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Abstract

Changes in the net heat flux (NHF) into the ocean have profound impacts on global climate. We analyse a long-term
plankton time-series and show that the NHF is a critical indicator of ecosystem dynamics. We show that phytoplankton
abundance and diversity patterns are tightly bounded by the switches between negative and positive NHF over an annual
cycle. Zooplankton increase before the transition to positive NHF in the spring but are constrained by the negative NHF
switch in autumn. By contrast bacterial diversity is decoupled from either NHF switch, but is inversely correlated (r = 20.920)
with the magnitude of the NHF. We show that the NHF is a robust mechanistic tool for predicting climate change indicators
such as spring phytoplankton bloom timing and length of the growing season.
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Introduction

The air-sea exchange of heat, critical for regulating the Earth’s

climate [1], is also related to the turbulence structure of the upper

ocean [2] which in turn controls plankton dynamics [3]. As

phytoplankton form the base of the marine food web, an

understanding of their population dynamics, including species

succession [4], is important for determining whole ecosystem

trajectories. The spring bloom is manifested as a dramatic increase

in the phytoplankton standing stock over a relatively short period

of time [5]. This phenomenon is caused by a combination of

increasing solar irradiance, abundant surface layer nutrients and a

stabilizing water column [6–8] occurring in concert.

The idea of a critical depth above which the mixed layer shoals

during the spring, marking the start of the bloom, has become

synonymous with Sverdrup [9]. Recently, however, several

authors have shown that the start of the spring bloom can precede

the critical depth being reached by several weeks [3,10] leading to

alternative theories being posited. These include: (i) the dilution-

recoupling hypothesis [7] where the mixed layer depth deepening

during winter causes a dilution between phytoplankton and their

predators allowing an initial increase in phytoplankton biomass,

before recoupling them as the mixed layer depth shoals; (ii) the

critical turbulence hypothesis [3,6] where the spring bloom is

triggered by a reduction in air-sea heat fluxes leading to a

weakening of the turbulence in the mixed layer allowing

phytoplankton sufficient residence time in a lit layer replete with

nutrients to bloom and; (iii) the eddy driven hypothesis [11] where

deep oceanic eddies cause initial stratification, rather than a

springtime warming of the sea surface, favourable for the growth

and multiplication of phytoplankton.

For an appraisal of the start of the spring bloom it is important

to realise the conceptual difference between the mixed layer depth

(MLD) and the depth of the layer which supports initial

phytoplankton growth, which may be much shallower than this.

The MLD requires a definition: this is often arbitrarily set to the

depth at which there is a pre-determined (e.g. 20.2uC) change in

temperature [12].

Due to winter mixing, the MLD in the Bay of Biscay can be .

500 m in March [13]. However, the spring bloom is initiated

within a surface euphotic layer that may only be 10 m deep with

temperature differences as little as 0.1uC. This is unrelated to,

and certainly not discriminated by, a MLD definition of 20.2uC,

which may still be .200 m at the height of the bloom [14].

Similarly, this observation is repeated on the NW European

continental shelf [15], where the spring bloom is initiated in a

mixed (to 0.01uC) water column, but with a stabilised surface layer

of 0.1uC. From the two examples given above, using a MLD

appraisal of conditions will lead to the conclusion that significant

production takes place in the winter in temperate seas before any

surface stabilisation.

To overcome the need for arbitrary MLD definitions, flux

methods have previously been employed to determine the start of

the productive season [16] with a balance (R) of potential energy

(PE) and turbulent kinetic energy (TKE) production controlling

near surface stabilisation:
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where g is the acceleration due to gravity, a the volume coefficient

of expansion, Cp the specific heat at constant pressure, Q0 the

surface heat flux, r the density of sea water, CD the drag

coefficient, h the water depth and |u| the magnitude of the

instantaneous tidal stream velocity, u, with the overbar denoting

the average value over one cycle. In this paper we use a limit of

this approach, namely that the net heat flux (NHF) at the surface

(Q0) needs only to be a positive quantity for stabilisation.

The focus of this study on plankton bloom dynamics is centred on

a tidally influenced, shelf seas time-series station (L4: 50u 159N, 4u
139W; depth = 54 m) situated in the western English Channel

(Figure S1). We use long time-series, weekly resolved phytoplankton

and zooplankton data to study relationships between plankton

population dynamics, including biodiversity, and modelled NHF

[17].

Materials and Methods

Ethics statement
No specific permissions were required for the plankton sampling

at station L4 (50u 159N, 4u 139 W), and the field studies did not

involve endangered or protected species.

Net Heat Flux
The air-sea flux of heat is governed by four processes: shortwave

radiation from the sun (QSW), outgoing longwave radiation from

the sea surface (QLW), sensible heat transfer resulting from air-sea

temperature differences (QSH), and the latent heat transfer carried

by evaporation of sea surface water (QLH). Direct observations

(e.g. using ships and buoys) of the air-sea heat flux are rare because

of the difficulty in taking such measurements. However, it is

possible to determine the four components of the air-sea heat flux

using bulk parameterizations which are a function of surface

meteorological and oceanographic variables. We used the Woods

Hole Oceanographic Institution air-sea exchange Matlab tools

[18] to determine QSW, QLW, QSH and QLH [17], all in units of

Wm22. The meteorological parameters used to run the heat flux

model (HFM) were obtained from the European Centre for

Medium Range Weather Forecasting (ECMWF) ERA-40 and

Operational analyses and extracted for a gridpoint centred on 50u
N, 4u W. These parameters were: air temperature (Ta in uC), dew

point (Td in uC), wind-speed at 10 m (U10 in m s21), cloud fraction

(CF where 0: clear; 1: overcast) and atmospheric pressure (P in

mb). Sea surface temperatures (Ts in uC) measured at stations L4

and E1 (50u 029N, 4u 229W) were used to run the HFM over

different periods overlapping with the ECMWF data availability

(1958–2011). Station L4 has available Ts between 1988 and 2011,

whereas station E1 has records of Ts between 1903 and 2011. QSW

was calculated as a function of date and position with correction

for CF [19]; QLW as a function of Ta, Ts, Td, CF using the

Berliand bulk formula [20]. Both QSH and QLH were calculated as

a function of Ta, Ts, Td, CF, P and U10. The sum of all four

components results in the net heat flux (NHF) with the sign

convention of positive NHF being into the water column used

throughout.

The HFM was run between 1988 and 2010 for L4 and from

1958–2011 for E1, after the input Ts had been interpolated from

the weekly sampling interval onto a daily time resolution grid. This

was to enable the NHF to be calculated on the same time

resolution as the available (daily) meteorological values. The day of

each individual year where the NHF became positive, and

remained positive for more than seven days, was determined. A

period of seven days was chosen for two reasons. Firstly, studies of

phytoplankton succession rate show that it requires between two

and four generations of the ascendant species to alter the

community structure. This equates to between 5 and 15 days

[21], given the rate at which phytoplankton can double their

numbers, which is likely to be temperature-dependent. Secondly,

routine L4 sampling takes place on a weekly basis, so the

granularity of the time-series is of order seven days before

interpolation. The choice of a seven day period had the added

benefit of ensuring that the sign of the NHF is properly established

rather than being fleeting or ephemeral. On calm days, even in

winter, if there are clear skies, solar insolation can be sufficient to

ensure the NHF is positive. The day of NHF switching back to

negative towards the end of the year was also determined and the

number of days between the two NHF switching events (negative

to positive and positive to negative) was calculated for each year.

Biological sampling
Key ecosystem parameters have been sampled in the western

English Channel for over a century [22,23]. The weekly

phytoplankton samples (since 1992: see Table S1 for species list)

were taken at a depth of 10 m using a 10 L Niskin bottle at station

L4. A 200 mL subsample was then removed from the bottle and

immediately fixed with 2% (final concentration) Lugol’s iodine

solution [24]. A second 200 mL sub-sample was also taken and

preserved with neutral formaldehyde for the enumeration of

coccolithophores. The samples were stored in cool, dark condi-

tions until taxonomic analysis at the Plymouth Marine Laboratory

(PML) using light microscopy [25]. Samples for zooplankton have

been collected on a weekly basis since 1988 (see Table S2 for

species list), using a vertical net haul from 50 m depth to the

surface using a WP2 net with a mesh-size of 200 mm and mouth

area of 0.25 m2 [26]. Two hauls are taken and the samples

preserved and stored in 5% formalin. These are then sub-sampled,

counted and identified using light microscopy at PML [27].

Bacterial abundance data (2003–2008) were generated by

extracting nucleic acids from 5 L seawater samples collected from

the surface and filtered immediately through a 0.22 mm Sterivex

cartridge (Millipore), which was stored at 280uC. DNA was

isolated from each sample and then stored at 220uC prior to 454-

pyrosequencing [28].

Statistical analyses
The biological datasets were linearly interpolated onto a daily

grid from the original weekly sampling intervals for the entire

length of the time-series. This daily grid was then shifted in time

with t = 0 representing the serial day number of the NHF

becoming positive for each individual year (Figure S2). This puts

the biological signal for each individual year into a common frame

of reference. Once each year had been time-shifted to day zero,

the biological signal for each day for all years was smoothed, using

a median filter, to remove isolated high or low values. This reduces

the multiple annual time-series to a single daily value (for each

individual biological time-series) allowing the numerical analyses

described below to be performed.

The bloom onset date was defined as the first day of rapid

increase in total phytoplankton abundance which is then followed

for more than seven days by values greater than the winter

baseline i.e. a near step-wise change with a definite edge. This was

numerically determined from the time-series data using an Auto-

Regressive Integrated Moving Average (ARIMA) transfer function

Heat Flux and Plankton Abundance
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model [29]. The onset edge was estimated through use of a

‘ragged-step’ intervention function and uses the Akaike Informa-

tion Criterion (AIC) to identify the relevant order of the ARIMA

model to use in this setting. That specific model for the onset day is

then estimated using maximum likelihood optimisation. This

algorithm was coded in the R-statistical language.

The number of taxa (S) represented in the various samples was

extracted from the phytoplankton, holozooplankton, merozoo-

plankton and bacterial datasets. This was to give a measure of the

biodiversity for the various planktonic functional groups and to

examine plankton dynamics, as a function of heat flux, over a

range of trophic levels.

Using the 54 complete year time-series of heat flux, positive

NHF and negative NHF onset dates at station E1 (1958–2011)

were determined. A spectral analysis approach was used to identify

the regular repeating harmonic terms in the time-series signal [29].

The contribution of the harmonic and trend components to the

signal were then estimated through the Box-Jenkins time-series

model [30] approach.

Results

Figure 1 shows that when the NHF switches to positive, the total

phytoplankton abundance increases rapidly, reaching peak abun-

dance around 40 days later. The median NHF positive switch is

serial day 71 (11 March, range: 19 February – 21 April) for L4.

Using objective time-series statistical techniques [29], the first

increase in the abundance of total phytoplankton was calculated to

be day 70. The commencement of the rapid increase in

phytoplankton abundance (Figure 1A.), precedes the maximum

abundance by between 40 and 50 days (serial day 111–121) which

is consistent with previously observed peak bloom timings in the

western English Channel [31]. Total phytoplankton abundance

(Figure 1A.) is initially dominated by species of phytoflagellates

(Figure 1B. – e.g. Phaeocystis). This is followed by multiple peaks of

diatoms (Figure 1C.) starting around 30 days after the NHF

switch. Coccolithophores (Figure 1D.) and dinoflagellates

(Figure 1E.) dominate later in the season. Zooplankton abundance

(Figure 1F.) starts to increase (day 41) before either the NHF

positive switch or the increase in total phytoplankton.

From Figure 1 it appears that the length of the growing season is

constrained by the switch of sign from negative to positive NHF in

the spring and the reverse in the autumn (dashed lines). The latter

occurs between 185 (1999) and 258 (1997) days after the NHF

positive switch at L4, for the period studied here (1988–2010). We

therefore use the period between these switching events as a proxy

for the length of the growing season.

Figure 2 shows the temporal evolution of plankton species

richness (phytoplankton, holozooplankton, meroplankton and

bacteria). The number of species (S) of phytoplankton

(Figure 2A.) reaches a minimum of approximately 20 at the onset

of the spring bloom, peaking at around 40 just before the NHF

negative switch. Following this the number of species drops to

around 25. The variability of phytoplankton species biodiversity

with respect to the NHF differs markedly in comparison to other

plankton types. For phytoplankton (Figure 2A.) the spring bloom is

characterized by a smaller number of dominant species that are

ideally suited to exploit the particular conditions of temperature,

light and nutrients. Both holozooplankton (Figure 2B.) and

merozooplankton (Figure 2C.) show an early season peak

coincident with the NHF positive switch, gradually increasing

later in the season before reducing markedly when the NHF

switches to negative.

Station E1 provides a longer time-series of sea temperature to

use in the calculations of NHF (Figure 3). This shows significant

(p = 0.002) evidence of a 19 year repeating cycle in the timing of

the change in sign of the NHF, with an envelope around this

smooth oscillation of 610 days. Based on this 19 year harmonic of

the time-series, the spring bloom timing changes on average by

two days per year. This shift represents smooth background

climatic variability; interannual variability is captured by the

dashed line in Figure 3 (range = 63 days). There is also evidence

of a longer term cycle (p = 0.004), represented by the dash-dot

quadratic curve in Figure 3, which on average contributes to a

changing start of spring bloom date by 0.4 days per year.

Discussion

Figure 1 clearly shows a strong link between the change to

positive NHF and the start of the spring phytoplankton bloom

indicating that stabilization of the water column gives phytoplank-

ton [32] a window of opportunity to proliferate. The advantage of

using the NHF is that it can be calculated using surface-only

abiotic data: these are readily available from a combination of in

situ observations, meteorological model analyses and satellite

platforms. The NHF predictor can therefore be applied to real-

time global ocean observations as well as to seasonal-decadal scale

forecasts based on climate change projections.

Figure 1F, perhaps surprisingly, suggests that zooplankton have

life strategies which allow them to pre-empt the spring bloom

giving them a competitive edge at the start of the season. However,

there are likely to be other mechanisms at work. The early spring

increase in zooplankton is caused partly by merozooplankton such

as barnacle larvae, whose spawning cues are likely different. The

background levels of chlorophyll-a concentration in the western

English Channel during the winter are around 0.5 mg m23 [23]

and support zooplankton reproduction at L4 year-round. During

the narrow time (30 d) window between the increase in

zooplankton abundance and NHF positive, grazing control by

micro and mesozooplankton may be in operation. The reduction

in turbulence, indicated by NHF becoming positive, will allow

phytoplankton such as Phaeocystis (colonies) and diatoms (chains) to

break through the grazing control ‘‘loophole’’ [33], due to

increased residence time in the well-lit layer of the water column.

Towards the autumn the switch to negative NHF appears to be

an important cut-off for phytoplankton species that require

thermal stratification to thrive, such as coccolithophores [34]

and dinoflagellates such as Karenia mikimotoi [25]. Dinoflagellates

are likely to be favoured later in the season because, as the NHF

becomes less positive, the exchange of nutrients across a

weakening thermocline increases [35]. It is important to note that

the mechanisms being invoked here are purely abiotic: it is likely

other, as yet unquantified, loss mechanisms such as viral infection

and parasitism, sinking and grazing play a part in the seasonal

succession.

The NHF seems to be less of a factor for zooplankton

(Figure 2B.), as they are more strongly governed by temperature

and are able to easily migrate through the water column [36].

How prolific they are will depend on the amount and quality of

available food.

Bacterial diversity (Figure 2D.) is disconnected completely from

the switch from negative to positive NHF. Previous studies at L4

[28] concluded that bacterial diversity (Figure 2D.) is related to

daylength (minimum/maximum at summer/winter solstices).

Figure 4 shows that bacterial diversity is strongly negatively

correlated with the magnitude of the NHF (r = 20.920). This

implies that bacterial diversity is favoured in highly turbulent

Heat Flux and Plankton Abundance
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conditions, providing a more plausible mechanistic explanation

than a simple relationship with daylength. To test the wider

applicability of this finding other high temporal (weekly) resolution

bacterial time-series data would be required, from stations where

the turbulent structure of the upper mixed layer is not necessarily

in phase with the annual solar cycle. A weekly sampling routine

should be adequate to describe seasonal variability in the bacterial

diversity.

Figure 1. Entire time-normalized series at station L4 with a median filter applied to the phytoplankton (1992–2010) and
zooplankton (1988–2010) abundance data (units: cells mL21, individuals m23, respectively). Phytoplankton species are aggregated as (A)
total; (B) phytoflagellates; (C) diatoms; (D) coccolithophores and (E) dinoflagellates. Zooplankton are aggregated as (F) total zooplankton. The solid
line indicates day zero, where the NHF switches from negative to positive and remains positive for more than 7 days. The two dashed vertical lines
shown in all the panels indicate the minimum and maximum number of days after the positive NHF switch that the NHF returns to being negative
(for more than 7 days).
doi:10.1371/journal.pone.0098709.g001
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Figure S3 implies that the change from negative to positive

(spring) and positive to negative (autumn) NHF are decoupled in

regions of seasonal stratification i.e. an early onset of the spring

bloom does not imply a late switch of NHF from positive to

negative later in the year. Indeed there is no correlation (r = 2

0.01) between NHF positive and NHF negative date. Rather it

seems that the length of the growing season is constrained by

how early in the year positive NHF is established, i.e. there is

more variability in spring bloom onset date (figure 3, dashed line)

than the breakdown in stratification date in autumn (figure S4,

dashed line). Mean NHF positive date (1958–2011) is 84.8616.0

whereas mean NHF negative date for this period is 287.3615.3.

This is because the upper mixed layer is both wind mixed and

convectively mixed as a result of surface heat flux, particularly at

night [37]. The invariant factor in both onset and breakdown is

daylight hours: these rapidly increase, and therefore promote

positive NHF, in the spring and; rapidly decrease, and therefore

promote negative NHF, in the autumn. Positive NHF is more

difficult to establish in the spring than negative NHF in the

autumn because of seasonal stratification at stations L4 and E1.

In the spring, the water column is well mixed, so to promote

NHF all the positive heat flux mechanisms (i.e. warmer

atmosphere than sea-surface, reduction in wind, increasing levels

of solar insolation) need to be acting in the same direction. A

small perturbation to this, such as strong winds or a prolonged

cold, cloudy period, will delay a switch to positive NHF and, as a

consequence, thermal stratification. At the beginning of autumn,

the top 10–15 m of the water column are thermally stratified,

and because of the larger thermal heat capacity of water

compared with air, as the nights get longer the tendency will be

for all negative heat flux mechanisms to act in the same

direction. This gives a more abrupt change in sign to negative

NHF and hence a more distinct and invariant end point to the

growing season (Figure S3).

One of the limitations of using a Eulerian time-series station

such as L4, is that it does not allow the significant time-series noise

to be resolved into local process and spatial patchiness components

[38]. For such a partitioning to be made, fine scale spatial

surveying would be required to smooth out the time-series. From

the evidence of local, short duration Lagrangian studies, the effect

of tides at station E1 tend to advect the water masses around in an

ellipse, with the net result of little overall translational movement.

Figure 2. Median filtered daily interpolated biodiversity (species richness –S) data for (A) phytoplankton; (B) zooplankton; (C)
merozooplankton and (D) bacteria relative to the change in sign for the NHF. The switch to negative heat flux (relative to the switch to
positive and shown as the minimum and maximum range) is shown later in the season around 185–260 days afterwards, represented by the pair of
dashed lines.
doi:10.1371/journal.pone.0098709.g002
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At L4, there is a tendency for water masses to move in an east-west

along-shore direction, with the added complication of episodic

inputs from the River Tamar in terms of buoyancy, nutrient

concentrations and material loading. However, the tides and the

shallowness of L4 tend to damp variability [38].

The nineteen year repeating cycle in the timing of the change in

sign of the NHF corresponds very closely to the 18.6 year tidal

modulation period [39]. This shows the importance of the tides,

probably in breaking down marginal stratification, for explaining

seasonal changes in the abundance of phytoplankton [15].

The long-term quadratic temporal component could also be

related to the Atlantic Multidecadal Oscillation (AMO), which has

a periodicity of 65–70 years [40,41]; the AMO has a direct

influence upon the North Atlantic Oscillation, which has

previously been postulated to control timing of the spring bloom

[42]. It is important to take account of both the tidal and large

scale climatic oscillation harmonics when looking for evidence of

background climate change. Indeed when both the tidal and long-

term quadratic components are acting in phase, this can result in

the date of the NHF advancing (or retreating) by 2.4 days per

year. The end of the growing period (Figure S4) does not exhibit a

long-term trend, but has an observable dual-frequency 20 year

repeating pattern. With this repeating pattern, we note that over

this 54 year period there are three events, of 5 years duration,

which may indicate the emergence of a long-term increasing

variability in the end day of the growing period. These statistical

techniques therefore allow us to disentangle patterns of natural

variability from any background climate change signal in the

bloom onset and length of growing season.

Conclusions

We have demonstrated that the NHF provides a robust and

powerful tool to determine essential climate change indicators such

as the onset of the spring bloom and length of the growing season.

The onset of the spring phytoplankton bloom has been shown to

coincide with a switch from negative to positive NHF. At the end

of the growing season, the switch back to negative NHF has been

shown to control the succession of later blooming species of

phytoplankton, effectively providing a cut-off to their proliferation.

We have shown that zooplankton abundance pre-empts the NHF

switch in spring, and that bacterial diversity patterns are

structurally different to both phytoplankton and zooplankton.

The latter suggests a tighter control of turbulence upon the

diversity of the smallest organisms rather than a NHF switching

mechanism which impacts upon phytoplankton diversity.

Using statistical tools on long-term ecological time-series data,

we have been able to show the impact of a variety of physical and

large scale climate forcing mechanisms, such as the 18.6 year tidal

cycle and possibly the 65–70 year AMO, upon the length of the

growing season.

As NHF can be calculated using surface only abiotic data, its

predictive power can be applied to the global ocean using a

combination of in situ observations, meteorological model analyses

and satellite platforms. The NHF predictor can therefore be

applied to real-time global ocean observations as well as to

seasonal to decadal forecasts based on climate change projections.

Supporting Information

Figure S1 Map showing the locations of stations L4 (506
159N, 46 139W) and E1 (506 029N, 46 229W).

(TIFF)

Figure S2 Daily interpolated phytoplankton abundance
data for individual years 1992–2010 relative to the
change in sign for the NHF. The figure shows the inherent

difficulty in working with quantitative biological datasets as there is

a large degree of inter- and intra-annual variability. However a

general pattern of increasing phytoplankton abundance around

the time of the NHF switch emerges. It could be argued that

biomass should be used rather than numerical counts, as

abundances of smaller phytoplankton (e.g. phytoflagellates), which

contain less carbon than larger phytoplankton (e.g. diatoms), may

be present in disproportionately large numbers. When the

identical statistical time-series analysis (see text and Figure 1)

was repeated for total phytoplankton biomass, the first increase

was calculated to be on day 69.

(TIFF)

Figure 3. Onset of spring bloom day, determined using the
NHF calculation (dashed line), between 1958 and 2011 at
station E1. The solid line represents a spectral analysis of the NHF
calculated, day of bloom onset, time-series using a Box-Jenkins [30]
approach. The dash-dot line is a statistically significant (p = 0.004;
r = 0.294) long-term cycle.
doi:10.1371/journal.pone.0098709.g003

Figure 4. Bacterial diversity versus the magnitude of NHF for
station L4 (r = 20.920). Each individual data point represents a daily
average for the period 2003–2008.
doi:10.1371/journal.pone.0098709.g004
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Figure S3 Length of growing season, calculated using
the period of time between NHF positive and switching
back to negative, as a function of NHF positive day.
Calculations are for the period 1958–2011 at station E1. Fitted

line has r = 20.73.

(TIFF)

Figure S4 Day of NHF negative (dashed line), between
1958 and 2011 at station E1, indicative of the end of the
growing season. The solid line represents a spectral analysis of

the calculated NHF time-series using a Box-Jenkins [30] approach.

(TIFF)

Table S1 Station L4 Phytoplankton and Microzooplank-
ton Taxa List.
(DOCX)

Table S2 Station L4 Zooplankton Taxa List.

(DOCX)
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