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Abstract Notch is a critical regulator of T cell differentiation and is activated through proteolytic

cleavage in response to ligand engagement. Using murine myelin-reactive CD4 T cells, we

demonstrate that proximal T cell signaling modulates Notch activation by a spatiotemporally

constrained mechanism. The protein kinase PKCq is a critical mediator of signaling by the T cell

antigen receptor and the principal costimulatory receptor CD28. PKCq selectively inactivates the

negative regulator of F-actin generation, Coronin 1A, at the center of the T cell interface with the

antigen presenting cell (APC). This allows for effective generation of the large actin-based lamellum

required for recruitment of the Notch-processing membrane metalloproteinase ADAM10. Such

enhancement of Notch activation is critical for efficient T cell proliferation and Th17 differentiation.

We reveal a novel mechanism that, through modulation of the cytoskeleton, controls Notch

activation at the T cell:APC interface thereby linking T cell receptor and Notch signaling pathways.

DOI: 10.7554/eLife.20003.001

Introduction
T cell activation is mediated by antigen recognition through the T cell receptor (TCR). To allow phys-

iological adaptation, the TCR signal is modulated by co-regulatory signals. Here, we address co-

stimulation through Notch. Notch family proteins are large, heterodimeric transmembrane recep-

tors. Upon Notch ligation by one of a family of Notch ligands (Osborne and Minter, 2007), a plasma

membrane-tethered matrix metalloproteinase, ADAM10 or ADAM17, removes the Notch extracellu-

lar domain. Subsequently, the plasma membrane-embedded g-secretase complex liberates the

Notch intracellular domain (NICD). The NICD constitutively translocates to the nucleus where it dis-

places transcriptional repressors and recruits enhancers to genomic loci characterized by binding of

the transcription factor RPBJk (Borggrefe and Oswald, 2009).

An essential role for Notch1 in T cell thymic development is well established (Robey et al., 1996;

Washburn et al., 1997); a Notch1 deficient hematopoietic compartment yields no T cells

(Radtke et al., 1999). Notch1 signaling also plays a pivotal role in mature T cells. Notch1 is activated

following TCR stimulation (Amsen et al., 2004; Guy et al., 2013; Ong et al., 2008) and is required

for effector cell development (Amsen et al., 2004; Keerthivasan et al., 2011). The degree of

Notch1 activation is directly proportional to the strength of the TCR signal (Guy et al., 2013). Anti-

gen-induced Notch1 activation in T cells may be ligand independent (Adler et al., 2003)

(Ayaz and Osborne, 2014; Palaga et al., 2003). However, the cellular mechanism coupling proximal

T cell signaling to Notch activation is unresolved. Here we reveal a spatially constrained mechanism

of Notch1 activation. We demonstrate that PKCq, a serine/threonine kinase integrating TCR and
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CD28 signals (Altman and Kong, 2016), enhances T cell actin dynamics through localization and

phosphorylation of the negative actin regulator Coronin1A (Coro 1A) and thus mediates actin-based

recruitment of ADAM10 to the T cell:APC interface for efficient Notch activation.

Results and discussion

PKC� enhances Notch activation
To study the role of TCR/CD28-proximal signaling in Notch1 activation, we bred PKCq-deficient Tg4

mice (Tg4KO). PKCq integrates TCR and CD28 signals. PKCq-deletion renders peripheral T cells

hyporesponsive but allows normal thymic selection (Sun et al., 2000). Tg4 CD4+ T cells (Liu et al.,

1995) recognize the acetylated N-terminal peptide of myelin basic protein Ac1-9[4K] and its high

affinity MHC-binding analogue Ac1-9[4Y].

To determine whether Notch activation could play a role in mature T cells that is comparable to

that in thymocytes, where Notch drives critical developmental decisions (Radtke et al., 2013), we

assayed NICD expression in Tg4 thymocytes, naı̈ve and primed T cells in response to anti-CD3 and

anti-CD28. NICD expression and changes thereof upon cellular activation were similar (Figure 1—

figure supplement 1A and B). However, Notch activation was impaired in mature T cells from

Tg4KO mice. Tg4KO mice showed reduced Notch1 expression sixteen hours after in vivo T cell activa-

tion by injecting mice with 80 mg [4Y] peptide s.c. (Figure 1A,B) even though Tg4KO mice were

grossly normal with a reduced number and proportion of CD4+ splenocytes but unaffected Tg4 TCR

expression (Figure 2A; Figure 2—figure supplement 1). Reduced Notch expression was confirmed

by Western blot analysis 60 min after s.c. administration of [4Y] peptide (Figure 1C) and through

eLife digest The body’s immune system recognizes and responds to foreign agents such as

bacteria and viruses. Immune cells known as T cells recognize foreign substances through a protein

on their surface called the T cell receptor. Specifically, the T cell receptor binds to fragments of

foreign proteins displayed on the surface of other cells, which sets in motion a chain of events that

leads to the T cell becoming activated. An activated T cell divides to form new cells that develop

into “effector” T cells, which can mount an effective immune response.

The T cell engages with the cell displaying the foreign proteins via an interface referred to as the

immunological synapse. This zone of contact brings together the signaling machinery of the T cell.

Like many other cells, T cells contain an internal skeleton-like structure made up of actin filaments.

These filaments are crucial for the formation of the immunological synapse, in part because they

help to transport the T cell receptor and other signaling proteins to the immunological synapse.

Recent research suggests that a signaling protein called Notch plays an important role in

instructing activated T cells to develop into effector cells. Notch is found on the surface of many

cells, including T cells, and it becomes activated when it is cut by a specific enzyme. However, it was

not entirely clear how T cell signaling drives the activation of the Notch protein.

Britton et al. have now investigated the mechanism that leads to Notch activation in T cells from

mice. The results show that a protein found inside the T cell, called PKCq, is a major contributor to

Notch activation when T cells become activated. So how does the PKCq protein control the

activation of Notch? Britton et al. observed that PKCq inactivates a protein that normally inhibits

actin filaments from forming, and does so specifically at the center of the immunological synapse.

This inhibition promotes the generation of a large actin-rich structure known as the lamellal actin

network. This structure is required to recruit the Notch-cutting enzyme to the immunological

synapse. Further analysis revealed that Notch gets cut and activated during the first few minutes of

T cell activation leading to cell division and the development of effector T cells.

Following on from this work, the next challenge will be to explore if altering signaling from the T

cell receptor – for example, using drugs or small molecules – can modify the activation of Notch. If

so, it will be important to explore if the chemicals could potentially be used to treat diseases that

develop when T cells go awry, such as rheumatoid arthritis, psoriasis and Crohn’s disease.

DOI: 10.7554/eLife.20003.002
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Figure 1. PKCq enhances antigen-induced Notch activation. (A) Tg4WT and Tg4KO mice were injected subcutaneously with 80 mg of MBPAc1-9[4Y]

peptide or PBS. After 18 hr splenocytes were immunostained to assess intracellular Notch1 expression and analyzed by flow cytometry. Gated on live,

CD4+ cells. (B) The expression (geometric mean fluorescence intensity, gMFI) of intracellular Notch1 in CD4+ T cells from spleens of Tg4WT and Tg4KO

mice treated as in A is shown as the mean ± SEM. **p=0.002, ns p=0.06 (ANOVA). One experiment of 2, n = 3 mice per condition. (C) Tg4WT and

Figure 1 continued on next page
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analysis of Notch1-dependent hes1 expression (Figure 1D). Corroborating these data in non-TCR

transgenic T cells, Notch1 cleavage in naı̈ve CD4+ T cells (CD4+, CD44�, CD25�) from PKCq-defi-

cient B10.PL mice was diminished following overnight activation with anti-CD3 and anti-CD28

(Figure 1E). Such Notch activation was CD28-dependent (Figure 1F), consistent with an important

role of PKCq downstream of CD28 (Huang et al., 2002; Kong et al., 2011; Yokosuka et al., 2008).

As biochemical signaling activity in T cell activation peaks within the first few minutes, we verified

that PKCq-dependent Notch activation can also occur at this time scale. Increased nuclear Notch

enrichment could be detected 5 to 20 min after in vitro T cell activation or after injecting mice with

80 mg [4Y] peptide s.c. (Figure 1G–I). This effect was corroborated using a second TCR transgenic

system, 5C.C7 (Singleton et al., 2009) (Figure 1J).

PKC� enhances in vitro Th17 T cell differentiation and T cell
proliferation via Notch
To determine functional outcomes of diminished Notch processing in PKCq-deficient T cells, we ana-

lyzed T cell proliferation and differentiation. In accordance with published data (Keerthivasan et al.,

2011; Marsland et al., 2004; Tan et al., 2006), T cell proliferation, CD69 and c-Myc upregulation

were defective in Tg4KO T cells whereas IL-2 was unaffected (Figure 2B–D). Tg4KO T cells showed no

defect in Th1 cell differentiation (Figure 2E–G). Conversely, the proportion of IL-17A+ T cells was

significantly reduced under conditions favoring Th17 development (Figure 2H–J). Overexpression of

NICD at 18.5 ± 1.5 fold the level in non-activated primed Tg4WT cells (Figure 1—figure supplement

1C and D) so as to constitutively activate Notch in Tg4KO cells led to restoration of T cell prolifera-

tion (Figure 2K), Th17 cell differentiation and IL-17A secretion (Figure 2L–N). Notch1 thus enhances

T cell proliferation and differentiation downstream of PKCq.

PKC� enhances actin-dependent enrichment of ADAM10 at the T cell:
APC interface
We investigated ADAM10 as a key signaling molecule potentially employed by PKCq for Notch1

activation. We visualized ADAM10 recruitment to the interface between the T cell and the APC by

virally transducing Tg4WT and Tg4KO CD4+ T cells with ADAM10-GFP. ADAM10-GFP+ T cells were

imaged as they interacted with H-2u PL8 lymphoma APC presenting the Ac1-9[4Y] antigen. Tg4KO T

cells, whether transduced to express ADAM10-GFP or other sensors, formed tight cell couples upon

Figure 1 continued

Tg4KO mice were injected subcutaneously with 80 mg of MBPAc1-9[4Y] peptide or PBS. CD4+ T cells were isolated from the spleen after 60 min by

MACS and protein extracts analyzed by Western blotting with anti-NICD, anti c-myc and GAPDH. One representative Western blot of three. (D) Naı̈ve

Tg4WT and Tg4KO CD4+ T cells were isolated from splenocytes and stimulated with plate-bound anti-CD3 and anti-CD28 for 30 min. Expression of Hes1

was determined by RT-PCR. One representative experiment of four. (E) Naı̈ve CD4+ T cells were isolated from B10.PL PKCq WT or KO splenocytes by

magnetic selection and stimulated for 18 hr with plate-bound anti-CD3 and anti-CD28 as indicated. An equal amount of protein extract from each

sample was analyzed for expression of the NICD and GAPDH by Western blotting. (F) Naı̈ve CD4+ T cells isolated from Tg4WT and Tg4KO mice were

stimulated for 18 hr with a titration of plate-bound anti-CD3 ±2 mg/ml anti-CD28, as indicated. Expression of NICD and GAPDH was assessed by

Western blotting. One representative Western blot of two. (G, H) Tg4WT and Tg4KO T cell blasts were incubated for 15 min with [4Y]-loaded PL8 cells

before fixation and immunostaining against the IC domain of Notch1. The cells were counterstained with phalloidin and DAPI before imaging by

confocal microscopy. The proportion of NICD staining in the nucleus (defined by DAPI staining) and the cytoplasm (defined by phalloidin staining) was

measured and the ratio of nuclear:cytoplasmic NICD calculated. **p=0.0014, *p=0.02, ns p=0.2 (ANOVA). 32–58 cells analyzed per condition, combined

data from two independent experiments. (I) Tg4WT mice were injected subcutaneously with 80 mg of MBPAc1-9[4Y] peptide or PBS. CD4+ T cells were

isolated from the spleen after 5 or 20 min by MACS, fixed and immunostained against the IC domain of Notch1. The ratio of nuclear:cytoplasmic NICD

is given. T cell treatment with 2 mM EDTA serves as a positive control of Notch activation. The difference between the 0 min time point and the EDTA

control is significant with p=0.02 (ANOVA). One representative experiment of 4. (J) 5C.C7 mice were injected subcutaneously with 80 mg of MCC (89–

103) peptide or PBS. CD4+ T cells were isolated from the spleen after 5 or 20 min by MACS, fixed and immunostained against the IC domain of

Notch1. The ratio of nuclear:cytoplasmic NICD is given. Differences between the 0 versus 5 and 20 min time points are significant with p=0.005/0.002,

respectively (ANOVA). One representative experiment of 3.

DOI: 10.7554/eLife.20003.003

The following figure supplement is available for figure 1:

Figure supplement 1. NICD expression is comparable across Tg4 thymocytes, naı̈ve and primed T cells and substantially enhanced upon retroviral

expression.

DOI: 10.7554/eLife.20003.004
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Figure 2. Constitutively active Notch rescues defective proliferation, Th17 polarization and IL-17A secretion in PKCq deficient T cells. (A) Splenocytes

from Tg4WT and Tg4KO mice were stained for the indicated molecules and absolute cell numbers or percentages are given as indicated. Each data

point represents one mouse. Data are combined from mice assayed across three experiments. As previously reported (Gupta et al., 2008; Sun et al.,

2000) in non-TCR transgenic mouse strains, PKCq deficiency in Tg4 mice resulted in a reduced number and proportion of CD4+ T cells. p values by

Figure 2 continued on next page

Britton et al. eLife 2017;6:e20003. DOI: 10.7554/eLife.20003 5 of 18

Short report Cell Biology Immunology

http://dx.doi.org/10.7554/eLife.20003


APC contact albeit with a slightly reduced frequency compared to Tg4WT T cells (30 ± 5% versus 50

± 4%, p=0.02) with comparable gross T cell morphology, as characterized in the next paragraph.

Such effective cell coupling allowed an analysis of the interface recruitment of GFP-tagged signaling

intermediates and the spatiotemporal patterns thereof. ADAM10-GFP was recruited rapidly and

transiently to the interface of Tg4WT T cells and APC (Figure 3A,B; Figure 3—figure supplement

1A, Video 1) consistent with previous work in AND T cells (Guy et al., 2013). In contrast, ADAM10-

GFP was not enriched at the interface of Tg4KO T cells (Figure 3A,B; Figure 3—figure supplement

1A, Video 2). In Tg4WT cells, ADAM10 was enriched in the interface lamellum, an actin-based signal-

ing structure (Roybal et al., 2015b). Impairment of lamellum formation with 40 nM Jasplakinolide

(Figure 3—figure supplement 1B) (Roybal et al., 2015a) prevented ADAM10 interface recruitment

(Figure 3A,B; Figure 3—figure supplement 1A) and Notch cleavage following stimulation with anti-

CD3/28 (Figure 3C). The defect in lamellal ADAM10 recruitment upon PKCq-deficiency was selective

since the lamellal accumulation of Themis, a protein with substantially more prominent and persis-

tent lamellal accumulation than ADAM10, was only moderately impaired (Figure 3—figure supple-

ment 1C–E). Together, these data suggest that actin-dependent ADAM10 recruitment to the T cell:

APC interface at the early peak of T cell signaling activity mediates efficient Notch1 activation down-

stream of PKCq. In AND T cells strong stimuli cause concerted accumulation of the TCR, Vav and

Notch at the T cell/APC interface as related to efficient Notch activation (Guy et al., 2013). Actin

dynamics may thus mediate coordinated interface accumulation of both ADAM10 and Notch. It

needs to be determined how PKCq and Vav-dependent actin dynamics are related.

Previous work has linked PKCq to actin regulation (Sasahara et al., 2002; Sims et al., 2007;

Villalba et al., 2002). By visualizing actin dynamics in Tg4WT and Tg4KO T cells with F-tractin-GFP

(Johnson and Schell, 2009) (Videos 3 and 4), multiple elements of the actin-dependent establish-

ment of a tight T cell:APC interface were modestly impaired in cells lacking PKCq. The spreading of

F-actin to the periphery of the interface was delayed in Tg4KO T cells (Figure 3D,E; Figure 3—figure

supplement 2A). The interface diameter of Tg4KO T cells was significantly (p<0.05) reduced across

multiple time points (Figure 3F,G), as confirmed by electron microscopy (Figure 3—figure

Figure 2 continued

Student’s unpaired two-tailed t-test. (B) The proliferation of naı̈ve Tg4WT and Tg4KO CD4+ T cells stimulated with irradiated B10.PL splenocytes and a

titration of MBPAc1-9[4K] is given. n = 8 Tg4WT, n = 15 Tg4KO mice, each assayed in triplicate for each peptide concentration. Shown is the mean ±

SEM. ****p<0.0001 by Student’s unpaired two-tailed t-test. (C) Naı̈ve Tg4WT and Tg4KO mice were injected subcutaneously with 80 mg of MBPAc1-9[4Y]

peptide or PBS. After 18 hr splenocytes were immunostained to assess CD69 expression and analyzed by flow cytometry. Gated on live, CD4+ cells. The

mean expression (geometric mean fluorescence intensity, gMFI) ± SEM of CD69 is given. ns p=0.08. One experiment of 2, n = 3 mice per condition. (D)

Tg4WT or Tg4KO mice were injected subcutaneously with 80 mg [4Y] peptide. After 60 min, CD4+ splenocytes were isolated by MACS, RNA was isolated

and the expression of c-myc and IL-2 determined by RT-PCR. n = 3 mice per condition, shown is mean ± SEM. ns = 0.68 by unpaired Student’s t-test.

(E–G) Splenocytes from Tg4WT or Tg4KO mice were stimulated with 10 mg/ml [4K] peptide, IL-12 and IL-2 for 7–9 days before restimulation with PMA

and ionomycin in the presence of monensin. The proportion of IFNg and IL-2-producing CD4+ T cells was determined by intracellular cytokine staining.

Shown are representative FACS plots, gated on live, CD4+ cells and the combined data from all replicates shown as mean ± SEM n = 7–11

independent biological replicates ns = 0.71 (F) and 0.73 (G) by unpaired Student’s t-test. (I–J) Splenocytes from Tg4WT or Tg4KO mice were stimulated

with 10 mg/ml [4K] peptide, IL-6, IL-1b, IL-23, anti-IFNg and anti-IL-4 for 7–9 days before restimulation with PMA and ionomycin in the presence of

monensin. The proportion of IFNg and IL-17A-producing CD4+ T cells was determined by intracellular cytokine staining. Shown are representative FACS

plots, gated on live, CD4+ cells and the combined data from all replicates shown as mean ± SEM. n = 8 independent biological replicates, p<0.0001 (I)

p=0.03 (J) by Student’s t-test. (K) Splenocytes from Tg4WT and Tg4KO mice were stimulated with [4K] peptide and IL-2 before transduction with a

retrovirus encoding NICD and GFP or GFP alone. After 72 hr the incorporation of 3H thymidine was measured. n = 3 replicate transductions per

condition, mean values ± SEM. *** = 0.0005, ns = 0.31. One representative experiment of four. (L, M) Splenocytes from Tg4WT and Tg4KO mice were

stimulated with [4K] peptide in the presence of IL-6, IL-1b, TGFb and IL-23 before transduction with a retrovirus encoding NICD and GFP or GFP alone.

After 96 hr of further culture with IL-6, IL-1b, TGFb and IL-23 the cells were restimulated with PMA and ionomycin in the presence of monensin before

intracellular staining for the expression of IL-17A. (L) shows representative FACS data. The mean ± SEM of three replicates from one experiment of four

is shown in M. ns = 0.06 by Student’s t-test. (N) The mean concentration of IL-17A was measured in supernatants from triplicate cultures of Tg4WT and

Tg4KO cells T cells transduced with NICD or GFP alone under Th17-polarising conditions. p values by Student’s t-test. One representative experiment

of three.

DOI: 10.7554/eLife.20003.005

The following figure supplement is available for figure 2:

Figure supplement 1. Tg4KO mice display largely unperturbed immune cell distributions.

DOI: 10.7554/eLife.20003.006
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Figure 3. PKCq mediates transient actin-dependent recruitment of ADAM10 to the T cell lamellum. (A) Tg4WT CD4+ T cells, treated with 40 nM

Jasplakinolide (bottom) or not (top), and Tg4KO (middle) CD4+ T cells expressing ADAM10-GFP were activated with PL8 cells presenting the Ac1-9[4Y]

peptide. Given are representative images showing pseudocolored (purple to red) maximum projections of the ADAM10-GFP fluorescence and a

reference DIC bright field image at times relative to the formation of a tight couple between T cell and APC. The entire image sequences are given in

Figure 3 continued on next page
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supplement 2B). The lamellum connecting the T cell body to the interface was smaller in Tg4KO T

cells as it showed a significantly (p<0.001) larger constriction or ‘neck’ (Figure 3F,H). Long lamella

(>2.5 mm) did not occur (Figure 3—figure supplement 2C). Tg4KO T cells thus displayed modest

defects across multiple elements of actin-driven cell spreading consistent with the slightly reduced

efficiency of tight cell coupling.

PKC� phosphorylates and localizes
Coronin1A
We sought to identify actin regulators mediating

the modest actin modulation by PKCq. Coro-

nin1A inhibits the Arp2/3 complex

(Humphries et al., 2002; Oku et al., 2005) and

regulates clearance of actin from the NK immune

synapse (Mace and Orange, 2014). Further-

more, Coronin is an established interactor with

and substrate of PKC (Cai et al., 2005;

Siegmund et al., 2015). Coronin1A was highly

enriched at the interface of Tg4WT and Tg4KO T

cells (Figure 4A,B; Figure 4—figure supple-

ment 1A; Videos 5 and 6). Similar to actin,

Coronin1A spreading to the interface periphery

was delayed in Tg4KO cells, leaving substantially

more Coronin 1A in the lamellum. Given that

Coronin 1A is a negative regulator of actin

dynamics its enhanced enrichment in the lamel-

lum is consistent with the concurrent, localized

impairments in actin, T cell morphology and

ADAM10 recruitment. As a specificity control,

the spatiotemporal distribution of the dominant

F-actin severing protein Cofilin (Roybal et al.,

2016; Singleton et al., 2011) was unaffected by

Figure 3 continued

Video 1 (Tg4WT) and 2 (Tg4KO). (B) The graph shows the percentage of T cells with lamellal accumulation of ADAM10-GFP at the time relative to

couple formation ± SEM. Differences in lamellal accumulation between Tg4WT and Tg4KO and Jasplakinolide-treated Tg4WT T cells at time points 0:00

and 0:20 were each significant with p�0.005 (Tg4KO versus Tg4WT 0:00 p=0.001, 0:20 p=0.005; Tg4WT +Jasp versus Tg4WT 0:00 p=0.004, 0:20 p=0.001,

by proportions z-test). 18–28 cell couples were analyzed per condition (57 total). Full pattern analysis is given in Figure 3—figure supplement 1A. (C)

CD4+ blasts from Tg4WT and Tg4KO mice (four days after stimulation) were restimulated for 18 hr with anti-CD3 and anti-CD28 ±40 nM Jasplakinolide or

left unstimulated as indicated. NICD and GAPDH expression in protein extracts was measured by Western blotting. One representative experiment of

three. (D) Tg4WT and Tg4KO CD4+ T cells expressing F-tractin-GFP were activated with PL8 cells presenting the Ac1-9[4Y] peptide. Representative

images are given as in A. The entire image sequences are given in Video 3 (Tg4WT) and 4 (Tg4KO). (E) The percentage of cell couples with

predominantly peripheral F-tractin-GFP accumulation is given as in B. The difference in peripheral accumulation between Tg4WT and Tg4KO T cells at

joint time points 0:00 and 0:20 was significant (p=0.01 by proportions z-test, 31, 47 cell couples were analyzed per condition). Full pattern analysis is

given in Figure 3—figure supplement 2A. (F) An example image of a T cell exhibiting the ‘bottleneck’ phenotype, defined as having a diameter

minimum between the interface and the widest part of the cell body, is given as a grey scale F-tractin-GFP maximum projection together with a

matching DIC bright field image. Measurement positions to determine the interface width (yellow) relative to the cell body (red) or the presence of a

necking phenotype (blue) are shown. (G) The relative interface diameter was determined by relating the interface diameter to the widest part of the cell

body and is given relative to the time of tight cell coupling. Shown is the mean ratio ± SEM. ns p=0.33 (0 s) and 0.149 (20 s) by unpaired, two-tailed

Student’s t-test. 49 (WT) 35 (KO) cell couples were analyzed per condition. (H) The percentage of T cells displaying a bottleneck phenotype in at least

one timepoint during the first 60 s after coupling is given. ***p<0.001 by proportions z-test. 35 cell couples were analyzed per condition.

DOI: 10.7554/eLife.20003.007

The following figure supplements are available for figure 3:

Figure supplement 1. PKCq enables transient recruitment of ADAM10 to the T cell lamellum.

DOI: 10.7554/eLife.20003.008

Figure supplement 2. PKCq enhances interface actin dynamics.

DOI: 10.7554/eLife.20003.009

Video 1. ADAM10-GFP accumulates rapidly and

transiently at the interface between Tg4WT CD4+ T cells

and PL8 APCs. A representative interaction of a Tg4WT

CD4+ T cell expressing ADAM10-GFP with a PL8 APC

presenting the Ac1-9[4Y] peptide is shown. Top: DIC

images. Bottom: Top-down maximum projections of

3D fluorescence data are shown in a rainbow-like, false-

color intensity scale (increasing from blue to red). 20 s

intervals in video acquisition are played back as two

frames per second. Tight cell coupling occurs in frame

3 (1 s indicated video time).

DOI: 10.7554/eLife.20003.010
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PKCq deficiency (Figure 4—figure supplement

1A).

Next, we investigated phosphorylation of

Coronin 1A by PKCq in Tg4 T cells. Coronin activity is negatively regulated by serine/threonine phos-

phorylation, which can be induced by phorbol ester treatment (Cai et al., 2005; Oku et al., 2008,

2012). To allow detection of changes in Coronin1A phosphorylation, we prevented Coronin1A

dephosphorylation by treating cells with the phosphatase inhibitor Calyculin A (Oku et al., 2008,

2012). Treating Tg4WT T cells with PMA and Calyculin A resulted in a shift in the ratio of phosphory-

lated to non-phosphorylated Coronin1A from 0.3 ± 0.1 to 2.8 ± 1.1 fold, indicative of efficient Coro-

nin1A phosphorylation (Figure 4C,D). This shift was significantly (p<0.05) smaller in Tg4KO cells

(0.25 ± 0.05 to 0.8 ± 0.25 fold) (Figure 4C,D)

demonstrating that PKCq is required for efficient

PMA-induced phosphorylation of Coronin1A.

Together, our data suggest (Figure 4E) that in

Tg4WT T cells PKCq (Figure 4—figure supple-

ment 1B; Video 7) inactivates Coronin 1A selec-

tively in the region of most intense stimulating

signaling, i.e. the center of the T cell:APC inter-

face with effects extending across the entire

lamellum but not reaching the peripheral actin

ring. Thus PKCq locally inhibits Coronin 1A-medi-

ated attenuation of actin dynamics, promoting

the formation of a strong actin-based lamellum.

With regard to Notch1 activation this allows for

the efficient actin-driven recruitment of ADAM10

to the T cell:APC interface. This mechanism of

enhanced Notch processing peaks within the

first few minutes of T cell activation. Such early

signaling emphasis is consistently observed in

Tg4WT cells (Figure 4—figure supplement 1B)

and other TCR transgenic systems, where it

extends to the nuclear localization of other tran-

scription factors, NFAT and NFkB (Roybal et al.,

2015b; Singleton et al., 2009). We have thus

Video 2. ADAM10-GFP does not accumulate at the

interface between Tg4KO CD4+ T cells and PL8 APCs. A

representative interaction of a Tg4KO CD4+ T cell

expressing ADAM10-GFP with a PL8 APC presenting

the Ac1-9[4Y] peptide is shown as in Video 1. Tight cell

coupling occurs in frame 5 (2 s indicated video time).

DOI: 10.7554/eLife.20003.011

Video 3. F-tractin-GFP accumulates rapidly at the

interface between Tg4WT CD4+ T cells and PL8 APCs. A

representative interaction of a Tg4WT CD4+ T cell

expressing F-tractin-GFP with a PL8 APC presenting

the Ac1-9[4Y] peptide is show as in Video 1. Tight cell

coupling occurs in frame 6 (4 s indicated video time).

Immediate spreading of the majority of F-actin to the

edge of the interface is visible.

DOI: 10.7554/eLife.20003.012

Video 4. F-tractin-GFP accumulates rapidly at the

interface between Tg4KO CD4+ T cells and PL8 APCs. A

representative interaction of a Tg4KO CD4+ T cell

expressing F-tractin-GFP with a PL8 APC presenting

the Ac1-9[4Y] peptide is shown as in Video 1. Tight cell

coupling occurs in frame 4 (2 s indicated video time).

Delayed spreading of the majority of F-actin to the

edge of the interface is visible.

DOI: 10.7554/eLife.20003.013
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Figure 4. PKCq phosphorylates and localizes Coronin1A. (A) Tg4WT and Tg4KO T cell expressing coronin1A-GFP were activated with PL8 cells

presenting the Ac1-9[4Y] peptide. Representative images are given as in Figure 3A. The entire image sequences are given in Video 5 (Tg4WT) and 6

(Tg4KO). (B) The percentage of cell couples with predominantly lamellal (top) and peripheral (bottom) Coronin1A-GFP accumulation is given as in

Figure 3B. The differences in lamellal accumulation between Tg4WT and Tg4KO T cells at time points �40 to 80 were each significant with p�0.05 by

proportions z-test. 50, 34 cell couples were analyzed per condition. Full pattern analysis is given in Figure 4—figure supplement 1A. (C) Shown is a

representative Phos-tag western blot of protein extracts from Tg4WT or Tg4KO T cells stimulated with PMA and/or Calyculin A (Caly) for 5 min as probed

Figure 4 continued on next page
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identified a spatially restricted, actin-dependent mechanism of Notch activation downstream of

PKCq (Figure 4E). Future work will determine how the enhancement of Notch activation by PKCq is

integrated with PKCq-dependent NFkB activation (Gruber et al., 2009; Sun et al., 2000) in the reg-

ulation of T cell differentiation.

A key feature of our mechanism of PKCq function is that it connects signaling at the time scale of

minutes to outcomes in cellular differentiation over days. While causally connecting such divergent

time scales is a great challenge, there is precedent. 15 min of contact between a primed T cell and a

professional APC is sufficient to trigger T cell proliferation 24 hr later (Iezzi et al., 1998). Similarly, 1

hr of ZAP-70 activity can trigger substantial negative selection (Au-Yeung et al., 2014). Differential

signaling kinetics may also regulate Treg induction (Miskov-Zivanov et al., 2013). On an even

shorter time scale 5 min of TGFb incubation saturates Smad2 phosphorylation at 1 hr (Vizán et al.,

2013). In T cell activation, it has been argued that a time delay in the onset of activating versus

inhibitory signaling from 2 to more than 5 min, respectively, may play an important role in the induc-

tion of anergy in response to high doses of antigen (Wolchinsky et al., 2014). In B cells a single

pulse of BCR engagement can trigger the nuclear accumulation of NFkB for 6 hr

(Damdinsuren et al., 2010). While mechanisms linking rapid proximal signaling to later cell function

largely remain to be determined, the well-supported existence of such causal links is consistent with

our model of PKCq-dependent Notch activation.

Materials and methods

Mice
All mice were maintained under SPF conditions

with ad libitum access to water and standard

chow at the University of Bristol. All animal

experiments were carried out under the UK

Home Office Project Licence number 30/2705

held by David Wraith and the study was

approved by the University of Bristol ethical

review committee. B10.PL, 5C.C7 (Seder et al.,

1992) and Tg4 (Liu et al., 1995) mice were bred

in-house at the University of Bristol. PKCq-defi-

cient Tg4 mice were generated by cross-breed-

ing Tg4 mice with C57BL/6 prkcq�/�mice (a gift

of A. Poole, University of Bristol, originally gen-

erated by D. Littman (Sun et al., 2000) for >8

generations. The genetic status of each animal

was assessed by PCR as previously described

(Sun et al., 2000). B10.PL PKCq KO mice were

obtained by breeding Tg4KO mice with B10.PL

mice.

Figure 4 continued

with anti-coronin1A. (D) Given is the quantification of four independent experiment as in C as the mean ratio of the top (phospho) and lower (non-

phospho) Coronin 1A bands ± SEM. * indicates p<0.05 Tg4WT versus Tg4KO T cells by two-way ANOVA with Sidak’s correction for multiple

comparisons. (E) A graphical summary of the proposed mechanism of the enhancement of Notch activation by PKCq is given. The top and bottom rows

illustrate Tg4WT or Tg4KO T cells, respectively. Each individual panel shows the interface part of the T cell that contacts the APC (not shown on top).

Separate panels are drawn from left to right for PKCq (as also included in the other panels), Coronin1A, F-actin and ADAM10. Colors denote

preferential accumulation patterns, central (red), lamellal (green) and peripheral (blue). Shade of color denotes the extent of accumulation.

DOI: 10.7554/eLife.20003.014

The following figure supplement is available for figure 4:

Figure supplement 1. Interface recruitment of signaling intermediates peaks within the first three minutes in Tg4KO CD4+ T cells.

DOI: 10.7554/eLife.20003.015

Video 5. Coronin1A-GFP accumulates rapidly at the

interface between Tg4WT CD4+ T cells and PL8 APCs. A

representative interaction of a Tg4WT CD4+ T cell

expressing Coronin1A-GFP with a PL8 APC presenting

the Ac1-9[4Y] peptide is shown as in Video 1. Tight cell

coupling occurs in frame 4 (2 s indicated video time).

Immediate spreading of the majority of Coronin1A-GFP

to the edge of the interface is visible.

DOI: 10.7554/eLife.20003.016
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Cell lines
The PL8 H-2u expressing, antigen-presenting B cell lymphoma was prepared in our laboratory

(Wraith et al., 1992). The H-2k expressing CH27 B cell lymphoma was prepared as described previ-

ously (Haughton et al., 1986) and obtained from Mark Davis, Stanford University. Both cell lines

proved mycoplasma free by PCR and were validated by staining for MHC class II expression and

assessing their ability to present antigen to relevant T cell lines.

Cell culture
Lymphoid tissue was dissociated using standard protocols and red blood cells removed using Red

Cell Lysis buffer (Sigma). Unless otherwise stated, cells were cultured in complete RPMI 1640 (Lonza;

supplemented with 25 mM HEPES, 50 U/ml Pen/Strep, 2 mM L-Glutamine and 50 mM 2-mercaptoe-

thanol) with 5–10% FCS (BioSera, Hyclone). PL8 and CH27 cells were maintained in complete RPMI

with 10% FCS. Th17 cells were generated and maintained in IMDM (Lonza; supplemented with 50 U/

ml Pen/Strep, 2 mM L-Glutamine and 50 mM 2-mercaptoethanol) containing 10% FCS.

T cell isolation and stimulation
For isolation of double negative thymocytes, thymi were gently disaggregated on ice in 5% FCS/

PBS. Cells were stained at 4˚C with CD4-FITC and CD8a-APC antibodies. Propidium iodide was

added immediately prior to flow cytometric sorting of viable CD4-CD8a- thymocytes using a BD

Influx cell sorter. For in vitro stimulation experiments, naı̈ve CD4+ T cells were isolated from spleen

and axillary, brachial and inguinal lymph nodes using either EasySep Mouse Naı̈ve CD4+ T cell isola-

tion kit (Stem Cell Technologies) or MagniSort Mouse Naı̈ve CD4+ T cell enrichment kit (eBioscience)

according to the manufacturers’ instructions. For ex-vivo analysis of activated T cells, CD4+ cells

were enriched with Mouse CD4+ T cell enrichment kit II (Miltenyi Biotech) according to the manufac-

turer’s instructions. Naı̈ve or pre-activated CD4+ T cell cells were stimulated with plate-bound anti-

CD3 (2C11, eBioscience or BioExcel, 1 mg/ml or as indicated) and anti-CD28 (37.51, eBioscience or

BioExcel, 2 mg/ml). Alternatively, cells were stimulated with PL8 cells and MBPAc1-9 [4K] or [4Y] pep-

tide (GL Biochem) or CH27 cells and MCC 88–103 peptide at the concentration indicated. Where

indicated, cells were incubated with PMA (Sigma, 20 ng/ml), Calyculin A (Sigma, 100 nM) or Jasplaki-

nolide (Tocris, 40 nM).

Video 6. Coronin1A-GFP accumulates rapidly at the

interface between Tg4KO CD4+ T cells and PL8 APCs. A

representative interaction of a Tg4KO CD4+ T cell

expressing Coronin1A-GFP with a PL8 APC presenting

the Ac1-9[4Y] peptide is shown as in Video 1. Tight cell

coupling occurs in frame 3 (1 s indicated video time).

Transient lamellal accumulation of the majority of

Coronin1A-GFP is visible.

DOI: 10.7554/eLife.20003.017

Video 7. PKCq-GFP accumulates at the center of the

interface between Tg4WT CD4+ T cells and PL8 APCs. A

representative interaction of a Tg4WT CD4+ T cell

expressing PKCq-GFP with a PL8 APC presenting the

Ac1-9[4Y] peptide is shown as in Video 1. Tight cell

coupling occurs in frame 4 (2 s indicated video time).

Central accumulation of the majority of PKCq-GFP is

visible.

DOI: 10.7554/eLife.20003.018
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T helper differentiation
Suspensions of splenocytes from Tg4WT and Tg4KO mice were stimulated with 10 mg/ml MBP Ac1-9

[4K] peptide. For TH1 generation, cells were cultured in complete RPMI containing 10 ng/ml IL-12

(Peprotech) and 20 U/ml rhIL-2 (R and D systems). For TH17 cells, culture was performed in complete

IMDM containing 25 ng/ml IL-6, 10 ng/ml IL-1b, 2 ng/ml TGFb (all Peprotech), 10 ng/ml IL-23 (eBio-

science), 50 mg/ml anti-IFNg (XMG1; BioExcel) and 10 mg/ml anti-IL-4 (11B11; BioExcel).

Western blotting
CD4+ T cells were stimulated as indicated and washed with ice-cold PBS before protein was

extracted in RIPA buffer supplemented with protease and phosphatase inhibitor cocktails (all from

Pierce) (1�2 � 107 cells/ml). Lysates were centrifuged for 10 min at 17,000xg and the soluble frac-

tion denatured in Laemmli buffer before resolution by SDS-PAGE on 4–12% gels (NuPAGE), transfer

to PVDF membrane and immunodetection using standard ECL protocols. Where indicated, samples

were resolved on 12.5% gels supplemented with 50 mM PhosTag reagent (Wako) and 100 mM ZnCl2.

For PhosTag experiments, cells were washed with HBSS instead of PBS. The following antibodies

were used Notch1; (D1E11, Cell Signaling), GAPDH (D16H11, Cell Signaling), c-myc (E910, Santa

Cruz Biotechnology), Coronin1A (H300, Santa Cruz Biotechnology), anti-rabbit and anti-mouse HRP

conjugates (Sigma).

Flow cytometry and cytokine measurements
Non-viable cells were excluded from all analyses using Live/Dead eF780 dye (1:1000, eBioscience).

Surface staining was performed in PBS containing 0.5% FCS and 2 mM EDTA. Intracellular cytokine

staining (ICCS) was performed on cells stimulated with PMA (10 ng/ml) and ionomycin (1 mg/ml) in

the presence of GolgiStop (BD Bioscience, 1:1000) for 4 hr. Cells were surface stained before fixation

and permeabilization using eBioscience reagents. Staining for intracellular Notch1 and FoxP3 was

performed after fixation and permeabilization using FoxP3 staining kit reagents (eBioscience). The

following antibodies, all purchased from eBioscience and/or Biolegend, were used; CD4 Alexa700

(GK1.5, 1:100), CD69 FITC (H1.2F3, 1:100), Notch1-PE (mN1A, 1:100, Biolegend), CD8a APC (53–

6.7, 1:200), CD19 (1D3, 1:200), B220 FITC (RA3-6B2, 1:100), Vb8.1/2 FITC (KJ16-133, 1:100), FoxP3

PE (FJK-16S, 1:100, eBioscience), CD25 PE-Cy7 (PC61.5, 1:300), IFNg PE-Cy7 (XMG1, 1:400), IL-2

eF450 (JES6-5H4, 1:100) and IL-17A PE or PE-Cy7 (17B7, 1:2–400).

Soluble IL-17A was detected in culture supernatant by ELISA using Ready-Set-Go ELISA kit

(eBioscience).

T cell transduction
The cDNA encoding the IC domain of murine Notch1 was obtained from Addgene (plasmid number

20183). The IC domain was amplified by PCR with the primers ACCGCGGTGGCGGCCATGCAGCA

TGGCCAGCTCT and CGGGCTAGAGCGGCCTTATTTAAATGCCTCTGGAATGT and cloned into the

Not1 site of pGC-IRES-GFP (Costa et al., 2000) using In-Fusion HD reagents (Clontech). cDNA

encoding murine Adam10, obtained from Sinobiological (Genbank number NM_007399.3), was

amplified with primers ACCGCGGTGGAGGCCAAGATGGTGTTGCCGACAGT and GGCGACCGG

TGGATCTCCACCGCGTCGCATGTGTCCCATT and cloned into BamH1 and Not1 sites of pGC-GFP

using In-Fusion reagents such that the C-terminus of ADAM10 was fused to GFP. The pGC-IRES-

GFP vector was used as a negative control. The constructs used to express other sensors including

Coronin1A-GFP, Cofilin-GFP, Themis-GFP, F-Tractin-GFP and PKCq–GFP have been previously

described (Table 1 in [Roybal et al., 2015b] and [Roybal et al., 2016]). Retrovirus was generated by

transfecting Phoenix-E cells using calcium phosphate precipitation. For imaging experiments, Tg4 T

cells were infected by centrifugation with viral supernatant 24 hr after stimulation with 10 mg.ml�1

[4K] and 20 U.ml�1 rhIL-2. Immediately following transduction culture media was replaced with com-

plete RPMI supplemented with 20–40 U/ml rhIL-2. For TH17 Notch rescue experiments, Tg4WT and

Tg4KO splenocytes were cultured for 24 hr under TH17-polarising conditions (as described above)

before transduction. Immediately following transduction, the culture medium was replaced with

complete IMDM containing 20 ng/ml IL-23 and 50 mg/ml anti-IFNg. T cells were analyzed by imaging

or flow cytometry 4–5 days after transduction.

Britton et al. eLife 2017;6:e20003. DOI: 10.7554/eLife.20003 13 of 18

Short report Cell Biology Immunology

http://dx.doi.org/10.7554/eLife.20003


Proliferation measurements
72 hr following transduction, 2.5 mCi 3H thymidine/ml (Perkin Elmer) was added to culture wells.

After 16 hr incubation, incorporation of 3H thymidine was measured by scintillation counting.

RT-PCR
CD4+ T cells were stimulated and isolated as indicated in figure legends and RNA was extracted

using either RNeasy Mini kit (Qiagen) or TRI Reagent (Sigma Aldrich). cDNA was generated using

Superscript III polymerase (Life Technologies) and real time PCR performed using a SYBR green PCR

Mastermix (Life Technologies). Primers; il2 sense; AGCAGCTGTTGATGGACCTA, il2 antisense;

CGCAGAGGTCCAAGTTCAT, cmyc sense; TTGAAGGCTGGATTTCCTTTGGGC, cmyc antisense;

TCGTCGCAGATGAAATAGGGCTGT, Hes1 sense; AAAGATAGCTCCCGGCATTC, Hes1 antisense;

TGCTTCACAGTCATTTCCAGA, b2M sense; GCTATCCAGAAAACCCCTCAA, b2M antisense;

CGGGTGGAACTGTGTTACGT. Data were analysed using the 2-44CT method, normalized to

b2microglobulin.

Live cell imaging
Live cell imaging was performed as described in detail before (Singleton et al., 2009). Using FACS,

GFP+ transductants were sorted to a five-fold range of expression around 2 mM, the lowest concen-

tration visible by microscopy and often within the range of endogenous protein amounts

(Roybal et al., 2016). PL8 cells were pre-loaded with 10 mg/ml [4Y] for >4 hr and combined with

pre-sorted GFP+ Tg4 T cells in a glass-bottom plate on the stage of a spinning disk microscope sys-

tem (UltraVIEW 6FE system, Perkin Elmer; DMI6000 microscope, Leica; CSU22 spinning disk, Yoko-

gawa). GFP data were collected as 21 z-sections at 1 mm intervals every 20 s. All imaging was

performed at 370C in PBS containing 10% FCS, 1 mM CaCl2 and 0.5 mM MgCl2. Images were

exported in TIFF format and analyzed with the Metamorph software (Molecular Devices). Cell cou-

ples were identified using the differential interference contrast (DIC) bright field images. The subcel-

lular localization of GFP-tagged protein sensors at each time point was classified into one of six

previously defined stereotypical patterns (Singleton et al., 2009) that reflect cell biological struc-

tures driving signaling organization (Roybal et al., 2013). Briefly, interface enrichment of fluorescent

proteins at less than 35% of the cellular background was classified as no accumulation. For enrich-

ment above 35% the six, mutually exclusive interface patterns were: accumulation in a large protein

complex at the center of the T cell:APC interface (central), accumulation in a large T cell invagination

(invagination), accumulation that covered the cell cortex across central and peripheral regions (dif-

fuse), accumulation in a broad actin-based interface lamellum (lamellum), accumulation at the periph-

ery of the interface (peripheral) or in smaller membrane protrusions (asymmetric).

Immunofluorescence staining
Pre-activated Tg4WT and Tg4KO CD4+ T cells (4 days after activation) were combined with PL8 APC

pre-incubated with 10 mM MBPAc1-9[4Y] for 15 min before fixation with 4% PFA. Alternatively, Tg4

or 5C.C7 T cells were activated in vivo by s.c. injection with 80 mg MBPAc1-9[4Y] or MCC (88-103)

respectively before cell isolation and fixation. Following permeabilization with 0.05% Triton X-100

cells were immunolabelled with anti-Notch1 IC domain (D1E11, Cell Signaling) with an anti-rabbit

Alexa488-conjugated secondary antibody (Life Technologies) and counterstained with DAPI and

Phalloidin Alexa647 (Life Technologies). Alternatively, cell couples were stained with anti-Notch

Alexa647 (Abcam, ab194122) and anti-CD4 FITC. Images were acquired on a Leica SP5 confocal

microscope and image analysis was performed in Metamorph and Volocity (Perkin Elmer).

Electron microscopy
Electron microscopy experiments were executed as described in detail in Roybal et al. (2015b).

Briefly, Tg4WT or Tg4KO CD4+ T cells and peptide-loaded PL8s were centrifuged together for 30 s at

350 g to synchronize cell coupling, the cell pellet was immediately resuspended to minimize unspe-

cific cell coupling and cellular deformation and the cell suspension was further incubated at 37

degree C. After 2 and 5 min for early and late time points, respectively, the cell suspension was high

pressure frozen and freeze substituted to Epon. Ultrathin sections were analyzed in an FEI Tecnai12

BioTwin equipped with a bottom-mount 4*4K EAGLE CCD camera. T cell:APC couples were
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identified in electron micrographs through their wide cellular interface. As described in detail in

Roybal et al. (2015b), the time point assignment of cell couples was filtered with morphological cri-

teria post acquisition using the presence of a uropod and T cell elongation.

Statistical methods
No statistical methods were used to predetermine the sample size. The significance of pairwise com-

parisons was measured by Student’s t-test. Where multiple comparisons were made, significance

was determined by ANOVA with Tukey correction. The statistical significance in differences in per-

centage occurrence was calculated with a proportions z-test.
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