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Abstract 11 

Waste bioremediation is a key regulating ecosystem service, removing wastes from ecosystems 12 

through storage, burial and recycling. The bivalve Mytilus edulis is an important contributor to this 13 

service, and is used in managing eutrophic waters. Studies show that they are affected by changes in 14 

pH due to ocean acidification, reducing their growth. This is forecasted to lead to reductions in M. 15 

edulis biomass of up to 50 % by 2100. Growth reduction will negatively affect the filtering capacity 16 

of each individual, potentially leading to a decrease in bioremediation of waste. This paper critically 17 

reviews the current state of knowledge of bioremediation of waste carried out by M. edulis, and the 18 

current knowledge of the resultant effect of ocean acidification on this key service. We show that the 19 

effects of ocean acidification on waste bioremediation could be a major issue and pave the way for 20 

empirical studies of the topic. 21 

Keywords: Bioremediation, Mytilus edulis, ocean acidification, waste, experiments, ecosystem service    22 

1. Introduction 23 

Ecosystem services are ecological components directly or indirectly consumed or enjoyed to 24 

produce human well-being (Boyd and Banzhaf, 2007) and this concept has become key to linking  25 

economic and ecological sciences in support of sustainable environmental management (Fisher et al., 26 

2008). Bioremediation of waste (BW) is an important regulating ecosystem service and can be defined 27 

as removal of waste from the environment through storage, burial and recycling (Beaumont et al., 28 

2007). It results in cleaner and less turbid water, a final ecosystem service with positive effects on 29 

other services too (MEA, 2005). For example, BW supports the services of food provision by creating 30 
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conditions for healthy fisheries and aquaculture products, and recreation and amenity through its 31 

contribution to bathing water quality. Also, deeper light penetration due to clearer water allows 32 

marine benthic flora to sequester carbon up to a greater depth than in turbid waters (Burkholder and 33 

Shumway, 2011; Irving and Connell, 2002).  34 

In the marine environment many animal taxa and guilds are involved in BW. For example, 35 

marine microbes occur in all habitats, degrading organic detritus and recycling nutrients (Munn, 36 

2004). Bioturbators and bioirrigators, such as burrowing shrimps or polychaetes, can draw wastes 37 

deep into the sediment leading to removal of wastes by burial (Volkenborn et al., 2007; Queirós et al., 38 

2013). In addition, most living organisms can sequester wastes into their tissues (Norkko and 39 

Shumway, 2011; Queirós et al., 2013). Filter feeding is an important trophic mode in many marine 40 

invertebrates and a key process in BW. Filter feeders actively pump large volumes of water over a 41 

filter that collects highly dilute material for feeding (Riisgard and Larsen, 1995). In this way they 42 

improve water quality by removing suspended particles (seston) from the water column (Grizzle et al., 43 

2008). Filter-feeding molluscs are often found in dense populations and can profoundly influence 44 

pelagic and benthic processes as well as add to benthic-pelagic coupling, the movement of nutrients 45 

between the sediment and overlying water (Ward and Shumway, 2004; Layman et al., 2014). They 46 

transform the filtered material into somatic and reproductive growth, and aid the deposition of 47 

particulate matter to the benthos through faeces and pseudofaeces (Ward and Shumway, 2004).  48 

Many filter feeding bivalves are vulnerable to changes in the marine environment particularly 49 

a reduction of ocean water pH, known as ocean acidification (Kroeker et al., 2013; Parker et al., 50 

2013). Ocean acidification is caused by rising atmospheric carbon dioxide (CO2) levels due to 51 

anthropogenic activities such as the burning of fossil fuel, cement production and deforestation. 52 

Carbon dioxide dissolves into ocean surface waters, reducing atmospheric CO2 concentrations but at 53 

the same time decreasing the pH of ocean surface waters. Since the beginning of global 54 

industrialisation the pH of the oceans has decreased by 0.1, equivalent to a 26% increase in acidity 55 

(Aze et al., 2014). All Earth System Models calculated for the IPCC 5
th
 Synthesis report project a 56 

continued global decrease in ocean pH by the end of the 21
st
 century and beyond (IPCC, 2014). A 57 

reduction of pH also leads to changes in ocean carbonate chemistry, reducing the carbonate ions 58 

(CO3
2-

) and lowering the calcium carbonate (CaCO3) saturation of seawater. This leads to reduced 59 

availability of CaCO3 for marine calcifiers (Parker et al., 2013). These changes to ocean carbonate 60 

chemistry and pH have large effects on marine animals which have been the focus of sustained 61 

research effort in recent years (Melzner et al., 2011; Hüning et al., 2013; Kroeker et al., 2013; Parker 62 

et al., 2013; Thomsen et al., 2013; Aze et al., 2014). A meta-analysis of the effects of a pH reduction 63 

by 0.5 showed negative effects on survival, calcification, growth, development and abundance for ten 64 

taxonomic groups including calcifying and non-calcifying algae and animals (Kroeker et al., 2013). 65 

For fauna, the meta-analysis compared phyla only. Findings for molluscs (drawn mostly from studies 66 
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on bivalves) indicate that they are particularly badly affected. Effects include significant reductions in 67 

adult and larval survival, growth and mean reduction of calcification.  68 

Calcifying species play key roles in ecosystem functions (Barry et al. 2011). They may 69 

provide services to other species, for example, through the provision of habitat or by their contribution 70 

to waste remediation. The role of species vulnerable to OA in these services is not yet fully explained 71 

and therefore predicting the effect of OA on these services difficult (Cooley et al. 2009). If such 72 

species are affected by OA, cascading changes may result in the services that they provide and this 73 

even before extinction occurs (Barry et al. 2011).  74 

This research focuses on the bivalve mollusc Mytilus edulis. They are common in the Atlantic 75 

from the Arctic to the Mediterranean, with a habitat range from the upper shore to the shallow 76 

subtidal (Hayward and Ryland, 1995). They can also be abundant, for example dominating sessile 77 

assemblages on off-shore structures (Krone et al. 2013). M. edulis form an interesting case study 78 

because they are such effective filter feeders that they are used to manage eutrophic waters, (Lindahl 79 

et al. 2005). This shows that they can play a substantial role in the bioremediation of waste (Lindahl et 80 

al. 2005). As calcifiers, using the carbonate ions from seawater to form protective shells, they are also 81 

known to be vulnerable to changes in OA (Kroeker et al., 2013). Their capacity to continue 82 

calcification and maintaining their shells intact under predicted low pH scenarios has been widely 83 

studied and reductions in several key physiological functions of M. edulis under OA scenarios have 84 

been shown (Kroeker et al., 2013).  85 

In 2013 the global production of M. edulis was 197 831 tons with a value of US$ 434,305 86 

(FAO, 2015). While the economic impacts of ocean acidification are not well studied, reduced growth 87 

in Mytilus edulis as a consequence of OA can be assumed to have socio-economic impacts. For 88 

example, in a review of the potential impacts of OA on Mediterranean countries, Hilmi et al. (2014) 89 

noted a strong impact of ocean acidification on Mytilus species (edulis and galloprovincialis) and 90 

suggested that this may particularly affect artisanal fishermen and aquaculture farmers. For impacts 91 

on mollusc aquaculture, Narita et al. (2012), estimate global annual losses of US$6 billion under 92 

constant demand and US$100 billion if demand increases in line with future income increase. 93 

Similarly, Cooley and Doney (2009) estimate an annual loss to the US of US$75-187 million of direct 94 

revenue from decreasing mollusc harvests between 2007 and 2060 (according to the future CO2 95 

regime used and the discount rate applied). This would be in addition to the impacts felt from 96 

temperature changes. For example, in the summer of 2003 a heatwave in French waters led to massive 97 

M. edulis spat die-off (FAO, 2015). Such events, coupled with low ocean pH may lead to reduced M. 98 

edulis production. This in turn will reduce their capacity to act for bioremediation with further 99 

impacts on ecological functioning and wider ecosystem service delivery. 100 
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While both the filtration capacity of filter feeding bivalves, and the effect of OA on calcifying 101 

organisms such as M. edulis have been extensively studied (e. g. Melzner et al., 2011; Thomsen et al., 102 

2013; Aze et al., 2014), little work focuses on the effect of OA on the filtration capacity of bivalves. 103 

To our knowledge, there are no studies on the effect that OA may have on the ecosystem service of 104 

BW. Hence, this review was timely.  105 

This study aims to answer the following research questions: 106 

1. How do filter feeding bivalves M. edulis contribute to BW?  107 

2. What are the key effects of OA on M. edulis? 108 

3. How does OA affect BW of M. edulis? 109 

The paper is structured around these three research questions. Section 2 defines how M. edulis filter 110 

feed, followed by examples of wastes and how they are bioremediated by M. edulis. Section 3 111 

summarises research into effects of OA on M. edulis which are likely to reduce their ability to 112 

bioremediate waste. The effects of OA on their primary food source, phytoplankton, are also briefly 113 

discussed. Section 4 addresses the third research question using examples of modelling studies carried 114 

out on M. edulis. In the Discussion (Section 5), changes to management options as well as human 115 

health implications of eating M. edulis under OA are summarised. 116 

2. How do filter feeding bivalves M. edulis contribute to BW?  117 

 118 

Mussels of the genus Mytilus occur worldwide on many coasts. They dominate hard 119 

substratum communities and have a well-developed and efficient filtering system (Brzozowska et al., 120 

2012). They often dominate fouling communities in the shallow subtidal as well, and provide 121 

important secondary habitat on hard substrata. For example, measurements of M. edulis biomass on 122 

offshore wind energy structures showed that they can cover the structures with up to 3.4 kg of 123 

biomass m
-2

 (Krone et al. 2013). They can lead to ecosystem changes because of their filtration 124 

capacity (Krone et al. 2013), removing large quantities of phytoplankton and therefore nutrients, 125 

reducing effects of eutrophication as well as sediment, harmful bacteria and contaminants (Birkbeck 126 

and McHenery, 1982; Krone et al., 2013). Bivalves, particularly mussels, are often used for 127 

contaminant monitoring due to their filtration rates, sessile lifestyle and because they can dominate 128 

hard substrata both in terms of weight and abundance compared to other sessile species (Widdows et 129 

al., 1995). For example, they have been used to study the fate of persistent organic pollutants 130 

(McEneff et al., 2014) and metal pollution (Chase et al., 2001). 131 

2.1 Defining and assessing filter feeding in M. edulis  132 

 133 
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To understand the role that M. edulis plays in the delivery of bioremediation of waste it is first 134 

necessary to understand how filtration is documented in the literature. The literature provides a range 135 

of measures for bivalve filtration but they are not clearly defined or consistently used. While this 136 

diversity of filtration parameters in M. edulis is beneficial to understanding their capacity for BW, it 137 

also makes it difficult to compare measurements from different studies. Table 1 lists definitions used 138 

by different authors as well as units of measurements and it highlights the inconsistencies as concerns 139 

definitions and units.  140 

The most basic parameter to describe filtration physiology in M. edulis, particularly for application in 141 

coastal management measures, is filtration or pumping capacity (from now on filtration capacity).  142 

This measures the amount of water going through a filter feeder or through an assemblage of filter 143 

feeders in a set amount of time (Lindahl et al., 2005). One way to measure filtration capacity is to 144 

measure the size of the exhalant siphon as this is controlled by the size of the animal and M. edulis 145 

can also adjust it by closing their valves when necessary  (Møhlenberg and Riisgård, 1978; 146 

MacDonald et al., 2011; Riisgård et al., 2011). They reduce the size of the gape when phytoplankton 147 

cell concentrations are too high or too low for their optimal feeding ratio (Riisgård et al., 2011). This 148 

measure does not incorporate recirculation of water that has already been taken up by other 149 

individuals or themselves. However, it is important to know the volume of water that has been 150 

recirculated as it reduces the efficiency of M. edulis to filter large volumes of unfiltered water. 151 

Clearance rate, filtration rate, and assimilation efficiency (sometimes called absorption efficiency, 152 

from now on assimilation efficiency) are also used to describe filter feeding efficiency and are 153 

measured depending on the question addressed in a particular study. Clearance rate (CR) is a common 154 

indicator of M. edulis feeding activity and measures the amount of seston removed from the water. In 155 

experiments, this is done by subtracting seston mass remaining in the outflow of a treatment chamber 156 

containing an individual of a M. edulis, from the seston mass measured in the outflow of a control 157 

chamber that contains no animal (MacDonald et al., 2011). Rather than measuring the mass of seston 158 

lost per time (for example by weighing filtered seston from the control chamber) it is often calculated 159 

as volume per time without indication of how much seston that volume of water contained. Still, CR 160 

is more informative than filtration capacity with regard to bioremediation of waste as it gives the 161 

volume of water (or time spent clearing water) that is cleaned of seston after going through an 162 

individual per unit time rather than just the total amount of water passing through the individual. 163 

There are several definitions in the literature causing filtration rate (FR) to be an unclear term. 164 

Widdows (1978) defined FR as the volume of water cleared of particles per unit time and this 165 

definition is similar to the definition of CR given by MacDonald et al. (2011) or the filtration capacity 166 

defined by Lindahl et al. (2005). Riisgård and Møhlenberg (1979) clarify that when there is no 167 

recirculation of water within M. edulis or in a laboratory aquarium, FR is equal to CR. They (Riisgård 168 
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and Møhlenberg, 1979) measure FR as a volume per unit time and Melzner et al. (2011) follow suit. 169 

Hawkins et al. (1998) and MacDonald et al. (2011) measure FR as the amount of seston removed and 170 

display it as a weight per hour. This makes it difficult to compare measurements from different areas 171 

and studies (Table 1).  172 

Another variable in filter feeding is the assimilation efficiency (AE). For this measure, the definitions 173 

are most similar across publications. AE is the percentage of organic matter taken up from the water 174 

column and is measured by comparing organic matter in the faeces to the organic matter in the diet 175 

(MacDonald et al. 2011). The majority of studies carried out on filtration in M. edulis have been 176 

undertaken in laboratories, often using single species of algal cells as food. Therefore they may not be 177 

very meaningful in the field, and disagreements between laboratory and field measurements have 178 

been found (Hawkins et al., 1996).  179 

2.2 Primary influences on filter feeding rates of M. edulis  180 

Filtration in M. edulis is influenced by water temperature and water viscosity, the type and the 181 

availability of food in the water column, the metabolic rate and the size of the individual mussels 182 

(Riisgård et al., 2011). While temperature affects metabolic rates (Widdows, 1978), reduced 183 

temperature also increases viscosity of the seawater which reduces the rate of ciliary action (Larsen 184 

and Riisgård, 2009). Ciliary activity is the movement of specialised cell organs within gills that create 185 

a water current allowing bivalves to feed. Larsen and Riisgård (2009) suggest after careful evaluation 186 

of the literature that increased viscosity due to lower temperature is solely responsible for reduced 187 

ciliary activity in M. edulis, rather than further underlying biological reasons such as reduced 188 

metabolic rates. For M. edulis from the Baltic Sea this decline of ciliary activity due to low 189 

temperatures led to a reduction in feeding rates of 35 % (temperature difference approximately 8°C) 190 

(Melzner et al., 2011). Contaminants may also influence the filter feeding rates of M. edulis. For 191 

example, toxic hydrocarbons act on them as narcotics leading to a depressed clearance rate and 192 

diminished scope for growth through loss of feeding opportunity (Widdows et al., 1995).  193 

 2.3. The role of M. edulis in BW 194 

Once seston have been filtered from the water by M. edulis, they assimilate the particles, as described 195 

in section 2.1 and 2.2, and hence participate in BW, through three mechanisms (Table 2): firstly 196 

through cycling/detoxification. They use metabolic processes that change wastes into harmless or less 197 

toxic compounds. This reduces the damaging effects of such wastes on themselves and other species. 198 

For example, they can take up toxic wastes from incomplete combustion of fossil fuels such as 199 

polycyclic aromatic hydrocarbons,  and metabolise them to a less toxic form (example below)  200 

(Baumard et al.1999).  Secondly, M. edulis participate in BW through sequestration and subsequent 201 

storage. They use processes that sequester waste in such a way that it is no longer biologically 202 
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available in the water column and does not exhibit toxicity, for example by storing toxins from 203 

phytoplankton in their tissues.  However, in this case, toxicity does occur when M. edulis are 204 

consumed by other species including humans (Mebs, 1998). Thirdly, by aiding export through all the 205 

processes that transport wastes out of a system, this includes atmospheric, benthic and lateral export. 206 

They produce two solid filtration products: faeces and pseudofaeces which are important in benthic-207 

pelagic cycling and burial. Faeces are materials that have passed through the digestive system from 208 

where nutrition has been extracted. These materials are stuck together by mucus during the passage 209 

through the digestive system.  Pseudofaeces are made up of a collection of materials that are either 210 

selected because they are not food or because there is too much food in the water column (Riisgård et 211 

al., 2011). Above a certain threshold of food (cells ml
-1

) both types of faeces can be produced 212 

simultaneously. M. edulis also use mucus to bind pseudofaeces together (Riisgård et al., 2011). Both 213 

types of faeces have a higher mass of particles than small particles of seston. This can change the way 214 

organic matter is then transported through the water column. If it is dense it may sink faster but if it is 215 

less dense it may remain in the water column and be available to other species for longer periods of 216 

time (Newell, 2004). Once M. edulis die or are ripped off their support by strong wind and wave 217 

action, they fall to the seafloor and, due to hydrodynamic processes, get buried in sediments. This 218 

way, contaminants stored in their tissues are also moved to the seafloor and buried. Additionally, they 219 

excrete nitrogen in form of NH4
+
 (70%), urea (13%) and 5-21% ammino-N via urine. This excreted 220 

nitrogen is bioavailable and can lead to renewed phytoplankton and microphytobenthos production 221 

(Burkholder and Shumway, 2011; Newell, 2004).  222 

2.4 Types of waste that M. edulis bioremediate 223 

Waste can be defined as “materials for which there is no immediate use and that may be discharged 224 

into the environment” (Hinga et al., 2015). M. edulis can take up wastes via two pathways: direct 225 

absorption of the compound in the water phase through the gills or indirectly through the digestive 226 

system when the compounds are solid (Baumard et al., 1999).  The role of M. edulis in the 227 

bioremediation of each waste varies depending on the type of waste; hence representative examples of 228 

wastes and how M. edulis bioremediates these at current CO2 levels are discussed in turn here. The 229 

processes and how M. edulis deal with each of the waste types are also summarised in Table 2. 230 

2.4.1 Nutrients, phytoplankton and organic matter 231 

Phytoplankton and organic matter are primary food sources of M. edulis which they then convert into 232 

biomass (Riisgård et al., 2011). Excess nutrient loading (eutrophication) due to an imbalance in the 233 

nitrogen cycle caused by, river run-off from agricultural activities leads to increased growth of 234 

phytoplankton and greening of the water column (Riebesell, 1989;  Heip, 1995; Diaz, 2001, Diaz and 235 

Rosenberg, 2008). Coastal eutrophication is one of the biggest threats to marine ecosystems and their 236 

functioning, leading to hypoxic zones particularly in shallow bays and enclosed seas (Diaz and 237 



8 
 

Rosenberg, 2008). Globally, it is likely to increase further due to sustained human population growth 238 

and resource intensification (Rabalais et al., 2010). This accumulation of organic matter in the form of 239 

living and dead phytoplankton has far reaching ecosystem, and ecosystem service, consequences. The 240 

abundance of phytoplankton in surface waters leads to a reduction of light penetration and hence 241 

photosynthesis in deeper waters. Dying and dead phytoplankton is digested by microbes reducing 242 

dissolved oxygen in the water column which can lead to hypoxic and anoxic zones (Diaz and 243 

Rosenberg, 2008; Gooday et al., 2009; Rabalais et al., 2010; Broszeit et al., 2013). Therefore, M. 244 

edulis are important in reducing phytoplankton biomass and organic matter and thereby the negative 245 

effects of eutrophication on the marine environment.  246 

2.4.2 Toxic products of phytoplankton  247 

M. edulis can readily accumulate lipophilic organic compounds, for example toxins produced by 248 

phytoplankton. They are capable of accumulating substantial amounts of some of these toxins because 249 

they are not affected by them (Moroño et al., 2001). They also transform these compounds into less 250 

harmful products which they then egest (O’Driscoll et al., 2011).  251 

2.4.3 Examples of derivatives of burnt fossil fuel 252 

Polycyclic aromatic hydrocarbons (PAHs) are products of fossil fuel and organic matter combustion. 253 

They are highly toxic, carcinogenic and mutagenic to marine and terrestrial animals and humans 254 

(Samanta et al., 2002). In the water column, they are available for filter feeders such as M. edulis. A 255 

study carried out on concentrations of PAHs in M. edulis in the Baltic Sea revealed that M. edulis can 256 

biotransform some PAHs, for example the carcinogenic benzo[a]pyrene (B[a]P) into the less 257 

dangerous benzo[e]pyrene (B[e]P) which was shown in the ratio of B[a]P to B[e]P within the tissues 258 

of M. edulis (Baumard et al., 1999). However, primarily M. edulis accumulate PAHs in their tissues 259 

and this can reduce their filter capacity as well as their reproductive success (Eertman et al., 1995), 260 

effectively reducing their contribution to BW.   261 

2.4.4 Metals 262 

In a short experiment (24 hours), Brzozowska et al. (2012) measured the uptake of heavy metals (zinc, 263 

lead, nickel and chromium) in two size classes of Mytilus sp.. Their results indicated that they can 264 

selectively remove heavy metals from seawater, meaning they found less of a reduction of chromium 265 

than the other three metals tested. They also showed that smaller individuals are less capable of 266 

selectively absorbing metals than larger ones. This indicates that mussels develop the ability to select 267 

metals they can take up as an important mechanism to ensure enough trace metals are taken in for 268 

their metabolism (Brzozowska et al., 2012).  269 

2.4.5 Microplastics 270 
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Microplastics (< 1mm) are ubiquitous in the marine environment occurring in the pelagic zone as well 271 

as in sediments and marine organisms (Thompson et al., 2004;  Cole et al., 2014). Their impacts on 272 

marine ecosystems are still poorly understood but it has been demonstrated that marine invertebrates, 273 

including M. edulis can take them up via feeding (Thompson et al., 2004). In M. edulis, after 274 

digestion, these particles are either egested in faeces or remain within the individual. Depending on 275 

size, they can cross into the hemolymph, or be stored in the digestive tubules and gut cavity. These 276 

authors also showed that exposure to microplastics also increased energy consumption by 25% when 277 

compared to those not exposed to microplastic. Microplastics may also transport contaminants into 278 

exposed organisms as these accumulate onto the particles (Mato et al., 2001). Such contaminants can 279 

then be moved through the food chain to higher trophic levels (Van Cauwenberghe et al., 2015). This 280 

means that M. edulis can either remove plastics from the environment or if they egest them, that they 281 

will be contained within faeces and therefore more likely to sink to the seafloor where they may be 282 

stored long-term.  283 

2.4.6 Nanoparticles 284 

Nanoparticles are particles of size <100 nm and due to their small size they end up in waterways and 285 

ultimately in the marine environment. A study by Tedesco et al. (2010) showed that gold 286 

nanoparticles fed to M. edulis accumulated in the digestive gland, a smaller portion in the gills and 287 

none in the mantle tissue. This means that M. edulis remove nanoparticles from the system by 288 

accumulation. Yet, little is known about the effects of nanoparticles on the environment or their 289 

bioavailability and uptake, digestion and effects on organisms. Studies so far show that nanoparticles 290 

can cross and damage biological membranes and cause oxidative stress in metazoan cells. 291 

Nanoparticles are increasingly developed and used for a number of purposes such as medicine, 292 

cosmetics and technical equipment, leading to their increased abundance in the marine environment. 293 

2.4.7 Drugs 294 

Pharmaceuticals and their metabolites occur in coastal waters, one study carried out in Ireland found 295 

80 pharmaceuticals and their metabolites in municipal sewage effluent (McEneff et al., 2014). They 296 

are bioavailable and can be taken up by M. edulis, and then either accumulate in their tissues or 297 

become metabolised (Celiz et al., 2009).  298 

2.5. Use of M. edulis in the management of water quality 299 

A number of studies have investigated the role of M. edulis in reducing excessive nutrient loads in 300 

coastal waters and to test the feasibility of using M. edulis in the management of this pollution. M. 301 

edulis do not feed on nutrients directly but on the phytoplankton biomass that can grow because of the 302 

nutrients in the water column. For example, Lindahl et al. (2005) tested the feasibility of using M. 303 
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edulis aquaculture as a way of reducing nitrogen waste (N) in the Eastern Skagerrak, Sweden and 304 

demonstrated improved water quality. This work was also coupled with market valuation for bivalves 305 

and evaluation of a N market as is being implemented in Sweden and Norway, following a model by 306 

the US (Lindahl et al., 2005). Reid et al. (2010) measured the assimilation efficiency of M. edulis in 307 

faeces plumes of salmon cages and found that if they are placed in the actual plume they are capable 308 

of using the organic carbon of the salmon faeces as well as excess feed coming from the cages. Gren 309 

et al. (2009) calculated the cost-effectiveness of using M. edulis farms to abate nutrients in the Baltic 310 

Sea. Their results indicate that this aquaculture, particularly if M. edulis can be sold for human 311 

consumption, can have positive effects on nutrient levels and be economically feasible too. 312 

Models to assess carrying capacity of coastal ecosystems for M. edulis and other types of fish and 313 

shellfish aquaculture are well developed and widely used. For example, they can show how physical, 314 

hydrodynamic and biological parameters can differ within bays and how these differences are 315 

reflected in M. edulis tissue growth in aquaculture farms (Waite et al., 2005; Grant et al., 2008; 316 

Filgueira et al., 2012). Areas within a bay with low seston concentrations due to reduced water 317 

exchange produce less growth in M. edulis (Waite et al., 2005). Overstocking of M. edulis can also 318 

lead to reduced growth, as they will compete with each other for food. Additionally, their own input 319 

of nutrients in form of faeces and urine may lead to negative effects on enclosed systems such as bays 320 

(Reid et al., 2010). Negative effects are often localised to the aquaculture farm and can include low 321 

biological diversity with a prevalence of opportunistic species such as polychaetes Capitellidae sp. 322 

below the farms, build-up of faecal matter which then leads to anoxia and build-up of toxic hydrogen 323 

sulphide (Burkholder and Shumway, 2011). The models used to assess carrying capacity of coastal 324 

ecosystems for aquaculture can also be useful in assessing the effectiveness of M. edulis in abatement 325 

of pollution (Lindahl et al., 2005; Gren et al., 2009). 326 

3.  What are the key effects of OA on M. edulis? 327 

 328 

The effects of OA on marine organisms can be studied either by laboratory or field experiments. Due 329 

to the variety of ways of expressing pH changes and CO2 concentration within the studies, different 330 

units are cited in this section. The CO2 concentration in experimental tanks can be measured and 331 

displayed in several ways, for example as parts per million (ppm) or measured gas pressure 332 

(atm/µatm).  Laboratory experiments may both under- and overestimate reactions of species to OA, 333 

because of their relatively short duration compared to the longevity of the species studied. They often 334 

do not take adaptation and evolutionary mechanisms into account nor biological or other interactions 335 

(Harvey et al., 2014; Hilmi et al., 2013). Field experiments might provide more realistic scenarios 336 

than laboratory experiments but are technically difficult to carry out. Therefore there are only few 337 

experiments of OA effects on M. edulis in the field (for example, Thompsen et al. 2010: Melzner et al. 338 
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2011). Natural CO2 vents in shallow marine areas can aid research into future high CO2 environments, 339 

by providing areas of long-term streams of CO2 and in that they are open to naturally occurring 340 

assemblages. However, they only affect small areas allowing species sensitive to high CO2 341 

concentrations to avoid such areas (Hilmi et al., 2013). For example, the bivalve Mytilus 342 

galloprovincialis, a species closely related to M. edulis, is not found near natural vent systems of the 343 

Italian island Ischia (Hall-Spencer et al., 2008; Hilmi et al., 2013). No experiments, however, have 344 

been carried out looking at the effect of OA on bioremediation of waste.  345 

3.1. Evidence of effects of OA on physiological processes related to filtration in M. edulis 346 

As stated in Section 2.2 of this article, the filtration capacity of M. edulis is influenced by the 347 

following physiological factors: metabolic rate and size of the individual. This section therefore 348 

concentrates on effects of OA on these physiological traits.  349 

Only few studies measured metabolic rate under OA in M. edulis. Thomsen and Melzner (2010) 350 

demonstrate that metabolic rate under OA conditions first increased at a pH of 7.7, and then decreased 351 

at higher pH levels (while remaining above the metabolic rate in the control animals). It has been 352 

shown experimentally that Mytilus edulis trossulus from the southern Baltic Sea have a local 353 

adaptation to low pH values. Jakubowska and Normant (2015) exposed individuals of this species to 354 

gradually reducing pH of 8.1, 7.5 and 7.0 over 36 hours (12 hours at each pH level). No significant 355 

changes in resting metabolic rates were found in this study. Other studies have worked with closely 356 

related species. Navarro et al. (2013) exposed juvenile M. chilensis for 70 days to 380, 700 and 1200 357 

ppm of pCO2 with results showing a significant reduction in oxygen uptake indicating a metabolic 358 

depression. M. coruscus showed a significant reduction of respiration rate under OA conditions with 359 

pH of 7.7 and 7.3 as opposed to 8.1 in the control (Wang et al. 2015).  Garilli et al. (2015) measured 360 

metabolic rates of two Mediterranean gastropod species (Nassarius corniculus and Cyclope neritea) 361 

near CO2 vents in Italy. They found that high CO2 conditions increased metabolic rates and suggested 362 

that the gastropods increase their metabolic rate to maintain internal pH. On the other hand, Gazeau et 363 

al. (2014) exposed M. galloprovincialis to pH changes of 7.7 for a period of 10 months and they 364 

found no significant reduction in respiration rates unless temperature was increased for the same 365 

amount of time.  366 

Shell length correlates significantly with pumping rate of M. edulis (Jones et al. 1992) and 367 

size of individual organisms depends on their growth rate. Slower growth will therefore lower the 368 

capacity to filter feed by reducing biomass at any given point in time. For the purpose of this review 369 

we concentrate on two ways in which M. edulis grow: somatic growth which leads to an increase in 370 

soft tissue while shell growth is necessary to protect the soft tissues. To allow shell growth, animals 371 

must be able to calcify and this is metabolically costly under OA (Garilli et al. 2015). Previous OA 372 

events due to volcanic activity, for example in the Late Permian Extinction, led to smaller body sizes 373 
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of many molluscan calcifiers, termed the ‘Lilliput effect’ (Garilli et al. 2015). Shell growth and 374 

calcification are not interchangeable because shell growth occurs when several layers of shell are 375 

produced of which some are calcified (Furuhashi et al. 2009). Several parameters for shell growth can 376 

be measured such as changes in length, mass, shell thickness or it was split into organic and inorganic 377 

growth as well as aragonite and calcite growth. Other parameters that are measured in OA 378 

experiments, such as calcification, excretion of NH4, immune responses or internal pH were excluded 379 

from this review as it can be argued that they are not directly related to filtering capacity. 380 

In a comprehensive meta-analysis, Kroeker et al. (2013) showed that molluscs (the study summarised 381 

results at phylum level) are negatively affected by a reduction in ocean pH of 0.5. They found a mean 382 

17% reduction in growth in all mollusc studies they assessed.  383 

All studies that measured parameters affected by OA relevant to BW in M. edulis were carried out in 384 

the laboratory. They lasted from 20 days to six months (Table 3). Most studies measured several 385 

parameters, but only those relevant to BW are listed in Table 3. The shortest experiment lasted 20 386 

days and the authors used scenarios ranging from pH 8.14 to 7.5 (O'Donnell et al., 2013). They found 387 

no significant differences in shell volume growth among the nine treatment levels they used, possibly 388 

due to the short time-frame of the experiment. However, byssus thread attachment significantly 389 

deteriorated under high OA scenarios. Only one experiment looked at survival, using a pH range from 390 

8.1 to 6.7. It lasted for 44 days and found reduced survival at pH 7.1 and reduced shell growth at pH 391 

7.6 (Berge et al., 2006). 392 

Melzner, Thomsen and colleagues carried out several experiments lasting between five weeks and two 393 

months (Thomsen et al., 2010; Thomsen and Melzner, 2010; Melzner et al., 2011; Thomsen et al., 394 

2013). They found that shell growth can remain stable if sufficient food is available (Melzner et al., 395 

2011) and that somatic growth is unaffected by low pH (Thomsen et al., 2010; Thomsen and Melzner, 396 

2010). They also found that shell growth is suppressed from pH 7.14 (4000 μatm). In an experiment 397 

lasting 35 days using pH range of 8.01 to 7.19 Thomsen et al. (2013) found no differences in shell 398 

growth. However, they found a significant decrease of inorganic shell growth at a pH of 7.7 (1021 399 

μatm). Keppel et al. (2015) compared growth under current pH conditions (pH 8.10) to growth in pH 400 

7.94. After a 10 week exposure there was no effect on somatic growth while all shell growth 401 

parameters increased under lower pH. This could be due to the smaller decrease in pH treatment 402 

compared to other studies, but also because the animals were fed at higher than natural rates which 403 

may help them invest in shell growth.  404 

The longest study on OA effects in M. edulis lasted six months with M. edulis exposed to four levels 405 

of pCO2 (380, 550, 750 and 1000 µatm) (Fitzer et al. 2014). Growth was reduced in animals exposed 406 

to 750 µatm and above 1000 µatm. This growth was compensated for by increased protein 407 

metabolism (Fitzer et al., 2014).  408 
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In general, the studies are widely conclusive that OA leading to low pH scenarios will have negative 409 

effect on M. edulis in terms of growth and survival. Evidence on the impact of OA on metabolic rate 410 

is more scarce.  411 

3.2 Effect of OA on phytoplankton 412 

 413 

To understand the impact of OA on M. edulis, it is also important to understand how OA will affect 414 

their primary food source: phytoplankton. Phytoplankton form the base of the marine food web and 415 

are crucial for biogeochemical cycling. Their enormous diversity makes it impossible to study the 416 

effects of OA on all species. Yet, their responses to climate change, particularly OA can lead to 417 

bottom-up control of the ecosystem (Harvey et al., 2014). M. edulis feed most effectively on any 418 

particles with sizes > 6µm with a filtering capacity of 90%, while the capacity to filter particles < 1µm 419 

is reduced to 15% (Canesi et al., 2012). For example, Bricelj and Kuenstner (1989) found that in a 420 

brown tide of the small phytoplankton species Aureococcus anophegefferens (2-3 µm) the CR and FR 421 

of M. edulis were reduced due to the small size of the alga. Therefore it is important to understand 422 

how phytoplankton communities will change under OA. Some models suggest that OA may lead to a 423 

size reduction in phytoplankton, for example during some seasons in the North East Atlantic (Artioli 424 

et al., 2014). Additionally, pH changes the character of nutrients in the sea, for example iron, which is 425 

expected to lead to changes in phytoplankton species abundances and distribution (Shi et al., 2010). 426 

This change in phytoplankton species abundance and distribution will affect M. edulis and ultimately 427 

the remediation of nutrients. This may subsequently lead to an increased likelihood of hypoxic zones 428 

(Tagliabue et al., 2011; Turley and Gattuso, 2012). 429 

4. How does OA affect BW of M. edulis? 430 

 431 

As shown in Section 2, M. edulis contribute to BW in several ways. With their filtration efficiency, 432 

they aid removal of pollution and eutrophication to such an extent that M. edulis aquaculture is used 433 

as a management tool to clean up bays and coastal areas, and around fish aquaculture (Lindahl et al., 434 

2005; Reid et al., 2010; MacDonald et al., 2011). Studies discussed in Section 3 show that M. edulis 435 

are negatively impacted by OA, because, for example, they show reduced growth under OA scenarios. 436 

Size is one crucial factor in the ability of M. edulis to filter feed (Jones et al. 1992), because a larger 437 

individual can filter more water. Reduced growth was also found for M. galloprovincialis under a 0.3 438 

pH unit decrease for 10 months. Animals under decreased pH showed reduced shell weight and fresh 439 

weight growth (Gazeau et al. 2014). Research into the effect of OA on feeding physiology of mytiluds 440 

is scarce. However, Wang et al. (2015) measured several metabolic indicators under OA and 441 

increased temperatures in M. coruscus. While growth was not affected by reduced pH alone, increased 442 

temperature led to a reduction in growth. Navarro et al. (2013) exposed the closely related species 443 
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Mytilus chilensis for 70 days to three levels of pCO2 (380, 750 and 1200 ppm). They measured 444 

clearance rate (CR) and assimilation efficiency (AE) weekly on M. chilensis and found that with time, 445 

in the highest pCO2 treatment, they showed a significant decline in CR. Additionally, AE was 446 

significantly higher in the control than the higher CO2 pressures. In the same study of Mytilus 447 

chilensis, Navarro et al. (2013) also calculated production under OA scenarios. In 750 ppm and 1200 448 

ppm scenarios a typical Chilenean aquaculture farm with 10 000 ropes will produce 13% and 28% 449 

less M. chilensis biomass respectively than under current conditions. They also measured that in the 450 

1200 ppm treatment, AE was reduced by 18%. Adding these values together for M. chilensis, a 451 

reduction in filtration capacity of 46% (28% reduction in biomass and 18% reduction in absorption 452 

efficiency) under the 1200 ppm scenario may occur. Though this is a rather crude method of 453 

estimating this reduction (as it does not account for non-linear changes to these estimates) there are no 454 

other estimates available in the literature.  455 

One study tested if metal pollution on M. edulis under different OA scenarios changed their survival 456 

and other health parameters (Han et al., 2014). Curiously, the experiment was carried out in tap water 457 

mixed with calcium carbonate rather than seawater.  458 

While the effect of OA on filtration parameters has not been studied directly in M. edulis, filter 459 

feeding depends not only on external factors such as temperature and food availability but also on the 460 

size of the individual M. edulis. Therefore, if M. edulis show reduced growth and higher mortality 461 

under OA, this will lead to a reduction of BW capacity of M. edulis. Additionally, if OA leads to a 462 

decrease biomass of M. edulis (around 40-50%) as modelled by Fernandes et al. (unpublished), this 463 

will have detrimental effects on their ability to contribute to BW locally.  464 

5. Discussion and conclusion 465 

 466 

The service of bioremediation of waste is supported by many different ecosystem processes, with M. 467 

edulis making an important contribution to these processes. This service is also dependent on the 468 

quantity and type of wastes that are present in the marine ecosystem in a particular place. It is not 469 

currently feasible to quantify the contribution that M. edulis makes to this service. However, this 470 

study shows that they participate in the bioremediation of many different types of organic and 471 

inorganic wastes. This study indicates that their capacity to do so may change under a scenario of 472 

increased OA. OA is predicted to cause negative changes to M. edulis in terms of their physiology, 473 

biomass and their ability to filter feed.  474 

Increasing levels of OA have the potential to reduce the bioremediation capacity of M. edulis, which, 475 

combined with similar impacts on other filter feeding bivalves (e.g. other mytilud species), could 476 

result in increased occurrence of harmful algal blooms, fish kills, hypoxic zones and shellfishery and 477 
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beach closures. Such a reduction in water quality will have knock-on negative effects on other 478 

ecosystem processes and services such as food provision and recreation and tourism. Coastal 479 

ecosystems and embayments will be particularly affected because their hydrodynamic forces are 480 

reduced, leading to longer residence times of polluted water in such areas (Kemp et al., 2009; 481 

Filgueira et al., 2012). This is of particular importance to human populations because coastal 482 

ecosystems provide the majority of marine ecosystem services (Worm et al., 2006).  483 

The potential reduction of BW due to negative effects of OA on M. edulis will also have negative 484 

impacts on their use in coastal management. Their effectiveness at removing excess nutrients and feed 485 

from aquaculture sites could be considerably diminished. By implication, this could mean that 486 

aquaculture farms may need to be kept at smaller scales, particularly where water exchange is reduced 487 

such as in coastal bays. There is also a trade-off between the services of food provision and BW 488 

which may be aggravated by OA. A reduction in M. edulis biomass could result in less harvestable 489 

biomass of M. edulis for human food consumption, coupled with a reduction in the service of BW. It 490 

may be necessary to carefully regulate harvest and seeding for human consumption to preserve the 491 

service of BW. Consequently, it is not only important to cut down CO2 emissions to avoid a reduction 492 

in BW through M. edulis (and other filter feeders) but also to lower the amount of wastes entering the 493 

marine system, particularly those resulting in eutrophication.  494 

OA and other stressors 495 

OA is not an isolated pressure on the marine environment but works in concert with other stressors 496 

particularly increased sea and air temperature, eutrophication and hypoxia (Hendriks et al., 2010; 497 

IPCC, 2014). Increased temperature reduces the thermal tolerance of marine species including M. 498 

edulis and may also reduce their filtration rate (Widdows, 1978). Extreme warming events, such as 499 

occurred in Europe in 2003, can have negative effects on M. edulis abundance such as the example of 500 

M. edulis die-off during a heatwave in France in 2003 mentioned above. Several studies discussed in 501 

this manuscript used the combined stressors of temperature and OA and their results indicate that pH 502 

is a more detrimental stressor if combined with warming waters than on its own. For example, Gazeau 503 

et al. (2014) exposed M. galloprovincialis to OA and increasing temperatures and showed that 504 

temperature alone or temperature and pH led to 100% mortality in experimental animals. In addition, 505 

if sea water temperatures warm as predicted, then low oxygen situations occur (Diaz and Rosenberg, 506 

2008). This will affect M. edulis as they prefer high oxygen concentrations (Joschko et al., 2008). 507 

Several studies have also found reduced resistance to pathogens and diseases under OA in M. edulis 508 

(e.g. , Bibby et al. 2008; Ellis et al. 2015) and other bivalve species (Ivanina et al. 2014). Bibby et al. 509 

(2008) exposed M. edulis to four levels of pH and showed that after 32 days there was a significant 510 

reduction of phagocytic activity in the lower pH treatments. M. edulis hemolymph also showed 511 

reduced antibacterial action after 90 days of exposure to OA treatments. In this study, however, the 512 
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authors found that upon exposure to the pathogenic bacterium Vibrio tubiashii, the antibacterial 513 

functions of M. edulis hemolymph were restored. This may indicate a physiological trade-off between 514 

low pH and bacterial exposure. As such, M. edulis will be vulnerable to multiple stressors in the 515 

future, many with the potential to reduce the bioremediation capacity of this key species. 516 

Conclusions 517 

This study has shown that M. edulis are important contributors to BW due to their capacity to take up 518 

different types of wastes. OA is expected to impact the contribution that M. edulis have to the service 519 

of BW by depressing the capacity of M. edulis for growth and filtration. This will have knock-on 520 

effects for other ecosystem services, such as food provision.. Further research aiming to quantify the 521 

BW carried out by M. edulis would be invaluable if the ecosystem service of BW is to be better 522 

understood. Additional studies into the effects of OA on the filtering capacity of M. edulis would also 523 

facilitate the making of quantitative predictions of the effect of OA on BW. Finally, reducing CO2 524 

emissions and thereby slowing OA and the negative effects on M. edulis are crucial, if society is to 525 

continue to rely on M. edulis to contribute to BW. A reduction in CO2 would not only lead to a 526 

reduction in the negative effects of OA but also help to slow the rise of global temperatures and the 527 

increasing spread of hypoxia, two additional stressors that are also negatively affecting the provision 528 

of marine ecosystem services. 529 
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Table 1: Different types of filtration measurements taken from the literature. TPM = total particulate matter, OC = organic carbon, OCI = organic carbon 530 

ingested, a, b, c in the calculation of FR in Hawkins et al. 1998 are coefficients no further explained in the original manuscript. 531 

 532 

Measure of 

filtration 

Definition (as given in the paper) Calculation 

given 

Unit used Result Setting Reference 

Filtration 

capacity 

Amount of water filtered in a given 

time 

Not given mL min
-1

 33-50 Field Lindahl et al. 

(2005) 

Exhalant 

siphon area 

Size of open exhalant siphon Not given mm
2
 16-49 Field MacDonald et al. 

(2011) 

Clearance 

rate 

Not defined Not given mL min
-1

 33 Lab MacDonald et al. 

(2011) 

Clearance 

rate 

Volume of water filtered completely 

free of particles per unit time 

Not given Lh
-1 

g
-1

 2-12, depending on 

cell abundance 

Lab Bricelj and 

Kuenstner (1989) 

Filtration 

rate (FR) 

Volume of water cleared of 

particles per unit time 

Not given Lh
-1

 FR dependent on 

food concentration, 

size of animal and 

temperature 

Lab Widdows (1978) 

Filtration 

rate (FR) 

Not defined Not given mg h
-1

 2.5-6 Lab MacDonald et al. 

(2011) 

Filtration 

rate (FR) 

Amount of water transported through 

the gills = pumping rate 

Not given mL min
-1

 33.1-41 Lab Riisgård and 

Møhlenberg 

(1979) 

Filtration 

rate (FR) 

Not defined Not given  mL min
-1

 9.6 Lab Melzner et al. 

(2011) 

Filtration 

rate (FR) 

Not defined FR=a*TPM
b
 

*OC
c
 

mg h
-1

 4.13*(±9.28)*TPM* 

1.91(±0.34)*OC2.26

*(±1.43) 

Field Hawkins et al. 

(1998) 

Assimilation 

efficiency 

Percentage of organic matter taken up 

from the water column 

Not given % 91.64-92.36 Lab Bricelj and 

Kuenstner (1989) 

Assimilation 

efficiency 

Not defined Not given % 24-38 Lab MacDonald et al. 

(2011) 
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Measure of 

filtration 

Definition (as given in the paper) Calculation 

given 

Unit used Result Setting Reference 

Assimilation 

efficiency 

Percentage of total ingested dietary 

organic matter that is absorbed during 

passage through the digestive system 

Not given % 54 Field  Reid et al. (2010) 

Assimilation 

efficiency 

Percentage of total ingested dietary 

organic matter that is absorbed during 

passage through the digestive system 

Not given % 81-90 Lab  Reid et al. (2010) 

Assimilation 

efficiency 

Percentage of total ingested dietary 

organic matter that is absorbed during 

passage through the digestive system 

Not given % 1.15*(±0.03)-

[0.149(±0.004) 

3(1/OCI)] 

Field Hawkins et al. 

(1998) 
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Table 2:  M. edulis contribute to BW in several ways, varying by waste and process. 533 

Process 

Process 

number 

(Figure 1) 

Mechanism in 

mussel 

Nutrients, 

phytoplankton 

and organic 

matter 

Toxic 

phytoplankton 

Derivatives 

of burnt 

fossil fuels Metals Microplastics Nanoparticles Drugs 

Cycling 1 Growth 
 

      
Cycling 1 Detoxification 

 
Not always  

    
Sequestration 2 Bioaccumulation 

 
      

Export 3 Excretion 

through 

faeces, pseudo-

faeces 

   
 

  
 

Export 3 Excretion 

through urine  ?          

Not always: during metabolisation, some toxins become more toxic rather than being detoxified. 534 
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Table 3: Effect of OA on M. edulis as demonstrated in experimental studies. Parts of the table are reproduced from Parker et al. (2013). Units of CO2 and pH 535 

measurements are taken from each paper but cannot be standardised as insufficient information was provided to carry out conversion.  Therefore they are not 536 

consistent within the table. Arrows up: a positive effect, arrows down: a negative effect, sideways arrows: no significant effect. 537 

 538 

Experimental 

duration 

Experimental treatment: CO2/pH Parameter measured Impac

t 

CO2/pH level that first caused 

significant change 

Author(s) 

20 days 

300, 500, 600, 800, 1000, 1100, 

1200,  

1300, 1500 μatm / 8.14-7.50 

Shell volume growth ↔   
O'Donnell et al. 

(2013) 

35 days 

472, 1021, 2114, 3350 μatm /  

8.01, 7.7, 7.4, 7.19 and high or low 

food 

Shell length growth ↔ 

 
Thomsen et al. 

(2013) 

  Inorganic shell growth ↓ 1021 μatm  

    Organic shell growth ↔     

44 days NA / 8.1, 7.6, 7.4, 7.1, 6.7 Survival ↓ 7.1 Berge et al. (2006) 

    Shell growth ↓ 7.6   

2 months 
385, 1400, 4000 ppmv 

/8.05, 7.56, 7.08 
Shell growth ↓ 4000  ppmv 

Thomsen et al. 

(2010) 

  Somatic growth ↔     

2 months 
385, 1120, 2400, 4000 μatm /  

8.03, 7.7, 7.38, 7.14 
Shell growth ↓ 4000 μatm 

Thomsen and 

Melzner (2010) 

  Somatic growth ↔   

    Metabolic rate  

(oxygen consumption) 

first ↑, 

then ↓ 1120 μatm 
  

10 weeks 
400, 760 ppm/ 8.10, 7.94 ,  

also ambient temperature, plus 4 °C 
Shell length growth ↑ 760 ppm/7.94 Keppel et al. (2015) 

  
Whole animal wet ↑ 760 ppm/7.94 

 

file:///C:/Users/STBR/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.MSO/FAC150BE.xlsx%23RANGE!_ENREF_10
file:///C:/Users/STBR/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.MSO/FAC150BE.xlsx%23RANGE!_ENREF_10
file:///C:/Users/STBR/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.MSO/FAC150BE.xlsx%23RANGE!_ENREF_2
file:///C:/Users/STBR/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.MSO/FAC150BE.xlsx%23RANGE!_ENREF_11
file:///C:/Users/STBR/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.MSO/FAC150BE.xlsx%23RANGE!_ENREF_11
file:///C:/Users/STBR/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.MSO/FAC150BE.xlsx%23RANGE!_ENREF_12
file:///C:/Users/STBR/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.MSO/FAC150BE.xlsx%23RANGE!_ENREF_12
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Experimental 

duration 

Experimental treatment: CO2/pH Parameter measured Impac

t 

CO2/pH level that first caused 

significant change 

Author(s) 

mass 

  
Total dry mass ↑ 760 ppm/7.94 

 

  
Calcified mass ↑ 760 ppm/7.94 

 

  
Soft tissue dry mass ↔   

 

    
Calcified mass/soft 

tissue dry mass 
↑ 

760 ppm/7.94 (in higher 

temperature) 
  

7 weeks 
39, 142, 240, 405 Pa/NA, high or low 

food 
Shell growth low food ↓ 405 Pa Melzner et al. (2011)  

    Shell growth high food ↔     

6 months 380, 550, 750, 1000 μatm/NA Shell growth ↓ 550 and 750, but not at 1000 μatm Fitzer et al. (2014) 

 and control temperatures or 2°C 

temperature increase 
Calcite growth ↑ 1000 μatm 

 

    Aragonite growth ↓ 550 μatm   

file:///C:/Users/STBR/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.MSO/FAC150BE.xlsx%23RANGE!_ENREF_7
file:///C:/Users/STBR/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.MSO/FAC150BE.xlsx%23RANGE!_ENREF_4
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