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Abstract 10 

A key challenge to progressing our understanding of biodiversity’s role in the sustenance of 11 

ecosystem function is the extrapolation of the results of two decades of dedicated empirical 12 

research to regional, global and future landscapes. Ecosystem models provide a platform for 13 

this progression, potentially offering a holistic view of ecosystems where, guided by the 14 

mechanistic understanding of processes and their connection to the environment and biota, 15 

large-scale questions can be investigated. While the benefits of depicting biodiversity in such 16 

models are widely recognized, its application is limited by difficulties in the transfer of 17 

knowledge from small process oriented ecology into macro-scale modelling. Here, we build 18 

on previous work, breaking down key challenges of that knowledge transfer into a tangible 19 

framework, highlighting successful strategies that both modelling and ecology communities 20 

have developed to better interact with one another. We use a benthic and a pelagic case-study 21 

to illustrate how aspects of the links between biodiversity and ecosystem process have been 22 

depicted in marine ecosystem models (ERSEM and MIRO), from data, to conceptualisation 23 

and model development. We hope that this framework may help future interactions between 24 

biodiversity researchers and model developers by highlighting concrete solutions to common 25 

problems, and in this way contribute to the advance of the mechanistic understanding of the 26 

role of biodiversity in marine (and terrestrial) ecosystems. 27 

 28 
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1. Introduction 32 

Biodiversity, the variety of life across organisational levels, is a fundamental attribute of all 33 

natural ecosystems (Heywood 1995). Its role in supporting fluxes of energy and matter (i.e. 34 

ecosystem processes and functions), and the benefits we derive from them, was clearly 35 

recognised more than 20 years ago at the 1992 Earth Summit in Rio de Janeiro (Solbrig 36 

1991). However, understanding and predicting how the functioning of the global ecosystem 37 

will respond to unprecedented accelerated biodiversity change as a result of human impact 38 

remains a key challenge of modern day ecology (Chapin, Sala et al. 1998; Sutherland, 39 

Freckleton et al. 2013). Two decades of experimental and observational research have 40 

advanced our understanding of the relationship between biodiversity, ecosystem processes 41 

and functioning ("BEF", Hooper, ChapinIII et al. 2005; Balvanera, Pfisterer et al. 2006; 42 

Hooper, Adair et al. 2012). But extrapolation of these empirical findings to the larger 43 

landscape is difficult, because experimental BEF research often operates at relatively low 44 

temporal and spatial scales (Cardinale, Duffy et al. 2012).  45 

 46 

Ecosystem models are synthetic mathematical descriptions of ecosystem processes joined 47 

together, guided by a mechanistic understanding of their regulating environmental drivers and 48 

biota, which can be used to project changes in the bulk properties of an ecosystem (Allen, 49 

Aiken et al. 2010). In this way, ecosystem models provide a platform where empirical 50 

findings can be used to investigate large-scale questions. Such models can thus be used to 51 

investigate BEF and its drivers at large scales (Norberg 2004; Prowe, Pahlow et al. 2012), 52 

potentially providing a holistic view of ecosystems where the impacts of conservation, 53 

management, and global scenarios can be assessed (Barange 2003; Allen, Somerfield et al. 54 

2007; Levin, Fogarty et al. 2009; Artioli, Blackford et al. 2014). The use of these models 55 

therefore provides an invaluable aid in our ability to project possible states of future marine 56 

ecosystems under conditions not currently observed and changes imposed by rare events (if 57 

constrained by suitable experimental data). This is because observational knowledge is bound 58 

within present and past system conditions (Barnsley 2007). 59 

 60 

The benefits of representing biodiversity in ecosystem models, are well recognised, with 61 

recent work focusing on the evolution of communities (Loreau 2010 and references therein). 62 

The main aim of describing biodiversity structure in models should be to improve model skill 63 

for processes of interest (Le Quéré, Harrison et al. 2005). However, its implementation is 64 

challenging and particularly so for highly dynamic marine ecosystems (Allen, Aiken et al. 65 
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2010). The difficulties of representing biological groups and structure in models has been 66 

noted by Anderson (2005) and Flynn (2005), who took a critical look at the development of 67 

plankton models over the past decades. Here, we build upon their work, expanding the focus 68 

onto the more general engagement of modellers and ecologists (i.e. empiricists, experimental 69 

and observational scientists) in marine BEF research. Collaborations in recent years have 70 

brought advances towards a better integration and transfer of knowledge, from small process 71 

oriented ecology into macro-scale modelling systems. Here, we provide a synthetic overview 72 

of the key challenges for the further engagement between modellers and ecologists, 73 

highlighting strategies that the two communities have developed to overcome them, and the 74 

consequences of this engagement for the progress of the mechanistic understanding of BEF. 75 

To illustrate this, we present two case-studies: a benthic example where data generated by the 76 

Western Chanel Observatory has been used to include aspects of BEF  in the European 77 

Regional Seas Ecosystem Model (Blackford, Allen et al. 2004); and a pelagic example that 78 

was used to implement BEF data from the Belgian coast using the MIRO model (Lancelot, 79 

Spitz et al. 2005). 80 

 81 

1.1 Translation across disciplines 82 

Traditionally, scientific programmes proceed from hypothesis to experimentation and 83 

observation, and only then to modelling, almost always resulting in inadequate data to 84 

properly model the system in question. Involving modellers and ecologists at the conceptual 85 

planning stage has improved matters, but also serves to emphasise the disconnect that can 86 

exist between the two communities. Often it transpires that each’s conceptual understanding 87 

of a given system is based on rather different bricks and mortar, i.e. the elements of the 88 

system and their interactions. Breaking this conceptual barrier is key to real progress. 89 

 90 

In ecology, BEF is perceived to be a complex link, confounded by variability in genetic 91 

pools, phenotypical plasticity, species interactions, resource availability and response to 92 

environmental variables (Stachowicz, Fried et al. 2002; Hillebrand, Bennett et al. 2008; 93 

Hoffmann and Sgrò 2011). These aspects are not easily aggregated into functional typologies, 94 

causality relationships and scenarios, which are necessarily employed in ecosystem 95 

modelling to synthesise complex natural systems (Blackford, Allen et al. 2004; Chevin, 96 

Lande et al. 2010). These two apparently conflicting views of biodiversity are not necessarily 97 

bound to specific words or terms. Rather, they reflect the different aims and lines of work 98 

typically undertaken by the two communities, which require a different structuring of natural 99 
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complexity for synthesis. Consequentially, the same words can be used by the two 100 

communities to describe very different structural elements, representing very distinct degrees 101 

of complexity, in support of different aims. For example, ERSEM has been successfully 102 

implemented in the last decade using three functional groups to represent sedimentary fauna 103 

(“meiofauna”, “suspension feeders” and “deposit feeders”) that are seen as being sufficient to 104 

describe the influence of these organisms on the bulk properties of the processes represented 105 

in the model (Blackford, Allen et al. 2004). However, a benthic ecologist unfamiliar to 106 

macro-scale modelling may find this structure to be an over-simplistic misrepresentation of 107 

the natural diversity of these communities, within which large numbers of functional groups 108 

can be identified within taxa (e.g. Tyler, Somerfield et al. 2012; Faulwetter, Markantonatou et 109 

al. 2014). Hence, the first and foremost challenge to successfully depict biodiversity in an 110 

ecosystem model is the translation of the BEF attribute a modeller may want to include in a 111 

model structure (e.g. “macrofauna diversity”, “plankton diversity”, and the process mediated 112 

by this) and the complexity underlying that relationship, as seen by the ecologist.  113 

 114 

A good translation of concepts requires a clear definition of terminology. Modellers and 115 

ecologists share a set of common words, but their meaning is not always identical in the two 116 

communities. Clear, common definitions of biodiversity, parameters, state variables, 117 

processes, functions (and more) need therefore to be established across disciplines and in 118 

practice, at least, early on in research projects. In this way, the probability that data 119 

collection, analysis and model structure are well matched is optimised. Furthermore, the 120 

modeller needs to be guided in the direction of important, at times diffuse, non-parametric 121 

understanding of the problem, the direction of processes and their drivers, and functional 122 

grouping that may be of relevance to the model. The ecologist will require specific 123 

information about what are the particular processes and relationships between them that are 124 

of interest, what are the state variables in the model, what parameters need constraining, what 125 

type of data are required and at what resolution. When the translation of terminology and 126 

concepts is successful, ecologists are therefore well positioned to inform and provide data 127 

about the key attributes that the model aims to represent. Alternatively, failure can stifle the 128 

adequate bounding of the problem, and therefore the identification of the steps necessary to 129 

generate solutions (Jeffers 1978). In such cases, modellers are provided with data which they 130 

cannot use (Miller 2004), modelling outputs are seen with suspicion (Anderson 2005) and 131 

effort is wasted (Flynn 2005).  132 

 133 
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1.2 Running before we can walk: poorly understood aspects of BEF 134 

Model development begins with a thorough understanding of the processes at play, and 135 

challenges arise when this knowledge is limited (Flynn 2005). The degree to which a model 136 

replicates patterns observed in the real world (i.e. model performance, or skill) is an 137 

indication of the adequacy of this understanding. Performance can be assessed with suitably 138 

scaled, independent data and statistical methods (Allen, Somerfield et al. 2007; de Mora, 139 

Butenschön et al. 2012). At the same time, the ecosystem model should be challenged by 140 

expert knowledge in order to check if the mechanisms driving the model response are 141 

correctly represented and to assess the reliability of the model to project the ecosystem 142 

outside of the observed state. However, currently, several aspects that control the BEF link 143 

remain poorly understood, posing interesting challenges to model development. 144 

 145 

The response of a species population to a changing environment is constrained by the ability 146 

to track optimum habitats. This tracking may involve migration to more suitable 147 

environments via dispersal. Alternatively, the potential to adapt to the new local environment 148 

depends on two other processes, that operate on different time scales: i) plasticity, the 149 

development of a different phenotype resulting from regulation of physiology or behaviour 150 

by the environment; and ii) genetic change, whereby environmental pressures influence 151 

variation in prevailing phenotypes via selection (Somero 2010; Hoffmann and Sgrò 2011).  152 

 153 

 Dispersal influences local species composition, directly affecting three well understood 154 

drivers of the BEF link: selection effects, complementarity in resource use, and species 155 

interactions (Loreau and Hector 2001; Hooper, ChapinIII et al. 2005). In principle, dispersal 156 

is amenable to conceptualisation in models, via well-established population dynamics 157 

formulations. On the other hand, plasticity and genetic change are more subtle modifiers of 158 

BEF, with potentially complex effects on its variability (Chevin, Lande et al. 2010). Plasticity 159 

is directly related to trade-offs: the energetic accounting at the organism level that determines 160 

the allocation of resources to processes driven by environmental forcing (like thermal 161 

tolerance). In this case, resources may be directed towards pathways that enable persistence 162 

in the new environment at the expenses of other organismal processes, like growth, 163 

reproduction and foraging behaviour (Pörtner and Knust 2007). Changes in organismal 164 

processes consequentially impact upon the ecosystem processes they mediate, like primary 165 

production, and bioturbation (Norberg 2004; Pörtner, Peck et al. 2012; Murray, Widdicombe 166 

et al. 2013). When trade-offs influence individual fitness, genetic change may also occur 167 



7 

 

(Somero 2010), with concurring changes in phenotypical distributions and therefore the 168 

contribution of communities to ecosystem processes.  169 

 170 

Our understanding of how plasticity and genetic change enable marine organisms to cope 171 

with chronic exposure to combinations of global stressors is limited. This is because our 172 

current knowledge is predominantly based on experimental work that focused on short-term 173 

responses of single species to individual stressors (Wernberg, Smale et al. 2012). How 174 

multiple stressors impact single species, functional guilds and whole communities in the 175 

long-term thus remains largely unquantified. Additionally, species interactions add 176 

significant complexity to the shaping of the BEF link but are not always quantified in 177 

biodiversity research (Cardinale, Duffy et al. 2012). In particular, their importance across 178 

life-stages has been recognised, but more work is still needed (Estes, Terborgh et al. 2011; 179 

Harley 2011; Russell, Harley et al. 2012).  180 

 181 

In present day ecosystem modelling, there is thus a need to translate observed mechanisms 182 

(short-term, single species) into conceptual models that include combinations of species and 183 

environmental gradients not yet observed (multiple stressors, long-term, interacting species). 184 

This is an important example of the challenge inherent to the integration of knowledge gained 185 

in small scaled empirical research into macro-scale modelling. There is no clear solution to 186 

this issue beyond the need to integrate additional knowledge once it becomes available. A 187 

degree of caution is thus required in the interpretation of such work, but awareness about the 188 

assumptions made at each stage (i.e. model traceability) should provide the basis of any 189 

model development. Further investigation of species interactions, plasticity, and genetic 190 

change as drivers of BEF in long-term and multi-stressor experiments, could therefore 191 

significantly help build a common way forward for the implementation of important 192 

biodiversity concepts into ecosystem modelling. 193 

 194 

Testing of specific formulations of the BEF link using ecosystem models can help to 195 

elucidate poorly understood underlying ecological mechanisms, as done in other fields 196 

(Loreau 1998; Polimene, Archer et al. 2012; Prowe, Pahlow et al. 2012). Low model skill 197 

could, in such cases, help to highlight deficiencies in the functional structure used, lack of 198 

understanding of physiological mechanisms (e.g. plasticity), and an inappropriate degree of 199 

complexity in the interconnection of model components (e.g. species, functional groups, 200 

trophic levels). Model parameters can also be optimised where observational/experimental 201 
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data are available. This approach enables a direct quantification of the variation in the data 202 

not explained by the model, highlighting aspects of model structure needing refinement, even 203 

before the drivers of variation are fully understood (Butenschön, Polimene et al. 2010; Ward, 204 

Friedrichs et al. 2010). Thus, limited understanding of particular aspects of the BEF link 205 

should not hinder the ambition to include it in ecosystem models. Rather, these can be used to 206 

test hypotheses, elucidate areas of uncertainty and, correspondingly, help identify future areas 207 

for BEF research. 208 

 209 

2. Conceptualising BEF in models 210 

The complexity of the BEF link often seems incompatible with the degree of simplification 211 

needed by ecosystem models that deal with physical processes at high resolution. 212 

Computational resources have historically posed an upper limit on model detail, enforcing a 213 

balance between modelled complexity and resolution. Consequently, detail was typically 214 

expanded only where there was both a need to improve emergent properties and adequate 215 

data for parameterisation. In the present day, computational power has become less limiting; 216 

and so the practical dialogue between modellers and ecologists about what degree of 217 

complexity should be included in models has become possible. Currently, complexity 218 

associated with biological systems is omitted if its impact on model performance is deemed 219 

acceptable and model structure remains plausible. As with any model, there is thus a delicate 220 

balance to be struck between the inherently synthetic structure of an ecosystem model and 221 

capturing enough detail about nature to bring model predictions close to the ecosystem’s true 222 

state (Einstein 1934; Bruggeman and Kooijman 2007; Allen, Aiken et al. 2010). What degree 223 

of complexity associated with biodiversity (and biological structure in general) is deemed as 224 

essential depends upon the model purpose, the research question, and the degree to which the 225 

BEF aspect at stake is understood. The latter is thus seen as the starting point of the process 226 

of conceptualising BEF in macro-scale models, which is tentatively depicted in figure 1. We 227 

provide this diagram as a means to break down the complex interaction between modeller and 228 

ecologist faced with the task of including some aspect of BEF in an ecosystem model, as 229 

described in the following.  230 

  231 

The need for simplicity, and the widespread appreciation that the interaction of organisms 232 

with their environment are determined by traits, underpin the widespread use of functional 233 

typologies in ecosystem modelling (Anderson 2005). By definition, traits are well-defined, 234 

measurable properties of organisms that, when linked to ecosystem processes and function, 235 
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can be used to investigate the functional impacts of changes in biodiversity (i.e. "functional 236 

traits",  McGill, Enquist et al. 2006; Petchey and Gaston 2006). Functional diversity, i.e. 237 

“number, type and distribution of functions performed by organisms within an ecosystem” 238 

(   a  and  abido     ) thus provides a tangible strategy to synthesize biodiversity in 239 

ecosystem models (box 9a in Fig.1).  This approach invites explicit formulations to be made 240 

about what species do in ecosystems, their relationship with environmental gradients and 241 

therefore niche space, trade-offs, interactions and performance currencies (McGill, Enquist et 242 

al. 2006; Litchman, Klausmeier et al. 2007). For these reasons, representing functional 243 

diversity in models has received large interest, despite often not being named explicitly as 244 

such (Baretta, Ebenhöh et al. 1995; Le Quéré, Harrison et al. 2005).  Such representations of 245 

functional diversity may be good depictions of the “natural ecology” of the groups 246 

represented (i.e. defined via traits that reflect response to the environment), but are more 247 

often better at representing the impact of groups on ecosystem processes (i.e. effect traits, 248 

Chown, Gaston et al. 2004). Nevertheless, their implementation in models brings a new set of 249 

challenges to the modeller-ecologist dialogue: what traits underly a specific process of 250 

interest; how do they relate to physiology and trade-offs; and what is their natural variability 251 

across levels of organisation, that within and between species. Unfortunately, even in well 252 

studied systems, knowledge about the most basic traits is often limited to a small proportion 253 

of species (Tyler, Somerfield et al. 2012). This can be problematic, because the observation 254 

of a small number of species may  lead to incorrect conclusions about the contribution of 255 

specific traits toward a specific process (Flynn 2005; Le Quéré, Harrison et al. 2005). There 256 

is clearly a need to improve the availability of functional trait information for marine 257 

ecosystems, and significant efforts have been made in recent years (Brey 2001; Bremner, 258 

Rogers et al. 2006; MarLIN 2006; Bruggeman 2011; Barton, Pershing et al. 2013; Queirós, 259 

Birchenough et al. 2013; Faulwetter, Markantonatou et al. 2014 and others). 260 

 261 

If information on the distribution of traits of interest in the studied ecosystem is available, the 262 

subsequent question is how this diversity should be represented in the model, i.e. how to 263 

reduce the observed biodiversity into groups of species that share common trait values. These 264 

groups are referred to as functional groups, or types (box 9a, Fig.1) and functional typologies 265 

are employed in nearly all ecosystem models, in one way or another. The decision about 266 

which functional typology to use is a common cause of disagreement between modeller and 267 

ecologist, requiring a very clear understanding of the purpose of the model by both sides, and 268 

therefore of the compromises required. The strategies employed to define where that 269 
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 270 

Figure 1:  Conceptualising biodiversity in an ecosystem model. Schematic representation of the steps carried out by modeller and ecologist 271 

during the process of representing BEF in an ecosystem model, under a specific research question. The two parties are perceived to be engaging 272 

at any given point in the process, but the need for that engagement to be efficient is particularly relevant in the steps illustrated by green boxes.   273 
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compromise lies are varied, but are often balanced by the following five factors (in no 274 

particular order). First, every newly identified functional type requires a specific model 275 

structure and parameterisation. This places great demand on the quantity and quality of 276 

empirical information required to constrain the model (boxes 4 to 6 in Fig.1), and as seen, 277 

functional trait information is often scarce. Second, increased complexity in functional 278 

typology may increase model instability (Denman 2003), although it may also increase the 279 

applicability of a model to a wider range of systems (i.e. increase model portability, Law and 280 

Blackford 1992; Friedrichs, Dusenberry et al. 2007). Third, expansion of the number of 281 

functional types may come at a non-negligible computational cost, and as a result, the 282 

functional typology chosen may become too artificial, clumping together very distinct types 283 

of organisms (Anderson 2005) . Fourth, increased model complexity can lead to increased 284 

difficulty in the assessment of the meaningfulness of modelling outputs (both in quantity and 285 

quality, fig 1, arrow from box 11 to 2). Fifth, the specific purpose of the model (i.e. the 286 

research question) should direct this decision.  287 

 288 

As illustrated in figure 1, the choice of particular functional typology (box 9a in Fig.1) can be 289 

informed based on a-priori ecological understanding and/or the availability of data on key 290 

functional traits within a particular study system (box 5 in Fig.1). The difficulty associated 291 

with this pre-determination of (often low) functional diversity in models, and the decision 292 

about which functional types are dominant, can be circumvented by an alternative trait-based 293 

stochastic approach (fig.9b). In this case, large numbers of functional groups are defined 294 

initially based on a small number of traits, which are perceived to be essential to predict a 295 

particular process, and explicitly linked to physiology, trade-offs and ecology in the model. A 296 

self-organising process is then allowed to take place over time. This process consists of 297 

functional types interacting in a prescribed way (e.g. via competition for a specific resource) 298 

during simulations, leading to a decrease in the number of (surviving) functional types over 299 

time (“stochastic” approach, Follows,  utkiewic  et al.    7). This approach has been used 300 

to predict with great consistency geographical habitat, rank abundance and physiological 301 

specialisation of functional types of phytoplankton (Bruggeman and Kooijman 2007; 302 

Follows, Dutkiewicz et al. 2007), showing great potential for other areas of biodiversity 303 

research. This approach appeals for its simplicity and economy  of parameters, which may be 304 

constrained using specific values for each functional group, or be characterised by  a given 305 

mean and dispersion (box 9b in figure 1). It may, however, be restricted to systems where a 306 

BEF relationship is well understood.  307 
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 308 

The use of continuous trait space (the semi-explicit approach in box 9b, by which a 309 

community has a distribution for each trait that is made up by the distribution of individual 310 

functional types) has merit for its simplicity of parameter use, flexibility and elegance of 311 

emulation of changes in community structure (e.g. body size, Bruggeman and Kooijman 312 

2007). It may, however, be difficult to implement with non-quantitative traits, like type of 313 

larval development, or sediment re-working mode. In such cases, use of different models may 314 

be a better approach to characterise the contribution of individual functional groups to a 315 

specific BEF relationship, challenging usage in ecosystem models with possible unwanted 316 

complexity. 317 

 318 

Whether one general, semi-explicit model is used to describe the trait/process relationship, or 319 

whether different models per functional type are used explicitly, is thus a point for 320 

consideration (box 9, Fig. 1). In practice, models of the more complex ecosystems are likely 321 

to adopt elements of both functional type and trait-based representations of biodiversity 322 

(boxes 9a and b). While these approaches may be desirable, our limited understanding of the 323 

role of biodiversity in mediating function, or a hereto limited ability to translate such 324 

understanding to macro-scale modelling,  means that it is actually not uncommon for such 325 

representation to be done implicitly (box 9c in figure 1). That is, in such cases, the 326 

representation of biodiversity is by-passed (box9c), leading to an undesirable representation 327 

of processes that ignores the contribution of biological variability to these. As such, many 328 

models have been better at implementing the “EF” in BEF than the “B”.  329 

Once the model structure is defined, the model runs can be evaluated against empirical data 330 

(box 11) and the results interrogated. Evaluation of the model against observational data 331 

limits the assessment to present and past system conditions and experimental data may be 332 

more suitable to evaluate model simulations of future states, not presently observed. If the 333 

skill of the model is unsatisfactory, it is thus necessary to re-iterate the cycle of interaction 334 

(box 2), considering the refinement of the model and traits considered (boxes 2 and 3), a re-335 

evaluation of the suitability of the data and evaluation method used (boxes 5 and 11, Allen 336 

and Somerfield 2009; de Mora, Butenschön et al. 2012) and/or the request of additional data 337 

(box 4). Here too, the definition of what level of skill is acceptable (box 11) depends on the 338 

purpose of the model and the research question to hand.  339 

As a sequence of explicit steps, we hope that the framework described here may help other 340 

researchers interested in this type of cross-discipline work by objectively defining the tasks 341 
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involved in the process, highlighting particular stages when strategic decisions need to be 342 

made (e.g. boxes 9 and 11), and alternative routes forward. This definition of the different 343 

stages of the process is therefore aimed to provide a tangible route through which the 344 

identification of key data and methodological requirements can be carried out, facilitating the 345 

identification and resolution of limitations to progress. 346 

 347 

2.1 Case-studies from the Eastern Atlantic Region 348 

Here, we provide two case studies, using figure 1 as a means to illustrate the steps involved in 349 

the engagement of modeller and ecologist in ecosystem model development for the specific 350 

purpose of depicting a BEF link. We use a benthic and a pelagic example, and two distinct 351 

ecosystem models, to highlight that even in different areas of BEF research this engagement 352 

has significant commonalities.  353 

 354 

2.1.1 Benthic case-study 355 

Bioturbation, the mixing of sediment and particulate materials carried out by sedimentary 356 

organisms during foraging, feeding and burrow maintenance activities (Richter 1936; Rhoads 357 

1974; Volkenborn, Polerecky et al. 2010) has a regulatory role in marine sedimentary 358 

oxygen, pH and redox gradients, metal cycling, sediment granulometry, pollutant release, 359 

macrofauna diversity, bacterial activity and composition, and carbon and nitrogen cycling 360 

(Queirós, Birchenough et al. 2013 and references therein). This process has thus been 361 

included in new developments of the European Regional Seas Ecosystem Model (ERSEM, 362 

Blackford, Allen et al. 2004), to improve the model’s ability to simulate benthic infauna and 363 

their role in the regulation of benthic-pelagic nutrient fluxes. Using figure 1, bioturbation is 364 

thus the ecosystem process of interest, and various possible general descriptions of the 365 

bioturbation process have been considered (boxes 1, 2 and 3, Crank 1979; Soetaert, Herman 366 

et al. 1996; Maire, Duchene et al. 2006; Schiffers, Teal et al. 2011). Information was 367 

requested from the ecologist community at Plymouth Marine Laboratory (box 4) and a 368 

dedicated research program has thus been undertaken as part of the monitoring program at the 369 

Western Chanel Observatory (box 5). This data collection was guided (box 1) by early 370 

dialogue between ecologist and modeller about partitioning of variability (box 7) associated 371 

with seasonality (Maire, Duchêne et al. 2007) and habitat type in the study system 372 

(Mermillod-Blondin and Rosenberg 2006). For example, to illustrate box 5, we have found 373 

that the intensity of bioturbation (traditionally described through the calculation of the 374 

biodiffusion coefficient, Guinasso and Schink 1975) decreases with the number of species in 375 
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the community, which is lowest at the end of winter and highest in late summer (Queirós, 376 

Stephens et al. in review). We also found that different functional groups of bioturbator 377 

species within the community contribute to this type of local transport differently (Queirós, 378 

Stephens et al. in review).This process would correspond to boxes 5 and 6 in figure 1. The 379 

explicit need to synthesise this information for conceptualisation in ERSEM (box 6, fig.1) has 380 

led to the understanding that the tendency in the bioturbation literature towards labelling of 381 

distinct processes (biodiffusive transport, bioturbation depth, bioturbation potential) under the 382 

common designation of “bioturbation” is misleading from a mechanistic point of view. This 383 

is because those different components have distinct environmental driver and response 384 

pathways (Queirós, Stephens et al. in review). Therefore, labelling them under the same term 385 

(“bioturbation”) does not contribute towards a better mechanistic understanding of the 386 

contribution of burrowing fauna to the mediation of biogeochemical processes. Hence, in this 387 

case, the need for synthesis of empirical data with the aim of model development (box 6, 388 

fig.1) helped to highlight a shortcoming in our understanding of bioturbation as a multi-389 

faceted process (c.f. Kristensen, Penha-Lopes et al. 2012).This information is now being used 390 

to improve bioturbation trait descriptions in the model (boxes 7 to 9). An evaluation strategy 391 

has been formulated, and new model structure implementations will be validated against the 392 

data (boxes 10 and 11). The explicit representation of biodiversity in the BEF relationship 393 

will be implemented in the subsequent model structure development. In its present form, the 394 

representation of bioturbation is still better represented by box 9c, and is currently being 395 

evaluated against seasonal response in infaunal biomass and benthic-pelagic nutrient fluxes 396 

(box 11). 397 

 398 

2.1.2 Pelagic case-study  399 

Diatoms play a crucial role in marine ecosystems and biogeochemical cycles (Sarthou, 400 

Timmermans et al. 2005; Armbrust 2009). They exhibit remarkable diversity in many traits 401 

including size. In the English Channel-North Sea region alone, field sampling programs 402 

indicate that diatom species span nearly seven orders of magnitude in cell volume (Rousseau, 403 

Leynaert et al. 2002; Widdicombe, Eloire et al. 2010). Significantly, this variability has a 404 

seasonal component: the community mean cell volume (log-transformed, biovolume-405 

weighted) in this region reaches a minimum in late spring (6,000 µm
3
 at the Western Channel 406 

Observatory, 10,000 µm
3
 in the Belgian Coastal Zone) and a maximum in autumn (70,000 407 

µm
3
 in the WCO, 200,000 µm

3
 in the BCZ). 408 
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Calculations based on allometric relationships suggest that the observed one order of 409 

magnitude variation in mean diatom size is likely to coincide with a change of at least 35 % 410 

in traits related to resource acquisition and grazer susceptibility (Terseleer, Bruggeman et al. 411 

Submitted). In turn, these traits affect carbon export and energy transfer to higher trophic 412 

levels. Thus, changes in diatom community composition, quantified by changes in mean cell 413 

size, can exert a major impact on ecosystem functioning. Nevertheless, marine ecosystem 414 

models used for this region generally do not resolve diatom diversity (Baretta, Ebenhöh et al. 415 

1995; Lancelot, Spitz et al. 2005; Le Quéré, Harrison et al. 2005). Their diatom 416 

parameterizations are invariant across the seasons, and cannot reflect the plasticity of the 417 

diatom community that results from changes in community composition and biodiversity. 418 

To address this, Terseleer, Bruggeman et al. (Submitted) add diatom diversity to the marine 419 

ecosystem model MIRO (Lancelot, Spitz et al. 2005). The universal diatom model in figure 1 420 

(boxes 1-3) is in this case based on the original MIRO implementation (Lancelot, Spitz et al. 421 

2005), which interacts with several ecosystem components through nutrient uptake, light 422 

dependency, and consumption by copepods. To quantify the variation in diatom functional 423 

traits (boxes 4-5), measured trait values are collected from literature (Taguchi 1976; Ingrid, 424 

Andersen et al. 1996; Sarthou, Timmermans et al. 2005; Litchman, Klausmeier et al. 2007; 425 

Marañón, Cermeño et al. 2013). This compilation suggests that several diatom traits are 426 

subject to significant interspecific variability. These traits include maximum growth rate, 427 

nutrient half-saturation, light affinity, and susceptibility to copepod grazing (box 7). Much of 428 

the variability in these functional traits is captured by allometric relationships that link the 429 

trait value to cell size. That is, variability in many functional processes (y-axis in box 5) can 430 

be linked to variability in a single trait (x-axis in box 5): size. Based on this conclusion, 431 

modelled diatoms are characterised by their cell volume alone, which sets the value of all 432 

other traits (box 8). The composition of the diatom community is now completely described 433 

by its size distribution. To include this distribution in the model (box 9), a computationally 434 

efficient, aggregate approach is used that only tracks key statistics of the community (total 435 

biomass, mean and variance of cell volume, Norberg, Swaney et al. 2001, box 9b). Notably, 436 

this explicitly includes a measure of functional diversity, in the form of the variance of the 437 

cell volume, and its link to ecosystem functioning.  438 

After calibration to measured nutrients (dissolved inorganic nitrogen, phosphorous, silicate) 439 

and biomasses of several functional types (diatoms, Phaeocystis, nanoflagellates, copepods, 440 

microzooplankton, bacteria) in the Belgian Coastal Zone (BCZ), the model correctly captures 441 

both the magnitude and seasonality of diatom size (which was not used during calibration): 442 
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low grazer concentrations in early spring favour a community of small, fast-growing diatom 443 

species, which are replaced by larger species as grazing pressure increases over summer. 444 

Bottom-up and top-down selection pressures peak during and just after termination of the 445 

spring bloom (May-June), causing a minimum in size diversity in early summer that recovers 446 

only in late autumn-winter. The model also predicts the viable size range for the BCZ region 447 

(400 to 10
7
 µm

3
), which approximates the range of sizes observed in the field (78 to 1.4×10

7
 448 

µm
3
). Additionally, representation of the size distribution modestly improves model 449 

predictions for bulk variables including nutrient concentrations and plankton biomass (boxes 450 

10-11). 451 

 452 

3. Future direction: what do we still need? 453 

For the purpose of this discussion we have portrayed the ecologist and modelling 454 

communities as distinct groups. However, in practise, the two communities represent 455 

different points on a continuum, ranging from ecologists with no modelling expertise at one 456 

end, to mathematicians and physicists with limited ecological understanding at the other. 457 

Most ecologists and modellers fall somewhere between the two extremes. Initiatives aimed to 458 

promote communication across this continuum, e.g. open-source ecosystem models (ERSEM, 459 

http://www.shelfseasmodelling.org/index-en) are leading to an increase in a centre-ground 460 

population of model-savvy ecologists and ecologically competent modellers. This central 461 

dialogue is of utmost importance, ensuring that expertise generated at the ends of the 462 

continuum is integrated by the community, and used in model development. It is precisely 463 

this dialogue that the current paper addresses. 464 

 465 

Transference of knowledge is taking place, and ecosystem models are being developed with 466 

increasingly better depictions of BEF. The associated challenges of communication have 467 

been discussed here, but it cannot be stressed enough how paramount to the process it is for 468 

ecologist and modellers to invest time and effort to insure that that communication across the 469 

continuum is effective. Clarification of terminology and concepts that are mutually 470 

understood are key to any subsequent work, and researchers should be quick to raise 471 

questions where doubt remains. Use of this common language typically follows a learning 472 

curve, so early stage failures should be weighted accordingly.  473 

 474 

With regard to the data required for future ecosystem model development that includes BEF, 475 

several aspects deserve consideration. While issues of data availability concerning trait 476 
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information and less understood aspects of BEF have already been considered here, there is a 477 

much wider need for contextualising information associated with any empirical dataset that 478 

should preclude the inclusion of BEF understanding in an ecosystem model. Because 479 

ecosystem models are mathematical descriptions of how a number of ecosystem processes 480 

relate to each other, to biological systems and the environment, model development requires 481 

that basic information associated with system conditions is considered when relationships are 482 

constrained (box 6, figure 1). For instance, a dataset describing how competition between two 483 

functional types of plankton for a specific resource changes in relation to a stressor (e.g. 484 

ocean acidification) is of little use if no other information is provided about very basic, yet 485 

key, regulating parameters such a light, temperature, season, and nutrient availability. 486 

Without such data, this very relevant information about one specific box in the ecosystem 487 

model cannot be adequately linked to other model components (like environmental forcing, 488 

or nutrient fluxes). Furthermore, while relevant to any model development, contextual 489 

information is crucial specifically for observational BEF findings because species will have 490 

undergone selective processes (species sorting) that influence which traits are present within 491 

natural communities, and thus the performance of individual organisms towards processes 492 

(Norberg 2004). Provision of this contextualizing information (or meta-data) can be improved 493 

if ecologists more frequently consider future uses of their data beyond their particular 494 

discipline, and particularly, ecosystem-level applications. Here too, engagement between 495 

modellers and ecologists early on in projects (including the writing stage) is key to greater 496 

awareness. 497 

 498 

On the same level, mechanistic understanding – that at the core of macro-scale modelling - 499 

requires information about process history. I.e. high quality and high frequency 500 

measurements of the particular BEF link of interest and of the conventional environmental 501 

parameters associated with it. This type of work contrasts with the outputs of traditional 502 

(observational and experimental) research which, being limited by funding constrains, is 503 

often only able to provide a snapshot of processes and their support in biodiversity. Lack of 504 

information about process history leads to a type of model development that imposes 505 

particular conditions to force specific responses, rather than representing mechanisms that 506 

cause responses. Those would (ideally) emerge from the model. Repeated, comparable 507 

measurements of specific BEF links across time and a range of conditions are thus of great 508 

use to modellers. Unfortunately, funding bodies may be keener to lend support to novel areas 509 

of research and less inclined to fund what may be perceived as a repetition of a previous body 510 
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of work. One possible alternative route is meta-analysis, the quantitative assessment of large 511 

numbers of studies at once (Hedges, Gurevitch et al. 1999). This approach has become a 512 

successful framework to scrutinise and synthesise ruling principles uncovered by empirical 513 

ecological science in the last decade, and such work has started to emerge in the BEF 514 

literature (Cardinale, Matulich et al. 2011; Hooper, Adair et al. 2012). Meta-analysis can help 515 

to identify drivers of BEF relationships that are not apparent in single system studies, 516 

providing an objective route to compare the results of different studies under a common 517 

question(Hooper, Adair et al. 2012). This approach may therefore become an important 518 

alternative intermediate source of mechanistic BEF information for model developers in the 519 

near future, helping to separate evidence from judgement, given the necessary caution for the 520 

interpretation of such summary approaches (Dupont, Dorey et al. 2010; Hendriks and Duarte 521 

2010). Consideration of this approach should take place explicitly during model development 522 

(steps 1 or 4, Fig.1). 523 

 524 

A remaining hurdle for the inclusion of realistic descriptions of biodiversity in macro-scale 525 

models is our limited understanding of the role of multi-functionality in BEF (Hector and 526 

Bagchi 2007; Hiddink, Davies et al. 2009; Gamfeldt, Snäll et al. 2013). Multi-functionality is 527 

relevant to the current discussion because of the need to summarise biodiversity into a finite 528 

number of traits or functional types in models. From the point of view of advancing the 529 

mechanistic understanding of how biodiversity contributes to ecosystem processes and 530 

function, Leibold’s concept of “impact niche”, the sum of the roles a species has in an 531 

ecosystem (Leibold 1995), is thus of great relevance. However, we have very little 532 

information about how traits that are relevant to one process may influence another because 533 

very few studies have measured the direct contributions to multiple processes simultaneously.  534 

Future representations of biodiversity in ecosystem models where a number of processes are 535 

described should therefore aspire to at least interrogate the role of multi-functionality in BEF. 536 

This too is a gap that empirical science can help to fill. However, considering the complexity 537 

of the modeller-ecologist interaction, other poorly understood aspects of BEF and data 538 

requirements for single processes; it seems that this gap may be one that will remain for some 539 

time to come. 540 
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