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Abstract 12 

 13 

Here we report recombinant expression and activity of the Saccharomyces cerevisiae type 2 14 

diacylglycerol acyltransferase DGA1 functioning in parallel with the native Nannochloropsis 15 

salina genes. Expression of DGA1 shifted the chain length distribution of fatty acids produced 16 

and reflected an oleoyl- CoA substrate preference. Effect on the total FAME content was 17 

moderate and elevated by a maximum of 38%.  Expression of the DGA1 transgene varied 18 

throughout the culture life cycle and evidence of growth dependent environmental silencing of 19 

the transgene was observed. This is to our knowledge the first example of silencing and 20 

subsequent resetting in a transgenic microalga. Results from this study add valuable insights into 21 

the efficacy of algal genetic engineering and use of these microorganisms as bio-platforms for 22 

chemical manufacture. 23 

 24 
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1. Introduction  29 

While significant progress has been made in recent years in seeking alternative renewable forms 30 

of energy, at present most of these advances provide energy in the form of electricity. Oil 31 

remains the world’s leading fuel amounting to 32.6% of the global energy consumption in 2014 32 

(BP, 2015) and highlights the need for alternative sources of liquid transportation fuels to replace 33 

the over reliance on this diminishing commodity.   34 

Liquid biofuels offer a promising alternative to petroleum based transportation fuels (Demirbas, 35 

2011; Mata et al., 2010). Production from seed oil and cellulosic ethanol however cannot satisfy 36 

the current demand and impact negatively on both food and water security (Chisti, 2007; Norsker 37 

et al., 2011 ). In addition, whilst substituting gasoline with biofuels should reduce global CO2 38 

emissions which grew by an estimated 0.5% in 2014 (BP, 2015), changes in land use to provide 39 

sufficient feed stock is predicted to actually increase the greenhouse gas emissions by as much as 40 

50% (Searchinger et al., 2008).     41 

The use of microalgae has generated considerable interest as a high impact source of bioenergy 42 

and chemical feedstock (Hannon et al., 2010); growth facilities could be located adjacent to or 43 

within aquatic environments or on marginal land which, if coupled with the use of marine algal 44 

species, would reduce the  impact on decreasing fresh water supplies (Chen and Smith, 2012).  45 

These photosynthetic microorganisms have low input nutrition requirements when compared to 46 

non photosynthetic microbes for light and whilst producing large amounts of biomass over short 47 

periods of time (Brennan and Owende, 2010) Additionally light delivery can be optimised, 48 

nutrients recycled and more importantly using closed systems the rate of photosynthesis can be 49 

improved through the maintenance of high CO2 concentrations and optimal production 50 

conditions such as temperature and pH. All algae have the capacity to produce energy rich oils 51 
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and indeed a number of algal species have been found to accumulate oils up to 70% of their dry 52 

biomass under optimal conditions (Hannon et al., 2010; Scott et al., 2010). 53 

Despite technical advances algal derived biofuels remain uncompetitive with present day fossil 54 

fuels (Norsker et al., 2011 ). The use of hydrothermal liquefaction (HTL) may improve the 55 

economics since there is no need to dry the material first and the process can recover up to 80% 56 

of the carbon and up to 90% of the chemical energy originally present in the microalga as either 57 

bio-oil or gas products (Brown et al., 2010; Elliott et al., 2015).   58 

Improving the overall lipid accumulation within algae normally requires an increase in the lipids 59 

stored in the form of triacylglycerol (TAGs) and it is well-known that many algae accumulate 60 

TAGs in large quantities during the stationary phase of culture growth (Spolaore et al., 2006). To 61 

be commercially viable however, production requires a non–stop, semi-continuous culturing 62 

regime where the cells are maintained in the exponential phase.  This will consequently require 63 

an increase in the natural level of lipid accumulated during the early phases of culture growth 64 

(Chisti, 2007). Whilst lipid accumulation increases can be achieved via strain selection under 65 

selective pressure or by means of random mutagenesis (Beacham et al., 2015), genetic 66 

engineering of optimal strains is likely to be faster and more efficient in terms of TAG 67 

production (Chen and Smith, 2012). It should be noted however that engineering an efficient 68 

pathway for the production of a specific product could then inhibit through feedback inhibition. 69 

Conversion of fatty acids into TAGs serves the algae in two main ways, firstly allowing carbon 70 

storage in a very dense energy form and secondly it neutralises free fatty acids (FFAs) and other 71 

lipotoxic derivatives. There are two metabolic pathways for the production of TAG, an acyl-CoA 72 

dependent and acyl-CoA independent pathway. The major route of de novo TAG biosynthesis 73 

(KEGG pathway map ko00561) is thought to be via the acyl-CoA dependent pathway 74 

http://www.genome.jp/kegg-bin/show_pathway?ko00561
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commonly known as the Kennedy pathway. Acyl-CoAs are sequentially added to the sn-1, sn-2 75 

positions of a glycerol-3 phosphate molecule followed by de-phosphorylation to form 76 

diacylglycerol (DAG). The last and only committed step in TAG biosynthesis is the acylation of 77 

DAG at the sn-3 position, and it is catalysed by the activity of diacylglycerol acyltransferase 78 

(DGAT) (Kennedy, 1961). This enzyme has significant potential for biotechnological purposes, 79 

offering the prospect of increasing the oil content of oleaginous species. Multiple DGATs are 80 

present in most eukaryotic organisms and there are at least two major classes of DGAT genes 81 

(type 1 and 2) that are frequently seen in algae, the enzyme products of both are membrane 82 

bound and catalyse the same reaction. DGAT1 and DGAT 2 belong to two different gene 83 

family’s which likely evolved separately with functional convergence despite wide molecular 84 

and structural divergence (Kroon et al., 2006; Turchetto-Zolet et al., 2011). Studies have shown 85 

that both DGATs play a strong roll in TAG regulation with the specific enzyme activity often 86 

tissue and/or species specific (Chen and Smith, 2012). Additionally DGAT2 is often observed to 87 

have a critical role in the accumulation of unusual FAs (Oelkers et al., 2002; Xu et al., 2014). 88 

DGAT has also been proposed to be the rate limiting enzyme in storage lipid accumulation 89 

(Ichihara et al., 1988; Perry et al., 1999) and it has been shown that overexpression of this 90 

enzyme can lead to elevated lipid accumulation (Ahmad et al., 2015; Dey et al., 2014; Jako et al., 91 

2001).  92 

Previous work (Beacham et al., 2014) identified Nannochloropsis salina 849/3 as an ideal 93 

candidate for use as biofuel feed stock and target for genetic manipulation due to its capacity to 94 

accumulate high levels of lipid during stationary culture phase, coupled with a thin cell wall 95 

which should provide less resistance to DNA penetration than many other oleaginous algae 96 

species.  97 
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 In this study, we sought to increase the availability of DGAT to determine if the level of TAG 98 

accumulation during the exponential phase of growth could be significantly enhanced. We used 99 

Agrobacterium tumefaciens mediated transformation to incorporate the Saccharomyces 100 

cerevisiae DGAT2 (DGA1 gene) into N. salina.  DGA1p is the sole member of the DGAT family 101 

of enzymes in S. cerevisiae. The substrate specificity of DGA1p is well defined and whilst it can 102 

utilise a range of acyl-CoA substrates the preferred substrates are oleoyl-CoA (C18:1) and 103 

palityl-CoA (C16:0) (Oelkers et al., 2002). This specificity makes this gene an ideal candidate 104 

for this study since N. salina naturally accumulates high levels of C16:0 and moderate levels of 105 

C18:1. Changes in the levels of these fatty acids as well as the impact of removal of C18:1 from 106 

the FA pool on the production of very long chain polyunsaturated fatty acids (PUFAs) was 107 

assessed alongside growth and productivity analysis over a period of 58 days. Transcript analysis 108 

indicated possible environmental conditioned silencing and the implications of this for future 109 

modifications are discussed. Results from this study add valuable insights into the efficacy of 110 

algal genetic engineering and use of these microorganisms as bio-platforms for chemical 111 

manufacture. 112 

  113 
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2. Methods 114 

2.1 Strains.  115 

Nannochloropsis salina (CCAP 849/3) was obtained from the Culture Collection of Algae and 116 

Protozoa (Scottish Association for Marine Science, Oban, Scotland, U.K.).  117 

2.2 Culture conditions.  118 

Stock cultures were maintained under batch culture conditions (0.5 L) in F/2 medium (Guillard, 119 

1975) using fresh sterilised seawater at 90 % (30 g L
-1

) salinity (F/2-90), pH 8.2, maintained 120 

under 100 µmols photons m
2
 sec

-1
 irradiance on a 16 h: 8 h light: dark cycle at 25 ºC, agitated 121 

daily and sub-cultured on a bi-weekly basis. Experimental time course cultures in duplicate (1.5 122 

L in 2 L growth vessels) were inoculated at a density of 1 x 10
5
 cells ml

-1 
from stock cultures in 123 

mid logarithmic phase (to minimise lag phase between strains and favour close synchronisation 124 

during the growth phase).  All cultures were maintained under the same lighting and temperature 125 

regime as for the stocks but additionally bubbled with 0.2m filtered ambient air and maintained 126 

without sub-culturing into stationary growth phase.  127 

2.3 Cloning DGA1 (T-DNA vector construction)  128 

Full length DGA1 gene (NCBI Reference Sequence: NM_001183664.1) (Goffeau et al., 1996) 129 

was amplified from the gDNA of Saccharomyces cerevisiae strain BY4742 using primers 130 

GW_Y_DGAT_F (5’GGG GAC AAG TTT GTA CAA AAA AGC AGG CTT CGA AGG AGA 131 

TAG AAC CAT GTC AGG AAC ATT CAA TGA TAT AAG ‘3) which targets the first 26bp of 132 

the gene and includes a flanking wing region which includes an upstream kozak sequence and 133 

attB1 sequence and GW_Y_DGAT_R2 (5’ GGG GAC CAC TTT GTA CAA GAA AGC TGG 134 

GTC TTA CCC AAC TAT CTT CAA TTC TGC 3) targeting the last 24bp of the gene and 135 

includes a downstream wing region containing the attB2 sequence. Purified gene fragment was 136 
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transferred via the GATEWAY™ attB1 and attB2 sequences into pDONOR-zeo and then 137 

recombined in to the T-DNA destination vector pEG101B (an adaptation of the 138 

pEARLYGATE101 vector  (Earley et al., 2006) modified to include the  Hygromycin B 139 

resistance gene (hyg)  under the control of the tef promoter and terminator) such that the DGA1 140 

gene falls under the control of the CaMV35S promoter and the resulting plasmid was designated 141 

pEG101B:DGAT. ElectroMAX™ A. tumefaciens LBA4404 (Invitrogen) were transformed with 142 

100 ng DNA (pEG101B:DGA1) plated on selective medium (YM supplemented with 50g ml
-1

 143 

kanamycin and 100g ml
-1

 Streptomycin) and incubated for 48 hours at 30 °C. An individual 144 

colony (ABF10) containing the peg101b:DGA1 was isolated and the fidelity of the construct was 145 

rechecked by DNA sequencing. Vector map is provided in supplementary materials Figure 1.  146 

2.4 Agrobacterium mediated transformation of N. salina  147 

N. salina 849/3 cells at mid log phase (5 x10
7
 cells) were washed and then re-suspended in 600 148 

l fresh sterilised sea water at 10% (3.3 g L
-1

) salinity, (F/2 -10) at pH 5.6. Freshly cultured A. 149 

tumefaciens ABF10 was washed and then re-suspended in the F/2-10, pH 5.6, at A600 0.5. The 150 

microalga was then mixed with 1200 l ABF10 and vanillin added to give a final concentration 151 

of 400 M. Cells were co-incubated as a thin liquid layer in a 25 ml vented culture bottle in the 152 

dark at 25 ⁰C for 3 days. Samples were exposed to light for 30 min., 20 ml fresh F/2-90 medium 153 

containing cefotaxime to a final concentration 500 g ml
-1

 added and then placed back in the 154 

dark for a further 3 days. Samples were allowed to recover under standard 16:8 light:dark 155 

conditions for a period of approximately 4 generations (7 days) then pelleted and plated for 156 

single colonies on solid media (F/2-90 with 0.8 % agarose containing hygromycin B at 300 g 157 

mL
-1

). Plates were initially incubated for 3 days in the dark for antibiotic selection then 158 

transferred to the light until colony appearance. All incubation steps were performed at 25 ⁰C. 159 
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2.5 Growth rate determination.  160 

Culture density was determined via light microscope cell enumeration in a haemocytometer 161 

following staining with Lugols iodine solution (2 %). Specific growth rates (K) were calculated 162 

according to the following equation:  163 

K= ln [(n2/n1) / (t2-t1)] 164 

where n2 and n1 are the total cells mL
-1

 at time point (t2) and time point (t1) respectively, and 165 

where t2 > t1. 166 

2.6 Lipid analyses.  167 

Since HTL is impractical on a small scale, fatty acid concentrations and profiles in microalgal 168 

cells were determined post conversion to fatty acid methyl esters (FAMEs) using GC-MS 169 

(Agilent 7890A GC and 5975C inert MSD, Agilent Technologies Ltd., Edinburgh, UK). Culture 170 

samples were centrifuged (10,000 × g), washed in distilled water and resulting pellets 171 

lyophilised. Nonadecanoic acid (C19:0) was added as an internal standard and cellular fatty acids 172 

were converted directly to FAMEs by adding 1 mL of transesterification mix (95:5 v/v 3 N 173 

methanolic HCl; 2,2-dimethoxypropane) followed by incubation at 90 ºC for 1 h. After cooling, 174 

FAMEs were recovered by addition of 1 % w/v NaCl solution (1 mL) and n-hexane (1 mL) 175 

followed by vortexing. The upper hexane layer was injected directly onto the GC-MS system as 176 

previously described (Beacham et al., 2015). FAMEs were identified using retention times and 177 

qualifier ion response and quantified using respective target ion responses. All parameters were 178 

derived from calibration curves generated from a FAME standard mix (Supelco, Sigma-Aldrich, 179 

Gillingham, Dorset, UK).  180 

2.7 Transcript analysis.  181 
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At each time point for each culture, 20 ml culture was pelleted and ground under liquid nitrogen 182 

and total RNA extracted using TRIzol® Reagent (Life Technologies). RNA samples were 183 

subsequently treated with RNase-Free DNase (Qiagen) and 1g used as template for cDNA 184 

synthesis using SuperScript® III First-Strand Synthesis kit (Invitrogen).  Analysis by qPCR was 185 

performed on an ABI Prism7000 system (Applied Biosystems) in triplicate for each sample. The 186 

cDNA samples were diluted 5-20 fold for amplification of PCR fragments using TaqMan® Gene 187 

Expression Master Mix (25 ul reactions) with forward primers at 3 m, reverse primers at 9 M 188 

and the probe at 10 m final concentrations. Gene specific primers and probes used: N. salina 189 

ribosomal 18S using FAM –TAMRA labelled gene specific probe NS18S_Probe (5’ TGG CCT 190 

ACC ATG GCT CTA ACG GG 3’) and primers NS18S(TM)F (5’ TTC TGC CCT ATC AGC 191 

TTT GG 3’) and NS18S(TM)R (5’ GTC TCT CAG GCT CCC TCT CC 3’); S. cerevisiae DGA1 192 

using FAM –TAMRA labelled gene specific probe YDGAT_Probe (5’ CCA CTT CGC CAG 193 

TTG CAG GAG A 3’) and primers YDGAT(TM)F (5’TGT GGG TTC TTG CTA TTC CA 3’) 194 

and YDGAT(TM)R (5’ AAT GGG CAA TGA ACG AAA TC 3’). The latter primer probe set 195 

was designed and checked such that no amplification of the native N. salina DGAT genes 196 

occurred. The amplicon size of 18S and DGA1 PCR reactions were 100bp and 107bp 197 

respectively. The cycling parameters were as follows; 2 minutes at 50 °C (UDG incubation), 15 198 

minutes at 95 °C for AmpliTaq activation followed by 40 cycles of 95 °C for 15 seconds, 60 °C 199 

for 1 minute.  200 

No amplification was detected in the WT 849/3 controls when using the DGA1 primer probe set 201 

indicating no cross amplification of the native genes was occurring.   Controls lacking template 202 

were also used with each primer-probe pair to ensure that probe/primer dimer was not causing 203 

false signal detection. The cycle at which the florescence passed the threshold (Ct) was 204 
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determined automatically using the on-board software and used to calculate the transcript level 205 

by comparison to a standard curve generated from a standard dilution series of plasmids 206 

containing the specific PCR fragment (generated with the TM primers given above and cloned 207 

into pGEM®-T Vector (Promega).  Samples were normalised to one another by using the 208 

relative expression of DGA1 to 18S. RNA quality can be reduced during the stationary phase and 209 

if this is the case this may affect gene expression estimates. The raw 18S QPCR data are there 210 

for presented in supplementary table to demonstrate that the RNA quality was maintained 211 

throughout the time course. 212 

 213 

3. Results and Discussion 214 

To determine if we could improve the overall lipid accumulation of N. salina during the active 215 

culture growth phase, we generated DGA1+, hyg+ mutants, using Agrobacterium tumefaciens 216 

mediated transformation of strain CCAP 849/3. Genomic DNA was extracted from individual 217 

colonies of N. salina transformed with Agrobacterium ABF10, and was screened for the 218 

presence of the hyg and  DGA1 transgenes and the ribosomal RNA 18S control gene for gDNA 219 

quality. Of the colonies picked only 15% contained the transgenes and this was indicative of the 220 

poor selective nature of Hygromycin B that we have observed throughout this study which made 221 

clone selection challenging. This antibiotic appears to be very susceptible to light and to the 222 

changes in salinity and pH which occur in the micro environment around the plated algae cells. 223 

Transformation efficiency was approximately 1 in 0.132 x 10
-5

 cells (0.000132%). Two positive 224 

transformants NBF22-8 and NBF22-9 were taken forward for metabolic and DGA1 expression 225 

analysis.  226 

3.1 Growth.  227 
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Both NBF22-8 and NBF22-9 displayed a significant reduction in growth rate during the growth 228 

phase compared to the wild type control (Figure 1). The period of time spent in the growth phase 229 

was however extended by approximately 3 days for both DGA1+ mutants and was thus 230 

accompanied by an increase in the maximal cell density of 13-15% though this increase was not 231 

statistically significant in either mutant.  232 

Reduction in growth rate in the mutants was not unexpected and is similar to that observed in 233 

random mutagenized N. salina that over accumulate lipids (Beacham et al., 2015), and is likely a 234 

result of limited resource and energy requirements being funnelled to lipid storage thus slowing 235 

cell replication. 236 

 237 

 238 

Figure 1 (double column fitting) Growth characteristics of wild type N. salina 849/3 and 239 

DGA1+ mutants NBF22-8 and NBF22-9 over a 58 day period. Average data from 8 technical 240 

and 2 biological replicates for each strain. Doubling times during the exponential growth phase 241 

were: WT = 38.7hours, NBF22-8 = 64.3hours, NBF22-9 = 74.2 hours.  242 

 243 

3.2 Expression.  244 
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Quantitative PCR was used for expression analysis of the DGA1 transgene.  Expression was 245 

plotted as a ratio of DGA1 / 18S and is given in Figure 2A. For both NBF22-8 and NBF22-9 246 

DGA1 was expressed only during the growth phase with little or no detectable transcript levels 247 

during the transition and stationary phases of growth. Besides the promoter and terminator 248 

sequences of the T-DNA construct no additional gene regulatory elements such as 249 

enhancer/silencers were co-transformed with the DGA1 transgene which indicates a form of gene 250 

silencing has occurred via the native chromosomal environment. Silencing of a foreign gene 251 

shortly after integration is not uncommon (Dehio and Schell, 1994; Meins, 2000; Meyer, 2000) 252 

and depending on the type of silencing is often permanent. In this instance however our DGA1+ 253 

strains had been propagated through many generations prior to the time course experiment 254 

presented here. If the genes had been permanently silenced shortly after insertion we would not 255 

have expected to detect any heterologous expression. 256 

To confirm that the silencing of the DGA1 gene was due to a transient effect, cultures of NBF22-257 

8 and NBF22-9 that had been in stationary phase for 3 months were sub-cultured into fresh 258 

medium at a dilution of 1/20, and maintained under standard batch culture conditions (no 259 

additional aeration). Culture samples for transcript analysis were taken during the lag phase, the 260 

growth phase and stationary phases for both the refreshed cultures and the quiescent cultures 261 

from which they had been sub-cultured. Quantitative PCR analysis shows that the transcription 262 

of the transgene is indeed subject to growth phase specific silencing and can be reactivated upon 263 

returning the cells to an active growth state (Figure 2B). 264 

 265 
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 266 

Figure 2. (double column fitting)  QPCR analysis of DGAT transgene expression. Panel A -267 

Expression over 48 day time course for clones NBF22-8 and NBF22-9.  Panel B - Resetting of 268 

the DGA1 gene following transfer to fresh medium. NBF22-8 and NBF22-9 refer to DGA1+ 269 

clones. Q refers to a culture that has entered a quiescent stage. R refers to refreshed cultures 270 

(quiescent cells that have been sub cultured into fresh medium).  271 

 272 

Based on investigations in plants, there are several possible explanations for the silencing and 273 

resetting observed. Individual genes are embedded in a highly complex chromatin structure and 274 

often groups of genes are packaged in a chromosomal matrix which is regulated by sophisticated 275 

chromatin remodelling mechanisms governing when a gene or set of genes are accessible for 276 

transcription (Meyer, 2000). An N. salina culture is not unlike a plant in the sense that the 277 

processes occurring within a given cell cycle vary widely between cells in early exponential 278 

growth and those in the quiescent state observed in nutrient deplete conditions. It is well know 279 

that Agrobacterium-mediated gene transfer often favours T-DNA integration sites in 280 

transcriptionally active regions of the chromosome (Alonso et al., 2003; Gelvin, 2003; Tzfira et 281 

al., 2003), and it is likely therefore that the DGA1 gene was integrated into a site that is active 282 
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during exponential growth (the state of the culture at time of transformation). Histone 283 

modification and DNA methylation act in accord in self-propagating epigenetic cycles that 284 

stabilise transcriptionally-active and -inactive states in response to environmental or 285 

developmental cues (Dehio and Schell, 1994). This transitioning from euchromatin to facultative 286 

heterochromatin causes gene silencing by way of inaccessibility of the transcriptional machinery 287 

and is fully reversible (Meyer, 2000). One possibility therefore is that the DGA1 gene has 288 

integrated into a region of a chromosome that becomes inactivated in nutrient deplete conditions 289 

but is reactivated when environmental conditions become favourable once more.  290 

A second possibility is homology dependent post transcriptional gene silencing. It has been 291 

frequently observed in plants that interactions between the trans and host genes of a similar 292 

sequence lead to transgene inactivation and targeted degradation at the mRNA level (Meyer and 293 

Saedler, 1996). 294 

Evidence suggests that the mechanisms involved in post transcriptional gene silencing  and 295 

resetting are closely linked to a variety of pathways involved in sensing stress and developmental 296 

cues and that sequence similarity of 60-70% between the trans and native genes is sufficient to 297 

activate this kind of RNA degradation leading to gene silencing (Meins, 2000). Whilst resetting 298 

of post transcriptional gene silencing has been detected in plants (Balandin and Castresana, 1997; 299 

Dehio and Schell, 1994) it is regularly observed to occur after meiosis, a process that is thought 300 

not to occur in N. salina though this does not necessarily preclude this method of silencing.  301 

Whilst we have no empirical evidence of the DGA1 gene integration site for either NBF22-8 or 302 

NBF22-9 we suppose the former chromatin silencing model to be the more likely mode of action 303 

in this investigation. 304 

 305 
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3.3 Lipid analysis.  306 

Batch cultures of wild type N. salina show a predictable shift in lipid storage, from lag where 307 

stored lipid is reduced through exponential growth where lipid levels stabilise to between 5-15%. 308 

During the transition from logarithmic to stationary growth, levels rise rapidly to as much as 30 -309 

50%, (Beacham et al., 2014; Beacham et al., 2015). We therefore assessed the contribution of the 310 

DGA1 transgene expression on lipid accumulation over a 58 day period from lag through to late 311 

stationary phase. 312 
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 313 

  Total average FAME content (pg/cell) Mid Exponential 

Productivity (µg ml-1 

d-1) 
  Day 10 Day 16 Day 23 Day 31 Day 48 

WT 

(849/3) 0.85 (±0.01) 1.25 (±0.02) 1.79 ( ±0.02) 4.59 (± 0.19) 6.32 (±0.29) 11.03(±0.2) 

NBF22-8 0.97 (±0.02) ↑13.8 % 1.40 (± 0.02) ↑11.3 % 2.12 (± 0.03) ↑18.5 % 4.33 (± 0.05) 5.88 (±0.15)  19.29 (±2.1) ↑74.9 % 

NBF22-9 0.94 (±0.02) ↑10.6% 1.49 (±0.15) ↑18.8 % 2.48 (±0.02) ↑38.3 % 4.96 (±0.17)  6.60 (± 0.10)  11.43 (±0.3) 

 314 

Table 1. Total FAME content over a 48 day period and productivity during mid exponential growth, with (SEM). Significant changes 315 

in the transgenic lines given as a % change from the WT control. 316 
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Total FAME content was elevated in both NBF22-8 and NBF22-9 during the first 23 days 317 

compared to the wild type control, but during subsequent time points the lipid content of these 318 

strains fell back to levels comparable with the control (Table 1).  N. salina, like many marine 319 

algae, maintain a “reserve level” of TAG which has functions beyond energy storage; in 320 

maintaining a source of the long chain fatty acids required for plastid membrane maintenance, as 321 

a store for secondary carotenoids and preventing photo-oxidative injuries by consuming excess 322 

photoassimilates (Guschina and Harwood, 2006; Solovchenko, 2012). We speculate that the 323 

ability of NBF22-8 and NBF22-9 to extend the length of time spent undergoing cell proliferation 324 

prior to entering the semi-quiescent state of stationary phase may be due to the utilisation of the 325 

extra lipids accumulated during early exponential phase and would thus account for the 326 

normalising of lipid content to a level comparable to the wild type cultures. 327 

Lipid production on an industrial scale will likely require a semi continuous culturing system 328 

where the culture is maintained and harvested in an active growing state. As such the overall 329 

lipid productivity for each strain was assessed for the period of mid exponential growth (Table 330 

1). The elevated lipid content of NBF22-8 was translated into a significant increase in overall 331 

productivity despite a decreased growth rate. For NBF22-9 however the reduction in growth rate 332 

cancelled out the gains in lipid accumulation and the overall productivity of this transgenic strain 333 

was not significantly different from the wild type control.  334 

Despite the DGA1 gene being silenced early in growth the recombinant strains continued to 335 

maintain an elevated lipid content well beyond the point when the DGA1 gene had been silenced.  336 

It has been shown that in non- adipocytes lipid storage can be induced by various stimuli 337 

including the presence of long chain unsaturated fatty acids such as oleic acid (C18:1)  (Melo et 338 

al., 2011). It is therefore plausible that the elevation in C18:1 (Table 2) in the DGA1+ mutants 339 
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caused a feedback loop to continue lipid storage even after the DGA1 gene had been silenced, 340 

and because the cells were grown in an enriched  medium the levels  of excess lipid was  341 

maintained until the culture became nutrient deplete.  342 
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 343 

  

Major Fatty Acids Saturation profile 

  

C14:0 C15:0 C16:0 C16:1 C18:0 C18:1 C18:2 C18:3 C20:0 C20:3 C20:4 C20:5 C24:0 SFA MUFA PUFA 

D
A

Y
 1

0
 wt  

3.9 ±  

0.1 

0.5 ± 

0.0 

31.6 ± 

0.4 

29.2 ± 

0.2 

2.0 ± 

0.1 

7.1 ± 

0.1 

4.8 ± 

0.1 

0.9 ± 

0.0 

0.6 ± 

0.0 

1.0 ± 

0.0 

3.7 ± 

0.1 

11.5 ± 

0.5 

0.9 ± 

0.0 

40.8 ± 

0.6 

36.8 ± 

0.3 

22.3 ± 

0.7 

NBF22-8 
4.0 ± 

0.4 

0.5 ± 

0.1 

29.7 ± 

1.9 

28.7 ± 

1.5 

2 ± 

0.3 

7.5 ± 

0.1 

4.3 ± 

0.2 

1.1 ± 

0.2 

0.7 ± 

0.2 

1.2 ± 

0.3 

4.2 ± 

0.4 

12.8 ± 

2.6 

0.6 ± 

0.4 

39.2 ± 

2.1 

36.6 ± 

1.2 

24.2 ± 

3.2 

NBF22-9 
3.7 ± 

0.5 

0.5 ± 

0.0 

28.9 ± 

1.7 

28.3 ± 

1.2 

2 ± 

0.3 

8.3 ± 

0.5 

4.4 ± 

0.1 

1.2 ± 

0.1 

0.7 ± 

0.1 

1.2 ± 

0.2 

4.4 ± 

0.3 

13.5 ± 

1.5 

0.7 ± 

0.5 

37.9 ± 

1.4 

37.1 ± 

0.8 

25.0 ± 

2.0 

D
ay

 1
6
 

wt  
3.3 ± 

0.6 

0.6 ± 

0.1 

34.3 ± 

0.9 

28.7 ± 

0.8 

2.6 ± 

0.1 

9.9 ± 

0.4 

4.9 ± 

0.1 

0.7 ± 

0.0 

0.3 ± 

0.0 

0.6 ± 

0.0 

3.6 ± 

0.2 

8.7 ± 

0.6 

0.2 ± 

0.0 

42.3 ± 

0.4 

38.9 ± 

0.8 

18.7 ± 

1.2 

NBF22-8 
4.1 ± 

0.3 

0.7 ± 

0.2 

32.4 ± 

0.4 

27.8 ± 

0.5 

2.7 ± 

0.1 

11.5 ± 

0.7 

3.6 ± 

0.1 

0.7 ± 

0.0 

0.2 ± 

0.0 

0.9 ± 

0.3 

4.0 ±  

0.3 

9.4 ± 

0.3 

0.1 ± 

0.0 

41.6 ± 

0.9 

39.7 ± 

0.3 

18.8 ± 

1.1 

NBF22-9 
3.7 ± 

0.9 

0.5 ± 

0.1 

34.9 ± 

6.7 

28.0 ± 

10.0 

2.4 ± 

0.6 

5.4 ± 

4.9 

4.1 ± 

0.4 

1.1 ± 

0.2 

0.6 ± 

0.1 

1.1 ± 

0.2 

4.8 ± 

1.1 

10.0 ± 

1.9 

0.8 ± 

0.1 

44.8 ± 

8.3 

33.9 ± 

11.9 

21.3 ± 

4.3 

D
ay

 2
3
 

wt  
2.6 ± 

0.0 

0.7 ± 

0.0 

39.7 ± 

0.5 

32.3 ± 

0.2 

2.0 ± 

0.0 

10.0 ± 

0.2 

3.1 ± 

0.0 

0.7 ± 

0.0 

0.3 ± 

0.0 

0.4 ± 

0.0 

2.2 ± 

0.1 

4.4 ± 

0.2 

0.0 ± 

0.1 

46.3 ± 

0.3 

42.8 ± 

0.1 

10.9 ± 

0.3 

NBF22-8 
3.0 ± 

0.1 

0.6 ± 

0.1 

36.9 ± 

0.2 

31.9 ± 

0.6 

2.0 ± 

0.0 

12.9 ± 

0.8 

2.1 ± 

0.1 

0.7 ± 

0.0 

0.3 ± 

0.0 

0.4 ± 

0.1 

2.4 ± 

0.1 

4.8 ± 

0.1 

0.2 ± 

0.1 

44.1 ± 

0.1 

45.3 ± 

0.2 

10.6 ± 

0.3 

NBF22-9 
2.9 ± 

0.1 

0.6 ± 

0.0 

35.4 ± 

1.2 

31.9 ± 

0.5 

2.1 ± 

0.0 

13.1 ± 

0.4 

2.2 ± 

0.1 

0.8 ± 

0.1 

0.3 ± 

0.0 

0.5 ± 

0.0 

2.9 ± 

0.3 

5.4 ± 

0.5 

0.2 ± 

0.1 

42.7 ± 

1.2 

45.5 ± 

0.4 

11.8 ± 

1.1 

D
ay

 3
1
 

wt  
2.4 ± 

0.0 

0.6 ± 

0.0 

40.8 ± 

0.3 

33.7 ± 

0.2 

1.9 ± 

0.0 

11.0 ± 

0.1 

2.5 ± 

0.0 

0.8 ± 

0.0 

0.3 ± 

0.0 

0.4 ± 

0.0 

1.7 ± 

0.0 

2.8 ± 

0.1 

0.0 ± 

0.0 

46.9 ± 

0.3 

45.0 ± 

0.2 

8.1 ± 

0.1 

NBF22-8 
2.8 ± 

0.2 

0.6 

±0.1 

38 ± 

2.1 

33.9 ± 

1.9 

1.8 ± 

0.1 

13.0 ± 

4.3 

1.6 ± 

0.0 

0.7 ± 

0.0 

0.3 ± 

0.0 

0.4 ± 

0.0 

1.8 ± 

0.1 

3.3 ± 

0.2 

0.0 ± 

0.1 

44.7 ± 

2.3 

47.4 ± 

2.5 

7.9 ± 

0.3 

NBF22-9 
2.5 ± 

0.2 

0.5 

±0.0 

36.7 ± 

0.6 

33.8 ± 

0.5 

1.9 ± 

0.1 

14.7 ± 

0.5 

1.6 ± 

0.1 

0.7 ± 

0.1 

0.3 ± 

0.0 

0.4 ± 

0.0 

2.0 ± 

0.1 

3.3 ± 

0.2 

0.0 ± 

0.1 

43.0 ± 

0.7 

48.9 ± 

0.2 

8.1 ± 

0.6 

D
ay

 4
8
 

wt  
2.0 ± 

0.2 

0.5 

±0.0 

43.7 ± 

0.6 

34.8 ± 

0.6 

1.5 ± 

0.0 

11.1 ± 

0.4 

2.0 ± 

0.0 

0.8 ± 

0.1 

0.1 ± 

0.2 

0.0 ± 

0.1 

1.2 ± 

0.1 

1.1 ± 

0.1 

0.0 ± 

0.0 

48.7 ± 

0.7 

46.3 ± 

0.7 

5.1 ± 

0.1 

NBF22-8 
2.3 ± 

0.2 

0.6 ± 

0.0 

39.4 ± 

0.8 

35.6 ± 

0.6 

1.6 ± 

0.2 

14.7 ± 

1.0 

1.6 ± 

0.1 

0.8 ± 

0.1 

0.1 ± 

0.2 

0.0 ± 

0.0 

1.1 ± 

0.1 

1.1 ± 

0.1 

0.0 ± 

0.0 

44.8 ± 

0.9 

50.7 ± 

0.8 

4.5 ± 

0.2 

NBF22-9 
2.2 ± 

0.1 

0.6 ± 

0.0 

39.2 ± 

0.8 

35.9 ± 

0.8 

1.6 ± 

0.1 

14.7 ± 

0.4 

1.6 ± 

0.1 

0.8 ± 

0.1 

0.1 ± 

0.2 

0.0 ± 

0.0 

1.1 ± 

0.2 

1.1 ± 

0.2 

0.0 ± 

0.0 

44.5 ± 

0.9 

50.9 ± 

0.7 

4.6 ± 

0.7 

 344 

Table 2. Changes in fatty acid profile and levels of saturation over a 48 day period with (±SD). Significant changes in the transgenic 345 

lines given as a % change from the WT control 346 
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 347 

Alterations in the fatty acid profiles of both NBF22-8 and NBF22-9 saw a reduction in palmitic 348 

acid (C16:0) and linoleic acid (18:2) and a corresponding increase in C18:1 content (Table 2).  349 

Arachidonic acid (C20:4) and eicosapentaenoic acid (C20:5) were also elevated compared to the 350 

control and the overall level of unsaturation was increased in the transition and stationary phases. 351 

For both DGA1+ strains, the overall level of stored lipid returned to levels comparable with the 352 

unmodified control once the transgene had been silenced but interestingly changes to the FA 353 

profile arising from transgene expression were maintained throughout the time course.   354 

Very long chain polyunsaturated fatty acids (VL-PUFAs) are known to play important roles in 355 

sustaining membrane structure and function including maintaining optimal membrane fluidity 356 

and providing an antioxidative function facilitating protection against biotic and abiotic reactive 357 

oxygen species (Okuyama et al., 2008). In the wild type control cells the levels of EPA and ARA 358 

started at relatively high levels, 3.7 % and 11.5% respectively, but gradually declined as the 359 

culture aged. This fall is likely a response to change in cell culture activity from vigorous 360 

respiration and growth (high levels of membrane production and maintenance required) through 361 

to energy storage and cell quiescence. Both NBF22-8 and NBF22-9 showed the same fall in EPA 362 

and ARA over time as the wild type, although with the exception of day 48, the levels of both 363 

theses VL-PUFAs were significantly elevated compared to the wild type controls throughout the 364 

time course. This elevation is unlikely to be as a result of DGA1 activity and probably the result 365 

of the mutant cultures lagging behind the wild type in terms of culture progression; the slower 366 

doubling time of the mutants mean that the cultures had a slower transition from exponential to 367 

stationary phase and as such the turnover of ARA and EPA was slower leading to the appearance 368 

of elevated levels.   369 
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It had been anticipated that the sequestration of more C18:1 in TAG could mean less resource 370 

available for chain lengthening which might ultimately reduce the overall PUFA content and 371 

thereby improve suitability for use in biodiesel. As we have seen this was not the case, with the 372 

maintenance of VL-PUFAs levels being tightly controlled. The reduction in C16:0 and C18:2 is 373 

likely a consequence of the change in flux with more C16:0 being diverted to chain lengthening 374 

to maintain the levels of PUFAs combined with a reduction in the level of C16:0 being 375 

sequestered in TAG. Competition for the C18:1-acyl-CoAs between the DAG1p and the ∆12 376 

desaturase responsible for the conversion of C18:1 to C18:2 combined with the need to maintain 377 

flux in to the VL-PUFAs is likely responsible for the reduction in C18:2 seen in both NBF22-8 378 

and NBF22-9. That the levels of C20:4 and C20:5 are maintained whilst the levels of 18:2 379 

declined indicates that the ∆12 desaturase is likely the rate-limiting step in this biosynthetic 380 

pathway, and also indicates that both the KasII and ∆9 desaturase enzymes responsible for the 381 

conversion of  C16:0 to C18:1 and the DAG1p enzyme have a higher turnover than the  ∆12 382 

desaturase.   383 

 384 

3.4 Conclusion 385 

We have demonstrated that increasing the availability of DGAT by introducing an additional 386 

copy of the transgene can be useful in over stimulating accumulation of lipids in N. salina. It is 387 

well known that an increase in lipid accumulation is frequently accompanied by a reduction in 388 

growth rates as more resources are diverted to energy storage and away from propagation. 389 

Choice of transgene is therefore important both for the level of activity and substrate specificity– 390 

we chose a DGAT2 (DGA1) for its well defined mode of action and steady activity.  We have 391 

demonstrated here that “less is more” with the DGA1 gene generating only a modest increase in 392 
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lipid storage which had only a low level impact on overall growth rates and hence generated a 393 

significant increase in overall lipid productivity. Use of Agrobacterium-mediated T-DNA vector 394 

technology proved to have unforeseen consequences arising from the mode of Agrobacterium 395 

action – integration into a transcriptionally-active region of the genome which was only active 396 

during a short phase of the culture life cycle. The silencing observed has implications for the 397 

expression of the selection marker and may be a reason for the frequent failure of selection and 398 

apparent low transformation efficiency observed. It may also account for the loss of 399 

transformants when maintained in selective media over an extended period due to the 400 

intermittent expression of resistance markers undermining selection. 401 

It is interesting to note that the duration of transient expression appears to be longer for NBF22-8 402 

compared with NBF22-9 (Fig. 2A) and that the growth rate is also faster (Fig. 1).  NBF22-8 also 403 

demonstrates greater mid-exponential productivity (Table 1).  This suggests that whilst both 404 

strains display similar transient gene expression patterns the local conditions for gene expression 405 

may not be the same.  It is possible that transgene insertion has occurred in the same general 406 

region of the genome but that the sites of insertion are distinct resulting in localised variation in 407 

transgene expression. Another possibility is that if the site of insertion is indeed identical then the 408 

construct has inserted in opposite orientations relative to the surrounding DNA, again resulting in 409 

localised variation in transgene expression. 410 

This environmentally-controlled conditional silencing whilst not the intended outcome, could be 411 

an advantageous way of naturally controlling transgene expression in the heterologous host, 412 

especially if the product is toxic to the host, unstable or energetically expensive to synthesise. 413 

Host -regulated gene expression could provide for maximal output and no loss of energetic 414 

resources during the growth phases when the product is not required allowing for a more 415 
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efficient production strategy. Further analysis of the transgene insertion site will provide new 416 

insights into the complex, but little understood, mechanisms of gene regulation adopted by 417 

microalgae which is essential if microalgae are to deliver on their promise as photsynthetically-418 

driven biofactories.  419 

 420 
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