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Abstract

Antarctic krill is a cold water species, an increasingly important fishery resource and a major prey item for many fish, birds
and mammals in the Southern Ocean. The fishery and the summer foraging sites of many of these predators are
concentrated between 0u and 90uW. Parts of this quadrant have experienced recent localised sea surface warming of up to
0.2uC per decade, and projections suggest that further widespread warming of 0.27u to 1.08uC will occur by the late 21st

century. We assessed the potential influence of this projected warming on Antarctic krill habitat with a statistical model that
links growth to temperature and chlorophyll concentration. The results divide the quadrant into two zones: a band around
the Antarctic Circumpolar Current in which habitat quality is particularly vulnerable to warming, and a southern area which
is relatively insensitive. Our analysis suggests that the direct effects of warming could reduce the area of growth habitat by
up to 20%. The reduction in growth habitat within the range of predators, such as Antarctic fur seals, that forage from
breeding sites on South Georgia could be up to 55%, and the habitat’s ability to support Antarctic krill biomass production
within this range could be reduced by up to 68%. Sensitivity analysis suggests that the effects of a 50% change in summer
chlorophyll concentration could be more significant than the direct effects of warming. A reduction in primary production
could lead to further habitat degradation but, even if chlorophyll increased by 50%, projected warming would still cause
some degradation of the habitat accessible to predators. While there is considerable uncertainty in these projections, they
suggest that future climate change could have a significant negative effect on Antarctic krill growth habitat and,
consequently, on Southern Ocean biodiversity and ecosystem services.
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Introduction

Climate warming is already producing complex spatial and

seasonal changes in the Earth’s habitats and ecosystems [1], [2].

Warming is expected to increase significantly over the 21st

Century [3], leading to ecosystem change and potentially severe

socioeconomic consequences [4]. Observed changes in the

Southern Ocean include localised sea ice loss [5] and increases

in summer sea surface temperatures (SSTs) of 1uC over 5 decades

near the western Antarctic Peninsula [6] and 0.9uC over 8 decades

at South Georgia [7]. Previous studies have identified potential

relationships between climate-related variables (sea temperature,

ice cover and pH) and the recruitment, survival, growth and

distribution of the crustacean Antarctic krill, Euphausia superba [8],

[9], [10]. Antarctic krill is a characteristic species of the Southern

Ocean and exists within a narrow band of cold temperatures (up to

,5uC) [11], [12], [13]. It is an increasingly important fishery

resource and a major prey item for a diverse suite of predators

including whales, penguins, seals and fish [14], [15], [16], [17],

[18], [19]. The role of Antarctic krill in supporting predators

might be more significant than that of any comparable species

elsewhere in the world’s oceans [16].

Antarctic krill has an estimated biomass in excess of 26108t

[18], [20], about one-quarter of which is concentrated in about

10% of its total habitat area, specifically the Scotia Sea and

southern Drake Passage (Fig. 1) [11], [12], [21]. This is where

many air breathing vertebrates congregate to feed on Antarctic

krill and rear offspring on islands such as South Georgia [18], [22].

For example, about 95%, 50% and 25% [23], [24], [25] of the

global populations of Antarctic fur seals (Arctocephalus gazella), grey

headed albatrosses (Thalassarche chrysostoma) and wandering alba-

trosses (Diomedea exulans) breed at South Georgia where Antarctic

krill constitute approximately 85%, 76% and 12% of their

respective diets [15], [26]. Antarctic krill is also an abundant

fishery resource which, according to the Food and Agriculture

Organisation of the United Nations, is underexploited [27]. The

potential harvest from the Scotia Sea and southern Drake Passage

is equivalent to 7% of current global marine fisheries production

[28].

It is important to evaluate how further environmental change

might affect Antarctic krill and consequently the biodiversity and

ecosystem services of the Southern Ocean. In this study, we

examine some of these effects by assessing potential changes in the

habitat’s ability to support Antarctic krill growth. Growth
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represents the accumulation of resources within an individual or

population and is therefore a valuable indicator of overall habitat

quality [29]. Individual Antarctic krill can increase their body

mass by up to a factor of four within a single growing season [20]

and this production of new biomass supports predators and the

fishery. We assess potential habitat changes over the 21st century

by combining a statistical model of Antarctic krill growth [30] with

projected SST changes from the Coupled Model Intercomparison

Project Phase 5 (CMIP5) multi-model ensemble [31]. The

statistical model links growth to body size, SST and food

availability. We focus on the quadrant between 0u and 90uW
(also known as the Weddell Quadrant [32]), which encompasses

the Scotia Sea and southern Drake Passage, and we assess

potential changes within the ranges of predators foraging from

South Georgia in more detail.

Methods

Models and Metrics
An assessment of various models for evaluating Antarctic krill

growth habitat on the basis of temperature [33] favoured the use

of statistical models [30], [34]. These models are based on the

observed growth rates of Antarctic krill caught in a wide range of

environmental conditions. We used one such model [30,12] that

relates the daily increase in Antarctic krill length (daily growth

rate: DGR, mm.d21) to sea surface temperature (SST, uC), food

availability indicated by chlorophyll-a concentration (CHL,

mg.m23), and starting length (L, mm):

DGR ~ {0:066z0:002L{0:000061L2z
0:385CHL

0:328zCHL

z0:0078SST{0:0101SST2

ð1Þ

The following relationship, which was derived from the same

data as equation 1 [30], converts individual Antarctic krill length

(mm) to dry mass, M (mg):

log10(M) ~ 3:89log10(L){4:19 ð2Þ

Previous studies [12], [20] have used equations 1 and 2 to

estimate Gross Growth Potential (GGP) based on spatially-

resolved, monthly averages of SST and CHL. GGP is the model-

predicted dry mass of an individual Antarctic krill at the end of the

summer growth season divided by its dry mass at the beginning of

the season. GGP is therefore a unitless quantity that indicates the

habitat’s ability to support Antarctic krill growth.

The CMIP5 dataset [31] provides the results of climate

simulations from multiple climate models. The variations in

important factors such as greenhouse gases and aerosols which

were used to drive simulations to 2005 were observed values,

whereas simulations from 2006 were forced with Representative

Concentration Pathways (RCPs). These RCPs include represen-

tations of potential changes to factors such as greenhouse gas and

air pollutant emissions and land-use, and are named according to

projected radiative forcing in the year 2100 [35]. RCP2.6 has peak

Figure 1. The distribution of Antarctic krill and the study area. (A) The observed distribution of Antarctic krill (individuals.m22 within each 5u
longitude by 2u latitude grid cell, ND = no data, 0* = no Antarctic krill recorded in the available data) from [12]. (Inset & B) The study area, showing the
Antarctic Circumpolar Current (ACC), which is bounded to the north by the Antarctic Polar Front and to the south by the Southern boundary of the
ACC (Positions from [36]). The concentric distances from South Georgia (SG) indicate the approximate foraging ranges of representative predators of
Antarctic krill: Antarctic fur seals (140 km), Wandering albatrosses (610 km) and Grey-headed albatrosses (1200 km). Areas north of 50uS (shaded
grey) were not included in the study. Ant. Pen = Antarctic Peninsula, SO = South Orkney Islands, SSI = South Sandwich Islands.
doi:10.1371/journal.pone.0072246.g001
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radiative forcing of ,3 W.m22 in the first half of the 21st century,

falling to ,2.6 W.m22 by 2100. In this scenario, aggressive

mitigation results in negative net greenhouse gas emissions by the

end of the century. Under RCP4.5, greenhouse gas emissions rise

until around 2040 before falling below those for the year 2000 by

the end of the century, and radiative forcing stabilizes at

,4.5 W.m22 around 2100. Under RCP8.5, radiative forcing

reaches 8.5 W.m22 in 2100 and continues to rise [31], [35].

We used results from RCP2.6, RCP4.5 and RCP8.5 to calculate

projected 21st Century SST changes for the Southern Ocean in

the longitudinal quadrant 0uW to 90uW. We define the Southern

Ocean as the marine area south of the Antarctic Polar Front

(position defined in [36], 2008 update available from: data.aad.-

gov.au/aadc/metadata/metadata_redirect.cfm?md = /AMD/

AU/southern_ocean_fronts). We explored the implications of

projected SST change for spatially-resolved GGP in the same

quadrant for the area south of 50uS (the study area). 50uS is the

northern limit of Antarctic krill distribution [11], [12].

We used equation 1 to calculate the length increase per week for

summer growing seasons in the current (2002–2011) and

projection (2070–2099) periods. These calculations used monthly

averages of SST and CHL. For weeks that straddled two months,

we used weighted averages of SST and CHL from those two

months. We updated the Antarctic krill starting length at the

beginning of each week and converted the initial and final lengths

to dry mass using equation 2. We then divided final mass by

starting mass to estimate GGP.

To estimate current GGP, we used monthly estimates of current

SST based on observations [37], which we label SSTo,m,c.

Subscript o indicates that the data are observations, m indicates

the month and c indicates that the estimate is a climatology (i.e. a

long term average). Climatologies are appropriate for variables,

such as SST, that have high interannual variability [38]. Our

estimates of projected GGP were based on estimates of projected

SST, SSTp,m,y, from the CMIP5 results, where the subscript p

indicates that the data are projections and y indicates year. To

correct for bias in model estimates of SST [38], we first converted

projected SST into differences from an SST climatology

representing current conditions in the same model, SSTb,m,c,

where subscript b indicates model baseline conditions. We then

added the current climatology based on observations, SSTo,m,c, to

calculate a bias-corrected estimate of projected SST, SST 0p,m,y:

SST 0p,m,y ~ SSTp,m,y{SSTb,m,czSSTo,m,c ð3Þ

We used this bias-corrected SST estimate to calculate projected

GGP.

The World Meteorological Organisation recommends calculat-

ing climatological conditions over 30 years (www.wmo.int/pages/

prog/wcp/ccl/faqs.html). We therefore selected the period 1991–

2020 for SSTb,m,c and we obtained SSTp,m,y for each year 2070–

2099. The climatological period for SSTo,m,c was restricted by

data availability to 2002–2011. We obtained SSTb,m,c and

SSTp,m,y for each available model in the CMIP5 results. Within

each RCP, SST estimates for each model were calculated as the

mean of the estimates for all realisations available for that model.

Consequently contributions from all models were given equal

weight in across-model means, regardless of the number of

realisations per model.

In addition to SST data, GGP estimation requires a starting

length and CHL estimates. We used a starting length of 40 mm,

which is the observed mean length for the postlarval population of

Antarctic krill [20]. Following [20] we also considered starting

lengths of 30 mm and 50 mm.

We used remote-sensed, spatially-resolved CHL estimates

(CHLo,m,c) [39]. The climatological period for CHLo,m,c was

restricted by data availability to 1997–2010. We varied these CHL

estimates to assess the sensitivity of our results to assumptions

about chlorophyll-a concentration. One study estimates that the

Southern Ocean experienced a 10% decline in chlorophyll-a

concentration over about 17 years between the 1980s and 1990s

[40]. Linear extrapolation of this change suggests a 50% reduction

over our eight decade projection period. We therefore decreased

the CHL estimates by 50%. We also considered increases by the

same amount.

We calculated spatially-resolved estimates of current GGP using

SSTo,m,c and CHLo,m,c, and spatially-resolved estimates of

projected GGP for each year 2070–2099 for each available

CMIP5 model in each of the three RCPs. Our GGP estimates for

the period 2070–2099 were resolved to grid cell (1u longitude by

0.5u latitude), model and projection year. We averaged across

years and models to derive a single estimate of projected GGP for

each combination of grid cell, chlorophyll-a concentration, and

RCP. We then subtracted the estimated current GGP (i.e. that

calculated using observed SSTs, SSTo,m,c, and observed chloro-

phyll-a concentrations, CHLo,m,c) from projected GGP to estimate

the GGP change between the current period and 2070–2099.

From our spatially-resolved GGP estimates, we calculated three

spatially-aggregated metrics for each combination of chlorophyll-a

concentration and RCP: (1) average GGP by year, (2) total GGP,

and (3) growth area. Average GGP by year is the mean of those

across-model, grid-cell-and-year-specific GGP estimates that were

$1. GGP,1 indicates that the habitat does not support growth or

maintenance of body size. It implies shrinkage resulting from

starvation, which has been observed in Antarctic krill [41]. To

estimate total GGP we first calculated, for each grid cell in each

model, the across-year mean GGP for the period 2070–2099. We

then calculated, for each model, the area-weighted sum of those

resulting grid cell-specific estimates of GGP that were $1. Total

GGP is the across-model mean of this sum. Weighting by grid cell

area was necessary because this area changes with latitude. To

estimate growth area we calculated, for each model, the total area

of all grid cells in which the across-year mean GGP was $1.

Growth area was the across-model mean of this sum.

We estimated projected change relative to current conditions in

the form of relative GGP and relative growth area. We calculated

these relative values by dividing total GGP and growth area by the

equivalent metric calculated using observed SSTs, SSTo,m,c, and

chlorophyll-a concentrations, CHLo,m,c. Our estimate of relative

GGP excludes GGP values ,1 and therefore does not include

further degradation of habitat that did not initially support growth.

It does, however, include such habitat becoming viable for growth.

We calculated relative GGP and relative growth area for our

entire study area, and within the foraging ranges of representative

Antarctic krill predators foraging from South Georgia.

Data
We obtained spatially-resolved monthly mean SST data at a

nominal horizontal resolution of 9 km for the austral summer

periods (December to March) from December 2002 to March

2011 from the archive of Aqua MODIS level 3 data [37], and

chlorophyll-a concentration data for the austral summer periods

from December 1997 to March 2010 from the archive of

SeaWIFS data [39]. Both of these datasets are available through

the NASA OceanColor website (oceancolor.gsfc.nasa.gov). We ob-

tained spatially-resolved, monthly mean SST data for the period

Climate Change Effects on Antarctic Krill Habitat

PLOS ONE | www.plosone.org 3 August 2013 | Volume 8 | Issue 8 | e72246



1990–2100, for each selected RCP, from the output of multiple

climate models which are available as part of the CMIP5 multi-

model ensemble results [31]. The CMIP5 model data were

downloaded from the distributed CMIP5 archive accessed via the

Program for Climate Model Diagnosis and Intercomparison

CMIP5 data portal (cmip-pcmdi.llnl.gov/cmip5/data_por-

tal.html). We used the results that were available on 31 Jan

2012, including 14 sets of model results available for RCP2.6, 15

for RCP4.5 and 16 for RCP8.5 (Table 1). SST in these results is

the average temperature of the surface layer of the modelled

ocean. The depth of this layer is ,20 m in all 16 models and

exactly 10 m in 10 of them.

In addition to analysing habitat quality across the study area, we

also extracted statistics for the areas within each of three

concentric distances from South Georgia that indicate the summer

foraging ranges of representative near, medium and long-range

foragers. These distances were 140 km, 610 km, and 1200 km

which respectively indicate the foraging ranges of Antarctic fur

seals [42], wandering albatrosses [26] and grey headed albatrosses

[26] during the summer offspring rearing period.

The data were initially available on different types of grid which

we converted to a common grid of 1u longitude by 0.5u latitude.

The remote-sensed SST and chlorophyll-a concentration data

were both available on regular, fine-scale grids with a resolution of

5 arc minutes, so for each grid cell in the common grid we simply

calculated the mean of the 72 constituent fine-scale grid cells.

Some of the CMIP5 SST data were provided on a regular grid.

We converted these data to the resolution of the common grid

using bilinear interpolation [43]. For data not provided on a

regular grid, we used all grid points to generate a Delaunay

triangulation on an equirectangular projection [44], and we

converted the data from this triangulation onto the common grid

using linear interpolation [45]. We flagged as missing data any

value on the common grid that was affected by a land point. The

representation of coastline varies between models, so GGP

estimates in coastal cells are informed by varying numbers of

models. This does not affect any of our main conclusions.

The availability of remote-sensed SST and chlorophyll-a

concentration data varies temporally due to the presence of cloud

and ice cover, and cells with insufficient coverage appear as

missing data in the Aqua MODIS and SeaWIFS monthly mean

data products. Our objective was to achieve extensive spatial

coverage with sufficient observations in each cell to provide

representative monthly SST and chlorophyll-a concentration

estimates for the summer growth season. We achieved a suitable

balance of spatial and temporal coverage by including only those

1u by 0.5u cells for which data were available for a minimum of

20% of the initial fine-scale grid cells per month for at least 3 years

during the climatology period. To maximise spatial data coverage,

we constructed the climatologies from the full period of data

availability for each data type separately, and restricted the

analysis to the period January to March. The majority of krill

growth occurs between December and March [11], and previous

studies of current habitat quality have used this four month period

but consequently had less spatial coverage [12], [20]. The

application of these criteria defined the areas for inclusion and

exclusion of data in our calculations, which we applied consistently

to each data set that we used.

Results

The results presented in this section are for an assumed

Antarctic krill starting length of 40 mm. The Supporting

Information (Figs. S1, S2 and S3) compares results for different

starting lengths (30 mm, 40 mm and 50 mm).

The growth model correctly identified the warmer waters north

of the Antarctic Polar Front as unable to support Antarctic krill

growth (Fig. 2). There was considerable spatial structure in current

GGP estimates for the study area, including patches of elevated

habitat quality along the coast of the Antarctic continent and

around the South Orkney and South Sandwich islands. These

patterns were less distinct but still apparent with changed

chlorophyll-a concentrations. Fig. 2 shows extensive areas in the

southern Weddell Sea and along the coast of the Antarctic

Peninsula for which we did not calculate GGP because of low data

availability due to frequent ice cover.

Monthly climatological SSTs from CMIP5 models for the

period 1991–2020 were, on average, 2.04uC warmer than SST

estimates for 2002–2011 from Aqua MODIS data, but there was

reasonable spatial correlation between the two datasets (r = 0.954).

The mean projected summer SST warming for the area south of

the Antarctic Polar Front between 1991–2020 and 2070–2099 was

0.27uC, 0.56uC and 1.08uC for RCP2.6, RCP4.5 and RCP8.5

respectively. These estimates varied between years and between

models (Fig. 3).

Projected GGP declines were concentrated in a band that

approximates the location of the Antarctic Circumpolar Current

(ACC) (Fig. 4). Most models projected significant warming of the

ACC under RCP4.5 and RCP8.5. The RCP2.6 results identified

an area of warming in the west Scotia Sea, but otherwise there was

little agreement between the models about projected changes in

GGP under RCP2.6. In the cells where $90% of model

projections agreed on the sign of change in GGP, the projected

GGP declines (with unchanged chlorophyll-a concentrations) were

16%, 25% and 37% for RCP2.6, RCP4.5 and RCP8.5

respectively. The corresponding reductions in growth area were

13%, 23% and 33%. The projections included moderate increases

in habitat quality on the continental coast in the far west of the

study area, but ,90% of model projections agreed on the sign of

change in GGP for much of this area.

The projected GGP declines (with unchanged chlorophyll-a

concentrations) across all cells were 7%, 12% and 22% for

RCP2.6, RCP4.5 and RCP8.5 respectively (Fig. 5). The corre-

sponding reductions in Antarctic krill growth area were 5%, 10%

and 20% for RCP2.6, RCP4.5 and RCP8.5 respectively.

Inevitably a 50% reduction in chlorophyll-a concentration led to

greater reductions in both GGP and growth area. When

chlorophyll-a concentration was increased by 50%, the projected

warming under RCPs 4.5 and 8.5 still led to significant reductions

in growth area. Nonetheless, the effect of a 50% increase in

chlorophyll-a concentration moderated the overall effects of

warming on relative GGP.

The spatially-resolved projected GGPs for each combination of

RCP and chlorophyll-a concentration had similar maxima which

increased slightly (from 4.9 to 5.2) with chlorophyll-a concentra-

tion (Fig. S4). The mode of estimated current GGP was 2.1, and

the modes of projected GGP with unchanged chlorophyll-a

concentrations were similar (1.8 to 2.0) for all RCPs. The mode

increased (from about 1.3 to about 2.5) with increasing chloro-

phyll-a concentration and the area with near modal values

declined with increasing SST (i.e. from RCP2.6 to RCP8.5).

South Georgia is located in the band of projected GGP declines.

Consequently there were pronounced negative effects within the

foraging ranges of predators breeding on this island. These

negative effects were greatest for those predators with the most

restricted foraging ranges (Fig. 6), where the projected GGP

declines (with unchanged chlorophyll-a concentrations) were 9%,
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Figure 2. Current Antarctic krill summer growth habitat quality and sensitivity to chlorophyll concentration. (A) Gross Growth
Potential (GGP, a unitless quantity which indicates the potential proportional increase in the mass of an individual Antarctic krill during a single
summer and is therefore a measure of habitat quality) calculated for an individual with a starting length of 40 mm using observed SSTs (for the
period 2002–2011), and observed chlorophyll-a concentrations (for the period 1997–2010) reduced by 50%. (B) Estimated current GGP calculated
using observed SSTs, and observed chlorophyll-a concentrations. (C) Estimated current GGP calculated using observed SSTs, and observed
chlorophyll-a concentrations increased by 50%. The spatial resolution is 1u longitude by 0.5u latitude and the thick black line indicates the northern
extent of the growth area (the habitat that supports Antarctic krill growth with the relevant chlorophyll-a concentration). Thus, the thick black line in
(B) delimits the current growth area.
doi:10.1371/journal.pone.0072246.g002

Figure 3. Projected 21st Century summer surface warming of the Southern Ocean between 06 and 906W. Projected summer (January to
March) sea surface temperature (SST) anomaly for the region between 0u and 90uW and south of the Antarctic Polar Front (Fig. 1). The SST anomaly is
the within-year mean of spatially-resolved summer SSTs for a specific model realisation minus the 1991–2020 mean of spatially-resolved summer SSTs
for the same model realisation. The coloured lines indicate the mean SST anomaly for 1991–2099 across all available models (Table 1) for each of
three Representative Control Pathways (RCPs 2.6, 4.5 and 8.5) and the shaded envelopes indicate the between-realisation standard deviation for RCPs
2.6 and 8.5.
doi:10.1371/journal.pone.0072246.g003
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24% and 68% and the corresponding reductions in growth area

were 5%, 6% and 55% for RCP2.6, RCP4.5 and RCP8.5. The

negative effects projected for RCP8.5 were apparent even with the

combination of the long foraging range of grey headed albatrosses

and an increase in chlorophyll-a concentration.

Analysis of variance (ANOVA) indicated that RCP, chlorophyll-

a concentration and climate model each significantly influenced

the results shown in Figs. 5 and 6 (e.g. for Fig. 5A three-way

ANOVA suggests that each of these factors had a significant

influence on the response variable, GGP: F = 187, 3182, 33,

Figure 4. Spatial pattern of projected change in Antarctic krill habitat by the late 21st Century. Each panel shows the projected GGP
change (GGP for the period 2070–2099 minus estimated current GGP, as shown in Fig. 2B) calculated across multiple climate models for an Antarctic
krill starting length of 40 mm. The GGP values were calculated using bias-corrected SSTs from RCP2.6 (A, B & C), RCP4.5 (D, E & F) or RCP8.5 (G, H & I)
and observed chlorophyll-a concentrations reduced by 50% (A, D & G), observed chlorophyll-a concentrations (B, E & H), or observed chlorophyll-a
concentrations increased by 50% (C, F & I). Additional symbols (B, E & H) indicate the level of agreement between climate models. Cells where fewer
than 50% of the models project significant change (t-test, P#0.05) from the current period have no additional symbol. Cells where 50% or more of
the models project significant change are highlighted with stippling if 90% or more of models agree on the sign of the change, and are highlighted
with hatched lines if fewer than 90% agree. The spatial resolution is 1u longitude by 0.5u latitude and the thick black line indicates the northern extent
of the current growth area (Fig. 2B).
doi:10.1371/journal.pone.0072246.g004
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P,,0.001). There were also significant interactions between

model and chlorophyll-a concentration (F = 4, P,0.001 for

Fig. 5A), and model and RCP (F = 2, P = 0.026 for Fig. 5A),

which confirms the high degree of between-model variability

shown in Figs. 3 and 4. Tukey multiple comparisons tests identified

consistent differences (P,0.05) between the results (GGP and

growth area) for RCP8.5 and those for RCP2.6 or RCP4.5 when

chlorophyll-a concentrations were set at observed levels or

observed levels plus 50% (see Table S1, for full results).

Discussion

The projected effects of plausible SST warming on Antarctic

krill growth habitat are mainly negative. Under all RCPs that we

Figure 5. Projected change in Antarctic krill habitat in the study area by the late 21st Century. Relative GGP (GGP for the period 2070–
2099 divided by estimated current GGP) (A) and relative growth area (growth area for the period 2070–2099 divided by estimated current growth
area) (B), calculated for the study area (Fig. 1B). Results were calculated across multiple models using bias-corrected SSTs from RCP2.6, RCP4.5 or
RCP8.5, and observed chlorophyll-a concentrations reduced by 50% (CHLo-50%), observed chlorophyll-a concentrations (CHLo), or observed
chlorophyll-a concentrations increased by 50% (CHLo+50%). The assumed Antarctic krill starting length was 40 mm and the error bars show the
between-model standard deviation.
doi:10.1371/journal.pone.0072246.g005

Climate Change Effects on Antarctic Krill Habitat

PLOS ONE | www.plosone.org 8 August 2013 | Volume 8 | Issue 8 | e72246



Climate Change Effects on Antarctic Krill Habitat

PLOS ONE | www.plosone.org 9 August 2013 | Volume 8 | Issue 8 | e72246



considered, the projections imply a decrease in habitat quality over

the 21st century, particularly in the ACC. Our analysis suggests

that these effects could be mitigated to some extent if warming

leads to an overall increase in chlorophyll production. Habitat

quality could improve in some marine areas close to the Antarctic

continent even under the most extreme warming scenario.

However this is unlikely to mitigate the negative impacts within

the foraging ranges of birds and seals breeding at South Georgia.

Recent SST warming rates at South Georgia and the western

Antarctic Peninsula [6], [7] are in the upper range of projected

regional warming rates for the 21st century. However, some parts

of the Southern Ocean have cooled over recent decades and

experienced associated increases in sea ice [46]. Previous

modelling studies suggest that recent warming might have already

degraded Antarctic krill habitat in some areas [13], [33]. Analysis

of the growth model used here with additional parameters from

[34] concluded that, for the period 1970–2004, increasing

temperatures probably reduced the lifetime biomass production

of Antarctic krill at South Georgia but increased it at the Antarctic

Peninsula [33]. Our results suggest that, in the future, increasing

temperature could reduce growth in both of these areas. Reduced

growth could also affect egg production as smaller females produce

fewer eggs [47].

Climate affects species through their habitats. Understanding

these habitat effects is a prerequisite for understanding effects on

biological variables such as abundance and biomass production.

There are many routes through which changing habitats can

influence these variables. For example, successful completion of

the Antarctic krill life cycle apparently requires spawning in water

with specific depth and temperature characteristics [11], [48] and

larval development under sea ice [9]. The summer months that we

model encompass the main growth period of adult Antarctic krill

[11], but winter processes also affect habitat suitability. Other

environmental variables, such as pH, might also be critical for the

sensitive larval stages [10]. Furthermore, the distribution of

Antarctic krill seems to be affected by ocean currents which may

transport individuals thousands of kilometres in a lifetime [49].

Thus, high quality growth habitat will only result in high biomass

production if sufficient Antarctic krill arrive in the area as a result

of transport or local spawning.

These multiple environmental influences on Antarctic krill

abundance and biomass production have several implications.

Firstly, more detailed mechanistic life-cycle and population models

are needed to better assess the potential effects of climate change

[9], [38]. For example, a fuller assessment of temperature effects

might consider how the relationship between SST and the

temperatures that Antarctic krill experience in the water column

changes over time and space. Secondly, the environmental effects

are likely to be more complex than a simple poleward shift in

distribution. Some of the oceanographic characteristics on which

Antarctic krill rely, such as the deep waters of the ACC, will not

move south as the ocean warms. Coastal embayments and high

latitude shelves may be reasonable refugia for growth, but they are

unlikely to provide appropriate habitats for spawning [48] or

connecting subpopulations [50].

Large scale analyses of ecological responses to climate change

generally stress the effects of warming (e.g. [1], [2]). Polar studies

also tend to emphasise warming because polar organisms are

sensitive to temperature [51], [52], which is rising rapidly in some

polar regions [6], [7], [53]. Nonetheless, food availability is also an

important habitat characteristic which, at the physiological level,

can sometimes compensate for the negative effects of temperature

[29]. This is illustrated by the high Antarctic krill abundances and

growth rates found at South Georgia. This is near the northern

limit of the species’ range and has relatively high and physiolog-

ically stressful temperatures, but it also has very high food

concentrations (Fig. 1, [12]). Temperature-food interactions are

therefore likely to influence the ecological effects of climate change

[29]. Using models, such as ours, that explicitly include the effects

of food availability is a useful step towards fuller consideration of

the multiple interacting effects of climate change [38].

Previous studies have reported a 10% decline in chlorophyll-a

concentration in the Southern Ocean over the 1980s and 1990s

[40] and substantial localised increases and decreases in chloro-

phyll-a concentration at the Antarctic Peninsula in the last 30

years [54]. Such changes are associated with changes in the

composition of the phytoplankton community. The main effects at

the Antarctic Peninsula were an overall decline in chlorophyll-a

concentration and a decrease in the abundance of diatoms relative

to other phytoplankton [54]. Such changes are consistent with the

expected widespread consequences of marine warming [54], [55].

A reduction in diatoms in the diet of Antarctic krill is likely to

reduce both growth and reproduction [56], [57]. Therefore the

most likely effects of plausible changes in chlorophyll-a concen-

tration are in the range between our reduced and unchanged

chlorophyll scenarios.

Models such as those which produced the CMIP5 results are

being increasingly used to investigate climate impacts on marine

species [38]. These models have many uncertainties, including

regional biases and differences between models. Our results

confirm a regional bias in Southern Ocean SST [58]. The

representation of some Southern Ocean features, such as the

ACC, has improved in the CMIP5 results compared to the

previous generation of model results [59]. Nonetheless, the

available models generally perform badly at reproducing sea ice

conditions which, in turn, influence SST [58], [60]. The models

differ markedly from each other in terms of both the magnitude

and spatial distribution of projected SST changes. We have

followed recommended practice for controlling and assessing the

influence of these model uncertainties on our results [38]. It is

clear from Fig. 4 that most models are in agreement that the ACC

will experience significant warming.

Any degradation of Antarctic krill growth habitat in the ACC is

likely to have consequences for predators at South Georgia.

Analysis of foodweb models suggests that predators able to take

advantage of copepod production might be relatively unaffected

by a severe reduction in Antarctic krill availability, but that the

majority of air-breathing predator populations at South Georgia

would probably experience significant declines [15].

The Antarctic krill fishery took 68% of its total catch between

1980 and 2011 from the area of projected severe habitat

Figure 6. Projected change in Antarctic krill habitat accessible to predators foraging from South Georgia. Relative GGP (GGP for the
period 2070–2099 divided by estimated current GGP), calculated within the area accessible to predators with foraging ranges of 1200 km (A), 610 km
(B) and 140 km (C) from South Georgia. Results were calculated across multiple models using projected SSTs from RCP2.6, RCP4.5 or RCP8.5, and
observed chlorophyll-a concentrations reduced by 50% (CHLo-50%), observed chlorophyll-a concentrations (CHLo), or observed chlorophyll-a
concentrations increased by 50% (CHLo+50%). The assumed Antarctic krill starting length was 40 mm and the error bars show the between-model
standard deviation.
doi:10.1371/journal.pone.0072246.g006

Climate Change Effects on Antarctic Krill Habitat

PLOS ONE | www.plosone.org 10 August 2013 | Volume 8 | Issue 8 | e72246



degradation [18]. Future climate change could therefore have a

significant negative effect on Southern Ocean ecosystem services

as well as biodiversity. A recommendation that the Commission

for the Conservation of Antarctic Marine Living Resources, which

is responsible for managing the Antarctic krill fishery, should

increase consideration of climate change impacts in its manage-

ment decisions was made in 1992 [61] but it was not until 2009

that the Commission resolved to do so (www.ccamlr.org/en/

resolution-30/xxviii-2009). We suggest that there is a need for

more rapid progress in developing methods for evaluating climate

change impacts in parallel with improved regional climate

projections, and for adaptation to and management of the risks

to the Southern Ocean ecosystem that climate change implies.

Supporting Information

Figure S1 Projected change in Antarctic krill habitat
based on a starting length of 30 mm. Each panel shows the

projected GGP change (GGP for the period 2070–2099 minus

estimated current GGP) calculated across multiple climate models.

The assumed Antarctic krill starting length was 30 mm. The GGP

values were calculated using bias-corrected SSTs from RCP2.6 (A,

B & C), RCP4.5 (D, E & F) or RCP8.5 (G, H & I) and observed

chlorophyll-a concentrations reduced by 50% (A, D & G),

observed chlorophyll-a concentrations (B, E & H), or observed

chlorophyll-a concentrations increased by 50% (C, F & I). The

spatial resolution is 1u longitude by 0.5u latitude and the thick

black line indicates the boundaries of the growth area for that

panel.

(TIFF)

Figure S2 Projected change in Antarctic krill habitat
based on a starting length of 40 mm. Each panel shows the

projected GGP change calculated across multiple climate models.

The assumed Antarctic krill starting length was 40 mm. Other

details as Fig. S1.

(TIFF)

Figure S3 Projected change in Antarctic krill habitat
based on a starting length of 50 mm. Each panel shows the

projected GGP change calculated across multiple climate models.

The assumed Antarctic krill starting length was 50 mm. Other

details as Fig. S1.

(TIFF)

Figure S4 Distribution of GGP values in the results
presented in Figs. 4 and 5. Each panel shows the distribution

of projected GGP values for the period 2070–2099 as the percent

coverage of the modelled area (coloured lines). The projected

GGP values were calculated using bias-corrected SSTs from

RCP2.6 (A, B & C), RCP4.5 (D, E & F) or RCP8.5 (G, H & I).

The panels also show the distribution of estimated GGP values

calculated using observed SSTs (for the period 2002–2011) (grey

bars). Both sets of GGP values in each panel were calculated using

the same chlorophyll-a concentrations: observed chlorophyll-a

concentrations reduced by 50% (A, D & G), observed chlorophyll-

a concentrations (B, E & H), or observed chlorophyll-a

concentrations increased by 50% (C, F & I).

(TIFF)

Table S1 Statistical comparison of scenario-specific
results presented in Figs. 5 and 6. The table shows the

probability (from Tukey multiple comparisons tests) that the

projected GGP or growth area for each combination of

chlorophyll-a concentration and RCP is significantly different

from comparable results for other RCPs. We compared each result

shown in Figs. 5 and 6 with the other results in the same figure

panel. Comparisons which were significantly different (P,0.05)

are highlighted in bold text.

(DOC)
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51. Pörtner HO, Farrell AP (2008) Physiology and climate change. Science 322:

690–692. doi: 0.1126/science.1163156.
52. Peck LS, Webb KE, Bailey DM (2004) Extreme sensitivity of biological function

to temperature in Antarctic marine species. Funct Ecol 18: 625–630. doi:

10.1111/j.0269-8463.2004.00903.x.
53. Steele M, Zhang J, Ermold W (2010) Mechanisms of summertime upper Arctic

Ocean warming and the effect on sea ice melt. J Geophys Res-Oceans (1978–
2012), 115(C11). doi: 10.1029/2009JC005849.

54. Montes-Hugo M, Doney SC, Ducklow HW, Fraser W, Martinson D, et al.

(2009) Recent changes in phytoplankton communities associated with rapid
regional climate change along the western Antarctic Peninsula. Science 323:

1470–1473. doi: 10.1126/science.1164533.
55. Moline MA, Blackwell SM, Chant R, Oliver MJ, Bergmann T, et al. (2004)

Episodic physical forcing and the structure of phytoplankton communities in the
coastal waters of New Jersey. J Geophys Res-Oceans (1978–2012) 109(C12):

C12S05. doi: 10.1029/2003JC001985.

56. Ross RM, Quetin LB, Baker KS, Vernet M, Smith RC (2000) Growth limitation
in young Euphausia superba under field conditions. Limnol Oceanogr 45: 31–43.

57. Schmidt K, Atkinson A, Venables HJ, Pond DW (2012) Early spawning of
Antarctic krill in the Scotia Sea is fuelled by ‘‘superfluous’’ feeding on non-ice

associated phytoplankton blooms. Deep Sea Res Part 2 Top Stud Oceanogr 59:

159–172. doi: 10.1016/j.dsr2.2011.05.002.
58. Sallée JB, Shuckburgh E, Bruneau N, Meijers A, Wang Z, et al. (2013)

Assessment of Southern Ocean water mass circulation and characteristics in
CMIP5 models: historical bias and forcing response. J Geophys Res-Oceans 118:

1830–1844. doi: 10.1002/jgrc.20135.

59. Meijers AJS, Shuckburgh E, Bruneau N, Sallee JB, Bracegirdle TJ, et al. (2012)
Representation of the Antarctic Circumpolar Current in the CMIP5 climate

models and future changes under warming scenarios. J Geophys Res-Oceans
(1978–2012) 117(C12). doi: 10.1029/2012JC008412.

60. Turner J, Bracegirdle TJ, Phillips T, Marshall GJ, Hosking S (2013). An initial
assessment of Antarctic sea ice extent in the CMIP5 models. J Climate 26: 1473–

1484 doi: 10.1175/JCLI-D-12–00068.1.

61. Everson I, Stonehouse B, Drewry DJ, Barker PF (1992) Managing Southern
Ocean krill and fish stocks in a changing environment [and Discussion]. Philos

Trans R Soc Lond B Biol Sci 338: 311–317. doi: 10.1098/rstb.1992.0151.

Climate Change Effects on Antarctic Krill Habitat

PLOS ONE | www.plosone.org 12 August 2013 | Volume 8 | Issue 8 | e72246


