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Environmental context. Approximately 25%of CO2 released to the atmosphere by human activities has been
absorbed by the oceans, resulting in ocean acidification. We investigate the acidification effects on marine
phytoplankton and subsequent production of the trace gas dimethylsulfide, amajor route for sulfur transfer from
the oceans to the atmosphere. Increasing surface water CO2 partial pressure (pCO2) affects the growth of
phytoplankton groups to different degrees, resulting in varying responses in community production of
dimethylsulfide.

Abstract. The human-induced rise in atmospheric carbon dioxide since the industrial revolution has led to increasing

oceanic carbon uptake and changes in seawater carbonate chemistry, resulting in lowering of surface water pH. In this
study we investigated the effect of increasing CO2 partial pressure (pCO2) on concentrations of volatile biogenic
dimethylsulfide (DMS) and its precursor dimethylsulfoniopropionate (DMSP), through monoculture studies and

community pCO2 perturbation. DMS is a climatically important gas produced by many marine algae: it transfers sulfur
into the atmosphere and is a major influence on biogeochemical climate regulation through breakdown to sulfate and
formation of subsequent cloud condensation nuclei (CCN). Overall, production of DMS and DMSP by the coccolitho-
phore Emiliania huxleyi strain RCC1229 was unaffected by growth at 900 matm pCO2, but DMSP production normalised

to cell volume was 12% lower at the higher pCO2 treatment. These cultures were compared with community DMS and
DMSP production during an elevated pCO2 mesocosm experiment with the aim of studying E. huxleyi in the natural
environment. Results contrasted with the culture experiments and showed reductions in community DMS and DMSP

concentrations of up to 60 and 32% respectively at pCO2 up to 3000 matm, with changes attributed to poorer growth of
DMSP-producing nanophytoplankton species, including E. huxleyi, and potentially increased microbial consumption of
DMS and dissolvedDMSP at higher pCO2.DMS andDMSPproduction differences between culture and community likely

arise from pH affecting the inter-species responses between microbial producers and consumers.
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Introduction

Since the 1750s, atmospheric carbon dioxide concentrations
have increased from 280 to close to 400 matm today because of
anthropogenic inputs from burning fossil fuels, cement pro-

duction and land use changes.[1] The atmospheric CO2 con-
centrations projected for 2100 are in the range 350–840 matm;
the majority of climate change scenarios project continuing

increases over coming decades, with the possibility of decline

through immediate change to low-carbon economies.[2]

Approximately 25% of the total CO2 emitted into the atmo-
sphere by anthropogenic activities has been absorbed into the

oceans to date, making the oceans a crucial sink for CO2, with
other sinks including the atmosphere (,45%) and land-based
vegetation (,30%).[3] Dissolution of CO2 in seawater results in
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the formation of carbonic acid, which readily dissociates

to release Hþ and lowers the pH, an effect termed ‘ocean acid-
ification’. Surface ocean pH levels will very likely be up to
0.4 units lower by 2100, a concomitant 150% increase in Hþ

ions, which will decrease the carbonate saturation state and
result in increasing dissolution of calcium carbonate in surface
waters.[4,5]

Emiliania huxleyi is a globally distributed haptophyte which

produces calcite plates (coccoliths) covering the cell surface.
Large-scale blooms of E. huxleyi occur in temperate shelf seas,
including the North West European continental shelf in early

summer,[6] and total global production of calcite by E. huxleyi

makes it the most productive calcifying organism on Earth.[7]

Under conditions of elevated CO2 partial pressure (pCO2) in an

ocean acidification scenario, calcite production by E. huxleyi

has been found to typically decrease.[8,9] Calcium carbonate
formation is a reaction that liberates CO2 (Ca

2þ þ 2HCO3
– -

CaCO3 þ CO2 þ H2O), and any reduction in calcification rate

can act as a negative feedback on rising surface water pCO2.
[10]

Over longer timescales, calcite and organic carbon production
by calcifying phytoplankton, and subsequent post-bloom settle-

ment of this material through the water column is a major route
for carbon transport from the surface oceans to storage in deeper
waters.[11] Decreased surface pH could affect growth and sub-

sequent calcite production and carbon fixation by E. huxleyi and
have a significant effect on global cycling and removal of carbon
in the future ocean.[8]

E. huxleyi is also a significant producer of dimethyl-
sulfoniopropionate (DMSP), a compound produced by many
phytoplankton species for several suggested purposes: as an
osmoregulatory compound,[12] cryoprotectant,[13] anti-

oxidant,[14] grazing defence[15] or chemoattractant.[16,17] DMSP
is recognised as a significant part of the sulfur and carbon fluxes
throughmarine microbial food webs, providing a reported 0.5 to

6% of total carbon demand and between 3 and 100% of total
sulfur demand by marine bacteria[18] and major phytoplankton
groups.[19] Breakdown of DMSP is a significant source of

dimethylsulfide (DMS), a volatile compound released through
the surface microlayer to the atmosphere where it oxidises
to form sulfate-containing particles. These particles can act as
cloud condensation nuclei (CCN) in the troposphere, where

cloud formation can reflect the Sun’s energy back into space,
with implications for global climate regulation.[20,21] The
marine DMS-associated global sulfur flux to the atmosphere

has been calculated at 28.1 Tg S year�1.[22]

Previous community pCO2 perturbation (mesocosm) experi-
ments in natural waters have identified changes in DMS and

DMSP concentrations as pCO2 increased.
[23–28] Here we inves-

tigated the effects of elevated pCO2 on DMS and DMSP
production in a low-bacterial abundance monoculture of

E. huxleyi (strain RCC1229), and progressed to investigate the
effect of pCO2 on a community known to contain a natural
E. huxleyi population. The hypotheses of this investigation were
that elevated pCO2 would affect the physiology of the E. huxleyi

cell and result in lower production of intracellular DMSP, which
would result in lower DMS production. On a community level,
elevated pCO2 may stimulate primary productivity, resulting in

increased community DMSP synthesis and higher DMSP con-
centrations.[29] In contrast, an increase in bacterial productivity
at elevated pCO2 would create a greater demand for sulfur and

increase DMS andDMSP consumption.[30,31] This investigation
aimed to determine if changes in DMS and DMSP concentra-
tions under high pCO2 are a result of physiological changes in

the E. huxleyi cell, or changes in microbial inter-species

responses to elevated pCO2, nutrient competition and DMSP
consumption.

Emiliania huxleyi culture setup

E. huxleyi strain RCC1229 was chosen for its high level of
calcification and origin in the North Sea (as a strain isolated

close to the location of the mesocosm experiment) and grown
in autoclaved aged natural seawater medium enriched with
ESAW (Enriched Seawater Artificial Water) nutrients (starting

concentration 186.7 mmol L�1 NO3 and 20.1 mmol L�1 PO4)
and vitamins.[32] The stock culture was treated for 2 days with a
broad-spectrum antibiotic mixture[33] to significantly reduce

bacterial abundance, before regular reinoculation into fresh
medium to maintain exponential growth for 10 days before
pCO2 perturbation (day T0). All cultures were maintained
at 15 8C in a 16 : 8 light–dark cycle with light at 180 mmol

photons m�1 s�1.
Cells were grown in a semicontinuous culture, with three

replicate cultures exposed to 900 matm pCO2 and three replicate

control cultures treated with air at ambient pCO2 (395 matm).
Prior to inoculation, the medium was filter sterilised, decanted
into two bespoke vessels and pre-sparged to the pCO2 treatment

concentration using pre-prepared CO2 gas mixtures (BOC Ltd,
UK). Cultures were grown in 1-L Erlenmeyer flasks with
500 mL of pre-prepared sterile medium and sufficient inoculum

to provide a starting cell count of 120 000 cells mL�1. Cultures
were grown over 4-day periods to cell densities of ,1 000 000
cells mL�1 before re-inoculation into fresh medium to keep the
culture in exponential growth. Flasks were sealed with ground

glass Quikfit stoppers modified to enable inlet and outlet gas
lines. Aqueous phase bubbling of the cultures was avoided but
the headspaces of each flask were flushed daily with the

respective treatment gas for 10 min at a rate of 30 mL min�1

through a 0.2-mm Minisart filter (Sartorius Ltd, Epsom, UK).
Samples were extracted from the flasks through a luer-lock

sealed opening in the base of the flask; to prevent contamination
of the culture, all sampling from this outlet used sterile luer
fittings on 25-mL glass syringes.

Measurement of biological parameters

Culture samples for cell volume (CV), cell counts, pH,DMS and
total DMSP (DMSPT) were taken daily 7 h after the onset of the
light period. CV and counts were measured in triplicate from

live culture using a Coulter Multisizer III (Beckman Coulter
Ltd, High Wycombe, UK). Average growth rates were deter-
mined for each inoculation period as ln(N1/N0)/(t1� t0), with cell

counts N0 and N1 taken at the time points t0 and t1 respectively.
All six cultures were examined under 100�magnification using
an Olympus BX40F-3 fluorescence microscope and no non-

calcified cells could be identified from multiple prepared sam-
ples. For pH analysis, 20 mL of culture from each flask was
analysed daily at 15 8C by the standard potentiometric tech-
nique[34,35] using a Seven Easy S20 probe with automatic tem-

perature adjustment (relative accuracy �0.01 Mettler–Toledo
Ltd, Beaumont Leys, UK) using National Bureau of Standards
(NBS) buffers.

DMS and DMSP analysis

DMS samples were extracted by injection of 2 mL of filtered
culture into a polytetrafluoroethylene (PTFE) purge and cryo-
trap system and purged with oxygen-free nitrogen (OFN) for
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5 min at 80 mL min�1. Samples were trapped in a PTFE sample

loop suspended above liquid nitrogen and held at �150 8C,
before immersion in boiling water and injection into a Shimadzu
GC2010 gas chromatograph (GC) with a Varian Chrompack

CP-Sil-5CB column (30 m, 0.53-mm internal diameter (ID))
and flame photometric detector (FPD). The GC was operated
isothermally at 60 8C and DMS eluted at 2.1 min; the GC was
calibrated using liquid DMSP standards treated with 10 M

NaOH in the concentration range 5.07–406.2 nmol L�1 (7%
analytical error through analysis of 10 samples). Six-point
calibrations were performed weekly and checked daily for

instrument drift, and the resulting calibrations typically pro-
duced linear regression with r2. 0.99. The same method was
used when participating in the AQA 12–23 international DMS

analysis proficiency test in February 2013 and achieved close
agreement with the known concentration of the test material.[36]

Triplicate DMSPT samples from each flask were prepared
in 4-mL headspace vials by the addition of 0.5 mL of 1MNaOH

to 3 mL of culture and sealed using PTFE screw caps and
PTFE–silicone septa. All DMSP vials were stored for 24 h at
30 8C before an MPS2 Twister multi-purpose autosampler

(Gerstel, Mülheim, Germany) equipped with a 250-mL
Hamilton syringe sampled 100 mL of headspace from each vial
and injected it into the GC-FPD as set up above.

Mesocosm experiment setup

The experiment was performed at the Marine Biological Station
at Espegrend, University of Bergen, Norway from 6 May to
12 June 2011, with nine cylindrical thermoplastic polyurethane
(TPU) mesocosm enclosures (,75 m3, 25-m water depth)

anchored ,100 m apart and 1 mile offshore in the Raunefjord
(60.2658N, 5.2058E) at a water depth of 55 to 65 m. Each
enclosure was supported by an 8-m tall floating frame and

capped with a polyvinyl chloride (PVC) hood.[37] Over 95% of
the incoming photosynthetically active radiation (PAR) was
transmitted by the TPU and PVC materials, with near 100%

absorbance of incoming UV radiation. The mesocosms were
filled on 1May 2011 (day T-7) by lowering the bags through the
CO2 under-saturated post-bloom water column with the bottom
openings covered with 3-mmmesh to exclude larger organisms.

Full exclusion of the mesocosms from the surrounding waters
occurred 3 days later: the lower opening was fitted with a
sediment trap and the upper openings were raised above the

water surface.[37]

The carbonate chemistry of the water was altered by the
addition of CO2-saturated, filtered fjord water to alter the

dissolved inorganic carbon (DIC) concentrations while keeping
alkalinity constant.[38] This water was added to seven meso-
cosms depending on the target pCO2 concentrations over a 5-day

period, starting on 8 May 2011 (day T0). This was done with a
bespoke dispersal apparatus (‘Spider’) that was lowered through
the bags to ensure even distribution of CO2-rich waters through-
out the water column. Twomesocosmswere designated controls

and received no addition of CO2-enriched water (M2 and M4,
280 matm). The range of target pCO2 was 390 to 3000 matm
across the seven enriched mesocosms (M6, 390 matm; M8,

560 matm; M1, 840 matm; M3, 1120 matm; M5, 1400 matm;
M7, 2000 matm; M9, 3000 matm) taking into account IPCC
projections up to the year 2300 and beyond,[2] in order to

identify the change in different parameters to increasing
pCO2. pCO2 and pH were calculated from the coulometric
measurement of DIC[39] and spectrophotometric determination

of pH[40] using the stoichiometric equilibrium constants for

carbonic acid.[41,42] No further perturbation was made to the
carbonate system once the experiment had commenced.
Inorganic nutrients were added to each mesocosm on T14 to

stimulate phytoplankton growth. The inside of the mesocosm
walls was cleaned regularly with a ring-shaped, double-bladed
wiper to prevent biofilm growth.[37] After termination of the
experiment, one small hole was detected in the bag ofM2which

had led to non-quantifiable water exchange, so the results from
this mesocosm were removed from the analysis.

DMS and DMSP extraction and analysis

An integrated water sampler (IWS, Hydrobios GmbH, Kiel,
Germany) was used every morning to collect samples from the
full 25-m water depth of all nine mesocosms. Samples for DMS

and DMSP analysis were collected in an amber bottle from the
laminar flow of the IWS using Tygon tubing and the bottle was
allowed to overflow for twice the volume before the tube was

removed and the glass stopper firmly inserted to prevent air
bubbles and atmospheric contact. DMS samples (40 mL) were
injected into a purge and cryotrap system[43] through a 25-mm
Whatman GF/F (GE Healthcare Life Sciences, Little Chalfont,

England) and were purged with oxygen-free nitrogen (OFN) at
80 mL min�1 for 10 min. Gas samples passed through a glass
wool trap, to remove aerosols and water droplets, and a series of

two nafion counterflow driers operating at 180 mL min�1,
before DMS was trapped in a stainless steel sample loop held
above liquid nitrogen at �150 8C.

DMS samples were injected into an Agilent 6890 gas
chromatograph equipped with a 60-m DB-VRX capillary col-
umn (0.32-mm ID, 1.8-mm film thickness, Agilent J&W Ltd)
according to the programme outlined by Hopkins et al.[24]

Analysis was by an Agilent 5973 quadrupole mass spectrometer
operated in electron ionisation (EI), single ion mode (SIM), and
was calibrated using a gravimetrically prepared liquid DMS

standard diluted in high performance liquid chromatography
(HPLC)-grade methanol to the required concentration in the
range 0.04–7.64 nmol L�1 (10% analytical error for tripli-

cate measurements). Gas chromatography–mass spectrometry
(GC-MS) instrument drift was corrected using 2 mL of diluted
deuterated DMS (D6-DMS) as a surrogate analyte.[44,45] Five-

point calibrations were performed weekly, and checked daily,
and the linear regression from the calibrations typically pro-
duced values of r2. 0.98.

DMSPT samples were prepared for later analysis using the

acidification method of Curran et al.[46,47] by storing 7 mL of
unfiltered aliquots of seawater in 8-mL glass sample vials
(Labhut, Churcham, UK) with 0.35 mL of 50% H2SO4. All

samples were stored in the dark at room temperature for 8 weeks
before analysis. DMSPT was extracted by purging 2 mL of
unfiltered sample with 1 mL of 10MNaOHwith OFN for 5 min

at 80mLmin�1, before analysis byGC-FPD as described above.

Additional measurements

Water samples were collected from the IWS every first or sec-
ond day, and phytoplankton abundances were determined with a

FacsCalibur flow cytometer (Becton Dickinson) equipped with
an air-cooled laser providing 15 mW at 488 nm with standard
filter set-up. The counts were obtained from fresh samples with

the trigger set on red. Discrimination of Synechococcus spp.,
Emiliania huxleyi and autotrophic picoeukaryotes, cryptophytes
and other autotrophic nanoeukaryotes was based on dot plots
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of side-scatter signal (SSC) v. pigment autofluorescence

(chlorophyll-a (Chl-a) and phycoerythrin).[48]

For determination of Chl-a concentrations, aliquots of
250–500 mL of sample from the IWS were also filtered onto

GF/F and stored frozen for 24 h before homogenisation in 90%
acetone with glass beads. The mixture was centrifuged at 800g
and the Chl-a concentrations were determined on a Turner
AU-10 fluorometer.[49] Further samples were extracted in

100% acetone and analysed by HPLC (WATERS HPLC
with a Varian Microsorb-MV 100–3 C8 column),[50] with
phytoplankton community composition calculated using the

CHEMTAX algorithm by converting the concentrations of
marker pigments into the Chl-a equivalents.[51,52]

Statistical analysis

Statistical analysis was performed using Minitab v16. All data
were checked for normality using an Anderson –Darling test
before statistical analysis, and were transformed where neces-

sary. Equal variance was confirmed using Levene’s Tests.
One-way analysis of variance (ANOVA) combined with
Tukey’s post analysis tests were used on the DMS and DMSP
data to determine differences between the mesocosms at dif-

ferent pCO2 concentrations. Spearman’s rank correlation was
also used to determine the relationships between pCO2 andDMS
and DMSP concentrations over the course of the experiment, as

well as the relationships between different community variables
and the trace gas concentrations. Two-tailed t-tests were used to
determine differences between the control and CO2 treatments

during the laboratory studies.

E. huxleyi high pCO2 culture experiment results

Growth parameters

The pH within the CO2 treatment cultures started at a mean of

7.43 immediately following inoculation compared to 7.90 in
the air control (Fig. 1a). As the culture grew, the pH gradually
increased in all flasks, but in the CO2 treatment cultures the
pH was significantly lower than for the air control (t¼ 7.68,

P, 0.01), and re-inoculation reduced the pH in all cultures. The
mean pH for the entire experimentwas 7.72 in the CO2 treatment
and 8.13 in the control. Cultures from both treatments grew

exponentially for four days after inoculations 1, 2 and 3, and for
five days in the fourth and fifth inoculations. Cell counts at
the end of each inoculation period ranged from 6.3� 105 to

1.34� 106 cells mL�1, and there was no increase in cell count
with elevated CO2 (Fig. 1b), with an average specific growth
rate of 0.47 day�1 in both treatments. CV varied in E. huxleyi

cultures so the data are presented as total CV (Fig. 1c), and was

used to calculate mean individual CV, which increased in the
900 matm CO2 treatment as the experiment progressed (Fig. 1d).
Mean CV in the control treatment was 46.0� 12.0 mm3 and in

the CO2 treatment was 53.4� 13.8 mm3, and cells showed a
20% increase in volume during the fifth inoculation compared
to the control treatment (t¼�3.65, P, 0.01).

DMS and DMSP dynamics

Aqueous DMS was measured daily (Fig. 2a) alongside the cell

count and volume analyses, and was normalised to cell number
(Fig. 2b). During the first two culture periods up to T9,DMSwas
in the range 6.5–65.1 nmol L�1, but during the following three

culture periods, DMS increased sequentially to higher con-
centrations up to a mean of 328.8� 56.1 nmol L�1 in the CO2

treatment and 296.8� 69.2 nmol L�1 in the control at T23. DMS

data normalised to CV showed no effect of CO2 treatment on the
DMS production (t¼ 0.77, P¼ 0.444) but was on average 80%
lower in the first inoculation compared to the final inoculation

period with a range of 0.6–11.5 mmol L�1 CV.
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DMSPT concentrations increased exponentially with cell
count (Fig. 2c) from amean of 505.3� 118.7 nmol L�1 (control)
and 504.9� 140.2 nmol L�1 (CO2) in the initial days of
inoculation to 4444.5� 1127.2 nmol L�1 (control) and

4180.2� 1000.0 nmol L�1 (CO2) on the final day of each
inoculation. DMSPT normalised to CV varied over the course
of the experiment, within the range 16.7–202.1 mmol L�1 CV

and was 12% lower in the CO2 treatment than the control over
the entire experiment (Fig. 2d; t¼ 3.71, P, 0.01, n¼ 138). The
measured DMS-to-DMSPT ratio was calculated (Fig. 2e) with

a mean of 0.04. The ratio had a sharp peak on T19 in both
treatments, reaching a maximum of 0.23 in the CO2 treatment,
but over the course of the experiment, increased pCO2 had no
significant effect on the DMS-to-DMSPT ratio. A summary of

the E. huxleyi culture results is given in Table 1.

Mesocosm experiment results

Changes in physical oceanographic conditions

Inorganic nitrate and phosphate concentrations in the meso-
cosms were measured at 1.54� 0.30 and 0.21� 0.01 mmol L�1

respectively on T1 of the experiment, with addition of artificial
inorganic nutrients to all mesocosms on T14 to stimulate phy-

toplankton growth (mean concentrations 5.0� 0.2 mmol L�1

NO3 and 0.16� 0.02 mmol L�1 PO4 after addition). Maxi-
mum nutrient concentrations measured in the fjord were

1.73 mmol L�1 NO3 and 0.06 mmol L�1 PO4. Outgassing of CO2

and carbon fixation by phytoplankton caused a gradual pCO2

decline and pH increase in CO2-enriched mesocosms (Fig. 3).

The average pH before nutrient addition ranged between
8.13� 0.01 in the control mesocosms and 7.31� 0.12 in M9
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(3000 matm), the highest pCO2 mesocosm. After nutrient addi-
tion, the pH ranged between 8.14� 0.01 in the control meso-
cosms and 7.49� 0.05 in the highest pCO2 mesocosm. The
temperature varied between 6.8 8C at the beginning and 10.0 8C
at the end of the experiment.

Changes in community composition

Three phases were identified from the fluorometric Chl-a data

(Fig. 4a): phase 1 as the initial bloom before artificial nutrient
addition, phase 2 as the artificial nutrient-induced bloom and
phase 3 as post-bloom. The initial Chl-a concentrations in all

mesocosms were 2.2� 0.1 mg L�1 at T1 and rapidly increased
in a similar manner in all treatments during the phase 1 bloom
(Fig. 4a), peaking on T3 in all mesocosms except for M9

(3000 matm) which continued to increase until 4.1 mg L�1 on T5.
A clear differentiation between pCO2 treatments was seen after
T3, with Chl-a concentrations higher in the high pCO2 treatment
until the beginning of phase 2 at T9, after which they dropped

below the Chl-a concentrations of the control andmedium pCO2

mesocosms. During the phase 2 nutrient-induced bloom after
T14, Chl-a concentrations were lower at high pCO2, and peaked

at ,T19–T20, before declining through phase 3 until the end

of the experiment. Several different phytoplankton species
were significant contributors to the total Chl-a throughout
the experiment as measured by HPLC pigment data, includ-

ing diatoms (,35%), cryptophytes (,22%), chlorophytes
(,20%) and haptophytes (,19%; Fig. 4b). Other taxa,
including cyanobacteria, dinoflagellates and chrysophytesmade

a minor (,4%) contribution to the total Chl-a. Haptophyte
equivalent Chl-a showed a peak in all pCO2 treatments during
phase 1, with maximum concentrations of 0.84 mg L�1 in the

control mesocosms, and there were no significant differences
between any treatments during this phase (F¼ 0.73, P¼ 0.669,
n¼ 98). The phase 1 haptophyte equivalent Chl-a was coinci-
dent with the peak in DMSPT concentrations (Fig. 5b). The

difference between elevated pCO2 treatments became more
apparent after the initial bloom (T7 to T17) and after the nutrient
induced bloom in phase 2 (T22 to T29), with significantly lower

haptophyte equivalent Chl-a concentrations in the higher pCO2

treatments (F¼ 16.74, P, 0.01, n¼ 189) from T9 compared to
the low and medium pCO2 mesocosms. During the period T3

to T10, mean net growth rates for the haptophytes in the three
high pCO2 mesocosms (1400–3000 matm) were �0.2 day�1,
compared to the mean net growth rate in the low pCO2 meso-
cosms (280–390 matm) of �0.06 day�1. Haptophyte growth

rates during the artificial bloom in phase 2 were subsequently
higher in the high pCO2 mesocosms over the period T10 to
T20 at 0.1 day�1 compared to 0.02 day�1 in the low pCO2

mesocosms and 0.06 day�1 in the medium (540–1120 matm)
mesocosms, but overall haptophyte Chl-a remained lower
throughout phase 2 into phase 3. The mean calculated percent-

age contribution of the haptophyte Chl-a to total Chl-a was
25� 11% in the low pCO2 mesocosms, but 15� 5% in the
highest, and this difference was pronounced in the post-bloom

periods (Fig. 4c).
Calcified (C-form) E. huxleyi was the only haptophyte to

be identified and enumerated using flow cytometry (Fig. 4d)
however this method was not able to identify individual non-

calcified haptophyte species; all these were combined in the
small nanophytoplankton (2–6 mm) group with E. huxleyi

(Fig. 4e). The abundance of calcified E. huxleyi cells increased

during phases 2 and 3 when the majority of other groups
declined in abundance. E. huxleyi peaked on T29 in the control
(280 matm) at ,3000 cells mL�1, and a distinct effect of pCO2

treatment was observed, with significantly lower abundance in
the high pCO2 mesocosms (F¼ 13.45, P, 0.01, n¼ 112). The
nanophytoplankton group (2–6 mm) showed a similar pattern to
the haptophyte equivalent Chl-a with a peak during each bloom

period, but did not show significantly lower nanophytoplankton
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Table 1. Comparison of E. huxleyi cell counts and dimethylsulfide (DMS) and total dimethylsulfoniopropionate (DMSPT) concentration ranges

and means for the mesocosm and the E. huxleyi culture experiments

All E. huxleyi counts show calcified cells only. The percentage changes in total measured DMS and DMSPT concentrations are also shown. NS, not significant

Experiment E. huxleyi RCC1229 culture experiment Mesocosm experiment

pCO2 treatment (matm) 390 900 390 840 3000

E. huxleyi range (cells mL�1) 87 439–1 355 000 60 598–1 254 000 81–2004 58–1393 15–135

Nanophytoplankton (2–6 mm) range (cells mL�1) 2341–28 628 2373–29 412 2453–20 649

DMS range (nmol L�1) 6.5–345.8 11.5–366.6 0.4–4.9 0.1–2.4 0.1–0.8

DMS Mean (�s.d.) (nmol L�1) 74.5� 73.7 77.8� 83.4 1.5� 1.2 1.0� 0.6 0.4� 0.2

DMS percentage change NS �17 �60

DMSPT range (nmol L�1) 109.8–6233.6 144.1–6062.3 21.1–67.4 20.3–81.9 14.6–58.2

DMSPT mean (�s.d.) (nmol L�1) 1840.2� 1621.1 1769.0� 1546.5 46.0� 12.0 44.5� 15.6 28.8� 15.2

DMSPT percentage change NS �13 �32
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abundance at high pCO2 during the post-bloom period of
phase 2 (T9–T15) directly following the initial bloom, which

was notable in the haptophyte equivalent Chl-a. After T15,
significantly lower cell abundance was identified in the highest
pCO2mesocosms, yet a higher abundancewas seen in themedium
pCO2 mesocosms compared to the control. Net nanophyto-

plankton growth rates were comparable between all mesocosms

for the period T5 to T15, in contrast to the haptophyte Chl-a, yet
were lower in the high pCO2 mesocosms during the period T15

to T20. Nanophytoplankton abundance ranged from ,3000 to
33 500 cells mL�1 in all mesocosms, with maximum abundance
in M8 (560 matm) during phase 2. Calcified E. huxleyi cells
contributed less than 5% to the total nanophytoplankton during

phases 1 and 2 in all pCO2 treatments, but increased in the low
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and medium pCO2 treatments to 27% at the end of phase 3
(Fig. 4f).

DMS

DMS concentrations were measured from T12 to T29 for the
mesocosms only in phases 2 and 3 (Fig. 5a). Until T19, DMS

concentrations were below 1 nmol L�1 and from T20 onwards
it increased in all pCO2 treatments. A clear effect of increased

pCO2 is seen from the start of measurements on T12, with DMS

concentrations in the highest pCO2 treatments (2000 and
3000 matm) significantly lower than the low (280 and 390 matm)
and medium pCO2 (560, 840 and 1120 matm) conditions (F¼
5.52, P, 0.01, n¼ 175), and these trends continued until T29.
MaximumDMS concentrations were reached in M6 (390 matm)
on T29 at 4.9 nmol L�1, compared to 0.76 nmol L�1 measured
in M9 (3000 matm) on T28. During phases 2 and 3, DMS con-

centrations in the high pCO2 treatments were 60% lower than
the control and the medium pCO2 treatments 33% lower. Mean
DMS concentrations plotted against themean pCO2 for phases 2

and 3 showed a clear decreasing relationship as pCO2 increased
(Fig. 6a; r¼�0.595, P, 0.01, n¼ 140), however with only
threemesocosms at pCO2 higher than 1000matm, it is difficult to

determine the exact nature of the DMS–pCO2 relationship at
these higher pCO2.

Total DMSP

DMSPT was measured on alternate days from T1 and showed
different patterns to DMS (Fig. 5b). DMSPT concentrations
were similar in all treatments onT1 (38.5� 4.3 nmol L�1mean),

and increased to a peak on T4, after which concentrations
decreased. No difference between mesocosms was identified
during phase 1 for DMSPT (F¼ 0.42, P¼ 0.916, n¼ 58). A
difference between mesocosms was more apparent for DMSPT
during phases 2 and 3, with concentrations in the high (1400–
3000 matm) and medium pCO2 treatments (560–1120 matm)
32 and 14% lower respectively than the low pCO2 meso-

cosms during both phases. This change seems to have been
driven by the net DMSP production rate over the period T5 to
T12, where the high pCO2 mesocosms (1400–3000 matm)

showed a loss rate of �0.12 day�1 compared to the low pCO2

mesocosms (280–390 matm) at �0.04 day�1. This higher loss
rate, similar to that of the haptophyte equivalent Chl-a, influ-

ences the concentrations in the later part of phase 2 and during
phase 3: DMSPT concentrations increased to a peak at T22 in
all treatments, with the highest concentrations of 81.8 nmol L�1

in M1 (840 matm) but the lowest at 26.3 nmol L�1 in M9

(3000 matm). DMSPT concentrations then decreased at the
start of phase 3, before increasing again in all treatments on T29,
with the lowest concentrations measured in the highest pCO2

treatments. A summary of the DMS, DMSP and relevant cell
abundance is given in Table 1.

Relationships between DMS, DMSP and biological
parameters

The community composition proxies (HPLC pigments and flow
cytometry data) were analysed alongside the DMS and DMSP
data to determine the potential sources of DMS and DMSP

within the mesocosm communities. Using Spearman’s rank
correlation analysis, concentrations of DMS and DMSPT
showed significant positive correlation to each other (r¼ 0.339,
P, 0.01, n¼ 135), and the ratio between the two compounds

(Fig. 5c) was reasonably stable below 0.02 in all treatments
during phase 2, but increased to,0.06 in phase 3 corresponding
to an increase inDMSconcentration. The ratio of DMS toDMSPT
was unaffectedbyCO2 treatment:mean ratioswere plotted against
mean pCO2 in all mesocosms, and showed no change with
increasing pCO2 (Fig. 6c; r¼ 0.289, P¼ 0.083, n¼ 62).

DMSPT showed positive correlation with Chl-a (r¼ 0.400,
P, 0.01, n¼ 117), and an examination of the mean DMSPT-
to-Chl-aHapto ratio for each mesocosm plotted against mean
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pCO2 for the entire experiment showed no effect of increased
pCO2 (Fig. 6d; r¼�0.01, P¼ 0.920, n¼ 99). DMS showed

negative correlation with total Chl-a (r¼�0.406, P, 0.01,
n¼ 136). Correlations between DMS and all phytoplankton
abundances and Chl-a contributors showed that DMS concen-

trations correlated only with the haptophyte-equivalent Chl-a
(r¼ 0.508, P, 0.01, n¼ 126) and calcified E. huxleyi abun-
dance (r¼ 0.615, P, 0.01, n¼ 136), however the latter only

reached 3000 cells mL�1 in M4 (290 matm) on T29 (Fig. 4d).
DMSPT correlation with haptophyte equivalent Chl-a was also
strong (r¼ 0.635, P, 0.01, n¼ 121), with relatively weak
correlation with the nanophytoplankton (r¼ 0.283, P, 0.01,

n¼ 117) and no relationship with calcified E. huxleyi abun-
dance. In addition, there was weak correlation between DMSPT
and the diatoms (r¼ 0.301, P, 0.01, n¼ 121). The ratios of

DMS and DMSPT to nanophytoplankton (2–6 mm) abundance
(Figs 7a, b) and haptophyte equivalent Chl-a (Fig. 7c, d) were
calculated on a daily basis, and showed a limited effect of

elevated pCO2. The haptophyteswere significant contributors to
the DMSP pool given the strong correlations with DMSPT and
high contribution to the total Chl-a (Fig. 4c), whereas calcified
E. huxleyi contributed to only a small percentage of the total

haptophyte assemblage (Fig. 4f) and subsequently the DMSP
production. Calcified E. huxleyi were of greater importance to
DMSP production during phase 3 of the experiment when the

abundance was highest. It is highly likely that a large proportion

of the nanophytoplankton (2–6 mm; Fig. 4e) were non-calcified
DMSP-producing haptophyte cells, although no determination

of species composition could be made. Non-calcified E. huxleyi
cannot be distinguished from other non-calcified haptophytes of
the same size by flow cytometry (A. Larsen, pers. comm.).

Discussion

Several mesocosm experiments investigating the effect of
elevated pCO2 on the community structure have been per-
formed, and several of these have measured the effects on DMS
and DMSP concentrations. These are summarised in Table 2,

alongside experiments on clonal E. huxleyi cultures which also
measured DMS and DMSP v. CO2 concentrations. The ranges
in DMS and DMSP concentrations from the mesocosm

experiment in this study are within those seen in previous
Bergen mesocosm studies,[24,25,28,53,54] and the Korean and
Svalbardmesocosm experiments, wheremicrobial communities

from neither location contained a significant abundance of
E. huxleyi.[23,26,27] During this experiment no single group
dominated the community at any time; there were high abun-
dances of diatoms, cryptophytes, chlorophytes and haptophytes,

but only the haptophytes were significantly correlated with
DMSP concentrations. The pCO2 range used by us was broader
than in any previous investigation, with mesocosms at 2000

and 3000 matm; the aim being to identify trends of different
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community parameters beyond the pCO2 projected for the year
2100. The change in pCO2 in the system occurred over 3–5 days
(Fig. 3), and the community responsewould have favoured those
species with less efficient carbon concentrating mechanisms

(CCMs),[55–57] as well as those better suited to rapid environ-
mental change. Over the course of the experiment, the pCO2

decreased in all the treated mesocosms, with the result that the

artificial bloom was at a lower mean pCO2 for each mesocosm
than the initial bloom, but the communities would have been
exposed to the perturbed conditions for a longer time period.

Differences were identified between treatments for several
community parameters: chlorophytes, picoeukaryotes and cya-
nobacteria showed a strong positive response in high pCO2,
whereas haptophyte and diatom growth was negatively affected

at the highest pCO2. These responses were more pronounced
during the latter phases of the experiment.

Community development and E. huxleyi growth

The total Chl-a concentrations in the mesocosms showed both

positive and negative effects to CO2 during the three different
phases, a scenario which was also identified during a mesocosm
experiment in Svalbard,[52] and is a result of different phyto-

plankton assemblages responding to elevated pCO2 at different
times of the experiment. Of importance to this investigation,

haptophyte-equivalent Chl-a, nanophytoplankton and calcified
E. huxleyi cells showed reduced abundance under increased
pCO2 during phases 2 and 3, either as a direct result of CO2 on
the groups, or as a result of differential nutrient-induced com-

petition between groups such as diatoms and picoeukaryotes at
the higher availability of DIC,[52,58,59] as was previously iden-
tified during the Svalbard mesocosm experiment in 2010. In

contrast, Endres et al.[31] identified significantly higher marine
bacterial abundance and activity in the high pCO2 mesocosms
during the same period. Calcified E. huxleyi cell counts during

the mesocosm experiment were unexpectedly low (up to
3000 cells mL�1) in comparison to some previous experiments
(e.g. up to 70 000 cells mL�1 in Steinke et al.[53] and up to
50 000 cells mL�1 in Delille et al.[60]) and there was no analysis

performed on calcification rates in E. huxleyi or evaluating
coccolith formation. Analysis of the phytoplankton community
by flow cytometry was unable to identify other calcified coc-

colithophore species than E. huxleyi, however the mismatch
between the pattern of haptophyte equivalent Chl-a and the
abundance of calcified E. huxleyi cells identified by flow

cytometry indicate the presence of non-calcified haptophyte
cells which were enumerated only as nanophytoplankton
(2–6 mm). Previous investigations at Espegrend Marine Bio-

logical Station have identified non-calcified E. huxleyi cells
within the coastal phytoplankton community.[61] Indeed, in a
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mesocosm experiment in the Raunefjord in 2008, a significant

number (up to 40 000 cells mL�1) of non-calcified haptophyte
cells were identified in the natural population through the use of
COD-FISH (combined CaCO3 optical detection with fluores-

cent in-situ hybridisation) techniques.[62,63]

Calcification rates were not measured during our mesocosm
and laboratory culture experiments, but previous mesocosm
studies have identified reductions in calcification under elevated

pCO2,
[60,64] which has been suggested as a negative feedback on

surface water pCO2.
[10] As mentioned above, non-calcified

E. huxleyi cells do occur in natural and mesocosm assemblages,

but their presence is not indicative of lower calcification
rates. Overall, understanding of the non-calcified life-stages of
E. huxleyi is very scant, and requires further investigation into

the physiological changes that occur in the different forms
(haploid and diploid, calcified and non-calcified). In addition,
other non-calcifying haptophytes were likely present in the
community and contributing to the haptophyte Chl-a signal. In

terms of DMSP production, a single investigation found that
DMSP production was increased by up to 0.4 pg cell�1 in a non-
calcified E. huxleyi strain (N-Form diploid RCC1242) under

790 matm pCO2 compared to an ambient pCO2 control, whereas
a calcified strain (C-form diploid RCC1731) showed no CO2

effect.[65] Further studies of DMSP production from diploid

calcified and non-calcified (haploid and diploid) strains in
the laboratory and non-calcified cells in the field are certainly
warranted, as well as further investigation into the DMSP

production of the haploid life-stages, which has never been
previously investigated.

There have been several studies on the effect of elevated
pCO2 on different strains of E. huxleyi, isolated from different

geographical areas,[9,65–70] but never using the strain RCC1229.
This strain was chosen because of its origins in the North Sea
close to the Bergen coast (58.428N, 3.218E), and likely similar

genotype to the natural E. huxleyi identified during the Bergen
mesocosm experiment. Despite this, calcified cell abundance
in the mesocosms showed a significant decrease at 840 matm
pCO2, but no such effect was identified during the culture
experiments at a comparable pCO2. While the culture experi-
ments were nutrient replete, E. huxleyi within the mesocosms
showed significant growth during phase 3 after the artificial

bloom, when concentrations of inorganic nitrate and phosphate
were low. Although RCC1229 was isolated close to the location
of the mesocosm experiment, there is still likely significant

genetic difference between the strain and the wild population.
The physiological responses between different strains to
increased pCO2 have not been uniform: in general carbon

fixation has increased,[65,68,70,71] but three strains investigated
by Langer et al.[66] showed the opposite effect. E. huxleyi has
shown varying sensitivity of growth rate to pCO2 in the

laboratory and the field. A previous mesocosm experiment
identified decreased net specific growth rate from 0.5 to
0.43 day�1 in the highest pCO2 mesocosms,[72] and the reduced
haptophyte equivalent Chl-a concentrations and calcified

E. huxleyi abundance values seen in our medium and high
pCO2 mesocosms support this. However, in the laboratory,
varying responses have been identified for different E. huxleyi

strains where growth rates either increased,[9,70,73] remained
unchanged as in this study[65,69,74] or decreased.[66,75,76] Specif-
ic growth rates during the E. huxleyi RCC1229 experiment

were lower (0.48 day�1 for the 900 matm pCO2 treatment and
0.47 day�1 for the ambient CO2 control) than found previously
for that strain under near-identical growth conditions at the same
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temperature (0.67 day�1),[77] and was likely a result of method-

ological differences in culturing which can be a significant
problem in comparing growth rates between different investiga-
tions.[78] The growth rate of calcified RCC1229was not affected

by 900 matm pCO2, whereas the abundance of calcified cells
decreased in the 840 matm pCO2 mesocosm. A significant shift
to a larger cell size was identified during the RCC1229 culture
experiment, which reinforces the findings of Arnold et al.[69]

using non-calcifying strain CCMP373, suggesting that the cell
size increase is not linked to additional coccolith production.
Increased particulate organic carbon (POC) production at higher

pCO2 has been linked to larger cell size.[79] The long-term
studies of Lohbeck et al.[80] with over 500 generations of single
and multi-clonal experiments found a decrease in cell size as

pCO2 increased. These variations in growth rate and carbon
fixation limit the use of a single E. huxleyi strain as a represen-
tative of all coccolithophores and haptophytes in the natural
environment. In contrast, Franklin et al.[81] identified E. huxleyi

as a goodmodel for the coccolithophores as awhole, particularly
in terms of DMSP production, but only examined two strains of
E. huxleyi. Comparison of the experiments described here and

existing studies onE. huxleyi suggest sufficient genetic diversity
and plasticity in natural populations to at least partially adapt as
surface water pCO2 increases.

[80] E. huxleyi has shown signifi-

cant advancement into polar waters since the first half of the
20th century because of expansion of the thermal window,[82,83]

but the effect of ocean acidification on these blooms is still

unclear. Future laboratory high pCO2 experiments should focus
on species other than E. huxleyi, and on other significant DMSP
producers which would allow for better analysis of community
development in mesocosm studies such as this.

DMS and DMSP

DMSP concentrations measured in the mesocosms were
strongly correlated with haptophyte equivalent Chl-a and
nanophytoplankton abundance, but not calcified E. huxleyi

abundance. Although these groups were unlikely to be the sole
producers of DMSP, the negative effect of acidification on the
bloom dynamics of these groups had significant influence on
the lower DMSP concentrations measured in the high pCO2

mesocosms. DMSP correlated well with haptophyte Chl-a,
with DMSP-to-Chl-aHapto ratios of 10–60 nmol mg�1 in strong
agreement with those identified in a previous mesocosm

experiment.[28] During the period T9–T14, the increased
DMSP-to-Chl-aHapto ratio in the high pCO2 mesocosms was a
result of the lower haptophyte Chl-a, likely attributable to

nutrient competition, particularly with picoeukaryotes at the
higher pCO2 mesocosms during the natural post-bloom phase,
and not a direct result of elevated pCO2. The DMS-to-DMSP

ratio was unaffected by the change in pCO2 (Fig. 6c), and
therefore the reduction in DMSP would explain a proportion of
the 60% reduction in DMS concentrations measured in the
mesocosms. In several previous mesocosm experiments, mea-

sured DMS and DMSP concentrations were found to be nega-
tively affected by increased pCO2,

[24,25,27] but in others the
effect was either temporally offset,[28] or showed differential

responses in DMS and DMSP.[23] Although the DMSPT con-
centrations in the RCC1229 E. huxleyi experiment showed no
significant difference between treatments, DMSPT was 12%

lower in the 900 matm pCO2 treatment when normalised to
CV (Fig. 2d). In contrast, pH-stat laboratory experiments on
clonal E. huxleyi cultures showed either no effect of elevated

pCO2, or increased DMSP production[65,69,84] when the pCO2

was equivalent to that of our mid or high range mesocosm
experiments (.800 matm). DMS concentrations in the labora-
tory cultures showed no significant difference when normalised

to CV, with no pronounced differences in E. huxleyi biomass,
implying that microbial interaction occurs within the meso-
cosms which is limited in the cultures. Clearly, mesocosm
experiments assess the community response to increasing pCO2

whereas laboratory experiments investigate the physiological
changes within a single species and the effect these have on the
production of DMSP and DMS; the greater response to acidi-

fication in the mesocosms compared to the laboratory experi-
ment implies that there is a strong community interaction in the
net production of DMS and DMSP. The DMSP producers

showed no immediate DMSP response upon addition of the
CO2-enriched waters to the mesocosms (Fig. 7b,d) over T1 to
T3, implying that DMSP production is not a direct response to
changing environmental conditions.

The poor relationship of DMS with Chl-a has been reported
several times, both regionally[85–87] and in data analysis–global
modelling studies,[88] because of the likely differential DMSP

synthesis of phytoplankton groups, variability in community
DMSP-into-DMS conversion yields and DMS loss rate con-
stants.[89] Total DMSPmeasured in the mesocosms included the

intracellular particulate DMSP (DMSPP) and extracellular dis-
solved DMSP (DMSPD). DMS and DMSPT have often been
found decoupled, particularly during the ‘summer paradox’ of

delayed DMS maxima compared to DMSP maxima and phyto-
plankton maximum abundance,[22,90,91] driven by grazing-
induced particulate DMSP transformation. DMSP is degraded
through two separate pathways[92]: demethylation to methyl-

mercaptopropionate (MMPA)[93] or cleavage to DMS with
production of either acrylate or 3-hydroxypropionate through
the ‘DMSP-lyase’ pathway,[92,94] and can be intracellular or

extracellular by marine bacteria in the surrounding waters.[95,96]

These routes regulate the gross DMS production rates in
seawater, and thereby affect the flux of sulfur to the atmosphere.

Previous studies on DMSP-lyase activity showed variations in
the optimum pH, from pH 5 in several haptophyte Phaeocystis
spp.[97] and coccolithophore Gephyrocapsa oceanica,[81]

to pH 8 in the bacterium Ruegeria lacuscaerulensis[98] and

Pseudomonas doudoroffii[99] and up to pH 10.5 in a further
Phaeocystis strain.[100] The implication is that community
production of DMS from the cleavage of DMSP is unlikely to

be immediately affected by lowered pH as a result of ocean
acidification, but individual species with optimal pH above 8
will find it increasingly difficult to cleave DMSP at higher

atmospheric pCO2.
The DMSPD pool supports 1–13% of bacterial carbon[18,101]

and 3–100% of bacterial sulfur[18] demand, by the breakdown

pathways diverting sulfur away from DMS production.[102,103]

Increased consumption of the DMSPD pool by bacteria would
affect not only the DMSPT concentrations but also reduce DMS
production from the cleavage pathways. Bacterial transforma-

tion of DMS to dimethyl sulfoxide (DMSO) has been identified
as the removal pathway for the majority of DMS,[104] further
reducing the DMS concentrations during the greater bacterial

activity at higher pCO2.
In the laboratory experiments, bacterial abundance was kept

low by treatment with antibiotics before the initial inoculation,

and were checked by 40,6-diamidino-2-phenylindole (DAPI)
staining at the end of the experiment, when bacterial abundances
were found to be low. During the mesocosm experiment,

A. L. Webb et al.
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bacterial abundance increased by 28% in the high pCO2 treat-

ments in comparison to the low pCO2 mesocosms, and showed
three times higher leucine aminopeptidase activity as a proxy
for bacterial enzyme hydrolysis.[31] This higher bacterial

abundance at high pCO2 could result in greater consumption
of DMSP from the dissolved phase as a greater bacterial
abundance and activity is likely to drive an increased demand
for sulfur sources, as well as drive greater conversion of DMS

into DMSO. Bacterial loss processes for both DMS and DMSP
could account for the lower concentrations of both compounds
at elevated pCO2, while not affecting the DMS-to-DMSP ratio.

During phase 3 of the experiment, there was an increase in
DMS concentration which was not explained by corresponding
increases in DMSPT (Fig. 5c), haptophyte Chl-a (Fig. 7c)

or nanophytoplankton abundance (Fig. 7a), but which was
unaffected by elevated pCO2 (Fig. 6c) and implied that DMS
turnover and loss processes were similar in all mesocosms.
A study by Pinhassi et al.[105] in microcosms identified that

DMSP was utilised as a sulfur source and removed by bacterio-
plankton more during the bloom phase (i.e. phase 2) than
during senescence (i.e. phase 3), potentially resulting in greater

availability of DMSPD during phase 3 for conversion into DMS.
Scarratt et al.[106] identified a direct relationship of DMS
concentrations with DMSPD in short-term incubations, which

would imply a greater contribution of dissolved DMSP to the
measured DMSPT in phase 3 of the mesocosm experiment, after
the artificial nutrient-induced bloom in phase 2.

Summary

A significant reduction in DMS and DMSP concentrations was

identified during a mesocosm experiment designed to study the
effects of elevated pCO2 on a coastal phytoplankton community.
The major DMSP producers were identified as nanophyto-

planktonic haptophytes which showed lower biomass under
elevated pCO2. The same effect was not observed during labo-
ratory culture experiments on a calcifying strain of E. huxleyi

(RCC1229), which indicates that consumption and turnover of
DMSPD and DMS in surface waters at elevated pCO2 by the
microbial community is as important as gross DMSP production
in determining the concentrations of DMS andDMSP in (future)

acidified waters. Elevated pCO2 affected the growth of calcified
E. huxleyi and nanophytoplankton (2–6 mm) which would have
contained non-calcified haptophyte cells, and the reduction in

abundance significantly contributed to the lower DMSP con-
centrations at high pCO2.

Several mesocosm studies, including this one, have shown

that the phytoplankton community response to an increase in
pCO2 has resulted in lower DMS concentrations than seen in
the ambient pCO2 concentrations of today.

[1] This response is

representative of the exposure of the current phytoplankton
community assemblage to a comparatively rapid increase in
pCO2, and does not reflect the adaptation likely to occur in
phytoplankton communities with the gradual increase in pCO2

over the next 100 years. A reduction in DMS concentration will
affect the atmospheric flux of sulfur from the marine environ-
ment. As many of these mesocosm experiments have been

performed in a single location in Norway, further large-scale
mesocosm experiments should be performed in different ocean-
ic regions, to assess the changes in the parametersmeasured here

for different microbial communities. Further investigations
should concentrate on rates of DMSP production and the
bacterial consumption of DMS and DMSP to develop a better

understanding of the interactions with the microbial community

that affect the concentrations of these compounds. DMS
and DMSP analyses should also be included in long-term
(500þ generations) algal culture experiments, to establish if

the short-term changes identified here are retained over a longer
study period.

Acknowledgements

The Bergen 2011 mesocosm experiment was part of the SOPRAN (Surface

Ocean Processes in the Anthropocene; 03F0611C) 2 Programme funded by

the German Ministry for Education and Research (BMBF) and led by the

GEOMAR Helmholtz Centre for Ocean Research Kiel, Germany. The

authors thank all participants in the SOPRAN Bergen experiment for their

assistance. Special thanks to A. Ludwig for logistical support, J. Czerny,
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R. P. Kiene, O. Sánchez, R. Simó, Phylogenetic identification and
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