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Abstract 

As well as range, the AltiKa altimeter provides estimates of wave height, Hs and normalized 
backscatter, σ0, that need to be assessed prior to statistics based on them being included in climate 
databases.  An analysis of crossovers with the Jason-2 altimeter shows AltiKa Hs values to be biased high 
by only ~0.05m, with a standard deviation (s.d.) of ~0.1m for 7-point averages.  AltiKa's σ0 values are 
2.5-3 dB less than those from Jason-2, with a s.d. of ~0.3 dB, with these relatively large mismatches to be 
expected as AltiKa measures a different part of the spectrum of sea surface roughness.  A new wind speed 
algorithm is developed through matching a histogram of σ0 values to that for Jason-2 wind speeds.  The 
algorithm is robust to the use of short durations of data, with a consistency at roughly the 0.1 m/s level.  
Incorporation of Hs as a secondary input reduces the assessed error at crossovers from 0.82 m/s to 0.71 
m/s.  A comparison across all altimeter frequencies used to date demonstrates that the lowest wind speeds 
preferentially develop the shortest scales of roughness. 
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1. Introduction 
The SARAL spacecraft launched on 25th February 2013, is the first to carry a radar altimeter 

operating at Ka-band (35.75 GHz).  Its primary mission is to measure the range to Earth, and hence sea 
surface elevation, but altimeters also provide useful information on wind, waves and rain.  To help 
generate consistent datasets for climate change studies it is important that the calibration of a new 
instrument is unbiased with respect to preceding and contemporaneous altimeters.  In this paper I 
concentrate principally on the minimization of any differences between AltiKa and other altimeter 
datasets, rather than on comparisons against non-satellite data.  The mission plans for Jason-1 and Jason-2 
had tandem phases that allowed more than 6 months of observations simultaneous with their predecessors 
in that particular orbit.  This enabled detailed cross-calibration studies between Jason-1 and TOPEX 
(Quartly 2004; Tournadre 2004; Tournadre and Bhandari 2009) and then between Jason-1 and Jason-2 
(Quartly 2009b, Quartly 2010a; Quartly 2010b).  Although AltiKa occupies the track previously surveyed 
by ERS-1, ERS-2 and Envisat, there was no overlap in time with Envisat as its altimeter stopped working 
in April 2012.  Therefore greater analytical effort is required to achieve a robust merging of AltiKa 
metocean data with other products. 

Since AltiKa operates at a frequency not previously used for altimeters, the challenges are two-fold 
— firstly improving the quantification and editing of the atmospheric attenuation (which is not covered 
here), and secondly developing a geophysical model function to relate the normalised backscatter, σ0, at 
the Ka-band scale to wind speed at 10m, u10.  The numerical inversion of waveforms to give significant 
wave height, Hs, is very well established; however validation of its output is also required.  In this paper I 
examine the comparison of AltiKa data with Jason-2 observations, firstly through a match up of dual 
satellite crossovers (section 2), and then via a novel technique of equating histograms (section 3).  Section 
4 includes both a summary of the key points and a discussion of the merits of vicarious calibration against 
another altimeter. 
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2. Jason-2 -AltiKa crossover analysis 
Direct comparisons of altimeter data with in situ records from buoys suffer from three 

discrepancies.  The first is the essential difference in nature of the properties being compared, with 
altimeters offering a momentary view over a footprint of ~7 km diameter whilst the buoy provides 
typically a 20-minute average of the wave properties at a specific location, with waves under a period of a 
few seconds not resolved.  There will also be errors due to the spatial variation in wave conditions if the 
altimeter does not fly directly over the buoy, and temporal variations if the overflight does not coincide 
with the time of the buoy observations (with buoys usually recording average wave conditions only every 
1-3 hours to save on battery life). 

 

2.1 Data sources and match-up requirements 
From autocorrelation analysis along altimeter tracks and through buoy time series, Monaldo (1988) 

suggested these spatial and temporal errors would be at an acceptable level if the separations are less than 
50 km and 30 minutes respectively.  Similar values have been adopted for altimeter validation by other 
researchers (Cotton and Carter. 1994, Queffeulou 2004), whilst Ray and Beckley (2012) expanded the 
spatial threshold to 70 km.  Matchups between altimeters in orbits of different inclination are likely to 
result in the tracks crossing one another i.e. minimal spatial separation.  However Queffeulou (2003) 
widens the time constraint to within one hour and applies 100 km along-track smoothing, whilst Gourrion 
et al. (2002) in their exhaustive comparison of altimeter and scatterometer matchups used a range of 
thresholds with the most restrictive being 30 minutes and 15 km. 

If the buoy data are taken as ground truth, the errors in wave height for Jason-2 are between 0.23 m 
and 0.39 m depending upon analytical approach (Abdalla et al., 2010; Ray and Beckley, 2012) and ~1.5 
m s-1 for wind speed (Abdalla et al., 2010).  However, given the above discussion on the nature of the 
causes of some of these errors, the discrepancies between two altimeters might be expected to be smaller.  
For example, the tandem mission of Jason-1 and Jason-2 showed r.m.s. differences of 0.17 m, for Hs 
(Quartly, 2010a), which were taken with negligible time difference, and these reduced considerably when 
along-track averaging was applied as well.  Using along-track averages, Zieger et al. (2009) noted the 
discrepancies between ERS-2 and Jason-1 were 0.09 m for Hs and 0.46 m s-1 for u10. 

In this work I have examined near-simultaneous ocean observations by AltiKa and Jason-2, which 
is a conventional (low rate mode) radar altimeter operating during the first years of AltiKa's mission.  The 
data used were the AltiKa GDRs for cycles 1-12 and IGDRs for 13 & 14, so that all are version T, having 
the 'patch 2' corrections for atmospheric attenuation.  The corresponding Jason-2 data were the IGDRs for 
cycles 175 to 221 (version D).  In this work I have defined matchups as when the two satellites observe 
points within 50 km of each other and within 30 minutes.  [Data outside the latitude range 55˚S to 65˚N 
were discarded to avoid any possible contamination by sea-ice.  Land contamination was avoided by 
ensuring that both the altimeter and radiometer terrain flags were set to 'ocean' and that the water depth 
was greater than 200 m.  Furthermore, data were only retained if all the quality control flags for Hs and σ0 
were set to zero and the standard deviations of the 1 Hz values were non-zero i.e. there was intrinsic 
measurement variability.]  

In the 456-day period analysed there were 1893 suitable matchups, but they were not uniformly 
distributed in either space (Fig. 1a) or time (Fig. 1b).  The turning latitude of the satellite orbits (66˚ for 
Jason-2, 82˚ for AltiKa) means that they spend relatively more time near these latitudes, and the higher 
relative angle between their tracks increases the likelihood of crossovers at high latitudes (Fig. 1c).  This 
implies that the matchups tend, on average, to occur at higher wind and wave conditions than the global 
average (not shown). 

In fact the peculiarities of the orbits mean that for some 30-day periods all the matchups occur at 
high latitudes, whilst for subsequent ones they are all at low to moderate latitudes (Fig. 1b).  This pattern 
repeats every 117 days, corresponding to the relative precession of the two orbits (AltiKa being in a sun-
synchronous orbit).  As most of the matchups correspond to one track crossing another, the separation of 
nominal 1-second observations is predominantly less than 4 km (Fig. 1d) with the time separation 



uniformly spread between -30 and 30 minutes (not shown).  As well as considering individual 1 Hz 
measurements, averages were calculated from the 7 points in the track nearest to the crossover. 

 

2.2 Statistics of crossover comparisons 
A scatter plot of 1 Hz Hs estimates from the two altimeters shows a near 1:1 relationship, with few 

outliers (Fig. 2a), with most of these corresponding to data already flagged as suspect in one or other of 
the data streams.  The mean relationship, calculated in 0.5 m wide Hs bins indicates that AltiKa records a 
value a few centimetres higher on average (Fig. 2c), with the standard deviation (s.d.) of the scatter (an 
indicator of the measurement error) being ~0.2 m provided the data quality flags are heeded (Fig. 2e).  
The use of 7-point averages reduces the s.d. to ~0.1 m, a reduction of ~√4, which indicates that a 
significant part of the disparity between the two measurements is just random noise, but some is due to 
changes in conditions between the two observation times.  These values are smaller than those for 
matchups of altimeters with buoys (e.g. Queffeulou, 2003; Abdalla et al., 2010; Ray and Beckley, 2012).  
However, they are similar to those found for inter-altimeter comparisons of Jason-1 with ERS-2 (Zieger 
et al., 2009) and a little larger than the Jason-2 matchups with Jason-1 during the tandem phase (Quartly, 
2010a), when the time difference was negligible. 

A comparison of the normalised backscatter, σ0, observed by the two instruments is more 
complicated because the observations are at two very different frequencies (Jason-2 operates at 13.6 GHz 
compared with AltiKa at 35.75 GHz).  Again, aside from a few outliers mostly identified by the quality 
flags, there is a clear envelope to the comparison (Fig. 2b), with a mean offset of ~ -2.5 dB (Fig. 2d) and a 
s.d. of 0.35 dB (Fig. 2f).  The use of 7-point averages does not markedly reduce the s.d., indicating that 
the variability is not mainly due to random noise or factors having a short wavelength.  For comparison, 
the corresponding scatter for Jason-2 Ku and C-band observations is ~0.10 dB (Quartly, 2010a) and ~0.18 
dB for Envisat's Ku- and S-bands (Quartly and Tournadre 2004), but these dual-frequency comparisons 
come from single spacecraft, so there is no disparity in time or space of the observations. 

There are nearly 2000 points fulfilling my matchup criteria within these 15 months of the mission, 
and these provide a very useful assessment of comparable variables e.g. Hs, and offer a means through a 
Ku-band equivalence to construct a wind speed algorithm for o0 at Ka-band.  However there will still be 
significant uncertainty at very low and very high wind speeds, which are poorly represented within the 
matchup dataset.  In the next section I propose a technique that uses many orders of magnitude more 
points to construct a Ka-band wind speed algorithm, and which allows the investigation of temporal 
variation or Hs dependency. 

 

3. Algorithm development through histogram matching 
For TOPEX, Freilich and Challenor (1994) proposed the development of a wind speed algorithm 

based on matching a histogram of σ0 observations with the global probability distribution function (p.d.f.) 
of wind speeds, but maintaining a given functional form for the p.d.f..  Here that restriction is dropped.  In 
essence global p.d.f.s are constructed of the observable and of the desired measurement and the various 
percentiles in the cumulative distribution function matched up.  In this case, it's an inverse relationship, 
with the 10th, 20th, 30th percentiles of wind speed (Fig. 3a) corresponding to the 90th, 80th, 70th 
percentiles for σ0 (Fig. 3b).  (In practice the p.d.f.s being compared are not strictly 'global', as the editing 
and quality-control checks mentioned earlier discard data in the coastal zone and outside the latitude 
range 55˚S to 65˚N.) 

Such a bravura connection between two different sets of observations cannot be usefully 
constructed for arbitrary parameters.  This technique for linking AltiKa's σ0 observation to wind speed is 
facilitated by the strong expectation that there will be a causal relation between the two (as has been 
observed for Ku-band, C-band and S-band altimetry) and that this will be a monotonic relationship. This 
equivalence is only practicable because the Jason-2 and AltiKa altimeters sample the same areas of ocean, 
albeit at different times, with no net change in the global environment between the two sets of 
measurements.  Whilst one instrument may sample a major storm not sensed by the other, the p.d.f. of 



conditions under the Jason-2 tracks and under the AltiKa tracks are expected to be the same.  On the other 
hand, a comparison with a reanalysis field would suffer from the latter being effectively smoothed due to 
its coarser resolution. 

Under these assumptions, a mere 12 days of data, with typically ~400000 1-Hz records for Jason-2 
and AltiKa, leads to a smooth relationship spanning the majority of σ0 observations (Fig. 3c).  Strictly the 
two histograms need adjusting to correct for the fact the altimeters have different latitudinal sampling 
distributions (Fig. 4), with Jason-2's observation density being enhanced near its turning latitude (±66˚N).  
However, the effect of applying such a change is too small to be shown on Fig. 3c. 

 

3.1 Temporal variations of comparison 
As there are so many 1 Hz observations in a few days, this calibration process can be repeated 

sequentially on short segments of data that are effectively independent of one another.  I have performed 
such an analysis for 38 consecutive 12-day periods, with the anomalies relative to the 15-month mean 
relationship shown in Fig. 5a.  (A period of 12 days was chosen so that both instruments have a roughly 
even distribution over all ocean basins, however a value too close to Jason-2's repeat period of 9.92 days 
was avoided to demonstrate that the variability of the relationship is small even for non-uniform global 
sampling by both instruments.) 

The standard deviation (s.d.) of the 38 independently derived relationships (Fig. 5b) serves as an 
indicator of the error associated with this methodology.  In fact there appears to be consistently higher 
values over days 250-300; however, separate examination of the histograms of AltiKa σ0 and of Jason-2 
wind speeds did not show either to be particularly anomalous.  There is also a marked periodic offset 
(noticeable at high σ0) for roughly every 5th period.  This can be directly connected to σ0 changes of the 
Jason-2 instrument, associated with the fraction of time the instrument spends in the shadow of the Earth 
(Quartly 2010a), which changes as the orbit precesses.  Having found this periodicity in the algorithm 
developed from histogram matching, one can also note its presence within the matchup dataset (not 
shown). 

 

3.2 Variation with wave height 
Many of the well-established wind speed algorithms at Ku-band (e.g. Gourrion et al. 2002) include 

the influence of wave height in the model.  This is physically reasonable, because for a given wind speed 
at 10m above the surface, the presence of large waves will act as a further source of sea surface 
roughness, and consequently lead to lower σ0 values.  Therefore I now separate the data into Hs bins of 
0.2 m width for both Jason-2 and AltiKa, noting the good agreement between these two satellites (Fig. 2a-
c), and equate each of these sets of histograms.  Figure 5c shows the results as a contour plot to allow 
detail to be seen within the wide dynamic range.  Since there are much fewer observations at low and 
high Hs, the data for 0-0.6 m have been compiled into one category, and all the observations above 6.0 m 
are in 0.6 m wide bins too. 

The pattern revealed is broadly similar to that shown by Gourrion et al. (2002) for Ku-band.  For 
example a wind speed of 5 m/s is associated with a σ0 value of ~11.5 dB at Hs=5.0 m, but with σ0=11.9 
dB at Hs=0.5 m.  Using these results to create a look-up table for a 2-parameter wind speed algorithm, one 
notes that the dependence on Hs is much weaker than that on σ0, but as will be shown later it does 
significantly improve the quality of wind speed retrievals. 

 
3.3 Evaluation of wind speed algorithms 

This work has developed two wind speed algorithms for AltiKa, one solely based on σ0 (Fig. 3c), 
and one using both σ0 and Hs (Fig. 5c).  In addition there is a wind speed value in the AltiKa data files, 
which comes from a 1-parameter algorithm developed by Lillibridge et al. (2014) through comparison of 
AltiKa σ0 values with collocated wind speeds from the ECMWF reanalysis.  I compare the wind speed 
estimates from these three algorithms with that from the Jason-2 data at the crossover points.  Although 



the algorithms developed in this paper have been based on Jason-2 data, there has been no direct use of 
the near-simultaneous measurements at crossovers, so the algorithms are effectively independent of these 
specific points. 

Figures 6a, 6b & 6c show the scatter plots for these 3 algorithms against Jason-2 values of u10.  The 
points in common to all three datasets are shown by light grey crosses; those that are only valid for some 
datasets are shown as black circles.  At this stage, the 2-parameter algorithm derived in this paper is only 
defined over the region shown by contours in Fig. 5c i.e. that part of σ0-Hs space for which there are 
sufficient observations to give a robust retrieval.  Consequently no value is returned for this algorithm for 
combinations of low Hs and low σ0, or for Hs>3 m for high σ0.  The comparison statistics for the three 
algorithms (Figs. 6d & 6e) are thus computed using only the points valid for all algorithms, with 7-point 
along-track averages used in all cases for both AltiKa and Jason-2. 

Both algorithms developed in this paper return values biased a little lower than Jason-2 does at the 
crossovers (Fig. 6d), with the r.m.s. scatter being about 0.7 m/s (Fig. 6e).  The algorithm of Lillibridge et 
al. (2014) has less overall absolute bias, except for at low wind speeds (which it overestimates) and at 
high wind speeds (which it underestimates).  The r.m.s. error associated with these algorithms is 0.82 m/s 
for my 1-parameter algorithm and 0.72 m/s for both the other ones .  As the histogram-matching 
technique developed here utilises Jason-2 records of wind speed, it is able to cover the extremes (both low 
and high wind speed) better than Lillibridge et al (2014), which is based on a coarser resolution reference 
field coming from the ECMWF reanalysis.  However their algorithm performs slightly better over a wide 
range of moderate conditions. 

Of course comparison with Jason-2 is not the only assessment needed to fully validate a wind speed 
algorithm.  However a strict consistency between altimeter missions is required for long-term climate 
studies not just of mean wind speed conditions in a region, but also of the occurrence of extremes. 

 

4. Summary and discussion 
This paper assesses the quality of AltiKa metocean data for merging with those from other 

altimeters for long-term trend analyses e.g. Young et al. (2011).  The estimates of wave height are very 
good, with a slight overestimate relative to Jason-2 of a few centimetres, and an r.m.s. difference of the 7-
point averages at crossovers of ~0.1 m.  The σ0 values at Ka-band are several dB less than at Ku-band, 
which reflects that they are observing a different part of the spectrum of sea surface roughness 

In subsequent analysis I assume that the AltiKa σ0 values are an accurate estimation of the 
normalised backscatter at the surface, neglecting the fact that work is ongoing to improve the quality of 
the atmospheric corrections.  Thus I develop a Ka-band wind speed algorithm, simply by equating 
histograms of σ0 and an independent measure of wind speed with approximately the same spatial 
resolution and global distribution.  Abdalla (2014) has also developed a Ka-band algorithm through 
histogram adjustment, but his approach involves maintaining an expected functional form, whereas the 
one detailed here yields a purely empirical relationship.  The approach of Lillibridge et al. (2014) used 
matchups with a global model.  All three of these ideas can generate a candidate wind speed algorithm 
from only tens of days of data, rather than requiring long time series to acquire sufficient buoy matchups. 

By developing my algorithm using Jason-2 data, I have ensured that it is consistent with altimeter 
records of u10, but it has not necessarily produced an AltiKa dataset that will blend seamlessly with 
alternative sources of wind data.  In particular this is not an absolute calibration, and will be susceptible to 
any biases within the Jason-2 algorithm.  The wind speeds used here came from the Jason-2 4-parameter 
retracker, which is the one commonly used by most researchers although the 3-parameter one has less 
spatial variability (Quartly, 2009a) and may be a more trustworthy estimate.  However, the use of 7-point 
averages for the final evaluation (Fig. 6) removes most of the difference between these two fields. 
Another disadvantage of a Jason-2-based algorithm is that a vestige of the 59-day precession cycle 
(Quartly, 2010a) is discernible if multiple short periods of data are analysed (Fig. 5a). 

The histogram-matching technique was introduced to convert Ka-band σ0 directly to wind speed 
rather than to an equivalent Ku-band σ0, so that the extension to a 2-parameter model was straightforward.  



The effect of Hs is small but noticeable (Fig. 5c) and reduces the r.m.s. error at the crossover points by 
14% (from 0.82 m/s to 0.71 m/s).  This developed 2-parameter algorithms does not perform as well as the 
current AltiKa wind speed algorithm in moderate conditions, but gives a better performance at extremely 
low and extremely high wind speeds.  Presently the new 2-parameter algorithm is not defined for regions 
of σ0-Hs space that are poorly sampled; some merging with the 1-parameter algorithm could be developed 
to cover such cases, but it is clear that many of the large errors of Lillibridge et al. (2014) are associated 
with such conditions.  One issue not fully addressed as yet is that of the quality control of the data.  Here 
all standard flags have been heeded, but it is noted that these discard any AltiKa σ0 values below 5 dB, 
which potentially affects the ability to construct an algorithm covering the very highest wind speeds. 

Finally, the development of a 1-parameter Ka-band algorithm consistent with those from other 
altimeters at different frequencies allows some reflection on the changes in sea surface roughness at 
different scales as wind speed increases.  Figure 7a shows the backscatter strength at nadir for the 4 
frequencies that have been used in altimetry — although the absolute calibration for some of these 
frequencies is unclear, their shapes show a common theme, with different slopes for the asymptotes.  
Figure 7b emphasises the differences by comparing Ka, C and S to Ku, subtracting the lower frequency 
(longer wavelength) from the other, noting that the magnitudes may be erroneous because of uncertainties 
in the absolute calibration of the different frequencies.  These shapes have been well documented for Ku-
C (Topex, see Quartly et al 1996) and Ku-S (Envisat, see Quartly and Tournadre 2004) although normally 
as a function of σ0.  As wind speed increases, sea surface roughness increases first at the smallest scales, 
and then at larger wind speeds the contribution for larger surface wavelengths increases more quickly; 
Figure 7b provides quantification of this concept.  The relationship between different frequencies at the 
lowest wind speeds may be hard to assess, because under these conditions there may often be 
inhomogeneities within the altimeter footprint, manifesting themselves as "bright targets" (Gómez-Enrí et 
al., 2010).  Also at the shortest scales, which are those sensed at Ka-band, the surface physics are 
dominated more by surface tension than gravity that controls the larger scales. 
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Figures 

 
Figure 1. Crossovers between AltiKa and Jason-2 altimeters.  a) Locations.  b) Latitude as a function of 
time.  c) Histogram of latitude.  d) Histogram of distance of separation 
 

 
Figure 2. a) Comparison of 1 Hz Hs values from the 2 altimeters, with 'x' for those passing standard 
quality control tests, and 'o' for those failing.  b) Same for σ0.  c) AltiKa mean value of Hs relative to that 
of Jason-2. d) Same for σ0.  e) Standard deviation of scatter about mean for Hs. f) Same for σ0.  Note use 
of 7-pt average makes a significant reduction to scatter for Hs but not for σ0. 



 
Figure 3. Illustration of histogram-matching technique for a chosen 12-day period. a) Histogram of Jason-
2 wind speeds, with 10th, 20th, 30th ... 90th percentiles indicated by vertical dotted lines b) Same for 
AltiKa σ0 values. c) Match up of percentiles in reverse order from 0.5% to 99.5% with the 10th-90th 
highlighted with circles. 
 

 
Figure 4. Histograms of Jason-2 and AltiKa observations in 0.5˚ wide latitudinal bands, showing that 
Jason-2 makes relatively more measurements at high latitudes (near its turning latitude). 

 



 
Figure 5. Variations in wind speed algorithm.  a) Evaluated separately for each 12-day period, with plot 
showing anomalies (in m/s) relative to 15-month mean.  b) Standard deviation of these anomalies, as an 
indicator of the uncertainty in the 1-parameter algorithm.  c) Wind speed algorithm evaluated separately 
for narrow bands of Hs (0.2 m in main body, with 0.6 m wide bins for Hs<0.6 m or Hs>6.0 m).  Contours 
are every 0.5 m/s, with every fourth (in black) labelled.  This analysis using global data for the whole of 
the mission is used to populate a look-up table for the 2-parameter wind speed algorithm.  The σ0-Hs 
conditions at the matchup points used in the evaluation are indicated by the red crosses. 
 



 
Figure 6. Comparison of 3 AltiKa-based wind speed algorithms against Jason-2 at crossovers.  The new 
2-parameter algorithm is not defined outside the region indicated in Fig. 5c.  Points that are valid for all 3 
algorithms are indicated by light grey crosses, whereas those lacking an estimate for one of the other 
algorithms are shown as black circles. a) 1-parameter algorithm derived in this work. b) 2-parameter 
algorithm derived in this work. c) Current algorithm detailed by Lillibridge et al. (2014).  d) Mean, and.  
e) R.m.s. of AltiKa estimates relative to Jason-2. 
 

 
Figure 7. a) Comparison of simple 1-parameter relationships between wind speed and sigma0 at different 
frequencies (Ka from AltiKa, Ku and C from Jason-2, S from Envisat). Altimeters interact with the sea 
surface roughness typically at scales of 3 times the radar wavelength and above.  b) Difference in σ0 
values relative to Ku-band..  For S-band it is the difference between the two sets of measurements by 
Envisat, with a 1.5 dB shift for ease of plotting. 


