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PREDICTING PIEZOELECTRIC EFFECTS IN ATOMISTIC FINITE ELEMENT
SIMULATIONS

Mat Tolladay', Fabrizio Scarpa!, Dmitry Ivanov!, and Neil Allan?

VACCIS, Department of Aerospace Engineering, Bristol University, Bristol, UK
2Centre for Computational Chemistry, School of Chemistry, Bristol University, Bristol, UK

Summary As our ability to build ever smaller machines develops so does the need for simulation techniques that can accurately capture
the behaviour of these nanocomponents. To empower designers, new simulation methods must be developed to allow for easy and fast
iterations of designs. To this end we have sought to incorporate piezoelectric modelling within an atomistic finite element model of boron
nitride nanotubes. The ability to capture these effects allows for the design of nano scale electromechanical devices. We built and tested
the model by using it to calculate the piezoelectric tensor coefficients for armchair boron nitride nanotubes, subjected to an axial torsional
loading and compared our values to those generated using density functional theory that are available in the literature.

INTRODUCTION

Interest in nanotubes and their potential applications has been growing ever since their initial prediction over two decades
ago. Different materials have been investigated as potential candidates for nanotube formation starting with the most well
known, carbon, but other materials such as carbon nitrides, boron nitrides, sulphides, selenides, halides and transition metal
oxides have been investigated [1]. Concurrently, there has been development of micro, meso and nano scale machines looking
to provide new technological capabilities in many different research fields. Components of these miniature machines are
an obvious application for nanotubes, however new methods for accurately modelling these structures are required. The
standard methods for macro scale modelling rely on the assumptions of continuum mechanics, where as at smaller scales
the molecular structure of the materials becomes apparent leading to unacceptable inaccuracies. Although computational
chemistry has produced tools for modelling molecular structures they normally require significant computational resources
when attempting to model large systems of atoms. One method that attempts to provide molecular modelling capabilities
while allowing for rapid computation is to model the molecular structure as a space frame structure (as can be seen in figure
la) by using force constants developed for molecular mechanics software to provide the effective beam (Euler-Bernoulli or
Timoshenko) properties [2]. These “atomistic” finite element models have been investigated for over a decade by multiple
authors, examining different nano materials and using different finite element beam formulations [3, 4, 5].

We want to expand this technique by providing a method for calculating properties other than the mechanical ones that
have been investigated previously. The focus of this work was on developing a novel method for calculating the piezoelectric
response of nanotubes. Boron nitride nanotubes have been shown to have piezoelectric properties which have been investi-
gated, mostly computationally, providing us with a means for testing the validity of our method.
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THE METHOD

Piezoelectric phenomena are generated by the creation of atomic dipoles in a material which are at least somewhat aligned.
In the case of boron nitride nanotubes the atomic dipoles are caused by distortions of the nanotube lattice that result in breaking
of the threefold symmetry of the lattice. This symmetry breaking leads to dipole creation whereby the electron distribution of
the atoms loses symmetry resulting in a dipole moment of the atom.

A simple method for understanding this behaviour is to consider a polarisability of the atom, a constant which describes
the ratio of the dipole moment of the atom generated by an external applied field and the strength of the applied field. Using
atomic polarisability we can calculate the dipole moment of an atom due to an applied field, for our purposes it was thus
necessary to find a suitable method for calculating the electric field at the atom sites of our deformed nanotube lattice.

The method we used was one developed for use with molecular mechanics simulations called charge equilibration (QEq).
This method uses physical properties of the atoms, the ionisation energies and electron affinities, and the atom positions as
the initial inputs for a method to approximate the charge distribution within a molecule (an example of which can be seen in
figure 1b). Using this method we were able to generate charges for the atoms in the deformed nanotube and then use these
charges and the position data for the atoms to calculate the electric field at the atom sites. With the field calculated we could
then apply the polarisability to find the dipole moments of the atoms.

TESTING THE METHOD

To determine the accuracy of the method we chose to generate the piezoelectric coupling tensor coefficients of a variety of
different sized armchair boron nitride nanotubes under an axial shear load (for results see figure 1¢). By varying the degree of
the shear stress in the tube due we could calculate the dipole moment per unit area (dipole density) of the tube for each applied
shear stress. We were then able to find the gradient of the dipole density as a function of shear stress using finite differences.
This gradient is the tensor coefficient for the piezoelectric coupling tensor.

Table 1: Results from our model and other authors work.

Authors Method €s0y (Cm™1)
Current work  Atomistic FE with QEq —1.46 x 10~°
Sai & Mele [6] DFT/Berry’s phase —3.63 x 10710

DFT/AD initio —2.60 x 10710
Naumov et al [7] DFT —3.57 x 10710

Our results show reasonable agreement with calculations for the tensor values based on DFT calculations (see table 1) but
further refinement of the method is required. Future work will seek to address this by examining other piezoelectric nanotubes,
such as zinc oxide, so that suitable corrections can be introduced to the relevant physical constants.

CONCLUSIONS

We developed and tested a method for the simulating piezoelectric response of boron nitride nanotubes. The method
provides us with an approximation of the piezoelectric properties of the nanotubes but will be refined through future work.
We have shown the method has potential to be used for simulating nanostructures and therefore has the potential to be used as
a tool for designing nano scale machines that utilise piezoelectric effects that are present in certain materials.
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