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Abstract: The ocean moderates anthropogenic climate change at the cost of profound 
alterations of its physics, chemistry, ecology, and services flows. Here, we evaluate and 
compare the risks of impacts on marine and coastal ecosystems—and the goods and services 
they provide—for growing cumulative carbon emissions under two contrasting emissions 
scenarios. The current emissions trajectory would rapidly and significantly alter many 
ecosystems and the associated services on which humans heavily depend. A reduced emissions 
scenario—consistent with the Copenhagen Accord’s goal of a global temperature increase of 
less than 2°C—is much more favorable to the ocean but still significantly alters important 
marine ecosystems and associated goods and services. The policy options to address ocean 
impacts narrow as the ocean warms and acidifies. Consequently, any new climate regime that 
fails to minimize ocean impacts would be incomplete and inadequate. 

One Sentence Summary: Ocean changes associated with a 2°C warming of global surface 
temperature carries high risks of impacts and should not be exceeded.  
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Main text: Atmospheric carbon dioxide (CO2) has increased from 278 to 400 ppm over the 
industrial period, and, together with the increase of other greenhouse gases, has driven a series 
of major environmental changes. The global ocean (including enclosed seas) acts as a climate 

integrator that (1) absorbs 93% of the earth’s additional heat since the 1970s, offseting much 

atmospheric warming but increasing ocean temperature and sea level; (2) captures 28% of 
anthropogenic CO2 emissions since 1750, leading to ocean acidification; and (3) accumulates 
virtually all water resulting from melting glaciers and ice sheets, hence furthering the increase 
in sea level. Thus, the ocean moderates anthropogenic climate change at the cost of major 
changes of its fundamental chemistry and physics. These changes in ocean properties 

profoundly affect species’ biogeography and phenology, as well as ecosystem dynamics and 

biogeochemical cycling(1-3). Such changes inevitably impact the ecosystem services upon 

which humans depend. The ocean represents more than 90% of the Earth’s habitable space,  

hosts 25% of eukaryotic species (4), provides 11% of global animal protein consumed by 
humans (5), protects coastlines, and more. Simply put, the ocean plays a particularly important 
role in the livelihood and food security of at least hundreds of millions of people.  

The United Nations Framework Convention on Climate Change (UNFCCC) aims to stabilize 
atmospheric greenhouse gas concentrations “at a level that would prevent dangerous 
anthropogenic interference with the climate system ... within a time-frame sufficient to allow 
ecosystems to adapt naturally to climate change, to ensure that food production is not 
threatened, and to enable economic development to proceed in a sustainable manner” (6). 
According to the Copenhagen Accord (7), meeting these goals requires that the increase in 
average global surface temperature increase be less than 2°C over the preindustrial average. 
However, despite the ocean’s critical role in global ecosystem goods and services, international 
climate negotiations have only minimally considered ocean impacts, especially those related to 
ocean acidification (8). Accordingly, highlighting ocean-related issues is now crucial, given 
that even achieving the +2°C target (set on global temperature) would not prevent many 
climate-related impacts upon the ocean (9).  

This paper first summarizes the key findings of the Fifth Assessment Report (AR5) of the 
Intergovernmental Panel on Climate Change (IPCC) and, given the ongoing acceleration of 

climate change research, adds newer literature to assess the impacts of global change—

including ocean warming, acidification, deoxygenation, and sea level rise—linking ocean 

physics and chemistry to biological processes, ecosystem functions, and human activities. 
Second, it builds on scenarios based on the range of cumulative fossil carbon emissions and the 
IPCC Representative Concentration Pathways (RCP) RCP2.6 and RCP8.5, contrasting two 
potential futures. RCP2.6 reflects the UNFCCC target of global temperature staying below 

+2°C while RCP8.5 reflects the current trajectory of business-as-usual CO2 emissions. Third, 
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this paper provides a broad discussion of the options society has for addressing ocean impacts, 
and ends with key messages that provide further compelling arguments for ambitious CO2 
emissions reduction pathways.  

Changes in ocean physics and chemistry 

Ocean changes due to anthropogenic emissions include long-term increase in temperature 
down to at least 700 m, increased sea level, and a decrease in Arctic summer sea ice (Fig. 1 and 
Table 1; ref. 10). Other radiatively-active agents such as ozone, methane, nitrous oxide and 
aerosols, do not affect the ocean as much as CO2. Setting it apart, CO2 accounts for twice or 
more of the warming attributed to the non-CO2 greenhouse gases by 2100 (11) and causes 
ocean acidification. The uptake of excess anthropogenic CO2 by the ocean increases the partial 
pressure of carbon dioxide (pCO2) and dissolved inorganic carbon, while decreasing pH and 
the saturation state of seawater with respect to the calcium carbonate minerals aragonite and 
calcite (12), both being critical drivers of solubility of shells and skeletons. Rising global CO2 
also further exacerbates the nearshore biogeochemical changes associated with land use change, 
nutrient inputs, aquaculture, and fishing (13).  

Both the magnitude and rate of the anthropogenic carbon perturbation exceeds the extent of 
natural variation over the last millennium and over glacial-interglacial time scales (14-16). 
Variability of pH in coastal waters is considerably larger than that in the open ocean, partly 
driven by upwelling (17), freshwater input (18), eutrophication (19) and biogeochemical 

processes (20). Anthropogenic trends in biogeochemical variables—notably in pH, pCO2 and 

the saturation of calcite and aragonite—emerge from the noise of natural variability much 

faster than sea surface temperature (21). The combined changes in these parameters will be 
distinguishable from natural fluctuations in 41% of the global ocean within a decade (22), and 
the change in aragonite saturation over the industrial period has been more than five times 
greater than natural variability over the last millennium in many regions (15). 

The condition of the future ocean depends on the amount of carbon emitted in the coming 
decades (Fig. 1 and 2). The current suite of Earth System Models illustrate the contrast 
between future oceans under the high-carbon-emission, business-as-usual RCP8.5 versus the 
stringent emission-mitigation RCP2.6 (23, 24). The more stringent scenario allows less than 
one-sixth of 21st century emissions expected under business-as-usual. Between 2012 and 2100, 
compatible cumulative carbon emissions from fossil fuel use are 1685 GtC and 270 GtC for the 
two RCPs, respectively (10, 25). This is in addition to the 375 and 180 GtC already emitted by 
2011 by fossil fuel and land use, respectively (25). As carbon emissions were 10 GtC in 2013 
(26), fast and massive emission reductions are required to keep global surface temperature 

below the 2°C target of the Copenhagen Accord. Carbon emissions would need to be even 

lower if the ocean absorbs less excess CO2 than is currently predicted. Indeed, the ocean’s 
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effectiveness in absorbing CO2 decreases with increasing emissions: the fraction of 
anthropogenic emissions absorbed by the ocean in the 21st century is projected to decline from 
56% for RCP2.6 to 22% for RCP8.5 (27).  

Ocean physics and chemistry will be quite different under these two emissions scenarios 
although differences between the two trajectories will not be apparent until 2035. In 2100 the 
ocean will be much warmer and have a lower pH under RCP8.5 than under RCP2.6 (Fig. 1): 
the 21st century global mean change in sea surface temperature (SST) differs by nearly a factor 
of 4 (mean ± 1 s.d.: 2.73 ± 0.72 vs 0.71 ± 0.45°C) while global surface pH changes range from 
-0.33 ± 0.003 to -0.07 ± 0.001). By 2100, the average global increase in mean sea-level relative 
to preindustrial is projected to be 0.86 m for RCP8.5 and 0.60 m for RCP2.6 (28). By 2300, it 
will be less than 1 m for RCP2.6 and from 1 to over 3 m for RCP8.5 (10). Generally, an 
increase in stratification, linked to sea-surface warming and freshening, is projected; this tends 
to slow ocean carbon uptake and nutrient supply to the surface (29). 

CO2 emissions also affect the deep ocean although the responses are delayed by the surface-to-
deep transport time and continue for centuries even after carbon emissions cease (30). The 
volume of ocean water that is supersaturated by more than a factor of three with respect to 
aragonite (Ωa > 3) is projected to completely vanish over the course of the century for RCP8.5 
and to decrease from 2% to 1.25% of the ocean volume for RCP2.6 (Fig. 1; Table 1). 
Conversely, the volume occupied by undersaturated water (Ωa < 1) that is corrosive to 
unprotected calcium carbonate shells and skeletons, expands from 76% of the whole ocean 
volume in the 1990s to 91% in 2100 with RCP8.5 and to only 83% with RCP2.6. The whole 
ocean oxygen inventory is consistently projected to decrease (RCP8.5: -3.45 ± 0.44%; RCP2.6: 
-1.81 ± 0.31%) with largest changes in the subsurface mid-latitude regions. However, it 
remains unclear whether, and to what extent, low oxygen regions will expand and whether the 
observed expansion of oxygen minimum zones over recent decades resulted from direct 
anthropogenic perturbation or was caused by natural variability (31, 32). 

Projections of ocean warming and acidification in coastal systems follow the general trends of 
global and regional IPCC models, but have lower confidence values due to larger contributions 
of processes other than CO2 uptake (3). Projected regional changes vary, with largest sea-
surface warming in the North Pacific, the Tropical East Pacific, and in parts of the Arctic, and 
largest surface pH decrease in the Arctic (Fig. 1 and 3). By 2100, 69% of the surface ocean will 
warm by more than 1.5°C and acidify by more than -0.2 pH units relative to pre-industrial 
under RCP8.5 as opposed to less than 1% under RCP2.6 (Fig. 3). The largest absolute decrease 
in aragonite saturation is projected for the tropical ocean, partly modulated by variability 
within coral reef sites (33, 34). Seasonally undersaturated conditions are already present in the 
northeastern Pacific and the California upwelling system (17) and in the Arctic Ocean (35), and 
expected for the Southern Ocean (36). pH reductions at the seafloor below 500 m depth, which 
includes biodiversity hotspots such as deep-sea canyons and seamounts, are projected to 
exceed 0.2 units (the likely bound of natural variability over the past hundreds of thousands of 
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years) by 2100 in close to 23% of North Atlantic deep-sea canyons and 8% of seamounts under 
RCP8.5—including sites proposed as marine protected area (37). 

In summary, the carbon that we emit today will change the Earth System irreversibly for many 
generations to come (10). The ocean’s content of carbon, acidity, and heat as well as sea level 
will continue to increase long after atmospheric CO2 is stabilized. These irreversible changes 
increase with increasing emissions (Fig. 2), underscoring the urgency of near-term carbon 
emission reduction if ocean warming and acidification are to be kept at moderate levels. 

Effects on biological processes and ecosystems 

Organisms and ecosystems are changing in response to ocean warming, acidification and 
deoxygenation. The inherent difficulty of distinguishing climate signals from natural variability 
(38), and of accounting for genetic adaptation (39) makes documenting these shifts challenging, 
but nevertheless, broad anthropogenic impacts are evident (Fig. 2B and 3). 

Warming 

Species’ range shifts, usually following a shift in isotherms or temperature extremes, is a key 
consequence of ocean warming (40). Recent studies strongly reiterate that many species—
including various invertebrates, commercially important fish species and marine mammals—
are undergoing phenological and geographical shifts of up to 400 km per decade as a result of 
warming (41, 42). Organisms move at different rates as they track temperature changes and 
local climate velocities according to their ecological niches (43, 44). These shifts will continue 
with projected ocean warming (42, 45), causing potentially permanent changes to ecosystems, 
including local extinctions (42), while simultaneously producing novel assemblages (46). 
Responses to changing temperature depend on species’ specific windows of thermal tolerance 
and are positively related to the degree of warming. Exceeding these limits can affect growth, 
body size, behavior, immune defense, feeding, and reproductive success (2), although species’ 
individual tolerances vary. Globally, poleward range shifts of more than 800 species of 
exploited marine fishes and invertebrates projected under RCP8.5 are 65% faster than those 
under RCP2.6 by mid-21st century relative to the years 2000s (42). There is medium 
confidence that animals adapted to a wide range of temperatures will cope better with future 
conditions while tropical and polar specialists are at greatest risk (2). Changes are not 
synchronous across trophic levels as alterations in body sizes within food webs (47) and in 
food web composition (48) have been reported. Recent experimental studies suggest that some 
species may adapt to warming projected under RCP8.5 (e.g. 49, 50) but biogeographical shifts 
restrict adaptive potential and the small number of species- and population-scale studies limit 
the ability to generalize the importance of genetic adaptation in moderating impacts. 
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Reef-building corals are extremely vulnerable to warming (1, 2, 51). Warming causes mass 
mortality of warm-water corals through bleaching as well as through biotic diseases, resulting 
in declines in coral abundance and biodiversity. Coral reefs can recover from bleaching events 
when thermal stress is minimal and of short duration (52). However, ocean warming and 
acidification are expected to act synergistically to push corals and coral reefs into conditions 
that are unfavorable for coral reef ecosystems (53). There is limited agreement and low 
confidence on the potential for corals to adapt to rapid warming. Most coral species have 
clearly adapted to warm environments (54, 55) although the timescale of adaptation is likely to 
be long given the relatively lengthy generation times of corals (3 to 100 years; ref. 56). Recent 
studies have shown short-term acclimation and adaptation in some fast growing species (57) 
and suggested that some genetic mechanisms may allow faster rates of change (58). It is, 
however, doubtful that corals will be able to adapt quickly enough to maintain populations 
under most emissions scenarios (56, 58, 59), especially where temperature keeps increasing 
over time (RCP4.5 and higher). Temperature is also an important determinant of deep-sea coral 
distribution, although less is known about how deep coral communities respond to thermal 
stress (60).The consensus is that adaptive responses of organisms will have little chance to 
keep current ecosystems unchanged if ocean temperatures and chemistry are not stabilized, 
giving marine ecosystems the time needed to adapt to the new, stable environmental conditions.  

Ocean acidification 

Organisms producing calcium carbonate shells and skeletons experience the strongest negative 
impacts from ocean acidification (61). Responses to future levels of ocean acidification 
expected by 2100 under RCP8.5 include reduced calcification, reduced rates of repair, and 
weakened calcified structures, but responses are species-specific (e.g. 62). Reproductive 
success, early life-stage survival, feeding rate and stress-response mechanisms may also be 
affected (2). Most studies have investigated the effects of ocean acidification on isolated 
organisms; far less is known about the effects on communities and ecosystems.  

Few studies measure present-day acidification effects in natural settings. However, recent field 
observations show a decrease in coccolith thickness over the last 12 years in the Mediterranean 
(63) and dissolution of live pteropod shells in the California Current System and Southern 
Ocean, both areas that experience significant anthropogenic acidification (64, 65). Recent 
investigations have also begun to report community-level responses, for example in 
phytoplanktonic (66, 67), bacterial (68), seagrass (69) and algal (70) communities. Decreases 
in net calcification, at least partly due to ocean acidification, have also been observed in a coral 
reef over 1975-2008 (71) and conditions are already shifting some coral reefs to net erosion 
(72). 

Most studies have investigated phenotypically plastic responses in relatively short-term, single-
generation, experiments, therefore not considering the potential for transgenerational response 
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and genetic adaptation (73). Studies published since the AR5 have expanded on the longer term 
responses to ocean acidification and have found that transgenerational and evolutionary 
responses can partly mitigate adverse effects for example in phytoplankton (74), planktonic 
crustaceans (75), sea urchins (76) and fish (77). 

Deoxygenation 

Expanding oxygen minimum zones benefit microbes and life forms adapted to hypoxia while 
restricting the ranges of most other species (2), with eutrophication from coastal pollution 
exacerbating the problem, resulting in organic matter increasing metabolic rates in deeper 
coastal areas (78). Moreover, higher temperatures increase species’ sensitivity to hypoxia (79), 
limiting the depth distribution of fish and invertebrates not adapted to hypoxic conditions (80), 
and leading to community-level shifts to smaller, multicellular Eukarya, Bacteria and Archaea 
under conditions of diminished O2 (81). Conversely, hypoxia-adapted species are likely to 
benefit, as illustrated by the range-expansion of a squid adapted to hypoxia (82).  

Multiple drivers 

Investigations of single drivers can produce misleading inferences about organismal responses 
in a multivariate natural environment because interactive (additive, synergistic or antagonistic) 
effects often are not predictable from single-driver studies. This is a major source of 
uncertainty for projections (39) but several recent studies have better characterized interactions 
among some drivers. Changes in temperature and pH, such as those projected under RCP8.5 
for the year 2100, can have synergistic negative effects on species growth, survival, fitness, 
calcification, and development (83-87). In some cases, hypoxic conditions can mediate 
negative effects of ocean acidification (88, 89) but ocean acidification and hypoxia increase 
heat sensitivity and vice-versa (2), and oxygen loss combined with warming is projected to 
contract metabolically viable habitats of marine animals on a global scale. Growing evidence 
also suggests that interactions of other environmental factors such as irradiance, nutrient 
availability, geographic location, and species community composition can strongly modulate 
the biological effects of warming, ocean acidification, and hypoxia (67, 90-93). Few studies 
address the potential for genetic adaptation to multiple drivers but the phytoplankton Emiliania 
huxleyi can adapt to simultaneous warming and acidification (49). Other direct human impacts 
(such as fishing) can reduce the adaptive capacity of marine species and ecosystems to CO2-
related impacts. For example, fishing reduces species diversity, simplifies the trophic food web 
and increases ecosystem sensitivity to climate change (94). Because relatively little is known 
on the interacting effects of environmental factors and the complexity of the marine food web, 
it is premature to make ecosystem-wide projections. However, impacts on keystone species 
and ecosystem engineers of three-dimensional habitats are likely to shift whole communities 
(95). 
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Present-day impact and future risks 

The observed impacts and future additional risks due to ocean warming and acidification vary 
by organism and ecosystem (Fig. 2B). Warm-water corals are already impacted as are mid-
latitude seagrass, high-latitude pteropods and krill, mid-latitude bivalves, and finfish. If CO2 

levels are kept to the RCP2.6 scenario, by 2100 the risk of impacts increase to “high” for warm-

water corals and mid-latitude bivalves. Projections with RCP8.5 indicate very high risk of 
impact on most marine organisms considered, except mangrove. Avoiding very high levels of 
risk requires limiting the increase in atmospheric temperature between 1990 and 2100 to below 

2°C and the increase in SST below ca. 1.2˚C.These risks of impact, based on perturbation 

experiments, field observations, and modeling, are consistent with the paleo-record which 
indicates mass extinctions triggered by carbon perturbation events such as at the Permo-
Triassic boundary (at a rate slower than the present one; ref. 96) or severe losses of deep-sea 
fauna during the last glaciation, attributed to oxygen depletion (97). Evolution in response to 
environmental changes that occurred much slower than those projected in the coming decades 
did not, therefore, prevent major large-scale alterations of marine ecosystems. Levels of 
confidence are generally medium to very high for RCP2.6 but significantly lower for RCP8.5, 
except for seagrass, warm-water corals and pteropods for which it remains high or very high 
(see Supplementary Materials). 

Effects on ecosystem services and ocean-related human activities  

Ocean warming, acidification and deoxygenation alter earth-system-regulating processes (e.g., 
climate, heat distribution, weather, water flow, waste treatment), habitat provision, and cultural 
services (e.g. recreation and leisure, inspiration, cultural heritage; ref. 98). As a consequence, 
CO2-driven global change is expected to result in economic impacts for humans through the 
alteration of ocean-derived resources and increasing risks to public health, human development, 
well-being, and security (99).  

Ocean carbon uptake 

Ocean uptake of anthropogenic CO2 is a key service to society which moderates climate 
change, although it comes at the cost of ocean acidification. CO2 uptake depends on multiple 
processes, many of which are sensitive to climate change (see above; ref. 100), and the open 
ocean is projected to absorb a decreasing fraction of anthropogenic CO2 emissions as those 
emissions increase. The fraction of 21st century emissions remaining in the atmosphere 
consequently increases from 30% for RCP2.6 to 69% for RCP8.5 (27). The contribution of 
vegetated coastal ecosystems—including seagrasses, mangrove forests and salt marshes—to 
contemporary carbon sequestration (101) is an order of magnitude less than that of the land 
biosphere and open ocean and the coastal carbon sequestered is likely part of the natural carbon 
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cycle rather than related to anthropogenic emissions. The projected loss of these habitats would 
not only reduce this relatively small uptake of CO2 but would also release carbon previously 
stored, and thus exacerbate CO2-driven changes. 

Coastal protection 

Coastal habitats—including coral reefs, oyster beds, mangrove forests, salt marshes, kelp 
forests, and seagrass beds—protect human infrastructure notably by reducing coastal wave 
energy, with additional benefits such as limitation of coastal erosion and marine inundation 
(102, 103). Nevertheless, the projected increases in coastal human settlements and sea level 
will combine to expose 0.2 to 4.6% of the global population to inundation annually at a cost to 
global gross domestic product of 0.3 to 9.3% (104). The value of coastal protection in terms of 
prevented damage can be very large. Coastal wetlands in the US were estimated to provide 

US$ 23.2 billion yr−1 in storm protection services (105). In contrast to human infrastructure, 

natural habitats can grow to keep up with sea-level rise, depending on the rate and local 
conditions, while offering other ecosystem services such as fish and timber (102, 106). These 
habitats are, however, themselves impacted by ocean warming and acidification in combination 
with other human disturbances such as urbanization, deforestation, dredging, making global 
projections difficult.  

Capture fisheries 

Ocean warming significantly impacts provisioning services through its effects on marine 
capture fisheries (107). Warm-water species have increasingly dominated global fishery 
catches in recent decades, which can be attributed to a warming ocean (108-112). In addition, 
the maximum size of exploited fishes decreases with rising sea surface temperature and 
decreasing oxygen level, ultimately reducing potential fish yield (112) in agreement with 
model predictions (108). 

Human communities, especially in developing nations, that depend heavily on coastal fisheries 
resources for food, economic security, and traditional culture, are at particular risk from shifts 
in ocean primary productivity and species ranges (114-117). For example, tropical fisheries 
yield is expected to decrease (42, 115, 118) in ways that vary among sub-regions and species 
(117). The loss of critical habitats such as coral reefs and mangroves will exacerbate the 
impacts on tropical fisheries and hence on vulnerable human communities. Substantial declines 
for tropical fisheries are projected, with robust evidence and strong agreement, even under 
RCP2.6 by mid 21st century.  

Arctic fisheries may benefit from increased primary production, with projected revenue 
increasing by 14 to 59% by mid 21st century relative to the present day under a high-emissions 
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scenario. Nevertheless, the Arctic faces increasing overall risk because it is a hotspot of ocean 
acidification and social vulnerability (including high economic and nutritional dependence on 
marine resources, and limited employment and nutritional alternatives). Risk of impacts on 
mid-latitude fisheries is more variable depending on the locations and exploited species but it 
is expected to increase substantially under RCP8.5 due to the combination of ocean warming, 
acidification and deoxygenation (2, 119, 120). Eventually, changes in the accessibility of 
marine resources will likely lead to increasing geopolitical and governance challenges for 
managing trans-boundary stocks and mitigating overexploitation (121, 122), leading to 
additional economic and societal costs that will be felt unequally and will place heavier 
burdens on less advantaged human communities.  

Aquaculture 

Climate and acidification-related impacts to aquaculture are expected to be generally negative, 
with impacts varying by location, species, and aquaculture method. Farmed species at higher 
trophic levels are expected to exhibit higher mortality rates and lower productivity under 
warming, with open and semi-open aquaculture and those in the tropics particularly at risk (123, 
124). A reduction of mussel production by 50 or 70% is projected in the UK under the RCP2.6 
or RCP8.5 scenarios, respectively (123). Projected declines in oyster production due to 
warming are much lower but ocean acidification increases the risk in upwelling areas such as 
the Northeast Pacific (125). The global economic cost of losses in the capture and aquaculture 
of molluscs due to ocean acidification based on the high-emissions scenario RCP8.5 could be 
higher than US$100 billion by the year 2100 (126). Sea level rise will bring saline water into 
deltas and estuaries, where aquaculture commonly occurs (127), driving aquaculture upstream 
and destroying wetlands. Infectious diseases also pose a greater threat to aquaculture in a 
warmer ocean with impacts observed, for example, in oysters and abalone aquaculture (128) 
and coastal fish farming (129). Risks are also generated by the increased mobility of invasive 
species (46). 

Tourism 

Decreases in the quality and abundance of coral reef cover are expected to negatively impact 
tourism (1, 3). Loss of coral reefs to tourism under the RCP2.6 and RCP8.5 scenarios could 
cost between US$1.9 billion and US$12 billion per year, respectively (130). Coral reef losses 
due to ocean warming and acidification on the Great Barrier Reef place up to $5.7 billion and 
69,000 jobs in Australia at risk (131). In addition, ocean acidification may cause an annual loss 
of reef ecosystem services that are valued up to US$1 trillion by 2100 (132). For about a 
quarter of countries with reef-related tourism, mainly less developed countries, this kind of 
tourism accounts for more than 15% of gross domestic product (133) and is more sustainable 
than extractive livelihoods. 
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Human health 

Ocean warming and acidification affect public health and security, although the impact 
pathways and associated costs are poorly understood. Hosts and parasites are likely to undergo 
poleward range shifts under climate change, and disease outbreaks of cholera (134) and other 
Vibrio infections (135) have already been linked to warmer conditions. The increased risk of 
pathogens and parasites in marine species and increased opportunities for pathogen transfer 
between hosts (136) can reduce food security (137). Increasing intensity and frequency of 
storm surges and sea-level rise may expand the geographical and seasonal ranges of bacteria, 
increasing human exposure to diseases (128). Inundation can also flood agricultural land in 
coastal regions, jeopardizing food security and harming human health (138). 

Present-day impact and future risks 

The impacts of ocean acidification and warming have already been detected in some key 
ecosystem services such as coastal protection and capture fisheries (Fig. 2C and 3). The risks 
of impacts increase as a function of increased temperature and decreased pH but are still 
moderate by 2100 for most services with the RCP2.6 scenario. However, under RCP8.5, we 
find that the risks of impact will become high or very high by 2100 for all seven ecosystem 
services considered. Fin fisheries at low latitude will be affected sooner than other services; 
they will face very high risk at a CO2 level corresponding to RCP2.6 in 2100. In addition, 
cumulative or synergistic impacts with other human-induced drivers such as overexploitation 
of living resources, habitat destruction and pollution will likely exacerbate the risk of CO2-
related impacts. 

Management options 

Limiting the effects of ocean warming and acidification is critical considering the widespread 
risks of impacts facing natural and human systems, even under a stringent emissions scenario 
(RCP2.6; Fig. 2). A growing body of literature presents options for action in response to 
climate change and ocean acidification (139-141). Drawing on Billé et al. (142), these actions 
can be clustered in four groups (Fig. 4): reducing the drivers of climate change and ocean 
acidification (mitigate), building or maintaining resilience in ecosystems (protect), adapting 
human societies (adapt), and repairing damage that has already occurred (repair). At present, 
only one of these (reducing CO2 emissions) addresses the fundamental problem; the others 
merely delay or decrease impacts (e.g., protecting reefs from major disturbances such as coral 
mining). Some actions rely on readily available technologies (e.g., sewage treatment plants to 
reduce exacerbating effects of coastal nutrient pollution) and socio-economic mechanisms (e.g., 
coastal setback zones), while more engineering-intensive techniques are being developed and 
will require testing (e.g., removal of CO2 from the atmosphere). These options interact. For 
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example, reducing secondary environmental stressors so as to retain ecosystem resilience 
works over some range of pCO2 values but is ultimately relevant only if ocean warming and 
acidification are drastically limited. One cannot manage coral reef resilience, for example, if 
there are no healthy reefs remaining (46). Importantly, some policy options are antagonistic: 
for example solar radiation management could limit the increase of surface temperature but 
would reduce the incentive to cut greenhouse gases emissions including CO2, thereby 
providing no relief from ocean acidification (143). 

A positive development is that a widening range of stakeholders are testing new practices or 
reviving old ones, including CO2 extraction from seawater (144), assisted evolution of corals 
(145), coral farming (146), and customary local management (147). Such field tests provide 
useable information and tools for decision-makers and climate negotiators as to the costs, 
benefits, and timing of mitigation and adaptation actions. Aquaculture, for example, has shown 
some potential to reduce the risk of impacts from climate change and ocean acidification 
through societal adaptation such as improved monitoring, and changing cultured species or 
farm locations (123, 148). However, the cost of adaptation measures—such as real-time 
monitoring of water chemistry—can be prohibitive and not within the reach of most 
aquaculture operations, especially those in the developing world. Ecosystem-based adaptation 
—or using ecosystems to reduce the vulnerability of people—appears to offer cost-efficient 
solutions bringing multiple co-benefits, especially for developing countries and marginalized 
communities (149). Stimulating ecosystem resilience by reducing the number and magnitude 
of local stressors and setting up marine protected areas (150) with strictly enforced no-take 
areas and limited pollutant inputs also stand out as tractable priorities. Moreover, some regions 
and local areas which are relatively less exposed to warming, hypoxia and acidification, could 
be climate change refugia where more favorable environmental conditions would enable 
survival under CO2-driven impacts (151). Thus, identifying these climate change refugia and 
conserving biodiversity there contribute to building resilience to climate change (152). 
Nevertheless all these options require appropriate policy frameworks and financial 
commitments to cover transaction and opportunity costs, surveillance, enforcement and 
monitoring, and likely offer only limited protection in the face of persistent climate change and 
ocean acidification. 

As the ocean warms and acidifies, the range of protection, adaptation and repair options—and 
our confidence in those options—dwindles, while the cost of remaining options skyrockets. 
Lower-emissions scenarios such as RCP2.6 leave society with a greater number of effective 
options for safeguarding marine ecosystems and the services they provide. Therefore, actions 
that do not reduce carbon emissions are meaningful ocean management options only if the 
future climate regime entails ambitious national contributions towards the phaseout of global 
CO2 emissions as well as a strong funding mechanism and a relevant framework to support on-
the-ground implementation of these options.  
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Key messages 

Maintaining ocean ecosystems and services depends in large part on the negotiation process 
towards a global climate agreement under the UNFCCC. In this regard, four key messages 
emerge from our analysis. First, the ocean strongly influences the climate system and provides 
important services to humans. Second, impacts on key marine and coastal organisms, 
ecosystems, and services from anthropogenic CO2 emissions are already detectable and several 
will face high risk of impacts well before 2100, even with the stringent CO2 emissions scenario 
(RCP2.6). These impacts are occurring across all latitudes, and have become a global concern 
that spans the traditional North/South divide. Third, the analysis shows that immediate and 
substantial reduction of CO2 emissions is required in order to prevent the massive and 
effectively irreversible impacts on ocean ecosystems and their services that are projected with 
emissions scenarios more severe than RCP2.6. Limiting emissions to below this level is 
necessary to meet UNFCCC's stated objectives. Policy options that overlook CO2, such as solar 
radiation management and control of methane emission, will only minimize impacts of ocean 
warming and not those of ocean acidification. Fourth, as CO2 increases, the protection, 
adaptation and repair options for the ocean become fewer and less effective.  

Given the contrasting futures we have outlined here, the ocean provides further compelling 
arguments for rapid and rigorous CO2 emission reduction and eventual reduction of 
atmospheric CO2 content. As a result, any new global climate agreement that does not 
minimize the impacts on the ocean will be incomplete and inadequate. 
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Fig. 1. Environmental changes over the industrial period and the 21st century for a business-as-
usual scenario (RCP8.5, red lines) and a stringent emissions scenario consistent with the 
UNFCCC target of increase in global surface temperature by 2°C (RCP2.6, blue lines). The left 
panels show changes in globally-averaged (A) sea surface temperature (SST), (B) sea level, (C) 
sea surface pH (total pH scale), (D) ocean volume (in % of total ocean volume) with saturation 
state of calcium carbonate in aragonitic form (Ωa) above 1 and above 3, and (E) dissolved 
oxygen. Right: the maps show the 21st century changes in sea surface temperature (F and G) 
and in sea surface pH (H and I) for RCP8.5 (top) and RCP2.6 (bottom), respectively. All 
projected values represent ensemble mean values from the Coupled Model Intercomparison 
Project 5 (CMIP5; ref. 23). 
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Fig. 2. Observed impact and risk scenarios of ocean warming and acidification for some 
important organisms and critical ecosystem services. “Present-day” (grey dotted line) 
corresponds to the period 2005-2014. Impact levels are for the year 2100 under the different 
projections shown, and do not consider genetic adaptation, acclimatization or human risk 
reduction strategies (mitigation and societal adaptation). RCP4.5 is shown for illustrative 
purposes as an intermediate scenario between the business-as-usual high-emissions scenario 
(RCP8.5) and the stringent reduction scenario (RCP2.6). (A) Changes in global average sea 
surface temperature and pH versus cumulative fossil fuel emissions. Realized fossil emissions 
(26) are indicated for different years below the horizontal axis whereas the lines are based on 
allowable emissions estimated from ensemble means of the CMIP5 simulations for the 
industrial period and the 21st century following RCP2.6, RCP4.5, and RCP8.5 (23). 
Cumulative emission of 1000 GtC causes a global SST change of about 1.7°C and a surface pH 
change of about -0.22 units. The colored shadings indicate the 68% confidence interval for pH 
(grey) and SST (pink) from observation-constrained, probabilistic projections using 55 multi-
gas emissions scenarios (24). (B) Risk of impacts due to elevated CO2 on key organisms that 
are well-documented in the literature. (C) Risk of impacts due to elevated CO2 on critical 
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ecosystem services. The levels of confidence in the risk levels synthesize the author team’s 
judgments (see Supplementary Materials) about the validity of findings as determined through 
evaluation of evidence and agreement (153). 
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Fig. 3. 
Regional changes in the physical system and associated risks for natural and human-managed 

systems. Projected changes in sea surface temperature (∆SST) and pH (∆pH) in 2090-2099 

relative to pre-industrial under the RCP2.6 and RCP8.5 scenarios are displayed in different 
colors on the map. The major ocean regions are indicated as well as examples of risks for 
natural systems and fisheries [modified from (1)]. Text in parentheses specifies the level of 
confidence (153). 
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Fig. 4. Four clusters of actions against climate change, including ocean acidification. For each 
cluster a non exhaustive list of actions is shown. [CO2]atm is concentration of atmospheric CO2; 
GH is greenhouse; GHG is greenhouse gases; MPAs is marine protected areas. The mitigation 
pathway leading to CO2 reductions is represented in bold, consistent with the consensus view 
that significant reductions in CO2 emissions is presently the only actual “solution” to the ocean 
impacts of climate change and ocean acidification (see main text). 
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Table 1. Changes in SST, pH, oxygen content, and sea level, and ocean volume with respect to 
aragonite for CMIP5 models and several RCP emissions scenarios. a: value for 2010 obtained 
from instrumental records. After Bopp et al. (23) except sea level rise (28). 

 

∆SST 
(°C) 

∆pH 
(unit) 

∆O2 
content 

(%) 

Sea 
level 
(m) 

Vol. Ωa > 
1 (%) 

Vol. Ωa > 
3 (%) 

Changes relative to 1990-1999 

 2090-2099 (RCP8.5) 2.73 -0.33 -3.48 0.67 9.4 0 

 2090-2099 (RCP4.5) 1.28 -0.15 -2.37 0.49 15 0.57 

 2090-2099 (RCP2.6) 0.71 -0.07 -1.81 0.41 17.3 1.22 

 1990s (1990-1999) 0 0 0 0 24 1.82 

 Preindustrial (1870-1899) -0.44 0.07 - - 25.6 2.61 

 Preindustrial (1870-1879) -0.38 0.07 - - 25.6 2.67 

Changes relatives to 1870-1899 (except sea level, relative to 1901) 

 2090-2099 (RCP8.5) 3.17 -0.40 - 0.86 - - 

 2090-2099 (RCP4.5) 1.72 -0.22 - 0.68 - - 

 2090-2099 (RCP2.6) 1.15 -0.14 - 0.60 - - 

 2010s (2010-2019) 0.83 -0.11 - - - - 

 Past 10 years (2005-2014) 0.72 -0.10 - 0.19a - - 

 1990s (1990-1999) 0.44 -0.07 - - - - 

 Preindustrial (1870-1899) 0 0 - 0 - - 
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