
1 
 

Mesoscale fronts as foraging habitats: composite front mapping reveals 

oceanographic drivers of habitat use for a pelagic seabird  

 

 

Kylie L. Scales1*, Peter I. Miller1, Clare B. Embling2, Simon N. Ingram2, Enrico Pirotta3  

& Stephen C. Votier4* 

 

 

1.  Plymouth Marine Laboratory, Prospect Place, Plymouth, PL1 3DH, UK 

2.  Marine Biology and Ecology Research Centre, University of Plymouth, Plymouth, PL4 8AA, UK 

3. Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK 

4.  Environment and Sustainability Institute, University of Exeter, Cornwall Campus, Penryn, TR10 9EZ, UK 

 

* Corresponding authors.  Emails: kysc@pml.ac.uk ; s.c.votier@exeter.ac.uk 

 

Total word count : 6976 

No. figs: 4 + 5 supplemental 

No. tables: 2 supplemental 

No. references: 73

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Plymouth Marine Science Electronic Archive (PlyMSEA)

https://core.ac.uk/display/78760992?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 
 

SUMMARY  

The oceanographic drivers of marine vertebrate habitat use are poorly understood yet 1 

fundamental to our knowledge of marine ecosystem functioning. Here we use composite front 2 

mapping and high-resolution GPS tracking to determine the significance of mesoscale 3 

oceanographic fronts as physical drivers of foraging habitat selection in northern gannets Morus 4 

bassanus.  We tracked 66 breeding gannets from a Celtic Sea colony over two years and used  5 

residence time (RT) to identify area-restricted search (ARS) behaviour. Composite front maps 6 

identified thermal and chlorophyll-a mesoscale fronts at two different temporal scales – (a) 7 

contemporaneous fronts and (b) seasonally persistent frontal zones.  Using Generalised Additive 8 

Models (GAM), with Generalised Estimating Equations (GEE-GAM) to account for serial 9 

autocorrelation in tracking data, we found that gannets do not adjust their behaviour in response 10 

to contemporaneous fronts. However, ARS was more likely to occur within spatially predictable, 11 

seasonally persistent frontal zones (GAM).  Our results provide proof-of-concept that composite 12 

front mapping is a useful tool for studying the influence of oceanographic features on animal 13 

movements.  Moreover, we highlight that frontal persistence is a crucial element of the formation 14 

of pelagic foraging hotspots for mobile marine vertebrates.  15 

 16 
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1.0  INTRODUCTION  19 

Marine predators, such as seabirds, cetaceans, pinnipeds, turtles and sharks, must locate sparsely-20 

distributed prey in vast, heterogeneous and dynamic oceans.  Although these diverse taxa differ 21 

greatly in foraging ecology, shared scale-dependent foraging strategies have evolved, presumably in 22 

response to the patchy, hierarchical distribution of pelagic prey (1-3).  These strategies enable 23 

predators to locate broad-scale foraging grounds and then adjust the scale of search effort to find 24 

prey aggregations nested within (3, 4).  Prey distributions are somewhat predictable at large- and 25 

meso-scales (10s-100s km; 5), but less so at sub-mesoscales (~1km; 1, 6), which may explain why 26 

foraging-site fidelity at large- and meso-scales is common among marine vertebrates (e.g. seabirds, 27 

turtles, seals; 5,7-10).  28 

 29 

Oceanographic processes operating over a range of spatial and temporal scales regulate pelagic prey 30 

availability, and predictability, driving patterns of habitat utilisation for highly mobile marine 31 

predators.  For instance, a taxonomically diverse range of marine vertebrates is known to associate 32 

with meso- (10s-100s kms) and sub-mesoscale (~1km) oceanographic features such as fronts and 33 

eddies (5, 11-17).  Fronts are transitions between water masses, which manifest at the surface as 34 

horizontal gradients in temperature, salinity, density, turbidity or colour (18, 19). Nutrient retention 35 

within fronts can significantly enhance primary production (18, 20) and bio-physical coupling leads 36 

to aggregation and proliferation of zooplankton (21, 22).  These conditions are suitable for pelagic 37 

fish, which in turn are prey for higher predators, and hence, fronts may be foraging hotspots (18, 38 

23).  Despite the assumed significance of fronts as foraging locations, we still have a poor grasp of 39 

their ecological value for higher trophic level predators. Fronts occur throughout the oceans, yet 40 

differ considerably in strength, persistence, size and spatial variability (19). This variability, as well as 41 

temporal and spatial lags in bio-aggregative effects (18, 21, 24), influences the suitability of fronts 42 

for foraging, particularly for piscivores.  Persistent fronts are assumed to present more predictable 43 

foraging opportunities than small-scale, ephemeral and/or superficial features (25, 26), but direct 44 

tests of the significance of frontal predictability for predator foraging are lacking.   45 

 46 

Recent methodological developments can address this discrepancy. Bio-logging technology and 47 

associated analytical techniques have enabled remote monitoring of individual animal distribution 48 

and behaviour, enriching our insight into habitat use by marine predators (27). However, a key 49 

constraint is the lack of data describing oceanographic processes and pelagic prey distributions at 50 

matching spatio-temporal scales. Although in-situ studies have yielded valuable insights into the 51 

fine-scale mechanisms underlying animal-oceanography interactions (e.g. 28-31), this eulerian 52 
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approach cannot provide information on behaviour throughout a foraging bout, limiting our 53 

understanding of broader-scale oceanographic influence.  Remotely-sensed data can supplement 54 

bio-logging, identifying physical conditions that drive habitat selection in virtual real-time.  Sea 55 

surface temperature (SST) and chlorophyll-a (chl-a) imagery are most widely used (12, 32), but it is 56 

questionable whether these metrics are appropriate for defining foraging habitat, particularly for 57 

piscivores (33).  Indeed, the use of chl-a imagery in shallow shelf seas could be misleading, as sub-58 

surface chlorophyll maxima in stratified areas can present more attractive foraging opportunities 59 

than mixed waters with elevated surface chl-a (28).  In contrast, sub-surface processes occurring 60 

along thermal fronts are known to increase prey accessibility for diving predators.  Convergent flow 61 

fields and fine-scale downwelling aggregate plankton in the shallow thermocline (21, 22), attracting 62 

higher trophic level consumers, including foraging seabirds (34, 35).  Front mapping is able to detect 63 

the surface profile of these important sub- and near-surface biophysical processes and is, therefore, 64 

a potentially powerful tool for identifying pelagic foraging hotspots. 65 

 66 

Composite front mapping (36) is a step forward in automated front detection via remote sensing, 67 

addressing the limitations of precursor methods.  To date, the majority of studies including a 68 

measure of frontal activity have either identified fronts manually or used single-image edge 69 

detection (SIED; 37) on single-day (e.g. 38) or temporally averaged (e.g. 16) images.  However, 70 

limitations of these methods reduce their utility.  For example, using single-day imagery can result in 71 

sacrifice of tracking data owing to cloud cover.  Furthermore, temporally averaged imagery masks 72 

spatiotemporal dynamics of fronts, which can be highly variable in shelf seas, giving only an 73 

estimated average position of a wandering feature.  Using SST/chl-a gradients it is not possible to 74 

recognise contiguous curvilinear frontal features and, when using temporally averaged images, can 75 

result in erroneous frontal locations.  Composite front mapping (36) addresses these limitations, 76 

enabling objective, automatic front detection over a sequence of images, removing cloud influence 77 

and allowing for the visualisation of frontal dynamics.  In addition, high-resolution front metrics, 78 

such as the distance to the closest front or density of detected fronts, can be derived.  These metrics 79 

facilitate objective quantification of the strength of predator-frontal associations and exploration of 80 

the effects of spatial scale, persistence, and magnitude of cross-frontal gradient, not always possible 81 

previously. 82 

 83 

Here we use composite front mapping and high-resolution GPS tracking to investigate 84 

oceanographic drivers of habitat use in a piscivorous marine predator, the northern gannet Morus 85 

bassanus (hereafter, ‘gannet’).  Gannets are large, medium-ranging marine predators, which feed on 86 
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a wide-variety of piscivorous prey (7, 39-41).  Foraging plasticity in gannets has been linked to 87 

oceanographic variability over a range of scales (40, 42-44).  We here assess the influence of 88 

mesoscale frontal activity on gannet foraging behaviour, and evaluate the utility of composite front 89 

mapping for elucidating oceanographic controls of habitat selection.  Moreover, we explicitly 90 

address the importance of frontal persistence by investigating gannets’ behavioural responses to 91 

both contemporaneous and seasonally persistent thermal and chlorophyll fronts.  92 

 93 

2.0 METHODS  94 

2.1 Device deployment 95 

Chick-rearing gannets (n=66) were tracked from a large breeding colony (~40,000 breeding pairs) on 96 

Grassholm, Wales, UK (51° 43’ N, 05° 28’ W) over two breeding seasons (n=17, Jul  2010; n=49, Jun-97 

Jul 2011; Fig. 1).  All birds were equipped with 30g GPS loggers (i-gotU; MobileAction Technology; 98 

http://www.i-gotu.com), TESA-taped to feathers on the centre of the back.  Previous studies indicate 99 

these devices have no deleterious effects on foraging gannets (7). All birds were caught during 100 

changeover at the nest, to minimise time chicks spent alone and to ensure foraging trips began 101 

immediately following release.  Handling time did not exceed 15 minutes.  Devices were 102 

programmed to record location fixes at one- or two- minute intervals, and recovered after at least 103 

one complete foraging trip.  104 

FIGURE 1 HERE 105 

 106 

2.2 Behavioural classification 107 

Area-Restricted Search (ARS) behaviour is characterised by low flight speed and frequent turning 108 

(45) and can thus be distinguished from direct and fast transit to and from the colony.  Previous 109 

work has revealed that ARS is triggered by the detection and pursuit of prey in gannets (44). The 110 

pelagic prey field is patchy and hierarchically organised, with dense prey patches nested within 111 

broader-scale aggregation zones, and resultantly ARS is often observed at multiple nested scales (4, 112 

6, 46, 47).   113 

 114 

We used an approach based on residence time (RT; 48) to identify ARS bouts in all foraging tracks 115 

(adehabitatLT R package; 49).  To avoid artificial inflation of residence times, we excluded tracking 116 

locations recorded during hours of darkness and all locations within a radius of 1km of the colony 117 

(because gannets do not forage here but do frequently rest on the water).  We then interpolated 118 

each daylight movement bout to 60 second intervals and calculated RT at each of these locations, 119 

using three radii (1km, 5km, 10km; 2 hours allowed outside circle before re-entering) to detect the 120 
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scale at which birds performed ARS.  These radii were chosen to cover the range of ARS observed 121 

previously in gannets (e.g. 44; average scale of search 9.1 ± 1.9km, with nested finer-scale search at 122 

1.5 ± 0.8km).  We used RT at each interpolated location to distinguish ARS from transit using an 123 

approach based on Lavielle segmentation (48) , using both the mean and variance of each series 124 

with an ‘Lmin’ value of 3 (minimum number of observations in each segment) and a ‘Kmax’ value of 125 

10 (maximum number of segments in movement burst; Supp. Fig. 1). We classified segments as 126 

periods of ARS or transit using a custom-written R function that identifies each segment as either 127 

above or below a threshold of residence time (seconds), with thresholds specified as mean values 128 

across all trips at each radius, resulting in a binary response variable (i.e. ARS or transit) for each 129 

radius (Supp. Fig. 2).  We then used these multi-radii ARS classifications in subsequent analysis, 130 

investigating levels of scale-dependence in the influence of fronts on habitat selection at meso- (10s 131 

– 100s kms) and submeso- scales (~1km). 132 

 133 

2.3 Composite front mapping 134 

Thermal composite front maps were created for the area enclosing accessible habitat (see 50; Fig. 2), 135 

using a radius of whole-dataset maximum displacement from colony (432km). Firstly, raw (level 0) 136 

Advanced Very High Resolution Radiometer (AVHRR) infrared data were converted to an index of 137 

Sea-Surface Temperature (SST; level 2).  SST data were then mapped on to the United Kingdom 138 

Continental Shelf (UKCS) region in Mercator projection, with a spatial resolution of ~1.1km/pixel.  139 

Thermal fronts were detected in each scene using Single-Image Edge Detection (SIED; 37).  140 

Thresholds used for SIED front definition are often selected arbitrarily, and yet are central to 141 

findings.  We therefore actively varied the threshold for thermal front definition, enabling us to 142 

objectively assess the effects on model predictions.  To investigate the influence of the magnitude of 143 

cross-frontal temperature gradient, we created separate thermal composite sets using 0.4°C and 144 

1.0°C thresholds.  All fronts detected over 7-day windows were included in composite front maps, 145 

rolling by one day and covering the entire tracking duration.  We also produced composite 146 

chlorophyll-a (hereafter; chl-a) front maps from MODIS data using a similar protocol. However we 147 

only used a single front detection threshold for chl-a owing to the log-space scale of chl-a imagery 148 

(0.06 log mg chl-a m-3). Resultant composite maps (Fig. 2) quantify frontal activity using arbitrary 149 

units (fcomp; 36), which are a combination of thermal gradient, persistence (ratio of front 150 

observations to cloud-free views) and proximity of neighbouring fronts.   151 

 152 

Composites were used to create a suite of metrics quantifying frontal activity designed for use with 153 

tracking data (Fig. 2). We simplified the composite maps to determine contiguous contours through 154 
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the strongest front observations, using a novel clustering algorithm (Miller, unpubl. data) which first 155 

involves smoothing the front map with a Gaussian filter of five pixels width. From these we 156 

generated smoothed rasters describing distance to the closest front and frontal density, for use with 157 

tracking data.  Frontal distance (fdist) describes distance from any point to the closest simplified 158 

front (Fig. 3).  Frontal density (fdens) quantifies the relative strength of detected fronts, spatially 159 

smoothed to give a continuous distribution of frontal activity (Fig. 3).  We selected a smoothing 160 

parameter based on the level of detail in resultant products, choosing a value that did not 161 

oversmooth small-scale, ephemeral fronts.  Thermal and chl-a front metrics were extracted for each 162 

location along each track using custom software.  In addition, we extracted surface chl-a (mg m-3; 7-163 

day composite) for each location, as an indicator of levels of primary production in relation to frontal 164 

propagation. 165 

 166 

Seasonal thermal front climatologies were also generated for each year (Jun-Aug; 2010-11), at 167 

1.2km/pixel resolution. These frequent front (ffreq) maps (Fig. 4) identify seasonally persistent 168 

frontal zones by highlighting regions in which strong, persistent or frequently-occurring fronts 169 

manifest.  We used a custom algorithm that estimates the percentage time in which a ‘strong’ front 170 

(here, Fcomp≥0.015) is detected within each grid cell over a specified time period (51).  This Fcomp unit 171 

combines strength, persistence and proximity to other fronts (36), and this threshold is used to 172 

exclude numerous weak and variable fronts that could confuse the seasonal frequency.  Seasonal 173 

chl-a (median) composites were created at the same temporal and spatial resolution, to highlight 174 

areas of enhanced productivity in relation to persistent frontal zones. 175 

 176 

FIGURE 2 HERE 177 

 178 

2.4 Modelling gannet foraging behaviour    179 

2.4.1 Contemporaneous thermal and chlorophyll-a fronts  180 

First, we tested the influence of contemporaneous thermal and chl-a fronts on the probability of 181 

observing ARS in gannets. Metrics describing frontal density (fdens), distance to closest simplified 182 

front (fdist), and chl-a concentration were extracted from rolling 7-day composites centred at the 183 

time of animal presence (Fig. 3).  To account for the fact that gannet foraging range is influenced by 184 

intra-specific interactions and travelling costs (52), we also included distance to the colony of each 185 

GPS fix as a proportion of maximum displacement as a covariate in our models (50).  All explanatory 186 

covariates were standardised before inclusion by subtracting the mean and dividing by the standard 187 

deviation (53).  We checked for multi-colinearity using Generalised Variance Inflation Factors (GVIF) 188 
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and pairwise plots.  Owing to observed colinearity, the fdens and fdist metrics were investigated 189 

using separate models for both thermal and chl-a fronts. 190 

 191 

To account for strong intra-individual temporal autocorrelation, we used Generalised Estimating 192 

Equations (GEEs; 54), with each daylight movement bout as the blocking variable (see also 30, 55, 193 

56).  We constructed GEE-GAMs with a binomial error structure and logistic (‘logit’) link function 194 

('geepack' and 'splines' R packages;57).  Quasi-likelihood under the model independence criterion 195 

(QIC; 58) was used to select between a working independence correlation structure and an 196 

autoregressive, AR1, correlation structure.  197 

 198 

An approximated version of the QIC (QICu; 58) was used to select the most parsimonious set of 199 

explanatory variables from a priori candidate models.  In order to ascertain the most appropriate 200 

form of each explanatory covariate, we compared the QICu of models with each term in its linear 201 

form, and as a B-spline with 4 degrees of freedom and a knot positioned at the mean.  QICu can be 202 

over-conservative (59), so we used repeated Wald’s tests to determine significance of retained 203 

explanatory covariates. 204 

 205 

Goodness-of-fit of final models was evaluated using a confusion matrix comparing binary predictions 206 

to observed incidence of ARS in the original dataset.  The probability cut-off above which a 207 

prediction was classified as an ARS point was selected using a Receiver Operating Characteristic 208 

(ROC) curve (60). We computed the area under the ROC curve (AUC) as a further measure of model 209 

performance (closer to 1, better performance; 60). To obtain response curves, we predicted from 210 

the final model for each of the explanatory terms, holding all other terms constant. Terms retained 211 

by QICu model selection but found to be non-significant under more stringent Wald’s tests were not 212 

removed from the model (55), and only significant relationships were plotted. 213 

 214 

2.4.2 Seasonally persistent thermal and chlorophyll-a frontal zones 215 

Second, we tested the influence of seasonally persistent thermal and chl-a frontal zones (Fig. 4) on 216 

gannet foraging habitat preference.  As no intra-individual temporal autocorrelation existed in this 217 

time-aggregated dataset, we used a binomial Generalised Additive Model (GAM) with a logistic 218 

(‘logit’) link function to model presence/absence of ARS against front frequency for the 2011 219 

breeding season ('mgcv' R package; 62). To achieve this, we created a grid at a matching spatial 220 

resolution to the seasonal frequent front maps (1.2km; 'raster' R package;61), and then determined 221 

presence/absence of ARS in each cell across all tracks.  We were unable to do the same for 2010 222 
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because of low sample size. Environmental covariates were standardised before inclusion as 223 

explanatory terms, and multi-colinearity was checked using GVIF and pairwise plots. Co-linearity 224 

between the seasonal frequent front and chl-a metrics prevented simultaneous inclusion in the 225 

same model, so the terms were applied separately.  An index of habitat accessibility, derived using 226 

the distance of each grid cell to the colony as a proportion of whole-dataset maximum displacement, 227 

was also included to control for greater accessibility of fronts close to the colony than in fringes of 228 

the foraging range (50). 229 

 230 

In order to ascertain the best form for each explanatory covariate, we fitted separate models with 231 

both linear and smoothed forms of each term, visualised the shape of smoothers and determined 232 

the effect of the inclusion of each form on Akaike Information Criteria (AIC).  Smoothers were only 233 

included in final models where deemed biologically reasonable.  For example, although the 234 

smoothed forms of the front frequency metrics (mfreq; cfreq) were associated with lower AIC, linear 235 

forms were preferred following visualisation of the smoother, as a conservative approach to prevent 236 

over-fitting.   Forwards and backwards step-wise model selection using AIC identified the final 237 

model, which was then checked for overdispersion.   Model residuals were checked for spatial 238 

autocorrelation (53). 239 

 240 

3.0 RESULTS  241 

3.1  Gannet foraging trips 242 

For the 66 birds tracked over the two breeding seasons, mean number of foraging trips was 3.8 ± 2.8 243 

(range 1-12), with an average duration of 24.8 ± 22.7 hours (range 2 – 168 hours).  The majority 244 

(76%) involved one or more nights spent away from the colony (mode 1; range 0-7).  Maximum 245 

foraging range per trip ranged between 22.2 and 432.0 km from the colony, with an average of 178.3 246 

± 87.2 km.  All foraging trips included at least one ARS zone. 247 

 248 

3.2  Contemporaneous thermal and chl-a fronts  249 

We found no evidence that gannet ARS was associated with contemporaneous thermal or 250 

chlorophyll-a fronts, even when varying the threshold used for thermal front definition and the 251 

radius used to define ARS through the residence time analysis.   Although QICu model selection 252 

retained contemporaneous front metrics in some model runs (Supp. Table 1), post-hoc repeated 253 

Wald’s tests confirmed that only distance to colony explained a significant proportion of deviance in 254 

each of these model runs (Supp. Fig. 3).   255 

 256 
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Model validation confirmed goodness of fit of final models.  True positive rates of model predictions, 257 

obtained from confusion matrices, are given in Supplementary Table 1. ROC curves confirmed 258 

models performed acceptably well.  High levels of temporal autocorrelation (within-block 259 

correlation, e.g. thermal 0.4°C threshold, 5km RT radius fdens = 0.97 ± 0.04) justified the use of GEEs.  260 

QIC comparison confirmed an AR1 autoregressive correlation structure as best fit for the data for all 261 

models.  262 

 263 

  264 

FIGURE 3 HERE 265 

 266 

TABLE 1 HERE 267 

 268 

3.3  Seasonally persistent thermal and chl-a frontal zones 269 

Seasonal thermal front frequency (mfreq; Fig. 4a) was retained by model selection (2
1 = 322.5, p < 270 

0.001; Fig. 4c; Table 2), with the probability of ARS twice as likely at high front frequency compared 271 

with low (Fig. 4c).  A smoothed relationship with habitat accessibility was also retained (HabAccess, 272 

df = 8, p < 0.001; Supp. Fig. 4; Supp. Table 2).  The model explained 33% of deviance and was not 273 

over-dispersed (dispersion statistic = 0.83). Colinearity between thermal front frequency (Fig. 4a) 274 

and seasonal average surface chl-a concentration also confirms that persistent frontal zones are 275 

areas of increased primary productivity. 276 

 277 

The seasonal front frequency index for chlorophyll-a fronts (cfreq; Fig. 4b) was also significant in 278 

explaining the spatial distribution of ARS over the breeding season (2
1 = 3108, p < 0.001; Fig. 4d; 279 

Supp. Table 2), alongside smoothed habitat accessibility (p < 0.001; Supp. Fig. 4; Supp. Table 2).  The 280 

model explained 32% of deviance and was not over-dispersed (dispersion statistic = 0.88).   281 

 282 

FIGURE 4 HERE 283 

 284 

TABLE 2 HERE 285 

 286 

4.0 DISCUSSION   287 

Combining composite front mapping with high-resolution GPS tracking, this work has revealed that 288 

gannets are more likely to perform ARS within persistent mesoscale frontal zones than in other 289 

regions of accessible habitat.  This is of particular significance since it not only shows that mesoscale 290 
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fronts influence habitat selection, but also that remote sensing methods are able to identify features 291 

relevant to piscivorous marine vertebrates.  Moreover, this work also illustrates that temporal scale 292 

is crucial - gannets do not tend to forage at ephemeral contemporaneous fronts, instead relying on 293 

spatially predictable, seasonally persistent zones of frequent frontal activity. 294 

 295 

4.1. Mesoscale fronts and top predator foraging 296 

Predictability of foraging grounds is known to strongly influence seabird habitat selection, and may 297 

partially explain our observed differences in front use (5).  Many marine predators, including 298 

seabirds, are known to repeatedly return to the same foraging areas (5, 7, 40, 63), which is generally 299 

attributed to the presence of oceanographic features that are predictable in time and space.  In the 300 

Celtic Sea, these predictable foraging areas are associated with persistent mesoscale thermal and 301 

chl-a frontal zones.  The ultimate mechanisms by which these features are located are not known, 302 

although a combination of memory effects, local enhancement and colonies acting as information 303 

centres strongly influence observed foraging distributions in this species (52). Proximate 304 

environmental factors enabling front detection include visual cues associated with the accumulation 305 

of foam and detritus (18, 22); flow patterns, including surface convergence (22) and cross-frontal 306 

jets (34), or olfactory cues such as dimethyl sulphide (DMS; 65).  Persistent fronts probably produce 307 

a stronger surface signal than ephemeral features, increasing detectability. 308 

 309 

Alongside greater spatial predictability and detectability, persistent mesoscale frontal zones also 310 

present more attractive foraging opportunities than ephemeral fronts.  The bio-aggregative effects 311 

of fronts vary with temporal persistence, spatial scale, temperature gradient, strength of convergent 312 

flow and the properties of surrounding water masses, influencing their attractiveness as top 313 

predator foraging habitat.  Ephemeral, weak or spatially-variable features may not propagate for 314 

sufficient time for biological enhancement to attract mid-trophic level consumers such as pelagic 315 

fish.  In contrast, persistent frontal zones are associated with sustained primary productivity, and 316 

therefore more likely to attract the pelagic fish preyed upon by seabirds and other large marine 317 

vertebrates.  318 

 319 

In contrast to our findings, the closely-related Cape gannet Morus capensis is known to initiate ARS-320 

type behaviours at contemporaneous chl-a fronts in the Benguela (16). The reasons for these 321 

differences are not clear, but are likely to be related to differences in regional oceanography. Small-322 

scale, superficial and ephemeral thermal fronts develop frequently in the Celtic Sea through tidal 323 

effects and cycles of stratification and mixing (30), but are not always associated with chl-a 324 
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enrichment (28, 67).  In contrast, the Benguela is a major upwelling zone, in which upwelling 325 

filaments, eddies and strong vertically-structured fronts manifest.   Although varying in seasonal 326 

intensity and position, upwelling fronts in the Benguela are less spatiotemporally variable than tidal 327 

fronts in the Celtic Sea over time scales of days to weeks, and so may be more predictable foraging 328 

habitats for seabirds using learning and memory effects to locate prey (5).   In addition, Cape 329 

gannets prey upon the mega-abundant sardines and anchovies in the Benguela (16).  These fish are 330 

zooplanktivorous, and therefore more closely tied to oceanographic drivers, than the piscivorous fish 331 

(e.g mackerel Scomber scombrus, garfish Belone belone) targeted by northern gannets in the Celtic 332 

Sea (39).  Differences in the biophysical nature of fronts encountered by prospecting birds within 333 

these two contrasting oceanographic regions elicit different responses from these two closely-334 

related species. These differences highlight the need for a comprehensive understanding of regional 335 

oceanography when investigating the drivers of habitat selection for mobile marine vertebrates.  336 

 337 

Gannets in the Celtic Sea also forage extensively at fishing vessels (39,67, 68), so fisheries activity 338 

could also influence the association between fronts and gannets reported here. Nevertheless, we 339 

believe that gannets are using persistent frontal zones as natural foraging sites for the following 340 

reasons. First, gannets switch between natural foraging and scavenging both within and among trips 341 

(39) and must therefore rely upon both natural foraging and scavenging.  Second, analysis of a 342 

subset of ten gannets in 2011 equipped with bird-borne cameras enabled us to determine frontal 343 

activity in the presence and absence of fishing vessels.  This revealed little difference between 344 

vessel-associated ARS instances, those associated with natural foraging and conditions experienced 345 

during transit (see Supp. Fig. 5).  Third, the majority of trawlers that gannets follow in the Celtic Sea 346 

target demersal fish (39), which would not benefit from fishing in frontal regions.  347 

 348 

4.2. Composite front mapping and marine predator foraging habitat  349 

We have used multi-threshold objective front detection to produce composite thermal and chl-a 350 

front maps at 1km resolution, enabling us to quantify the influence of fronts on foraging habitat 351 

selection in gannets.  Using this technique has negated sacrifice of tracking data as a result of cloud 352 

cover.  Furthermore, using both temporally-matched 7-day front composites and seasonal front 353 

indices has revealed the importance of considering frontal persistence.  However, composite front 354 

mapping does have limitations with implications for defining marine predator foraging habitats.  In 355 

common with all remotely-sensed products, only the surface signature of complex three-356 

dimensional oceanographic processes is visible.  Resolution of imagery is also limited by sensor 357 

technology, restricting our ability to detect sub-mesoscale (~1km) nearshore tidal fronts, potentially 358 
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significant features in shallow shelf-seas (69).  Furthermore, using 7-day composites could mask real-359 

time, fine-scale responses to environmental cues.  Recent in-situ studies of fine-scale oceanographic 360 

influence on seabird foraging have identified tidal state, thermal stratification index, and sub-surface 361 

processes such as tidal shear at the thermocline, as significant influences on foraging decisions (55, 362 

70).  These fine-scale processes cannot be detected using contemporary remote sensing techniques.  363 

However, remote sensing can provide oceanographic context for the movements of known 364 

individuals over broader spatial and temporal scales, generating insights of direct relevance to 365 

predictive habitat modelling (71) and marine spatial planning (51). 366 

 367 

 5.0  CONCLUSIONS  368 

We here present proof of concept that objective front detection and composite front mapping (36) 369 

can enhance the value of predator tracking data for habitat utilisation studies and improve 370 

understanding of mechanistic links between oceanographic processes and marine vertebrate 371 

foraging ecology.  Novel front metrics used here provide capacity for quantification of the strength 372 

of predator-frontal relationships without neglecting the significance of frontal strength, persistence 373 

and scale.  We have found that persistent frontal zones are preferred foraging habitats of a 374 

piscivorous top predator inhabiting a shallow shelf sea, but that responses to contemporaneous 375 

thermal and chl-a fronts vary.  Persistent frontal zones are likely to represent predictably profitable 376 

foraging grounds for predators that use learning and memory effects to locate prey.  In contrast, 377 

ephemeral, superficial fronts may not present attractive foraging opportunities owing to the spatial 378 

and temporal lags inherent in bio-aggregation.  Furthermore, persistent fronts are more likely to 379 

generate environmental cues discernable to overflying gannets, and so more likely to become sites 380 

of local enhancement for these network foragers.  These findings provide direct evidence that the 381 

temporal persistence of mesoscale fronts fundamentally regulates their value as foraging habitats 382 

for marine predators. 383 

 384 

Although considerable advances have been made in our understanding of the oceanographic drivers 385 

of marine vertebrate habitat use in recent years, questions remain regarding the strength and 386 

nature of predator-frontal associations.  Our methods have considerable scope for further 387 

application, providing opportunity for environmental contextualisation of habitat use, across 388 

foraging guild, trophic level and oceanographic region.  Composite front mapping allows us to 389 

objectively detect thermal and chl-a fronts anywhere in the global ocean at high resolution, which 390 

could help in locating critical at-sea habitats for mobile marine vertebrates, many of which are of 391 

immediate conservation concern (72, 73).  Furthermore, continuous near-real time global satellite 392 
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monitoring of environmental conditions, together with animal tracking and biologging, provides 393 

capacity for investigation of responses to global change. 394 
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FIGURE AND TABLE CAPTIONS 585 

 586 

FIGURES 587 

Fig. 1.  GPS tracking.  All foraging trips of birds GPS-tracked during 2010 (a, n=17) and 2011 breeding 588 

seasons  (b, n=49).  Grassholm colony shown as grey star. 589 

 590 
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Fig. 2. Composite front mapping.  Preparation of thermal composite front maps, and front metrics 591 

rasters, from Advanced Very High Resolution Radiometer (AVHRR) sea surface temperature (SST) 592 

images.  Several satellite passes per day are mapped to the study area (e.g. a,b).  Single-Image Edge 593 

Detection (SIED) detects fronts in each of these swaths, using a given threshold for front definition, 594 

here 0.4°C (c,d).  Composite front maps are created from all fronts detected in imagery over a 7-day 595 

period (e; Miller, 2009), and spatially smoothed to generate a frontal density (fdens) metric (f)  or 596 

simplified to generate a distance to closest front (fdist) metric (g). 597 

 598 

Fig. 3.  Contemporaneous front metrics time-matched to gannet foraging trip. Distance to closest 599 

thermal front (fdist; 0.4°C threshold, a), thermal front density  (fdens; 0.4°C threshold, b), distance to 600 

closest chl-a front (c) and chl-a front density (d) shown for one complete foraging trip (23 July 2011).  601 

Points designated as ARS by residence time analysis (5km radius) shown as white track sections, and 602 

transit as black track sections.  Colony location shown as black star. 603 

 604 

Fig. 4. Modelling the effects of persistent frontal zones (thermal, chl-a) on the spatial distribution 605 

of gannet area-restricted search behaviour.  Seasonally persistent (Jun-Aug 2011) thermal frontal 606 

zones (a) and chl-a frontal zones (b), identified using frequent front (mfreq; cfreq) metrics.  Model 607 

predictions for effects of seasonal thermal front frequency (c; model 4.1) and seasonal chl-a front 608 

frequency (d; model 4.2). Gannets are more likely to perform ARS behaviours within regions of 609 

frequent frontal activity.   610 
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rasters, from Advanced Very High Resolution Radiometer (AVHRR) sea surface temperature (SST) 

images.  Several satellite passes per day are mapped to the study area (e.g. a,b).  Single-Image Edge 

Detection (SIED) detects fronts in each of these swaths, using a given threshold for front definition, 
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Fig. 3.  Contemporaneous front metrics time-matched to gannet foraging trip. Thermal front 

density (fdens; 0.4°C threshold, a),  distance to closest thermal front (fdist; 0.4°C threshold, b), chl-a 

front density (d) and distance to closest chl-a front (d) shown for one complete foraging trip (23 July 

2011).  Points designated as ARS by residence time analysis (5km radius) shown as white track 

sections, and commuting flight as black track sections.  Colony location shown as black star. 

 

 



 

 

Fig. 4. Modelling the effects of persistent frontal zones (thermal, chl-a) on the spatial distribution 

of gannet area-restricted search behaviour.  Seasonally persistent (Jun-Aug 2011) thermal frontal 

zones (a) and chl-a frontal zones (b), identified using frequent front (mfreq; cfreq) metrics.  Model 

predictions for effects of seasonal thermal frontal frequency (c; model 4.1) and seasonal chl-a frontal 

frequency (d; model 4.2). Gannets are more likely to perform ARS behaviours within regions of 

frequent frontal activity.   



 

 

Supplementary Fig. 1. Modelling the effects of contemporaneous thermal fronts on gannet area-

restricted search behaviour, using GEE-GAMs.  Contemporaneous front GEE-GAM results (model 

1.1.2), showing predicted influence of proportional distance to colony.  All other explanatory terms, 

including thermal and chlorophyll front metrics, were not statistically significant, so are not shown 

here.  The higher probability of ARS further from the colony represents the tendency for ARS zones 

to take place at the distal point of foraging points, as ARS 0/1 along each track was used as the 

response variable.  Confidence Intervals represented by dashed lines, here close to the main effect 

line, owing to small standard error on this coefficient estimate in model output. 



 

 

Supplementary Fig. 2. Modelling the effects of persistent frontal zones (thermal, chl-a) on the 

spatial distribution of gannet area-restricted search behaviour.  Habitat Accessibility index fitted to 

binomial GAM investigating the influence of persistent frontal zones on gannet ARS behaviour 

(models 4.1, 4.2) as a control for availability of fronts as a function of distance from colony. 

 


