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Abstract In order to obtain an isolator with low reso-
nance amplitude as well as good isolation performance
at high frequencies, this paper explores the usage of
nonlinear stiffness elements to improve the transmissi-
bility efficiency of a sufficient linear damped vibration
isolator featured with the Zener model. More specif-
ically, we intend to improve its original poor high-
frequency isolation performance and meanwhile main-
tain or even reduce its already low resonance ampli-
tude by adding a nonlinear secondary spring into the
isolator. Its isolation performances are evaluated under
two input scenarios namely force transmissibility under
force input and displacement transmissibility under
base excitations, respectively. Thereafter, both analyt-
ical and numerical study is performed to compare the
high-frequency transmissibility as well as resonance
condition of the nonlinear isolator with its correspond-
ing linear one. Results show that the introduction of
nonlinear secondary spring in the Zener model can
achieve an ideal improvement, i.e., reducing the trans-
missibility at high frequencies and meanwhile sup-
pressing the resonance amplitude. It is also shown that
both force anddisplacement transmissibility of the non-
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linearZenermodel decreases at the rate of 40dB/decade
at high frequencies, which has not been achieved by
the isolators with rigidly connected linear or nonlinear
damper. As nonlinear spring is easier to fabricate and
can have wider range choices of nonlinear parameters
than a nonlinear damper, this new model can promote
practical applications of such nonlinear vibration iso-
lators.

Keywords Nonlinear isolator · Zener model ·
Vibration transmissibility

1 Introduction

A vibration isolator typically includes a spring and
a parallel viscous damper, and typically mounted
between the vibration sources and equipment to reduce
the unwanted excitations.Awell-documented dilemma
of these linear isolators is that the viscous damping sup-
presses the resonance amplitude of the vibration trans-
missibility curve but at the cost of degrading its iso-
lation performance at high frequencies. Thus, a com-
promise has to be made according to practical require-
ments. Early studies [1] showed that the implementa-
tion of nonlinear damping may bring improvements to
the isolation performance of a lightly linear damped
isolator by suppressing its resonance amplitude with-
out degrading its high-frequency isolation efficiency.
Recent rigorous theoretical works [2–5] also pointed
out that the cubic nonlinear damping (denoted as the
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2484 X. Wang et al.

first type of nonlinear damping in this paper), i.e.,
f Id ∝ ṙ3 ( f Id is the damping force and ṙ denotes
the relative velocity), can suppress the resonance
amplitude while keep the force transmissibility almost
unchanged at low or high frequencies for a single-
degree-of-freedom (SDOF) isolator. This concept was
also extended to the study of multi-degree-of-freedom
(MDOF) isolation problems by Peng [6] and Lang [7].
Another type of nonlinear dampingof similar beneficial
effects is also cubic, whose force is a function of both
displacement and velocity [8,9] (referred as the second
type of nonlinear damping in the following sections),
i.e., f IId ∝ r2ṙ( f IId is the damping force, r and ṙ denotes
the displacement and velocity, respectively) or a more
general form of velocity-displacement-dependent non-
linear damping force described in Ref. [10]. Perfor-
mance comparisons of these two types of nonlinear
damping in free vibrations and forced vibrations can be
found in Refs. [11–13]. Based on the results obtained
with the harmonic balance method, Tang and Bren-
nan [12] pointed out that the force transmissibility of
both types of pure nonlinear damped isolators ( f Id and
f IId ) can achieve 40dB/decade roll off at high frequen-
cies and provide high damping effects during reso-
nance. Nevertheless, for the displacement transmissi-
bility under base excitations, the isolator with second
type of nonlinear damping f IId still has 20dB/decade
roll off, while the isolator owning first type of non-
linear damping f Id has nearly no isolation effects at
high frequencies. These two types of nonlinear damp-
ing were also analytically compared by Xiao [13] with
the nonlinear output frequency response concept con-
sidering higher order harmonics and reached the same
conclusion.

As a matter of fact, the power order of the damp-
ing force with respect to relative velocity of a viscous
damper can only be physically realizedwithin the range
from0.2 to 1.95, i.e., fd = ṙ n(n ∈ [0.2, 1.95]) [14,15],
which gives significant limitations to the implementa-
tion of both types of nonlinear dampers ( f Id and f IId ) by
employing passive elements. Thus, Laalej [16] had to
develop an active control strategy to generate the first
type of cubic damping ( f Id) and experimentally studied
the nonlinear damping effects since nopassive damping
element has been reported to own this type of nonlinear-
ity ( f Id ) up till now.Recently, Tang andBrennan [11,12]
made a progress by proposing a mechanism involv-
ing a horizontal linear damper orthogonal to a linear
spring. Due to the unique geometrical arrangement of

this damper, the second type of nonlinear damping ( f IId )
can be realized under low amplitude excitations. This
geometrically nonlinear isolator was further extended
to a more generalized model where the original hor-
izontal linear damper is replaced with a velocity-nth
power damper [17]. Interested readers can refer to a
more comprehensive review summarized by Liu [18].

As been discussed above, in order to simultaneously
meet the requirements of low resonance amplitude and
good isolation performance at high-frequency range,
these scholars [1–18] studied the lightly damped or
even no damped linear isolators (already have good iso-
lation efficiency at high frequencies) and added nonlin-
ear damping elements to improve their poor resonance
performances. While in this paper, we develop another
novel way by presenting a sufficient damped isolator
(naturally owns low resonance amplitude) and employ
a nonlinear spring to reduce its vibration transmissi-
bility at high frequencies without deteriorating its res-
onance performance. More specifically, we study the
model of a linear spring in parallel with a nonlinear
supported damper. This model is often known as the
Zener model [23], and the nonlinear supported damper
in this model consists of a linear damper and an inten-
tional designed nonlinear spring, which is referred to
as the secondary spring [24].

It is of advantage to use the proposed nonlinear iso-
lator: First, this isolator consists of nonlinear stiffness
elements instead of nonlinear dampers. It is known that
there exist plenty more passive nonlinear spring mech-
anisms, such as variable coil diameter spring, thin-
walled rubber cylinder, tensioned string, etc, and much
wider range of practically possible nonlinear coeffi-
cients with design examples and criteria [18–22] com-
pared to cubic nonlinear damping in the form of f Id or
f IId . Second, both force and displacement transmissibil-
ity of the presented nonlinear isolator (with nonlinear
secondary spring) decreases at the rate of 40dB/decade
at high frequencies, which owns better isolation perfor-
mance than that of current nonlinear damping model of
f Id (40dB/decade roll off for force transmissibility and
no isolation effects in terms of displacement transmis-
sibility) and f IId (40dB/decade roll off for force trans-
missibility and 20dB/decade roll off with respect to
displacement transmissibility). Third, the present iso-
lator is developed froma sufficient damped linearZener
model; thus, the higher harmonics can be greatly sup-
pressed by the inherent linear damping, while for previ-
ous lightly linear dampedor no linear damping isolators
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with cubic damping ( f Id or f IId ), the higher harmon-
ics introduced by the isolators may have considerable
effects, especially around resonances.

The paper is organized as follows: In Sect. 2 the new
Zener model with nonlinear secondary spring will be
presented with analytical study in terms of its force and
displacement transmissibility. Section 3 gives numeri-
cal study and parameter discussions to validate the ana-
lytical predictions and finally comes the conclusions
described in Sect. 4.

2 Force and displacement transmissibility

2.1 Description of nonlinear Zener model

The nonlinear isolator considered in this paper is shown
in Figs. 1 and 2 for the study of force excitation and base
excitation, respectively. This type of isolators are often
called viscous relaxation system [23], and its dynamic
model is often referred as the Zener model [24]. The
spring connected to the damper and the spring in paral-
lel with the damper are called the secondary spring and

Fig. 1 SDOF system with nonlinear supported damper in paral-
lel with a linear spring subjected to force excitation

Fig. 2 SDOF system with nonlinear supported damper in paral-
lel with a linear spring subjected to base excitation

the primary spring [24], respectively. Properties of the
Zener model with linear springs, which is named as the
linear Zener model here, have been extensively studied
in Refs. [23] and [24]. In this paper, the nonlinearity of
the secondary spring is considered and studied. Conse-
quently, the model with a nonlinear secondary spring is
called the nonlinear Zener model in the present paper
for emphasizing this feature.

As depicted in Figs. 1 and 2, the system consists of a
payload massm, a primary linear spring k, a linear vis-
cous damper c and a cubic nonlinear secondary spring
with its force fnl denoted by

fnl = klr + knlr
3 (1)

where kl denotes the linear stiffness of the nonlinear
spring and knl denotes the coefficient of its cubic stiff-
ness term. r denotes the relativemotion of the nonlinear
secondary spring as depicted in Figs. 1 and 2, which
can be written as

r =
{
x2 under force-excitation
x2 − xin under base-excitation

(2)

where x2 denotes the displacement at one end of the
secondary spring and xin denotes the input of base exci-
tations, as shown in Figs. 1 and 2.

As the isolator subjected to harmonic excitation and
considered with sufficient linear damping (e.g., with
a linear modal damping of 0.1–0.3), the primary har-
monic term can be assumed to dominate its steady-state
response [25–27], i.e.,
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r ≈ Im
(
Rejϕ

)
(3)

where R denotes the complex response of the nonlinear
secondary spring, ϕ denotes its generic angle and j is
the imaginary unit.

Thus, according to the principle of equivalent lin-
earizationmethod [28,29] or describing functions [30],
the nonlinear force defined by Eq. (1) can be linearized
as

fnl = keqr (4)

where

keq = kl + 3

4
knl |R|2 (5)

and |R| denotes the amplitude of R.

2.2 Force transmissibility under force excitations

As shown in Fig. 1, the force excitation is denoted by

fin (t) = f̄in sin (ωt) (6)

where f̄in denotes the amplitude of the force excitation
and the dynamic equation of the system can be written
as

{
mẍ1 + c (ẋ1 − ẋ2) + kx1 = f̄in sin (ωt)
c (ẋ1 − ẋ2) = fnl (x2)

(7)

where x1, ẋ1, and ẍ1 denote the displacement, velocity
and acceleration of the sprung mass, respectively. ẋ2
denotes the velocity of x2.

According to Fig. 1, the force transferred to the base
can be denoted by

fout = kx1 + c (ẋ1 − ẋ2) (8)

Introduce non-dimensional variables ω2
0 = k/m, Ω =

ω/ω0, τ = ω0t , f̂in = f̄in/k, ζ = c/2
√
km and f̂nl =

fnl/k, yielding

{
x ′′
1 + 2ζ

(
x ′
1 − x ′

2

) + x1 = f̂in sin (Ωτ)

2ζ
(
x ′
1 − x ′

2

) = f̂nl (x2)
(9)

where •′ denotes the derivative of the variable with
respect to non-dimensional time.

Thus, the nonlinear equation of relative motion can
be written in the frequency domain as

X2 = j2ζΩ

−j2ζΩ3 − k̂eqfΩ
2 + j2ζΩ

(
k̂eqf + 1

)
+ k̂eqf

F̂in

(10)

where X2 denotes the complex relative motion of the
nonlinear secondary spring. F̂in denotes the complex
amplitude of the force input fin (t). According to Eqs.
(2) and (5), we also have

k̂eqf = βl + 3

4
βnl |X2|2 (11)

where βl and βnl represent the non-dimensional lin-
ear and nonlinear coefficients of the secondary spring,
respectively. They can be obtained by

βl = kl/k, βnl = knl/k (12)

It should be noted that nonlinear equation of rela-
tive motion defined by Eq. (10) needs to be solved
iteratively [8,25–30] or inversely [31] to obtain the
responses since k̂eqf is dependent on the responses X2,
although it can be written in a form of ‘linear’ transfer
function.

After solving Eq. (10), the force transmissibility can
be calculated with

Tf =
j2ζΩ

(
k̂eqf + 1

)
+ k̂eqf

−j2ζΩ3 − k̂eqfΩ
2 + j2ζΩ

(
k̂eqf + 1

)
+ k̂eqf

(13)

Before numerical simulation of the responses, we first
present the analytical study of the isolator on its high-
frequency transmissibility as well as resonance ampli-
tude.

(a) High frequency performance
At high frequencies, the modulus of Eq. (10) becomes

|X2|Ω>>1

=
∣∣∣∣∣∣

j2ζΩ

−j2ζΩ3 − k̂eqfΩ
2 + j2ζΩ

(
k̂eqf + 1

)
+ k̂eqf

∣∣∣∣∣∣
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×
∣∣∣F̂in

∣∣∣

≈
∣∣∣F̂in

∣∣∣
Ω2 (14)

thus the force transmissibility defined by Eq. (13) can
be approximately calculated by

|Tf |Ω>>1 ≈
∣∣∣∣∣∣

(
k̂eqf + 1

)
Ω2

∣∣∣∣∣∣ =
βl + 3

4βnl

∣∣∣F̂in
∣∣∣2/Ω4 + 1

Ω2

≈ βl + 1

Ω2 (15)

For a conventional linear Zener model [23,24],

βl �= 0, βnl = 0 (16)

and the linear force transmissibility can be obtained as

|Tf |linearΩ>>1 ≈ βl + 1

Ω2 (17)

If only the pure cubic stiffness of the secondary spring
is considered, there are

βl = 0, βnl �= 0 (18)

then the force transmissibility of the nonlinear Zener
model will be

|Tf |nonlinearΩ>>1 ≈ 1

Ω2 (19)

As can be seen from Eqs. (17) and (19), the force trans-
missibility of both linear and nonlinear Zener model at
high frequencies is independent of the damping, and
decreases at a rate of 40dB/decade, which is actually
onemerit of the isolators featureswith theZenermodel.
By comparing Eqs. (17) and (19), it is also obvious that
employing pure nonlinear stiffness in the secondary
spring will reduce the transmissibility by a factor of
βl + 1 in high frequencies with respect to the linear
Zener model, and obtaining the same high-frequency
transmissibility of an isolator with rigidly connected
pure cubic nonlinear damper ( f Id and f IId ) [12].

(b) Resonance performance
It is already known that the resonance frequency of
the linear Zener mode will change with the non-
dimensional damping parameter ζ [24]. In this paper,
the damping coefficient is not assumed too high (ζ ≤
0.4), and thus the resonance will occur near Ω = 1.

For the linear Zener model (βl �= 0, βnl = 0),

|X2|linearΩ=1 = 1

βl

∣∣∣F̂in
∣∣∣ (20)

So that

|Tf |linearΩ=1 =
∣∣∣∣1 + 1

βl
− j

2ζ

∣∣∣∣

=
√(

1 + 1

βl

)2

+
(

1

2ζ

)2

(21)

Similarly, for the nonlinear Zener model with pure
cubic stiffness of the secondary spring (βl = 0, βnl �=
0),

|X2|nonlinearΩ=1 = 3

√
4

∣∣∣F̂in
∣∣∣/3βnl (22)

and

|Tf |nonlinearΩ=1 =

∣∣∣∣∣∣∣
1 + 1

3
4βnl

(
4

∣∣∣ f̂in
∣∣∣/3βnl

)2/3 − j

2ζ

∣∣∣∣∣∣∣

=

√√√√√√
⎡
⎢⎣1 + 1

3
√
3

∣∣∣ f̂in
∣∣∣2 βnl

/
4

⎤
⎥⎦
2

+ (1/2ζ )2 (23)

The resonance amplitude of the nonlinear Zener model
will be lower or equal to that of the linear Zener model
provided that

3

√
3
∣∣∣ f̂in

∣∣∣2 βnl

/
4 ≥ βl (24)

Equation (24) is a nonlinear equation related to the
input force f̂in and isolator parameters (βl and βnl).
If it is satisfied, one will have

√
1 + (1/2ζ )2 ≤ |Tf |nonlinearΩ=1 ≤ |Tf |linearΩ=1 (25)

As indicated byEq. (25), although the resonance ampli-
tudes of both linear and nonlinear Zener model are
larger than that of the isolator with linear rigidly con-
nected damper of the same damping value ζ , the isola-
tor featured with nonlinear Zener model owns lower
resonance amplitude compared to that of the linear
Zener model if it satisfies Eq. (24).
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(c) Jump avoidance
In practical applications, jumps of the transmissibility
curves should be avoided. According to Eqs. (10) and
(11), we can obtain the implicit amplitude-frequency
equation

C6 |x2|6 + C4 |x2|4 + C2 |x2|2 + C0 = 0 (26)

where

C6 = 9

16
β2
nl

[(
Ω2−1

)2 +4ζ 2Ω2
]

C4 = 3

2
βnlβl

(
Ω2−1

)2 −6βnlζ
2Ω2

(
Ω2−βl−1

)

C2 = 4ζ 2Ω2
(
Ω2−βl−1

)2 +β2
l

(
Ω2−1

)2

C0 = −4ζ 2Ω2
∣∣∣F̂in

∣∣∣2 (27)

Next, the critical equation [8] corresponding to a ver-
tical slope can be established by ∂Ω/∂ |X2| = 0 to
evaluate the jump condition of this isolator, where the
jump zone and non-jump zone are divided by the solu-
tion curve of this critical equation, i.e.,

6C6 |x2|5 + 4C4 |x2|3 + 2C2 |x2| = 0 (28)

where C6, C4, and C2 are the coefficients defined by
Eq. (27).

Thus, jump phenomenon can be avoided [8] if the
response curve of the isolator under force excitations
has just one or none point that satisfies Eq. (28).

(d)Brief summaryof force transmissibility analy-
sis

In Sect. 2.2, the force transmissibility of the non-
linear Zener model around its resonance and at high
frequencies is discussed analytically. It is shown that
choosing pure cubic stiffness as the type of secondary
spring can have better force transmissibility than its
corresponding linear Zener model at high frequencies.
In addition, if its nonlinear parameters satisfy Eq. (24),
the nonlinear Zener model will even has lower reso-
nance amplitude with respect to the linear one. Thus,
a nonlinear secondary spring with parameters satisfy-
ing Eq. (24) can help the Zener model to achieve an
ideal improvement on the force transmissibility, i.e.,
the isolation performance at high frequencies will be
enhanced, and meanwhile the resonance amplitude can
bemaintained or even suppressed. Thereafter, the jump
avoidance criteria is also derived using its critical equa-

tion, which should be satisfied during practical appli-
cations.

2.3 Displacement transmissibility under base
excitations

As depicted in Fig. 2, the base displacement excitation
can be expressed by

xin (t) = x̄in sin (ωt) (29)

where x̄in denotes the amplitude of the base excitations.
The governing equation of the system is

{
mẍ1 + c (ẋ1 − ẋ2) + k (x1 − xin) = 0
c (ẋ1 − ẋ2) = fnl (x2 − xin)

(30)

Once again, introducing the non-dimensional variables
ω2
0 = k/m, Ω = ω/ω0, τ = ω0t , ζ = c/2

√
km and

f̂nl = f̂nl/k, there is

{
x ′′
1 + 2ζ

(
x ′
1 − x ′

2

) + (x1 − xin) = 0
2ζ

(
x ′
1 − x ′

2

) = f̂nl (x2 − xin)
(31)

where •′ denotes the derivative of the variable with
respect to non-dimensional time.

With the relative motion of the nonlinear secondary
spring defined by Eq. (2), the complex response of the
relative motion of the nonlinear secondary spring can
be written as

R = j2ζΩ3

−j2ζΩ3 − k̂eqbΩ
2 + j2ζ

(
k̂eqb + 1

)
Ω + k̂eqb

X in

(32)

where X in denotes the complex amplitude of the base
excitation, R denotes the complex response of the non-
linear secondary spring . The k̂eqb can be obtained
according to Eqs. (2) and (5) by

k̂eqb = βl + 3

4
βnl |R|2 (33)

where βl and βnl are also defined by Eq. (12), repre-
senting the non-dimensional linear and nonlinear coef-
ficients of the secondary spring, respectively.

Similar to Eqs. (10), (32) is also a nonlinear equation
that needs to be solved iteratively [30] or inversely [31]
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due to its inherent nonlinear feature. After solving it,
the displacement transmissibility can be obtained by

Td =
j2ζ

(
k̂eqb + 1

)
Ω + k̂eqb

−j2ζΩ3 − k̂eqbΩ
2 + j2ζ

(
k̂eqb + 1

)
Ω + k̂eqb

(34)

Again, we analytically study its isolation performance
in terms of its transmissibility at high frequencies and
resonance amplitude.

(a) High frequency performance
At high frequencies and according to Eq. (32), one

have

|R|Ω>>1 ≈ |X in| (35)

Thus, the modulus of displacement transmissibility
becomes

|Td|Ω>>1

≈
∣∣∣∣∣∣

j2ζ
(
k̂eqb + 1

)
Ω + k̂eqb

−j2ζΩ3 − k̂eqbΩ
2 + j2ζ

(
k̂eqb + 1

)
Ω + k̂eqb

∣∣∣∣∣∣
≈ βl + 3

4βnl |X in|2 + 1

Ω2 (36)

For a conventional linear Zener model (βl �= 0, βnl =
0), we have

|Td |linearΩ>>1 ≈ βl + 1

Ω2 (37)

If the secondary spring is considered as pure cubic stiff-
ness (βl = 0, βnl �= 0), the displacement transmissibil-
ity of the nonlinear Zener model will be

|Td |nonlinearΩ>>1 ≈
3
4βnl |X in|2 + 1

Ω2 (38)

The displacement transmissibility of both linear and
nonlinear Zenermodel at high frequencies decays at the
rate of 40dB/decade,whereas it is only 20dB/decade for
a traditional linear isolator with rigidly connected lin-
ear damper and the rigidly connected nonlinear damper
with the second type of cubic damping ( f IId ∝ x2 ẋ) dis-
cussed in Refs. [12,13]. It should also be noted that the
first type of cubic damping f Id ∝ ẋ3 offers on isolation
effects at very high frequencies [12] under base exci-
tations. From this point of view, both the linear and

nonlinear Zener model have excellent isolation perfor-
mance under base excitations at high frequencies.

In addition, provided that

3

4
βnl |X in|2 ≤ βl (39)

The nonlinear Zener model with a pure cubic stiffness
secondary spring will have better high-frequency iso-
lation efficiency than the linear Zener model.

(b) Resonance performance
In this section, it is also assumed that the damping

coefficient is not too high (ζ ≤ 0.4) and the resonance
occurs near Ω = 1.

For a linear Zener model (βl �= 0, βnl = 0),

|R|linearΩ=1 =
∣∣∣∣ X in

βl

∣∣∣∣ (40)

So that

|Td|linearΩ=1 =
√(

1 + 1

βl

)2

+
(

1

2ζ

)2

(41)

For a nonlinear Zener model with a pure cubic stiffness
secondary spring (βl = 0, βnl �= 0),

|R|nonlinearΩ=1 = 3
√
4 |X in|/3βnl (42)

The nonlinear displacement transmissibility can be
written as

|Td|nonlinearΩ=1

=
∣∣∣∣∣1 + 1

3
4βnl (4 |X in|/3βnl)

2/3
− j

2ζ

∣∣∣∣∣

=
√√√√

[
1 + 1

3
√
3 |X in|2 βnl/4

]2

+ (1/2ζ )2 (43)

By letting

3
√
3βnl |X in|2/4 ≥ βl (44)

one can have

√
1 + (1/2ζ )2 ≤ |Td|nonlinearΩ=1 ≤ |Td|linearΩ=1 (45)

Similar to the force transmissibility, the peak value of
the displacement transmissibility of the linear or non-
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linear Zener model will be slightly larger than that of
the isolator with linear rigidly connected damper at
the same damping level of ζ . Including nonlinear sec-
ondary spring in the Zener model, with its parameters
satisfying Eq. (44), the resonance amplitude will be
suppressed compared to linear Zener model and closer
to that of the isolator with linear rigidly connected
damper.

Thus, by employing a nonlinear secondary spring
with parameters satisfying Eqs. (39) and (44) simul-
taneously, an ideal improvement of the displacement
transmissibility of the Zener model can be achieved,
i.e., satisfying

βl ≤ 3

4
βnl |X in|2 ≤ 3

√
βl (46)

Equation (46) indicates that Eqs. (39) and (44) can only
be simultaneously satisfied when 0 ≤ βl ≤ 1. As βl >

1, the effects of nonlinearity on the resonance ampli-
tude |Td|nonlinearΩ=1 is marginal when 3βnl |X in|2/4 ≥ 1.

As depicted in Fig. 3, when 1 ≤ 3
√
3βnl |X in|2/4 < βl,

the nonlinear secondary spring will introduce a small
increase in the resonance amplitude, while according
to Eq. (39), the high-frequency transmissibility will be
significantly reduced. That is to say, when βl > 1, the
displacement transmissibility at high frequencies can
still be substantially reduced at the cost of only a small
increase of the resonance amplitude by replacing the
linear secondary spring with a nonlinear one. This con-
clusion will be demonstrated with numerical examples
in the next section.

Fig. 3 Relations between the resonance amplitude and the non-
linear coefficients at different damping levels

(c) Jump avoidance
Similar to the analysis in Sect. 2.2, the implicit
amplitude-frequency equation of Eq. (32) can be
obtained as

D6 |R|6 + D4 |R|4 + D2 |R|2 + D0 = 0 (47)

where

D6 = 9

16
β2
nl

[(
Ω2−1

)2 +4ζ 2Ω2
]

D4 = 3

2
βnlβl

(
Ω2−1

)2 −6βnlζ
2Ω2

(
Ω2−βl−1

)

D2 = 4ζ 2Ω2
(
Ω2−βl − 1

)2 +β2
l

(
Ω2 − 1

)2
D0 = −4ζ 2Ω6 |X in|2 (48)

According to the critical equation [8] denoted by
∂Ω/∂ |R| = 0, one obtain

6D6 |R|5 + 4D4 |R|3 + 2D2 |R| = 0 (49)

where D6, D4,and D2 are defined by Eq. (48)
Similarly, jump phenomenon can also be avoided [8]

if the response curve of the isolator under base excita-
tions has just one or none point that satisfies Eq. (49).

(d) Brief summary of displacement transmissi-
bility analysis

InSect. 2.3, the displacement transmissibility at high
frequencies and around resonance is discussed. It is
shown that the displacement transmissibility of both
the linear and nonlinear Zener model decreases at the
rate of 40dB/decade at high frequencies, which indi-
cate better isolation performance than the isolator with
rigidly connected linear damper (20 dB/decade roll off)
or even the rigidly connected nonlinear damper (no iso-
lation effects for f Id and 20 dB/decade roll off for f IId
[12,13], respectively).

When compared to linearZenermodel, the pure non-
linear secondary spring in Zener model can achieve
an ideal improvement (reducing the transmissibility at
high frequencies as well as suppressing the resonance
amplitude) when 0 ≤ βl ≤ 1, or substantially reduce
the transmissibility at high frequencies with only a
small increase of the resonance amplitude if βl > 1.

3 Numerical examples and discussions

The force transmissibility as the isolator subjected to
the force excitations and displacement transmissibility
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as the isolator subjected to the base excitations will be
numerically studied in this section. For each input sce-
nario, the transmissibility curve of the isolator was first
solved in the frequency domain with Newton-Raphaen
iterations [25–28] and plotted as lines in the follow-
ing figures. Then, direct time integration was also per-
formed to validate the frequency domain results, where
the time history responses of the nonlinear Zenermodel
were obtained by integrating the original time domain
equation (Eqs. 9 and 31, respectively) with Runge-
Kutta algorithm inMATLAB.The time stepwas chosen
as a fixed step dividing each driven cycle into 100 steps,
the total integration time was set as 8000 cycles and the
last 800 cycle steady-state datawere used in fast Fourier
transform (FFT) to obtain the primary, third and fifth
harmonic term of the responses. In addition, the ampli-
tudes of each harmonic term obtained from direct time
integration are plotted as discrete markers in the same
figure of the frequency domain results for the purpose
of comparison.

3.1 Force transmissibility under force excitations

As shown in Fig. 1, the parameters of original linear
Zener model was chosen as ζ = 0.1, βl = 1, βnl =
0 and the amplitude of input force was considered as
F̂in = 0.4.

Here, only the secondary spring was changed from
linear to nonlinear while other parameters kept
unchanged, i.e., consider ζ = 0.1, βl = 0 for the
design of nonlinear Zener model. According to Eq.
(24), in order to obtain better vibration isolation per-
formance at high frequencies, the nonlinear coefficient
needs to satisfy βnl ≥ 25/3. In this example, we chose
βnl = 25/3, which means the nonlinear Zener model
owns the same resonance amplitude and achieves max-
imum percentage enhancement in transmissibility per-
formance at high frequencies compared to the linear
Zener model.

Apart from the linear Zener model and nonlinear
Zener model, the linear rigid connected damper model
with the same damping level was also included for the
purpose of comparison, and it was obtained by letting
βl → +∞, βnl = 0 and ζ = 0.1.

The transmissibility of linear Zener model and its
corresponding nonlinear Zener model compared in
terms of its high-frequency performance and resonance
amplitude are shown in Fig. 4, in which multiple har-

Fig. 4 The force transmissibility as the isolator subject to force
excitations. Dashed line: linear rigid connected damper (βl →
+∞, βnl = 0 and ζ = 0.1); Short dashed line: linear Zener
model (ζ = 0.1, βl = 1 and βnl = 0); Solid line: nonlinear Zener
model (ζ = 0.1, βl = 0, βnl = 25/3). The markers denoted by
each harmonic term were obtained from direct time integration
of the nonlinear Zener model. a wide frequency range, b around
resonance

monic terms obtained fromdirect numerical integration
are also plotted as markers. As depicted in Fig. 4, good
agreement is observed between analytical predictions
with frequencydomain solutions andprimaryharmonic
term from time domain integration. It is also evident
that the response amplitude of higher order harmonics
is at least 20dB less than that of the primary harmonic
term.

As can be seen from the comparison in Fig. 4, the
force transmissibility of the linear and nonlinear Zener
model at high frequencies is better than that of the iso-
lator with linear rigidly connected damper. At high
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frequencies, the nonlinear Zener model isolator has
even better performance than the linear Zener model,
which is in agreement with the analytical predictions
in Sect. 2.2. It should be noted that the high-frequency
transmissibility can also be improved by reducing βl

to a very small value in a linear Zener model isolator.
However, this will lead to an unacceptable increase of
the resonance amplitude. It is clearly shown in Fig. 4b
that the nonlinear Zener model with a pure cubic stiff-
ness secondary spring (βl = 0, βnl = 25/3) can behave
similarly and have the same resonance amplitude as a
linear Zener model isolator (βl = 1, βnl = 0) in the
low frequency range (Ω ≤ 1.8), and the transmissibil-
ity will drop below that of the linear Zener model in
the high frequency range(Ω ≥ 2.5). In this way, the
nonlinear secondary spring can significantly improve
the force transmissibility performance of the isolator,
especially its high-frequency isolation efficiency.

3.2 Displacement transmissibility under base
excitations

The displacement transmissibility is also studied with
the non-dimensional damping ζ = 0.1 and base exci-
tation level xin = 0.4. Consider two groups of isolators
according to the range of βl in linear Zener model, i.e.,
βl ≥ 1 and 0 ≤ βl ≤ 1, during the numerical study.

(a) βl ≥ 1, i.e., the stiffness of the secondary spring is
larger than that of the primary spring in the linear
Zener model

The first group contains isolators with a linear rigidly
connected damper (βl → +∞, βnl = 0 and ζ = 0.1),
a linear Zener model (ζ = 0.1, βl = 5, βnl = 0)
and a nonlinear Zener model that needs to be designed.
Since βl = 5 ≥ 1 was assumed for the linear Zener
model, we cannot find a nonlinear Zener model with
a secondary spring of pure cubic stiffness, which has
both lower resonance amplitude and better high fre-
quency transmissibility than that of the linear Zener
model according to Eq. (46). Here, we chose a set of
parameters ζ = 0.1, βl = 0 and βnl = 25/3 for the
nonlinear Zener model, which only satisfying Eq. (39).
Thus, the resonance amplitude increases from 5.14 to
5.85, while the transmissibility at Ω = 100 reduces
from 6e−4 to 2e−4, as shown in Fig. 5. From the com-
parison of this group, it is demonstrated that a small
increase of the resonance amplitude and a substantial

Fig. 5 The displacement transmissibility as the isolator subject
to base excitations. Dashed line: linear rigid connected damper
(βl → +∞, βnl = 0 and ζ = 0.1); Short dashed line: linear
Zener model (ζ = 0.1, βl = 5 and βnl = 0); Solid line: nonlinear
Zener model (ζ = 0.1, βl = 0, βnl = 25/3). The markers
denoted by each harmonic term were obtained from direct time
integration of the nonlinearZenermodel.awide frequency range,
b around resonance

reduction in the high frequency transmissibility can be
achieved by employing nonlinear stiffness in the sec-
ondary spring with respect to a linear Zener model with
βl > 1.

(b) 0 ≤ βl ≤ 1, i.e., the secondary spring is softer than
the primary spring

In the second group, the displacement transmis-
sibility curves of a linear rigidly connected damper
(βl → +∞, βnl = 0 and ζ = 0.1), a linear Zener
model (ζ = 0.1, βl = 0.5, βnl = 0) and a nonlin-
ear Zener model are compared. Since βl = 0.5 < 1
is studied for the linear Zener model, the nonlinear
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Fig. 6 The displacement transmissibility as the isolator subject
to base excitations. Dashed line: linear rigid connected damper
(βl → +∞, βnl = 0 and ζ = 0.1); Short dashed line: linear
Zener model (ζ = 0.1, βl = 0.5 and βnl = 0); Solid line:
nonlinear Zener model (ζ = 0.1, βl = 0, βnl = 25/24). The
markers denoted by each harmonic term were obtained from
direct time integration of the nonlinear Zener model. a wide
frequency range, b around resonance

Zener model can achieve an ideal improvement. Here,
the non-dimensional parameters ζ = 0.1, βl = 0,
βnl = 25/24 were chosen, which can have the same
resonance amplitude as the linear Zener model, while
the displacement transmissibility at high frequencies is
reduced by 25% as shown in Fig. 6.

4 Conclusions

In order to obtain an isolator with low resonance ampli-
tude as well as good isolation performance at high fre-
quencies, this paper explores the usage of nonlinear

stiffness elements to improve the transmissibility effi-
ciency of a sufficient linear damped vibration isola-
tor, i.e., we intend to improve its original poor high-
frequency isolation performance and meanwhile main-
tain or even reduce its already low resonance ampli-
tude, denoted as an ideal improvement for the isola-
tor in this paper. More specifically, a nonlinear Zener
model, which is formed by replacing the linear sec-
ondary spring with a nonlinear one, is proposed and
detailed analyzed by comparing its force and displace-
ment transmissibility curves to that of other types of
nonlinear isolators documented in the literature.

It is shownanalytically andnumerically that the non-
linear secondary spring can significantly improve the
performance of the isolator: (1) For the force trans-
missibility as the isolator subjects to force excitations,
the cubic stiffness of the secondary spring can pro-
vide an ideal improvement with respect to the linear
Zener model. (2) For the displacement transmissibil-
ity as the isolator subject to base excitations, the non-
linear Zener model can substantially reduce the high-
frequency transmissibility at the cost of a small increase
of the resonance amplitude with respect to the linear
Zener model if the stiffness of its secondary spring is
larger than the primary spring (βl > 1) or achieve an
ideal improvement when the secondary spring is softer
than the primary spring (0 ≤ βl ≤ 1).

The results from direct numerical integration also
confirm that it is a promising alternative approach to
use nonlinear stiffness elements toward improving the
vibration isolation performance of the isolators. Three
main advantages to use nonlinear stiffness elements are
evident:

(1) Comparing with a nonlinear damper, a nonlinear
spring mechanism is much easier to fabricate and
can have a wider range of nonlinear coefficients to
choose from, which will promote practical appli-
cations of vibration isolators featuredwith the non-
linear Zener model.

(2) The displacement transmissibility under base exci-
tations of the nonlinear Zener model with cubic
stiffness secondary spring has a rate of 40dB/
decade at high frequencies, which outperforms
those isolatorswith rigidly connected linear damper
or rigid connected nonlinear damper ( f Id ∝ ṙ3do
not have isolation effects at very high frequen-
cies, and f IId ∝ r2ṙ only provides a rate of
20dB/ decade). Meanwhile, the force transmis-
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sibility under force excitations of this nonlinear
Zener model decreases at a rate of 40dB/ decade,
which is the same as previous isolators with non-
linear damping ( f Id and f IId ).

(3) The present isolator is developed from a sufficient
damped linear Zener model, thus most unwanted
nonlinear behaviors in those low damped nonlin-
ear systems, such as jumps, high amplitudes of
sub- and/or super harmonics, could be avoided or
greatly suppressed.

In the present paper, we use the cubic secondary
spring to improve the performance of the Zener model;
however, it is obvious that this study can be easily
extend to including other types of nonlinear springs.
Further developments could consider other types of
nonlinear stiffness in the secondary spring or focus on
the design and test stage of such an isolator with dis-
cussions of parameter ranges associated with practical
nonlinear mechanisms.
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