E curve. The inverse procedure would be applied to the
in situ profile and the parameters recovered. Once recovered, they
could be compared with the measured values from the P–E curve.
Platt and Sathyendranath (1988) demonstrate the agreement
between water column production measured in situ and calculated
from photosynthesis parameters measured in vitro.

Reliability of the recovered parameter values can also be tested by
the magnitude of the errors of the optimal profile. When the model
is run with the optimal parameter combination, the error is guaran-
teed to be the lowest possible, for a given set of light conditions. If the
light conditions are erroneous, the recovered parameters may be
suspect. If the model is run with measured parameters, but errone-
ous light conditions, the same error will occur. Calculating the error
by comparing two erroneous results does not enable the detection of
the error in parameters caused by incorrect light conditions. A way
to avoid this problem would be to run the inverse model with per-
turbations in the irradiance matrix and thereafter checking the sen-
sitivity of recovered parameters to these perturbations. But there
appears no reason to run the model with different light conditions,
since the light conditions experienced by the incubated phytoplank-
ton are indeed those that are caused by the measured surface PAR.
A model run with measured parameters would also be forced with
the same surface PAR. To question the measurement of surface
PAR is one thing, but to question the value of the diffuse attenuation

Page 8 of 11 Ž. Kovač et al.
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coefficient for down-welling irradiance K is somewhat different. For
the HOT dataset we considered it best to estimate the value of K from
the values of 1% per cent light level because it was available for a ma-
jority of cruises. This could be done because the region is oligo-
trophic with a low value of K. When considering the application
of the inverse procedure to more complicated cases (eutrophic
waters), careful treatment of light conditions is required. The
HOT dataset also has a high temporal resolution of surface PAR
(10 min sampling interval) for all the cruises. If such a high temporal
resolution were not available, a way of proceeding would be to con-
struct, as accurately as possible, a model for surface PAR (Iqbal,
1984). Having the surface PAR data together with in situ incubations
enabled us to estimate the photosynthesis parameters, which other-
wise would not be feasible. In vitro incubations would be required to
do this. Therefore, cruises with in situ production measurements
which include PAR measurements can be considered to be more in-
formative with respect to the possibility of photosynthesis para-
meters estimation, via the method outlined.

Finally, we illustrate the application of our results to estimation
of primary production from remotely sensed data on ocean
colour (Longhurst et al., 1995; Sathyedranath et al., 1995). Using
monthly chlorophyll data from the Ocean Colour Climate Change
Initiative (www.oceancolour.org) of the European Space Agency
and photosynthetically active radiation (PAR) from NASA,
primary production was computed as a test product using the ap-
proach of Longhurst et al. (1995), with updated photosynthesis
and chlorophyll profile parameters from Méin and Hoepffner
(2011), as part of the Trans-Boundary Water Assessment Project
(TWAP). The computations are based on a depth-resolved and
wavelength-resolved model, following the original formalism of
Platt and Sathyendranath (1988). In primary production model
intercomparison exercises, this model compared favourably with
respect to others (Friedrichs et al., 2009; Saba et al., 2010, 2011;
see also Buitenhuis et al., 2013). Primary production was computed
using monthly chlorophyll fields at 9 × 9 km resolution and corre-
sponding PAR fields. We found 65 match-ups between daily obser-
vations at HOT and monthly satellite-based primary production
fields: in other words, in this preliminary demonstration, the daily
in-water primary production was taken to be representative of the
monthly production at that site. It must be emphasized to point
out here that Longhurst et al. (1995) highlighted the paucity of in-
formation on photosynthesis–irradiance parameters for many
parts of the world oceans, which obliged them to use parameters
from similar biomes in the Atlantic Ocean to fill gaps in the
Pacific Ocean. In fact, for the North Pacific Subtropical Gyre, in
which the HOT station falls, the primary production computations
in the TWAP project were executed using fixed parameter values
for the whole year: 0.055 mg C m2 (mg Chl W h)21 for aB and
5 mg C (mg Chl h)21 for PB

m.
Figure 7 shows the comparison between the production esti-

mated using satellite data and the measured production for all the
match-ups. The agreement is rather poor. To understand the
sources of the discrepancy, the model presented here was re-run
with the same parameter values as for the initial satellite computa-
tion, keeping all other inputs (including PAR, diffuse attenuation
coefficient K and the chlorophyll profile) unchanged. We show
also in Figure 7 that the new results are quite comparable with the
satellite observations: this highlights the importance of assigning
appropriate parameter values to get reasonable estimates from
satellite-based computations. It is only when the appropriate para-
meters are used that the present model gives results that are

consistent with in situ observations, as also shown in Figure 7 (see
also Figure 6). Even though the satellite algorithm used (which is
spectrally resolved, and allows for non-uniform structure in chloro-
phyll concentration) is different from the model presented here (non-
spectral), and although the temporal match-ups are not ideal (daily
in situ production and monthly satellite calculations), the differences
between the two models is modest, when common photosynthesis–
irradiance parameters are used, compared with the differences asso-
ciated with parameter assignment. In this oligotrophic region where
the ranges of variability in chlorophyll concentration and PAR are
low, it is particularly important to get the parameters right.

Conclusions
The inverse procedure presented here is able to recover photosyn-
thesis parameters from in situ vertical profiles of phytoplankton
production. The parameters extracted using this method are not
limited simply to the model used, they are general and can be
used in any model which has P–E parameters, traditionally deter-
mined through the use of in vitro incubations. Therefore, the eco-
logical relevance of our work lies in extracting the photosynthesis
parameters from the data that were not originally intended to be
used for such purposes and have not been used since the implemen-
tation of the in situ method in 1952 (Steemann Nielsen, 1952). The
approach outlined changes our understanding in a way that two
implementations of the C14 method, which were considered dis-
tinct, can indeed yield the same outcome, that outcome being the
values of photosynthesis parameters. In vitro experiments were con-
structed specifically to yield this result, whereas in situ experiments
were constructed to yield an estimate of water column production.
With respect to the photosynthesis parameters the two approaches
are now consolidated.

All required inputs for the inverse procedure can be measured
easily, and are routinely measured on oceanographic cruises. The

Figure 7. Plot of measured P̃Z,Tvs. modelled PZ,T estimated using
satellite data with the parameter values from Longhurst et al. (1995)
(orange points), estimated from the matrix model with the parameter
values also from Longhurst et al. (1995) (red points) and from the
matrix model with the parameter values estimated in this study
(blue points).
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iterative procedure was shown to be robust by unconstrained
convergence for data from all 169 HOT cruises tested, which span
a period of more than 20 years. When run with optimal values of
parameters, the estimation errors of the model for daily, water
column production are extremely low, although the model is
quite simple compared with spectral models of primary production
(Sathyendranath and Platt, 1989). The method can be applied to
recover the values of photosynthesis parameters whenever the out-
lined limitations are not violated. The recovered parameters can be
further used in a remote sensing context as inputs to algorithms for
calculating primary production (Platt and Sathyendranath, 1988;
Longhurst et al., 1995). In a modelling context the parameters can
be used in equations describing the spatial and temporal evolution
of phytoplankton biomass (Fennel and Boss, 2003; Platt et al., 2003).
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Appendix
Let us take two points in the parameter space, namely X = (aB

x ,PB
m,x)

and Y = (aB
y , PB

m,y) such that aB
x = aB

y and PB
m,x = PB

m,y . For a
unique biomass profile b and irradiance matrix E, for all such X
and Y it holds that:

pT (X) = pT(Y), (A1)

while only for some X and Y it holds that:

PZ,T(X) = PZ,T (Y). (A2)

These conditions say that the model with two different parameter
combinations can give the same value of daily water column produc-
tion (A2), but with two different vertical profiles of daily production
(A1), for a unique biomass profile and irradiance matrix. This
means that each profile, for any point in the parameter space, is
unique, whereas the daily production at that same point is not
unique with respect to other points.

The assumption X = Y leads to two different pB(E) functions,
such that pB(E|X) = pB(E|Y), and consequently to different PB ma-
trices for the same irradiance matrix E. Finally by pT ¼ Pt we get
pT(X) = pT(Y). If we assume the opposite of (A1), that is
pT(X) ¼ pT(Y) and write it using pT ¼ Pt, we get BPB(X)t ¼
BPB(Y)t. For this to hold it is required that the biomass-normalized
production matrices are equal PB(X) ¼ PB(Y). That is possible only
for the case of pB(E|X) ¼ pB(E|Y), which is valid only if X ¼ Y, con-
tradicting the initial assumption of X = Y. So, by assuming that X
= Y and pT(X) ¼ pT(Y), we find that X ¼ Y for it to hold. This
proves the uniqueness of the vertical profile of daily production in
the parameter space. Put more simply, to every point (aB,PB

m)
there corresponds a unique model profile of daily production
pT (aB, PB

m). The given proof enables us to conclude that the
inverse problem is well defined. To every parameter combination
there is joined a distinct profile.

We now prove that equality of daily water column production is
valid for X = Y and does not lead to the same contradiction as in
the previous case. Let us assume PZ,T(X) ¼ PZ,T(Y) holds. We can
write it using PZ,T ¼ zPt as zP(X)t ¼ zP(Y)t. Considering that
pT ¼ Pt, we can write zpT(X) ¼ zpT(Y), which is nothing more
than an equality between two scalar products. Because the scalar
product is not uniquely determined, it is not necessary for the two
daily production profiles to be equal for them to have the same
value of PZ,T. Following (A1), to every different vertical profile
there corresponds a unique combination of parameters and we con-
clude that the two profiles can indeed have different values of para-
meters, although they yield the same value of PZ,T. So, the equality
PZ,T(X) ¼ PZ,T(Y) does not require pB(E|X) ¼ pB(E|Y).
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