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A simplified multiscale damage model for the transversely isotropic 

shale rocks under tensile loading 
 

Mohaddeseh Mousavi Nezhad1, Hehua Zhu2, J. Woody Ju3 and Qing Chen4,2,1*  

Abstract  
A simplified multiscale damage model is proposed for the transversely isotropic shale rocks 
under tensile loading. In this framework, the multiscale representations for the shale rocks are 
presented by introducing the microcrack-weakened equivalent solid with hierarchical 
microstructures, whose transversely isotropic properties are obtained by performing multilevel 
homogenization procedures. To simplify the calculation process for the damage induced 
properties, the equivalent isotropic medium is attained by applying the Voigt–Reuss–Hill 
averaging process to the transversely isotropic solid. Subsequently, the microcrack-induced 
inelastic compliances are approximately derived in terms of microcrack opening displacements 
in the equivalent isotropic medium of the shale rock under tensile loading. The sizes and 
orientations of microcracks are taken as random variables. Both stationary and evolutionary 
damage models are considered. Microcrack kinetic equations are characterized through the use 
of a fracture mechanics-based stability criterion and microcrack geometry within a 
representative volume element. Numerical examples including experimental validations and 
comparisons with existing micromechanical models are presented to verify the proposed 
multiscale damage model. Finally, the influences of the silt inclusions and porosity on the 
material intrinsic and damage-induced properties are discussed. 
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Introduction 

Featuring hierarchical microstructures, shale rocks are anisotropic and heterogeneous, and 

are particularly critical for success of many fields of petroleum engineering. Shale rocks may 

also be important for the development of sustainable nuclear waste storage solutions (Thomsen, 

2001; Ulm and Abousleiman, 2006).  

Owing to these direct economic impacts of shale rocks, many efforts have been dedicated 

to modeling the material mechanical performance (cf. Hornby et al., 1994; Sayers, 1994, 1999, 

2005; Johnston and Christensen, 1995; Levin and Markov, 2005; Chang et al., 2006; Giraud et 

al., 2007; Ortega et al., 2007; Farrokhrouz et al., 2014;	Dewhurst et al., 2015). In general, the 

current research on modeling the mechanical behavior of shale rocks can be classified into two 

categories. The first category focuses on the empirical formulations to evaluate the properties of 

shale rocks by means of laboratory or site tests, which belong to the phenomenological 

methodology (Chang et al., 2006; Farrokhrouz et al., 2014; Dewhurst et al., 2015). The main 

limitation of such traditional approach is that it requires extensive and costly experimental 

programs to characterize the material properties.	An attractive alternative is provided by the 

framework of micromechanics, which reduces the laboratory expenses and helps us throwing 

light upon the relations between the complicated material microstructures and macroscopic 

properties of shale rocks (Hornby et al., 1994; Levin and Markov, 2005; Giraud et al., 2007; 

Ortega et al., 2007). 

Despite many attempts, micromechanical or multiscale damage models based on shale 

rocks’ complex microstructures are limited compared with damage models at the macroscopic 

level using continuum damage mechanics (cf. Krajcinovic, 1984; Simo and Ju, 1987a, b, 1989; 



	

3	

Ju, 1989; Ju et al., 1989). Sayers and Kachanov (1995) and Sayers (2005) introduced 

micromechanical models to link elastic wave velocity data and damage of shale rocks. Their 

micromechanical models are effective for the case of an isotropic matrix. Ougier-Simonin et al. 

(2009) presented a new micromechanical damage model to extend the original method of Sayers 

and Kachanov (1995) to a transversely isotropic matrix containing cracks. On one hand, similar 

to the existing micromechanical damage models for brittle solids by Sumarac and Krajcinovic 

(1987), Fanella and Krajcinovic (1988), Krajcinovic and Sumarac (1989), Ju (1991) and Ju and 

Lee (1991), existing micromechanical damage models for shale rocks (cf. Sayers and Kachanov, 

1995; Sayers, 2005; Ougier-Simonin et al., 2009) describe the material as a two-phase composite, 

including the homogeneous matrix phase and the microcrack phase. This treatise means that the 

porosity, clay particles, quartz inclusions and the other components of shale rocks are not taken 

into considerations, even though they play important roles in determining the material 

mechanical behaviours. On the other hand, existing micromechanical damage models for shale 

rocks (cf. Sayers and Kachanov, 1995; Sayers, 2005; Ougier-Simonin et al., 2009) ignored the 

propagations of pre-existing microcracks, which implied that the evolutionary 

microcrack-induced damage were not considered (cf. Budiansky and O’Connell, 1976; Hoenig, 

1979; Horii and Nemat-Nasser, 1983, 1985; Chudnovsky et al., 1987a, b; Kachanov, 1987). 

As an extension of existing micromechanical damage models for shale rocks, a simplified 

multiscale damage model for shale rocks under tensile loading is presented in this paper. In our 

proposed framework, the material complex microstructures, such as the clay particles, the 

porosity and quartz inclusions, are comprehensively considered by a multilevel homogenization 

scheme. Meanwhile, the microcrack propagations are considered by introducing a fracture 
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mechanics-based stability criterion. Further, inspired by Ougier-Simonin et al (2009), the Voigt–

Reuss–Hill averages of the transversely isotropic medium are utilized to attain an equivalent 

isotropic matrix to simplify the calculation process.  

The remainder of this paper is organized as follows. The basis of the multiscale damage 

model for microcracked shale rocks is first introduced in Section 2. Section 3 presents a 

multiscale model for microcracked shale rocks based on the material microstructures. In Section 

4, the undamaged elastic compliance tensor of shale rock is obtained by the multilevel 

homogenization procedures. Section 5 renders the damage-induced compliance tensors of shale 

rocks with the microcrack opening displacements in the equivalent isotropic medium. Numerical 

examples including experimental validations and comparisons with existing micromechanical 

models are presented in Section 6, featuring detailed discussions on the influences of quartz 

inclusions and porosity upon the damage evolutions of shale rocks, emanating from our 

proposed multiscale damage framework. Significant conclusions are reached in the final section. 

Basis of multiscale damage model for microcracked shale rocks 

We follow Ju and Lee (1991) to summarize the basis of the multiscale damage model for 

shale rock There is a one-to-one correspondence between the fourth-order elastic damage 

compliance tensor S  and the fourth-order anisotropic damage tensor D . Therefore, the secant 

compliance S  can be viewed as an anisotropic damage tensor. Within the framework of the 

homogenization concept for an inhomogeneous effective continuum medium, the 

volume-average strain tensor ε 	 can be expressed by the following expression 

:=ε S σ 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	  (1)	
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where σ  is the volume-average stress tensor	and S 	 is the volume average compliance tensor. 

Furthermore, it is assumed that the strain tensor ε 	 and the overall compliance tensor S  

are amenable to an additive decomposition: 

* 0 *;         e= + = +ε ε ε S S S 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	  (2)	

where eε  and *ε = the elastic and the damage-induced strains, respectively. Similarly, 0S 	 and 

*S  = the undamaged elastic and the damage-induced compliance, respectively. Implicitly, it has 

been assumed that *ε  << 0 upon complete unloading; i.e., the residual strain at zero stress is 

negligible. 

To characterize the mechanical performance of shale rock under tensile loading in this 

paper, the undamaged elastic tensor of shale rock is obtained by a multi-scale approach using the 

transversely isotropic properties of clay particles at nanoscale level. Meanwhile, the 

damage-induced compliance tensor is reached by utilizing the microcrack opening displacement 

in the equivalent isotropic matrix for the transversely isotropic porous shale rock. 

Multiscale model of microcracked shale rocks 

The microstructures of shale rocks 

Shale rocks are heterogeneous in nature and they generally consist of different constituents 

or phases, such as the clay material, quartz and calcite. Further, the constituents of materials can 

be treated as homogeneous at a certain length scale, but when observed at a smaller length scale, 

the constituents themselves may become heterogeneous; i.e., the multiscale phenomenon for 

heterogeneous shale rock materials (cf. Bayuk et al., 2008; Bobko and Ulm, 2008; Bobko et al., 

2011; Guo et al., 2013;). For examples, according to Guo et al. (2013), the components of shale 
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rocks should contain clays, kerogen, cracks, pores, quartz, calcite and dolomite. The material 

properties are dependent on the microstructural parameters such as the orientation of clay 

platelets and cracks, pore/crack connectivity and shale mineralogical composition, including 

quartz, calcite and dolomite (Bayuk et al., 2008). The clay mineralogy should be made up of 

kaolinite, illite, smectite and chlorite, etc. (Bobko and Ulm, 2008). There were considerable  

other research work to characterize the shale rock microstructures and properties at different 

length scales; e.g., Chen et al. (2014a), Josh et al. (2012) and Chen et al. (2014b). 

The RVE representations for microcracked shale rocks 

To characterize the heterogeneous and multiscale characters of microcrack weakened shale 

rocks, the following procedures are performed to define the representative volume element 

(RVE). 

Firstly, the RVE for the cracked porous shale rock is composed of a solid matrix, 

micropores and microcracks. The two types of defects (micropores and microcracks) can be 

treated by the decomposition procedures as Fig. 1(a) shows (cf. Xie et al., 2012; Yan et al., 2013; 

Zhu et al., 2014). The ensemble of the solid phase and pores therein is taken as a homogenized 

porous matrix, since the focus here is on the characterization of inelastic behaviours induced by 

microcracking, the effects of which are much more dominant than those of micropores (Ju and 

Lee, 1991; Xie et al., 2012). It is noted that the microcracks are assumed to be coin-shaped and 

the pores are spherical (Yan et al., 2013; Zhu et al., 2014). Furthermore, as displayed in Fig. 1(b), 

multiscale representations for the solid phase of shale rock is proposed to quantitatively 

investigate the effects of other components, such as the clay particles, quartz and calcite 
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inclusions, on the damage evolutions based on material microstructures (Bayuk et al., 2008; 

Bobko and Ulm, 2008; Bobko et al., 2011; Guo et al., 2013). In the multiscale representations, 

the inclusions (e.g., quartz, dolomite and calcite) are assumed to be spherical and well bonded 

with the clay matrix.	

The undamaged elastic compliance tensor of shale rock  

Multilevel micromechanical homogenizations for the properties of the solid matrix 

For a multiphase composite, the multilevel homogenization process is usually employed to 

quantitatively estimate the composite effective properties (Ju and Chen, 1994a, b; Ju and Zhang, 

1998; Li et al., 1999; Ju and Sun, 1999, 2001; Ju and Yanase, 2010, 2011; Chen et al., 2015a, b, 

c; Zhu et al., 2015). 	

The	 solid matrix of shale rock can be regarded as a multiphase composite with the clay 

particles as the matrix phase and the other components (e.g., quartz, calcite and dolomite) as the 

multi-inclusions. Based on the multilevel homogenization scheme, the equivalent matrix 

composed of clay particles and quartz can be obtained after the first-level homogenization, 

which can be expressed as follows according to Berryman (1980) and Norris (1985): 

( )( ) ( )( )
1 11 1

1 1 0q c
q q e c c ec c

− −− −
− + + − + =C C P C C P 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	  (3) 	

with 

                  q c
q c

q c q c

V Vc c
V V V V

= =
+ +

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (4) 	

where qc  and cc  ( qV  and cV ) are, respectively, the volume fraction (volume) of the quartz 
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and clay particles; qP  and pP  are the Hill polarization tensor of the quartz and porous 

composite, respectively; 1eC  is the effective stiffness tensor of the equivalent matrix after the 

first level homogenization.  

When the calcite inclusion is added, the effective properties of the composite made up of 

the clay particles, the quartz and the calcite can be expressed as  

( )( ) ( )( )
1 11 1 1

2 1 1 2 0ca e
ca ca e e e ec c

− −− −
− + + − + =C C P C C P                     (5)  

with 

1                  q cca
ca e

q c ca q c ca

V VVc c
V V V V V V

+
= =

+ + + +
                                     (6)  

where cac  and 1ec  are, respectively, the volume fraction of the calcite inclusion and the 

equivalent matrix obtained by the first level homogenization; caV  is the volume of the calcite 

inclusion; caP  and 1eP  are the Hill polarization tensor of the calcite and the equivalent matrix, 

respectively. Moreover, 2eC is the effective stiffness tensor of the equivalent matrix obtained by 

the second level homogenization. 

As to the other types of inclusions, the multilevel homogenization scheme can be similarly 

applied to obtain the effective properties of the solid matrix of shale rocks. 

Micromechanical homogenization for properties of the pores-weakened solid matrix 

Let smC 	 represent the effective stiffness tensor of the solid matrix of shale rock. On the 

basis of Berryman (1980) and Norris (1985), the effective properties of the porous shale rock 

matrix can be written as: 
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( )( ) ( )( )
1 11 1

0po sm
po po pm sm sm pmc c

− −− −
− + + − + =C C P C C P              (7) 

with 

                  po sm
po sm

sm po sm po

V Vc c
V V V V

= =
+ +

                       (8) 

where poc  and smc  ( poV  and smV ) are the volume fraction (volume) of the micropores and 

solid matrix of shale rock, respectively; poP  and smP  are the Hill polarization tensor of the 

pores and solid matrix of shale rock, respectively; pmC  is the effective stiffness tensor of the 

pores-weakened solid matrix, with which the undamaged elastic compliance tensor of shale rock 

can be expressed as  

( ) 10 pm

−
=S C                                (9) 

The damage-induced compliance tensor of shale rock under tensile loading 

The equivalent isotropic medium for the pores-weakened solid matrix of shale rock 

It is complex to obtain the crack-induced compliance tensor in a porous shale rock matrix, 

which is transversely isotropic (Sarout and Guéguen, 2008a, 2008b). Instead of performing the 

difficult calculation directly, a simplified approach is employed by introducing the equivalent 

isotropic matrix for the transversely isotropic one inspired by the work of Ougier-Simonin et al. 

(2009). The properties of the equivalent isotropic matrix can be characterized using the Voigt–

Reuss–Hill average of the properties of the transversely isotropic pores-weakened solid matrix 

by the following expressions (Ulm and Abousleiman, 2006; Ougier-Simonin et al., 2009): 
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( ) ( )1 1;      
2 2

pm pm pm pm
VRH V R VRH V RK K K G G G= + = +                     (10) 

with 

( ) ( )11 33 12 13
1 22 2
9 9

pm pm pm pm pm
VK C C C C= + + +                     (11) 

( ) ( ) ( )11 33 12 13 44 66
1 1 12 2 2
15 15 5

pm pm pm pm pm pm pm
VG C C C C C C= + − + + +                     (12) 

11 12 33 13

1
( 2 4 )

pm
R pm pm pm pmK

A C C C C
=

+ + −
                    (13) 

( )( ) ( )11 12 13 33 44 66

15
12 2 4 1/ 1/
6

pm
R

pm pm pm pm pm pm
G

A C C C C C C
=

+ + + + +
                    (14) 

( ) ( )233 11 12 13

1

2pm pm pm pm
A

C C C C
=

+ −
                    (15) 

where ( ), 1,2,3,4,5,6pm
ijC i j =  are the components of the stiffness tensor of the 

pores-weakened solid matrix; VRHK  and VRHG  are the bulk modulus and shear modulus of the 

equivalent isotropic matrix, respectively. According to the relationships between the elastic 

constants of the isotropic materials, the Young’s modulus and Poisson’s ratio can be obtained as 

follows: 

9
3

VRH VRH
VRH

VRH VRH

K GE
K G

=
+

                    (16) 

1 11 12
3

VRH
VRH

VRH

K
G

ν

⎛ ⎞
⎜ ⎟
⎜ ⎟= −
⎜ ⎟+⎜ ⎟
⎝ ⎠

                    (17) 
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where VRHE  and VRHν  are the Young’s modulus and Poisson’s ratio of the equivalent isotropic 

matrix, respectively. 

Single open microcrack-induced inelastic compliance tensor in the isotropic matrix 

As in the previous works (Ju and Lee, 1991; Yu and Feng, 1995) under the tensile loading, 

only the opening microcracks are considered, and the effects of microcrack closure, frictional 

sliding and kinking are ignored. 

Consider the	 α th single penny-shaped microcrack with radius a in the equivalent isotropic 

medium which is uniformly loaded at the far field. As exhibited in Fig. 2, the orientation of the 

microcrack can be expressed as ( ,θ φ ) with the global coordinate system ( 1 2 3Ox x x ) and its 

corresponding local coordinate system ( 1 2 3Ox x xʹ ʹ ʹ ), where the 2xʹ  axis is parallel to the normal 

vector of the microcrack n ,	and the 3xʹ  axis is coplanar with the 1x 	 axis and the 3x 	 axis.  

The components of the displacement discontinuity vector of the α th	microcrack take the 

form (Budiansky and O'Connell, 1976): 

( )
1

2 2 2
2i lj j lib a r B gσʹ ʹ ʹ= −                     (18) 

with 

2 2j k jl klg gσ σʹ ʹ ʹ=                     (19) 

cos cos sin cos sin
sin cos cos sin sin
sin 0 cos

T
ij ijg g

θ φ θ θ φ

θ φ θ θ φ

φ φ

−⎡ ⎤
⎢ ⎥ʹ = = −⎢ ⎥
⎢ ⎥⎣ ⎦

                    (20) 

where ib  are the components of the displacement discontinuity vector of the α th	microcrack,	
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and ʹB 	 is the crack opening displacement tensor which depends on the compliance of the 

microcrack-weakened solids.	  Assuming here that it depends only on the compliances of an 

isotropic elastic matrix, the nonvanishing components of ʹB  for the open microcrack are (Yu 

and Feng, 1995) 

!B11 = !B33 =
16 1−ν

VRH

2( )
2−ν

VRH

2( )πEVRH
,      !B22 =

8 1−ν
VRH

2( )
πEVRH

                    (21) 

The strains and compliances induced by the α th	microcrack can be expressed by means of its 

opening displacements as: 

( )
( )

*( ) *( ) 1 1
2

a
ij ijkl kl i j j iS

S b n b n dS
V α

α
αε σ= = +∫                     (22) 

where *( )
ij
αε 	 and *( )a

ijklS 	 are	 the strains and compliances induced by the α th	microcrack; in 	

represents	 those of the normal vector of the microcrack, and ijσ 	 denotes the volume-average 

stresses applied at the far field. 

By substituting Eqs. (18)-(19) into Eq. (22), the compliances induced by the α th 

microcrack can be rephrased as follows (Yu and Feng, 1995): 

( )
3

*( )
23

a
ijkl mn k nl mi j mj i

aS B g g g n g n
V

π
ʹ ʹ ʹ ʹ ʹ= +                     (23) 

Overall microcrack-induced inelastic compliance tensor  

To obtain the overall microcrack-induced inelastic compliance tensor, the integration 

procedures are employed over the RVE domain using the joint probability density function. The 
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orientations and sizes of penny-shaped microcracks in the RVE can be viewed as random 

variables and represented by a probability density function ( ), ,p a φ θ , which must satisfy the 

following normalization condition: 

( )max

min

2
2
0 0

, , sin 1
a

a
p a d d da

π
π

φ θ φ φ θ =∫ ∫ ∫             (24) 

In particular, when the penny-shaped microcracks are uniformly distributed in the orientation 

space with the same initial radius 0a , the overall inelastic effective compliance tensor caused by 

the stable microcracks can be expressed as: 

( ) ( )
32* *( ) 2

20 0
1

, sin
3

N
cs a
ijkl ijkl c mn k nl mi j mj i

k

aN p B g g g n g n d d
V

π
π π

θ φ θ θ φ
=

ʹ ʹ ʹ ʹ ʹ= = +∑ ∫ ∫S S          (25) 

with 

( ) 1,
2

p φ θ
π

=                  (26) 

where cN  is the total number of microcracks in the RVE. 

The inelastic compliance tensor induced by the evolutionary microcracks 

With the increase of the tensile loading, some microcracks in preferred orientations become 

unstable and increase in size. The damage-induced compliance can be divided into two parts. 

One is caused by the stable microcracks and the other is due to the evolutionary microcracks. 

In reality, it is extremely difficult to give a unified criterion for pre-existing microcrack 

growth, if damage-induced anisotropic compliances and microcrack interaction are involved. 
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For simplification, linear elastic fracture mechanics is employed.	 The mixed-mode fracture 

criterion for a penny-shaped crack may take the following modified form (Ju and Lee, 1991): 

2 2

1I II

IC IIC

K K
K K

⎛ ⎞ ⎛ ⎞ʹ ʹ
+ =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
            (27) 

where IK ʹ  and IIK ʹ  are the mode-I and mode-II stress intensity factors, respectively. ICK  and 

IICK  are their critical values. Once the fracture criterion has been satisfied, a microcrack will 

become unstable, increasing its radius from	 the initial statistically averaged value 0a  to the 

final characteristic value ua 	 instantaneously, and will be arrested by energy barriers with higher 

strength (such as grain boundaries). It is noted that two assumptions of microcrack growth are 

made here. First, the microcrack growth process is assumed to be instantaneous (Krajcinovic and 

Fanella, 1986, Ju and Lee, 1991). Second, the penny-shaped microcrack growth is assumed to be 

in a self-similar fashion (Ju and Lee, 1991; Yu and Feng, 1995). For a specified uniaxial tension 

loading q , the mode-I and mode-II stress intensity factors can be expressed as follows (Ju and 

Lee, 1991; Yu and Feng, 1995) 

3 4
42 ,    

2I II
a aK Kτ τ
π ν π

ʹ ʹ ʹ ʹ= =
−

            (28) 

with 

( )23 4cos ,    cos sinq qτ θ τ θ θʹ ʹ= =             (29) 

By substituting Eqs. (28)-(29) into (27), we have 
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( )
2 2

2 42 cos cos sin
2 1

IC IIC

a aq q

K K

θ θ θ
π ν π

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟

−⎜ ⎟ ⎜ ⎟+ =
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

            (30) 

After some lengthy but direct derivations, the critical angle crθ  for the tensile loading q 	 can 

be obtained as: 

( )
2

2 4tan
2cr

B B AC
A

θ
− − −

=             (31) 

with 

2

4 IICA K
a
π

= −             (32) 

2
2 2

2 2IIC
qB K

a
π

ν
⎛ ⎞= − + ⎜ ⎟−⎝ ⎠

            (33) 

2
2

4
IIC

IIC
IC

qKC K
a K
π ⎛ ⎞

= − + ⎜ ⎟
⎝ ⎠

            (34) 

With the critical angle crθ , the unstable domain can be obtained, which can be represented by 

( ) { }, 0 ,0 2rθ φ θ θ φ πΩ = ≤ ≤ ≤ ≤ .	The compliance tensor due to the unstable microcracks can 

be calculated by the following integration: 

( )
2 *( )*

0 0
, sincr

uacu
ijkl ijklN p d d

θ π
φ θ θ φ θ= ∫ ∫S S             (35) 

Therefore, the compliance tensor induced by the stable and unstable microcracks can be 

represented as 
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( ) ( )0

* * *

2 2*( ) *( )2
0 0 0

, sin , sinr
u

r

c cs cu
ijkl ijkl ijkl

a a
ijkl ijklN p d d p d d

π
π θ π

θ
φ θ θ φ θ φ θ θ φ θ

= +

⎡ ⎤
= +⎢ ⎥

⎣ ⎦
∫ ∫ ∫ ∫

S S S

S S
  (36) 
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Numerical simulations 

Verifications with existing results 

The proposed micromechanical damage framework aims to obtain the shale rock properties 

under tensile loading considering the material nanoscale microstructures. The total compliances 

are obtained by the sum of the undamaged and the microcrack-induced ones, which include 

those caused by the stable and evolutionary (unstable) microcracks. The verifications can be 

mainly classified into three categories. (i) For undamaged elastic compliance tensor of shale 

rock considering nanoscale microstructures, the estimations of our proposed model are 

compared with the available experimental data (Ortega et al., 2007). (ii) The existing predictions 

(Sayers and Kachanov, 1995) are utilized to prove the correctness of the stable 

microcrack-induced compliances obtained by our proposed model. (iii) To verify the compliance 

caused by the evolutionary microcracks, our predictions are compared with the existing 

experimental data (Gopalaratnam and Shah, 1985).	 	

To attain the predicted undamaged elastic stiffness tensor, the model parameters of Ortega 

et al. (2007) are employed as the input, and consist of the material properties of the elementary 

phases present in shale rocks, including porosity, the five independent constants of the clay 

particle, the elastic properties and volume fraction of quartz inclusion. Table 1 shows the 

comparisons of the undamaged elastic stiffness tensor between our predictions and experimental 

data in Ortega et al. (2007). Our predictions match the experimental data well, with the average 

relative difference between them being 6.35%. 

Sayers and Kachanov (1995) proposed an approximate scheme to estimate the 
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microcrack-induced compliance tensor for rock. In their work, the microcrack evolution was not 

considered. To further verify our proposed micromechanical damage model, the compliance 

tensors due to the stable microcracks are compared with those of Sayers and Kachanov (1995). 

According to their work, the additional compliance due to the microcracks can be expressed as: 

( )1
4ijkl ik jl il jk jk il jl ikS δ α δ α δ α δ αΔ = + + +                     (37) 

with 

1 r r r
ij i j r

r
B n n S

V
α = ∑                     (38) 

2
r N TB BB +
=                     (39) 

where r
in  are the components of the normal vector of the rth microcrack,	 and ikδ 	 is the 

Kronecker delta.	 rS 	 is the area of the rth microcrack; NB and TB  are the normal and shear 

terms of the crack compliance tensor, respectively.	

The Young’s modulus and Poisson’s ratio of the isotropic matrix are 34 GPa and 0.3, 

respectively. From Figs. 3(a)-(b), it can be observed that our predictions for the different 

components of microcrack-induced compliance tensor are very close to those of Sayers and 

Kachanov (1995) with the increase of the microcrack density, which is	 3 /cN a V 	 in our 

presented model. Figs. 3(c)-(d) display the comparisons of the two results when different 

Poisson's ratios are considered, which also prove the effectiveness of our proposed model.	

The concrete, similar to rock, is a microcrack-weakened brittle material (Ju and Lee, 1991), 

and the mechanical behaviours of these two materials can be characterized by similar 

constitutive equations (Ren et al., 2009; Ren et al., 2011; Xie et al., 2012). Fig. 4 shows the 

comparisons between the experimental data (Gopalaratnam and Shah, 1985) and the uniaxial 
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tensile stress-strain curve obtained by our proposed model. Both the stable and evolutionary 

microcrack induced compliances are considered in this example. It is observed that the 

analytical results are in a good agreement with the experimental results. 

Influence of silt inclusions and porosity on the undamaged properties of shale rock matrix 

In this section, the effects of silt inclusions and porosity are discussed on the properties of 

undamaged elastic shale rock matrix. The parameters of Ortega et al. (2007) are adopted as the 

input data for the transversely isotropic properties of clay particles. Similar to Ortega et al. 

(2007), only the quartz inclusions are considered, whose bulk modulus and shear modulus are 

37.9 GPa and 44.3 GPa, respectively.  

Fig. 5 presents the variations in the mechanical properties of the undamaged shale rock 

matrix with the increase of porosity. The volume fraction of the quartz inclusions is 20% here. 

Fig. 5(a) shows the evolution of different components of the stiffness tensor. It can be witnessed 

that the properties of the undamaged shale rock matrix (the pores-weakened solid matrix) 

gradually decrease when the porosity increases. Similar results can be found for the equivalent 

isotropic properties of the transversely isotropic pores-weakened solid matrix, which is 

displayed in Fig. 5(b).  

Figs. 6(a)–(b) display the variations in the mechanical properties of the undamaged shale 

rock matrix with the increase of the volume fraction of the quartz inclusions. Since the 

properties of the quartz inclusions are much higher than those of micropore inclusions, the 

enhancing effects of quartz inclusions can be found on the material macroscopic properties. It 

can be witnessed that the values of the stiffness tensor become higher when the volume fraction 
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of quartz inclusions increases, as exhibited in Fig. 6(a). Similar variation tendencies can be 

observed for the equivalent isotropic properties of the transversely isotropic matrix, which is 

illustrated in Fig. 6(b).  

Influence of silt inclusions and porosity on the microcrack-induced inelastic compliance 

tensor of shale rock 

The material microstructures also play an important role in the damage evolution of shale 

rock. The parameters of Ortega et al. (2007) are again taken as the input data in our simulation 

work. Three different types of volume fractions of the quartz inclusions are employed as 

examples to illustrate the material microstructural effects on the stable microcrack-induced 

compliance. Figs. 7(a)-(b) present the variations in the stable microcrack-induced compliance 

tensor with increase of microcrack density. The three volume fractions of the quartz inclusions 

are 10%, 20% and 30%, respectively. It can be seen that the stable microcrack-induced 

compliance increases with the microcrack density, and the values increase when lower volume 

fractions of quartz inclusions are considered.  

The microcrack-induced compliance tensors are also affected by the porosities. Here, three 

different porosities, which are 10%, 20% and 30%, respectively, are adopted as examples. From 

Figs. 8(a)–(b), it can be observed that with the increase of porosity, the microcrack-induced 

compliance becomes higher. Similarly, the higher the microcrack density is, the higher the 

microcrack-induced compliances become.  

Fig. 9 and Fig. 10 exhibit the influence of quartz inclusions and porosity on the stress-strain 

relations of shale rock under tensile loading, respectively. From Fig. 9, it can be witnessed that 
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the strains, including the undamaged and the damage-induced strains, increase when lower 

volume fractions of the quartz inclusions are considered for the specified tensile loading. 

However, the total strains increase with higher porosities for a given tensile loading, as exhibited 

in Fig. 10. 

Conclusions 

Inspired by current micromechanical damage models for shale rocks (Sayers and Kachanov, 

1995; Sayers, 2005; Ougier-Simonin et al., 2009), our extension proposes a simplified multiscale 

damage framework for transversely isotropic shale rock under tensile loading. Firstly, the 

multiscale representations for shale rock are presented by introducing the microcrack-weakened 

equivalent solid with hierarchical microstructures. Secondly, the shale rocks’ transversely 

isotropic undamaged properties are obtained by performing multilevel homogenizations. The 

equivalent isotropic medium is attained using the Voigt–Reuss–Hill averages of the material 

transversely isotropic properties. Meanwhile, the microcrack-induced compliance tensors, 

including those caused by the stable and unstable microcracks, are reached with the microcrack 

opening displacements in the equivalent isotropic medium. Finally, numerical examples 

including experimental validations and comparisons with existing micromechanical models are 

presented. From this study, the following main conclusions can be drawn: 

(1) Comparisons with the available experimental data show that our proposed multiscale 

damage framework is feasible and capable of predicting mechanical performance of shale rocks 

under tensile loading.  

(2) The silt components in shale rocks, such as quartz inclusions, can improve the 
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components of the material stiffness tensor, which will reduce the material strain or compliance, 

including the undamaged elastic one and the microcrack-induced one, for a specified tensile 

loading. 

(3) The (micro-)pores cause deterioration of the solid phase of the shale rock, which will 

increase the material strain or compliance given a specified tensile loading. The damage-induced 

strain or compliance of shale rock will increase when the microcrack density is higher. 
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(a) The RVE decomposition for the microcracked shale rock 
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(b) The multiscale representation for the porous matrix 

 

Fig. 1  The multiscale representation for the microcrack weakened shale rock 
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Fig. 2  The local	coordinate system for a microcrack 
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(b) 

 
(c) 
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(d) 

Fig.3  Comparisons between our results and those of Sayers and Kachanov (1995), with	

superscript O and S representing results obtained by our model and Sayers and Kachanov’s 

model (Sayers and Kachanov,1995), with the data in the brackets representing the Poisson's ratio 

 
Fig. 4  The comparisons between the experimental data (Gopalaratnam and Shah, 1985) and 

the uniaxial tensile stress-strain curve obtained by our proposed model. 
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(a) Influence of porosity on the properties of undamaged shale rock matrix 

 

(b) Influence of porosity on the equivalent isotropic properties   

Fig. 5  The variations in the mechanical properties of the undamaged elastic shale rock 

matrix with the increase of porosity. 
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(a) Influence of quartz inclusions on the properties of undamaged shale rock matrix 

 

(b) Influence of quartz inclusions on the equivalent isotropic properties 

Fig. 6  The variations in the mechanical properties of the undamaged elastic shale rock 

matrix with the increase of quartz inclusions 
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(a) 

 

(b) 

Fig. 7  Influence of quartz inclusions on the stable-microcrack induced compliance tensor 
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(a) 

 

(b) 

Fig. 8  Influence of porosity on the stable-microcrack induced compliance tensor 
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Fig. 9  Influence of quartz inclusions on the stress-strain relation of shale rock under tensile 

loading (including the stable and evolutionary microcrack induced compliance)  

 

Fig. 10  Influence of porosity on the stress-strain relation of shale rock under tensile loading 

(including the stable and evolutionary microcrack induced compliance) 	
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Table 1 Comparison of undamaged elastic stiffness tensor between our predictions and 

experimental data in Ortega et al. (2007), with Ce, Co and RD representing the experimental data, 

our predictions and the relative difference between them (Elastic constants in GPa). 

 

 G03 G06 G07 

Ce Co RD Ce Co RD Ce Co RD 

C11 46.1 47.7 3.4% 38.9 38.7 -0.5% 45.8 48.2 5% 

C12 17.8 19.6 10.1% 13.8 18.1 31.1% 17.7 19.7 11.2% 

C33 30.4 30.8 1.4% 20.4 23.4 14.7% 29.7 31.2 5.1% 

C44 5.8 6.9 19.0% 4.5 4.4 -3% 8.9 7.0 -21.0% 

 
	

 


