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Abstract

Strontium titanate is a low-temperature, non-Bardeen-Cooper-Schrieffer superconductor that

superconducts to carrier concentrations lower than in any other system and exhibits avoided ferro-

electricity at low temperatures. Neither the mechanism of superconductivity in strontium titanate

nor the importance of the structure and dielectric properties for the superconductivity are well

understood. We studied the effects of twin structure on superconductivity in a 5.5-nm-thick layer

of niobium-doped SrTiO3 embedded in undoped SrTiO3. We used a scanning superconducting

quantum interference device susceptometer to image the local diamagnetic response of the sample

as a function of temperature. We observed regions that exhibited a superconducting transition

temperature Tc & 10% higher than the temperature at which the sample was fully superconduct-

ing. The pattern of these regions varied spatially in a manner characteristic of structural twin

domains. Some regions are too wide to originate on twin boundaries; therefore, we propose that

the orientation of the tetragonal unit cell with respect to the doped plane affects Tc. Our results

suggest that the anisotropic dielectric properties of SrTiO3 are important for its superconductivity

and need to be considered in any theory of the mechanism of the superconductivity.

Keywords: Condensed matter physics, Superconductivity, Materials Science
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I. INTRODUCTION

Superconductivity in electron-doped SrTiO3 (STO) most likely arises from electron-

phonon coupling [1–10], yet it cannot be described by conventional Bardeen-Cooper-

Schrieffer (BCS) theory [11] because the Fermi temperature in STO is lower than the

Debye temperature, opposite to the requirement of BCS. Certain features of the supercon-

ductivity are reminiscent of unconventional, high-temperature superconductors: there is a

dome-like dependence of transition temperature (Tc) on doping [1, 12–14] that is superfi-

cially similar to the domes found in the cuprates and iron pnictides [15, 16]. Further, STO

superconductivity occurs close to a ferroelectric quantum critical point [8, 17, 18]; quantum

criticality is important for superconductivity in the cuprates [15] and the iron pnictides [16].

Superconductivity in STO is a puzzle in and of itself, and is also important in the context

of understanding superconductivity in thin-film and interfacial systems that are grown on

STO. Furthering our understanding of STO superconductivity may shed light on the role of

STO in the reported pseudogap behavior of LaAlO3 (LAO)/STO heterostructures [19, 20].

It may also illuminate the contribution of STO phonons and the importance of the dielectric

properties of STO to monolayer FeSe on STO [21–23].

A cubic-to-tetragonal structural phase transition occurs in STO at 105 K: small rotations

of the TiO6 octahedra cause the unit cell to double in height and the in-plane axes to rotate

by 45◦ and lengthen by a factor of
√

2 [24]. We will refer to the tetragonal unit cell using the

pseudocubic convention (a = atet/
√

2 and is oriented parallel to cubic 〈100〉; c = ctet/2). The

tetragonal crystal phase allows three orientations of crystallographic twin domains to form.

The twins are distinguished by whether the tetragonal c axis points along the former cubic

[100], [010], or [001] axis. The twin structure strongly influences local normal-state electronic

properties [25, 26] and weakly modulates the superfluid density at temperatures well below

Tc in LAO/STO heterostructures [25]. By studying the effects of the perturbation due to

twin structure on superconducting δ-doped STO, we hope to expand our understanding of

the origin of superconductivity in STO.

Here, we studied the effects of twin structure on superconductivity in δ-doped STO [27–

30]. Using a scanning superconducting quantum interference device (SQUID) susceptometer,

we observed a local variation in Tc that was set by the tetragonal twin structure of the ma-

terial. The orientation and range of widths of the features of enhanced Tc suggest that many
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of those features occur within domains, as opposed to at twin boundaries. We propose that

the underlying mechanism of the variation in Tc is related to modulations of the dielectric

environment that are driven by the orientation of the lattice relative to the superconducting

plane, and by generic alterations of the dielectric environment near twin boundaries.

II. EXPERIMENTAL SETUP

We used a SQUID susceptometer in a dilution refrigerator with a base temperature below

50 mK (during scanning) [31, 32] to study superconductivity in δ-doped STO [27–30]. The

SQUID susceptometer consists of a gradiometric SQUID whose pickup loops (≈ 3 µm in

diameter) are arranged concentrically with single-turn field coils (≈ 20 µm in diameter). We

measured the response of the sample using the primary pickup loop-field coil pair, while the

counterwound rear pickup loop canceled the response of the SQUID to the applied field [32].

We rastered the SQUID over the sample in a plane parallel to the δ-doped layer in the STO

and spatially mapped the diamagnetic response of the superconductor to the magnetic field

that we applied with the field coil. In the sensor geometry that we used for our measurements,

the diamagnetic response of the two-dimensional superconductor is directly proportional to

the superfluid density (Appendix A) [33, 34]. We observed the critical temperature locally by

determining when the diamagnetism disappeared (when the measured susceptibility matched

a background measurement).

We studied two samples of δ-doped STO as well as a single-crystal sample of bulk Nb-

doped STO (dopant concentrationND = 1 at.%) that was obtained from Shinkosha, Inc. The

δ-doped samples were fabricated using pulsed laser deposition, with the growth conditions

described elsewhere [35]. The structures consist of a thin layer (thickness d) doped with

Nb that is embedded between undoped STO cap and buffer layers [28, 35] and exhibits

two-dimensional superconductivity [27]. The electrons are confined around the doped layer

by the Coulomb potential from the dopant ions.

This investigation focused on the results from a thinner and higher density δ-doped sample

(d = 5.5 nm, ND = 1 at.% Nb), but we also measured a thicker and lower density δ-doped

sample (d = 36.9 nm, ND = 0.2 at.% Nb). We measured the 1 at.% Nb δ-doped sample in

two separate cooldowns, the second one occurring after having warmed the sample to room

temperature, removed it to a desiccator from its sample holder, and stored it for several

3



months.

The total area of the d = 5.5 nm, ND = 1 at.% Nb sample was approximately 7.7 mm2. In

the first cooldown, we imaged ≈30% of the total area at a temperature close to but generally

below the upper Tc [36]. Imaging in this temperature range allowed us to identify areas

of interest for studying the temperature dependence of the susceptibility while efficiently

exploring the sample over millimeter length scales. The total area over which we imaged

the temperature dependence of the susceptibility was ≈2.8×105 µm2 in the first cooldown

and ≈1.6×105 µm2 in the second, or approximately 4% and 2% of the total sample area,

respectively.

We performed differential aperture X-ray microdiffraction [37–39] experiments at beam-

line 34-ID-E at the Advanced Photon Source, Argonne National Laboratory [40] on the 1

at.% Nb δ-doped STO. This beamline is equipped with a liquid nitrogen-cooled stage that we

used to cool the STO below its structural transition temperature of 105 K [24]. We collected

Laue diffraction patterns while rastering the sample under the X-ray beam, then indexed

each pattern to a distorted room temperature cubic unit cell for STO [37–39] in order to

determine the orientation of the local crystal structure (extended discussion in Appendix B).

III. RESULTS

To determine the spatial dependence of Tc, we mapped the susceptibility as a function

of temperature near Tc in several regions of the 1 at.% Nb δ-doped STO sample [Fig. 1(a)-

(c)]. Some parts of the scanned areas were diamagnetic, indicating that their Tc was higher

than the scan temperature. In contrast, surrounding parts had zero or very weakly positive

(paramagnetic) susceptibility, indicating that they were not superconducting and that their

Tc was lower than or equal to the scan temperature. We observed similar regions of locally

elevated Tc in the 0.2 at.% Nb δ-doped STO sample (Appendix C).

The patterns we observed in susceptibility images [e.g. Fig. 1, Fig. 2(b), Fig. 3(a)-(b),

Fig. 4(a)] are consistent with enhanced Tc on twin boundaries or with Tc being higher

on certain tetragonal domains of δ-doped STO than on others. We detected regions of

locally higher Tc aligned along axes that corresponded to the high-temperature cubic 〈100〉

directions, as determined via comparison to SQUID images that included an oriented edge of

the sample. The spacing, splitting, and comb-like structures resemble patterns in images of
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tetragonal domains in STO taken with a polarized light microscope at higher temperatures

[25, 26, 41, 42].

Some well-defined features, such as the diagonal mark in the middle-left of Fig. 1(a),

were evident along other directions. Those features did not exhibit a higher Tc than their

surroundings, and we believe that they may be due to damage to the sample. In addition,

along the edge of an area that was masked by a clip during growth, we observed diffuse

regions that had a higher Tc overall, compared to adjacent featureless regions of the super-

conductor [masked area is in the lower right of Fig. 2(a)]. The general enhancement of Tc

in the diffuse regions could be due to differences in growth conditions, strain relaxation, or

other unknown effects along the edge of the masked region.

In the first cooldown of the ND = 1 at.% Nb δ-doped sample, we imaged ≈30% of the total

sample area at an intermediate temperature and observed 〈100〉-oriented features having Tc

higher than their surroundings in ≈50% of the area surveyed [36]. Although features of

elevated Tc were not rare in that particular cooldown, factors such as the cooling rate,

unintentional strain from sample mounting, or the geometry of the sample [43] could alter

the shape, number, and orientation of tetragonal domains that spontaneously form upon

cooling through 105 K [24].

The configuration of SrTiO3 tetragonal domains was previously shown to change on

thermal cycling [25]. To test whether the patterns in Tc also behaved in this manner, we

measured the same 1 at.% Nb δ-doped sample after thermal cycling it above the structural

transition at 105 K. We used a region that had been masked by a clip during pulsed laser

deposition growth to identify specific positions before and after warming. Before warming,

we detected diffuse regions of higher Tc close to the clipped region, with no sharply defined

rectangular features elsewhere [Fig. 2(a)]. We observed similar diffuse regions of higher Tc

along the edges of all areas of the clipped region that we imaged in the first cooldown.

After thermal cycling, we obtained a qualitatively different susceptibility image at the same

location and temperature [Fig. 2(b)]: the image obtained after warming contained sharp

rectangular regions similar to those depicted in Fig. 1. The observation that well-defined,

〈100〉-oriented features appeared in this area after warming above the structural transition

[Fig. 2(b)] strongly suggests that such features originate in the tetragonal domain structure

of STO.

To confirm the shape and orientation of structural domains in the 1 at.% Nb δ-doped
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STO, we used differential aperture X-ray microdiffraction to obtain real space maps of

tilts in the c axis above and below the structural phase transition (Appendix B). The

spatial resolution of the X-ray microdiffraction measurements (≈ 5 µm) was similar to

the limit on the scanning SQUID measurements set by the diameter of the pickup loop

(≈ 3 µm). Below the transition, long, narrow features were evident (Fig. 5), with the

orientations expected for structural domains. Their widths, on the order of tens of microns,

were comparable to the features detected via scanning SQUID (e.g. Figs. 1, 2, 3, 4 and

Appendix D). Depth-resolved microdiffraction measurements of the same δ-doped STO [40]

show tetragonal domains extending from the bulk of the undoped substrate to the surface

of the sample. The spatial resolution along the depth direction (≈ 1 µm) was not sufficient

to resolve the heterostructure (≈ 0.2 µm thick) from the bulk substrate. To within the

depth and lateral spatial resolution of the experiment, there was no evidence of near-surface

alterations in the structure of the STO [40], suggesting that domains from the substrate

extend into the heterostructure.

To discern whether the variation in Tc occurs on twin boundaries or within certain tetrag-

onal domains of the δ-doped STO, we now consider the widths and orientations in more

detail. We observed considerable variation in the widths of the regions of locally higher Tc

(Fig. 7; extended discussion in Appendix D). Notably, features ranged from a width that

was apparently resolution limited [e.g. Fig. 1(b)] to a full width at half maximum that was

wider than the diameter of the field coil on our SQUID (≈ 20 µm), [e.g. Fig. 3(c)]. The

lower limit on the spatial resolution of our SQUID is set by the diameter of the pickup loop

(≈ 3 µm). This variation of widths is consistent with the sizes of domains observed via

polarized light microscopy [25, 26, 41, 42]. In contrast, domain boundaries are predicted

to have widths on the order of a few unit cells [44]. Features caused by boundaries would

have widths limited by the superconducting coherence length, ≈ 100 nm [30], well below

our spatial resolution. Thus, many of the features detected here are likely not produced by

domain boundaries in the STO sample, but rather are suggestive of domains with higher Tc.

The orientations of the regions of locally elevated Tc also help us to distinguish between

features occurring at domain boundaries or within certain domains. The intersection of

domain boundaries with the (001) superconducting plane can be oriented along [100], [010],

or at ∼45◦ to [100] (Fig. 8). Boundaries that are at ∼45◦ to [100] only occur between

domains that both have the c axis in-plane, whereas the [100] and [010] boundaries occur
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between a domain with c in-plane and a domain with c out-of-plane. If domains with c axis

out-of-plane have a different Tc from ones with c in-plane, we would expect to see rectangles

of locally higher (or lower) Tc whose borders were oriented along [100] and [010] but not at

∼45◦ to [100] (Fig. 8), and this matches what we observe.

We overwhelmingly observed regions of locally elevated Tc that were oriented along for-

mer cubic [100] and [010] axes. This observation, together with the width of some features,

strongly suggests that the variation in Tc that we observe is within individual domains,

instead of at their boundaries. It is possible that twin boundaries could produce a similar

signature: sample geometry [43] or unintentional strain could favor twin boundary orienta-

tions ([100] or [010]) that would not be distinguished from narrow in-domain features. We

detected a single region of elevated Tc at approximately -45◦ from [100] (Fig. 9). The -45◦

feature suggests that twin boundaries may lead to an enhancement in Tc in some circum-

stances. While only boundaries can yield ∼45◦ features, the range of widths in the [100]-

and [010]-oriented features suggests that many of them originate within certain domains.

To investigate the relationship between local Tc and low-temperature superfluid density,

we measured the temperature dependence of the susceptibility in a series of images (Fig. 3).

In the region shown in Fig. 3(a), parts of the scanned area were no longer superconducting

at Tc,low ≈ 320 mK, while oriented regions remained superconducting until Tc,high ≈ 370 mK.

Using the relation ∆Tc/Tc = 100%×(Tc,high − Tc,low)/Tc,low, we determined that ∆Tc/Tc ≈

16% for the area in Fig. 3(a), and ∆Tc/Tc ≈ 9% for the area in Fig. 3(b). Similar estimates

for the regions displayed in Fig. 1, Fig. 2(b), and Fig. 4 are presented in Appendix E, Table I.

Linecuts taken near Tc and at temperatures well below Tc [Fig. 3(c) and (d)] demonstrate

that although there was large spatial variation in the susceptibility near Tc, the variation

fell to ≈5% of the average signal at 100 mK [Fig. 3(b)]. Further, there was little to no

modulation of the susceptibility (.2%) at the lowest temperatures measured [Fig. 3(a)].

Tetragonal domains in STO can cause variations in height at the surface of the STO

or STO-based heterostructures (e.g. [26]), but the spatial variation in susceptibility that

we observed is too large to be explained by height variation across domains. For a ≈40

µm-wide domain [Fig. 3(b,d), Fig. 7(d,e)] with surface tilted ≈ 1/2000 radians to the cubic

(001) surface plane [26], we expect the height to change by ≈20 nm across its width. This

change in height should produce at most a 0.4% variation in susceptibility at 100 mK, much

smaller than the ≈5% variation that we observe [Fig. 3(b) upper left image, Fig. 3(d)]. At
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temperatures close to Tc, for example, at 330 mK, the same change in height would produce

a 0.08% variation in susceptibility signal, orders of magnitude smaller than the variation

that we observe [Fig. 3(b,d)].

The temperature dependence of the superfluid density can give insight into the nature

of the superconducting order parameter. The superconductivity of the δ-doped samples

that we measured was in a limit where the superfluid density is directly proportional to

the susceptibility that we measured with our SQUID [33, 34]. Therefore, to track the tem-

perature dependence of the superfluid density in our samples, we extracted susceptibility

versus temperature curves at two different locations from images of the same area at differ-

ent temperatures (Fig. 4). At the lowest temperatures, the susceptibility begins to flatten

[Fig. 4(b)], consistent with s-wave behavior and inconsistent with a nodal gap, which would

yield superfluid density related to temperature in a linear to quadratic fashion depending on

scattering [45]. Note that the direct proportionality between susceptibility and superfluid

density [33, 34] is only strictly valid for an infinite sheet geometry, so we cannot draw de-

tailed conclusions from the high temperature functional form of these data. The apparent

shoulder in the higher-Tc region in Fig. 4(b) (red triangles) is most likely due to the geometry

of the diamagnetic source changing from a quasi-uniform, infinite plane at low temperatures

to a series of separated, narrow strips near Tc.

The two-dimensionality of the δ-doped material may mean that subbands, which are ir-

relevant in the three-dimensional material, are important for determining Tc or other aspects

of the superconductivity. We investigated the importance of subband occupation by mea-

suring a δ-doped STO sample that contained 36.9 nm of 0.2 at.% Nb (Fig. 6) and comparing

it to the δ-doped STO that had 5.5 nm of 1 at.% Nb (e.g. Fig. 1). The overall temperature

scale for superconductivity in the 0.2 at.% Nb δ-doped sample was lower than that in the 1

at.% Nb δ-doped sample, consistent with transport measurements of Tc (Fig. 10 inset). We

detected patterns of modulated Tc in the 0.2 at.% Nb δ-doped sample (Fig. 6) that were

qualitatively similar to those in the 1 at.% Nb δ-doped sample (e.g. Fig. 1). Thus, the local

variation of Tc does not require a specific occupation or configuration of subbands in order

to occur.
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IV. DISCUSSION

Various parameters are tuned by the crystal domain structure of the STO, including

the direction of the elongated c axis, the local strain [40, 46], and the dielectric constant

[47]. By comparing the relative variation of these parameters to the observed variation in

Tc, we sought to identify the most important parameters. Here, ∆Tc/Tc was on the order

of 10−1, where Tc is the temperature at which the whole scan area is superconducting.

Given the widths of the features observed (Appendix D), here we will mainly focus on how

physical parameters are tuned within the structural domains themselves, as opposed to on

boundaries.

One possibility is that Tc is tuned by strain within structural domains. The change in the

lattice constant along the lengthened pseudocubic c axis, |c−a|/a, is on the order of 10−3 [46].

The theoretical relationship between Tc and |c − a|/a is not well known; however, we note

that the relative change in lattice constant due to the structural transition is much smaller

than the relative change in Tc detected here. Further, we would expect strain due to the

tetragonal mismatch, and the associated change in Tc, to be largest at domain boundaries,

inconsistent with the majority of our observations. Each domain may have built-in strain

due to the neighboring domain configuration or other factors, but we do not expect this

strain to greatly exceed the lattice constant change (|c − a|/a) [40] or to be uniform over

many-micron length scales, as would be required to produce the relatively broad features

observed [e.g. Fig. 3(b)].

Another possibility is that Tc is tuned by variations in the dielectric constant related

to the orientation of the crystal relative to the superconducting plane. In undoped, single-

domain STO in the tetragonal phase, the value of the static dielectric constant ε is enormous

at 4 K, on the order of 104, and depends on the orientation along which it is measured [47].

The value along the a axis, εa ≈ 25 000, is over twice as large as the value along the c axis,

εc ≈ 11 000 [47]. For δ-doped STO, the anisotropy in the dielectric constant implies that

the local dielectric constant perpendicular to the two-dimensional superconducting plane

depends on the direction of the c axis within the structural domain. Because the change

in dielectric constant is large while the change in pseudocubic axes is small, we hypothesize

that the change in Tc that we observed may be driven primarily by the dielectric properties

of the crystal, either directly or through the associated phonon modes.

9



The dielectric constant in STO decreases with increasing applied electric field [48]. In δ-

doped STO, the dielectric constant in the vicinity of the doped layer is reduced by the electric

field of the ionized Nb donors. Ref. [49] presents self-consistent calculations of the dielectric

constant for a δ-doped sample with d = 5.5 nm, ND = 1 at.% Nb (the parameters for the

main sample studied here). Assuming ε = 2.6×104 before doping, ε reaches a minimum of

approximately 5×102 at the edge of the doped layer. By 25 nm from the center of the doped

layer, well within the 100 nm-thick cap layer, ε returns to its original order of magnitude

[49]. To date, self-consistent calculations for δ-doped STO have not included the orientation

dependence of ε. However, as long as a relative difference between εa and εc is preserved

throughout the heterostructure, tetragonal domain structure should still spatially vary the

dielectric constant experienced by the two-dimensional electron system as discussed above.

Variations or modifications of the dielectric constant within the superconducting plane

could alter Tc through screening of the Coulomb repulsion. For example, electrons in a

domain where the c axis lies in-plane (a-c domains) experience a dielectric constant that is

the average of εa and εc, whereas electrons in a domain where the c axis points out-of-plane

(a-a domains) experience primarily εa. Since εa is larger than the average of εa and εc, the

Coulomb repulsion between electrons in a-a domains should be more strongly screened than

in a-c domains. With stronger screening could come stronger pairing and higher Tc in a-a

domains.

Variations in screening of the Coulomb interaction may also have implications for the

confinement of electrons in the δ-doped layer. In δ-doped STO, the Coulomb potential set

up by the ionized dopant cores confines the mobile electrons to a narrow, electronically

two-dimensional layer [27, 28]. Local variations in the dielectric constant, both within the

doped layer and in its vicinity, should alter the spatial extent of the electrons in the direction

perpendicular to the dopant layer. Tuning of the fraction of electrons that dwelled outside

the doped layer could tune scattering or two-dimensional electron density in a pattern set

by twin structure.

In a BCS s-wave superconductor, non-magnetic scattering would change the low-

temperature superfluid density but not Tc [50], implying that local changes in conductivity

or carrier concentration that were due to disorder would not affect Tc. However, the indepen-

dence of Tc and disorder depends on a theorem that is not valid for superconductors having

a non-retarded pairing interaction (Fermi energy smaller than the phonon cutoff frequency)
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[51]. STO is in or close to the non-retarded limit [13]; thus, it is possible that variations in

scattering, carrier density, or defects could tune Tc. We note that in bulk-doped STO, ND

= 1 at.% Nb corresponds essentially to the peak of the dome in Tc [1, 12–14]. Neglecting

disorder effects, this suggests that in our δ-doped sample with ND = 1 at.% Nb, changes in

carrier density in either direction would cause Tc to decrease, not increase.

Structurally driven anisotropy in the Fermi surface could potentially alter Tc. First-

principles calculations of the Fermi surface in bulk electron-doped STO showed that the

tetragonal anisotropy produces a considerable distortion in the Fermi surface, compressing

it along the c direction by as much as 35% [52]. In our δ-doped material, the Fermi surface is

dramatically altered from the bulk by confinement in the vertical direction [29], yet despite

the change in dimensionality, the overall scale of Tc in our ND = 1 at.% Nb δ-doped material

is within the range of peak Tcs observed for material doped in the bulk [1, 12–14]. It is

likely that structural anisotropy within the conducting plane, i.e. the orientation of the c

axis relative to the plane, causes additional anisotropy in the Fermi surface. However, the

relative insensitivity of Tc to the large overall change in Fermi surface suggests that smaller,

structurally driven changes in the Fermi surface are not the dominant source of our observed

variation in Tc.

Until now, we have focused on ways in which structure could modify Tc within domains

rather than at boundaries. Much of our discussion considered the hypothesis that Tc is

tuned by variation in the dielectric constant. For the case of domains, we proposed that the

variation in dielectric constant came from intrinsic structural anisotropy: whether the c axis

of a domain, with its considerably smaller dielectric constant, was parallel or perpendicular

to the superconducting plane. Twin boundaries may be a second source of variation in

the dielectric constant. Recent observations of polar domain walls in bulk STO [53, 54],

together with previous observations of twin-modified current flow and surface potential in

LAO/STO heterostructures [25, 26], strongly suggest that twin boundaries modify their

local dielectric environment. This alteration could lead to variations in Tc that would be at

domain boundaries rather than within certain domains.

Our results are relevant to understanding both bulk electron-doped STO and two-

dimensional electron systems in STO-based heterostructures. δ-doped STO is representa-

tive of heterostructures in the reduced dimensionality of its electron system and in that it

has been grown via a method similar to that used to grow heterostructures [55]. At the
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same time, the δ-doped STO system simply consists of STO that has been doped with Nb,

albeit in an unusual geometry that allows us to access effects related to the structural and

dielectric ansiotropy that would otherwise be difficult to observe. Effects occurring within

domains would be much less evident in bulk STO because there would be no special in-

or out-of-plane direction that would distinguish certain domains from others, apart from

near the surface of the crystal. Domain boundaries could produce some effect on the su-

perconductivity in bulk STO, but the effect would likely be subtle compared to the strong

diamagnetic screening of the bulk material.

Lin and coworkers [56] recently suggested that there may be enhanced Tc at twin bound-

aries in bulk-doped STO due to the observation that, over a wide range of dopings, the

transition to zero resistance occurs at a temperature where the bulk electrons are still nor-

mal. We believe that the regions of locally higher Tc that we observed in δ-doped STO are

primarily located within certain domains, rather than at boundaries. In the bulk STO that

we investigated here (Appendix G), we did not observe sharply defined diamagnetic features

surrounded by weak paramagnetism near Tc as we observed in the δ-doped STO [e.g. Fig. 1,

Fig. 2(b), Fig. 3(a)-(b), Fig. 4(a)]. However, we did observe faint rectangular features of

higher diamagnetic response surrounded by comparatively weaker diamagnetism near, but

fully below, Tc of the scanned area [Fig. 11(a)]. These features may be near-surface features

occurring within certain domains, or they may be due to twin boundaries.

Enhanced Tc on domain boundaries in other systems has been inferred from bulk mea-

surements of niobium and tin, both of which are described by standard BCS theory [57].

Proposed mechanisms for the enhancement in Tc included softening of the phonon spectrum

or enhanced electron-phonon coupling (due to atoms being further apart and Coulomb re-

pulsion diminished) at the boundaries [57]. Although STO superconductivity differs from

that in tin and niobium in the details, it is possible that similar mechanisms for enhancing Tc

could be at play. Twin-boundary-driven enhancements in superconductivity are not limited

to conventional electron-phonon superconductors. For example, enhanced superfluid density

was observed at twin boundaries in underdoped Ba(Fe,Co)2As2 [58]; however, enhanced Tc

was not. The mechanism for the enhancement in superfluid density was not known at the

time of the previous report.

Published theories of superconductivity in STO [1–9] or STO-based heterostructures

[10, 23, 59] that make reference to microscopic mechanisms all consider an electron-phonon
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pairing mechanism but differ in their treatment of the electron-phonon interaction. Some

consider either soft transverse optical ferroelectric phonons [5, 8] or high-energy polar longi-

tudinal optical modes [6, 9, 10, 23] to be important, while others consider non-ferroelectric

optical modes [1, 2, 4], acoustic modes [3], or a combination of contributions from acoustic

and optical modes [7, 59]. Plasmon-mediated electron pairing was additionally considered in

the low-density regime [5]. Our results suggest that twin structure modulates Tc by modulat-

ing the local dielectric environment. Discriminating between theories of superconductivity

in STO will require a microscopic understanding of the consequences of structurally driven

local variations in the dielectric properties of STO.

V. CONCLUSION

We have shown that tetragonal domain structure locally modulates the superconducting

transition temperature in regions of two-dimensionally doped STO. While it is not surprising

that changes in the crystal lattice affect Tc, our observation that Tc varies by &10% while the

lattice constants change by only 0.1% is notable, and suggests that the dielectric properties

of STO play an important role in this material’s superconductivity.

The modulation in Tc that we detected in two-dimensionally doped STO is likely relevant

in systems in which superconductivity arises due to interface effects between STO and an-

other material, such as LAO/STO [55, 60] and monolayer FeSe grown on STO [21–23, 61].

Our results further motivate the development of microscopic modeling of STO that takes

structure as well as local dielectric properties into account.
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Appendix A: Connection between susceptibility and superfluid density

We report susceptibility in units of superconducting flux quanta per ampere of current

passing through the field coil, Φ0/A, where Φ0 = h/(2e), h is Planck’s constant, and e is the

electron charge.

Under certain conditions, the susceptibility signal measured with our scanning SQUID is

directly proportional to the superfluid density, ns. The superconductor must be in the Pearl

limit, with the superconducting thickness, dsc, much smaller than the penetration depth,

λ [62]. Additionally, the field coil diameter and the distance between the SQUID and the

superconductor must be much larger than dsc [33]. If these conditions are satisfied, then

the susceptibility signal at constant height is inversely proportional to the Pearl length, Λ=

2λ2/dsc, and is proportional to the superfluid density ns = 2m?/µ0e
2Λ, where m? is the

effective mass [33, 34].

Our measurements at temperatures below the emergence of separated domains of dia-

magnetism were in this limit: the thickness of the Nb-doped layer in the δ-doped STO was

5.5 nm for the data discussed in the main text (Fig. 1, Fig. 2, Fig. 3, Fig. 4) (36.9 nm

in Appendix C). The superconducting thickness in the δ-doped STO, estimated from the

temperature dependence of the upper critical field, was somewhat larger than the thickness

of the doped layer (for example, in the d = 5.5 nm sample, the estimated thickness of the

superconductivity was 8.4 nm [27]) but still within the same limit. The Pearl length esti-

mated from fits to Pearl vortices (not shown) was on the order of 600-800 µm, much larger

than the thickness of the superconductivity. The field coil diameter was ≈ 20 µm, and the

distance from the SQUID to the sample was 1-2 µm.

Appendix B: X-ray microdiffraction

We performed differential aperture X-ray microdiffraction [37–39] experiments at beam-

line 34-ID-E at the Advanced Photon Source, Argonne National Laboratory [40] on the 1
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at.% Nb δ-doped STO. This beamline is equipped with a liquid nitrogen-cooled stage that we

used to cool the STO below its structural transition temperature of 105 K [24]. We collected

Laue diffraction patterns while rastering the sample under the X-ray beam (beam width ≈

1 µm, planar step size ≈ 5 µm). We indexed each pattern to a room temperature cubic

unit cell for STO [37–39] and then performed deviatoric strain refinements to determine the

orientation of the lattice distortion at low temperature.

To create a spatial map of tilts of the unit cell, we expressed the orientation of the unit

cell in terms of vectors in a three-dimensional, rectangular space. Since the primitive lattice

vectors are orthogonal to one another in a cubic or tetragonal unit cell, the orientation of any

one of these vectors relative to a fixed coordinate system uniquely describes the orientation

of the entire unit cell, thus encoding tilting of the unit cell.

In the images in Fig. 5, we represent changes in the orientation of the lattice by en-

coding the (x,y,z) components of the c* reciprocal lattice vector in red, green, and blue,

respectively. At room temperature, above the cubic-to-tetragonal structural phase transition

temperature, the lattice orientation changes smoothly and by very little over hundreds of

microns [Fig. 5(a)]. In contrast, at 80 K, below the cubic-to-tetragonal transition, there are

abrupt changes in tilt whose orientations and sizes are consistent with tetragonal domains

[Fig. 5(b)].

Appendix C: Similar features in another δ-doped sample

We measured a second δ-doped sample with d= 36.9 nm , ND = 0.2 at.% Nb. We detected

long, narrow regions of diamagnetism surrounded by paramagnetism (Fig. 6), similar to our

observations in the d = 5.5 nm, ND = 1 at.% Nb sample (Fig. 1 of the main text). The

temperature scale for superconductivity in the 0.2 at.% sample was lower than for the 1

at.% sample, consistent with global resistance measurements (inset to Fig. 10) made in a

separate cooldown on the two samples.

Appendix D: Widths of the stripes

An upper bound on the spatial resolution of our susceptibility measurements would be

set by the length scale of variations in the field that we apply to the sample (by the di-
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ameter of the field coil, which was ≈20 µm in the present investigation). This scenario

would be relevant, for example, in the case of a three-dimensional superconductor with a

penetration depth much smaller than our sensor size and with a correspondingly strong dia-

magnetic response. The system that we studied was in a very different limit; we studied a

two-dimensional superconductor near Tc in which the diamagnetic response was weak, with

the response field produced by the sample being a factor of 103 smaller than the maximum

applied field. In this limit, we expect the spatial resolution of our susceptibility measure-

ments to be smaller than the length scale of the field coil. A lower bound on the resolution of

our susceptibility images is set by the diameter of the pickup loop (≈3 µm) and the distance

between our sensor and the sample [63].

If the underlying source of the features that we observed were narrower than our spatial

resolution, e.g. domain boundaries or very narrow domains, then we would expect to see

many features of the same apparent width in our images. On the other hand, if the underly-

ing source were sometimes wider than our spatial resolution, then we would expect to see a

range of widths in our susceptibility images. We observe a variety of widths, many of which

were wider than our pickup loop, and a few of which were even wider than the diameter of

our field coil (Fig. 7).

Appendix E: Lower and upper Tc

We calculated the percent variation in Tc according to ∆Tc/Tc = 100%×(Tc,high −

Tc,low)/Tc,low. For the purposes of these estimates, we defined Tc conservatively. For ex-

ample, if a scan at 370 mK still showed regions of diamagnetism but 380 mK did not, we

took Tc,high = 370 mK. For Tc,low, if a featureless area contained some patchy normal regions

at 310 mK but was not fully normal until 320 mK, we assigned Tc,low = 320 mK [Fig. 3(a)].

In Table I, we summarize values of Tc,low, Tc,high, and ∆Tc/Tc for the regions displayed in

Fig. 1(a-c), Fig. 2(b), Fig. 3(a-b), and Fig. 4(a) of the main text. In Fig. 10, we compare the

transition temperatures determined from susceptibility scans that are tabulated in Table I to

a global measurement of resistance vs. temperature made on the same sample in a separate

cooldown.

With the exception of the images presented in Fig. 6, the temperatures reported for the

scanning SQUID measurements were measured at the mixing chamber of our dilution fridge.
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In an earlier cooldown, we recorded the temperature at our scanner cage using a ruthenium

oxide thermometer in a copper bobbin that was rigidly mounted to the oxygen-free, high-

conductivity copper cage. Above 100 mK, we found that the mixing chamber temperature

was a reasonable proxy for the cage temperature to approximately ±10 mK. Temperatures

reported in Fig. 6 were measured with the ruthenium oxide thermometer.

Appendix F: Location of enhancement of Tc

In the first cooldown, we imaged the temperature dependence of the susceptibility in

ten regions, corresponding to approximately 4% of the total sample area, and found only

one feature oriented at (-)45◦ to cubic [100] [probably corresponding to the case illustrated

in Fig. 8(c)] whose Tc was clearly enhanced relative to its surroundings (Fig. 9). In the

second cooldown, we imaged the temperature dependence of the susceptibility in six regions,

corresponding to approximately 2% of the total sample area, and did not find any features

of enhanced Tc at (-)45◦ to cubic [100].

Appendix G: Bulk doped STO

To check whether single-crystal, bulk-doped STO exhibited similar variations in Tc as

in the δ-doped STO, we mapped susceptibility as a function of temperature in a single-

crystal sample of 1 at.% Nb-doped STO. We observed faint rectangular features of stronger

diamagnetic response surrounded by comparatively weaker diamagnetism near, but fully

below, Tc [Fig. 11(a)]. These features did not persist above the Tc of their surroundings (to

within our temperature step size of 10 mK) [Fig. 11(b)].
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FIG. 1. Color. In δ-doped STO, long, narrow regions oriented along cubic [100] and [010] are

superconducting at temperatures at which their surroundings are no longer superconducting. (a-

c), Maps of magnetic susceptibility in different areas of a single δ-doped sample reveal patterns

of superconductivity along [010] (a,b) and [100] (c). Negative susceptibility (in purple and blue)

indicates that a region is superconducting. Yellow regions are in the normal state but become

superconducting at lower temperatures. Scans were taken at (a) 330 mK, (b) 300 mK, and (c)

320 mK. The schematics of the SQUID pickup loop (red) and field coil (blue) are to scale and are

oriented as they were during data acquisition.
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FIG. 2. Color. Superconducting features change spatially after thermal cycling, indicating that

they are most likely due to the cubic-to-tetragonal transition in STO. The same region of a single

sample was imaged at 340 mK before (a) and after (b) cycling to room temperature. Distinct

features are apparent in (b) in a region that lacked sharp features in (a). The box in (b) indicates

the approximate location of the image taken in (a). During sample growth, a clip masked the

paramagnetic region in the lower right of the image.
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FIG. 3. Color. The spatial variation in susceptibility near Tc is much weaker at lower temperatures.

(a) Repeated scans at a single location. (b) Repeated scans at a second location. White lines in

(a) and (b) indicate the positions of linecuts displayed in (c) and (d), respectively. (c,d) Averaged

linecuts taken at 330 mK and at base temperature (c) or at 330 mK and 100 mK (d) demonstrate

that the relative amplitude of modulation of the superconducting response is larger at temperatures

near Tc than at the lowest temperatures.
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FIG. 4. Color. The temperature dependence of the susceptibility indicates a ≈10% spatial variation

in Tc. (a) Representative image at 350 mK from a series of images taken in the same area at 15

temperatures. The scan area presented here is different from the ones shown in Figures 1-3. (b)

Susceptibility as a function of temperature at two locations marked by a blue diamond and a red

triangle in (a). The transition temperatures are ≈320 mK and ≈360 mK.

100 µm 

100 µm

(a) (b)Room 
temperature

80 K

FIG. 5. Color. Tilt map of the 1 at.% Nb δ-doped STO reveals domain structure below 105

K. Changes in color indicate changes in the local orientation of the crystal lattice relative to the

incident X-ray beam. Red, green, and blue correspond to the x, y, and z components, respectively,

of displacements of the c* reciprocal lattice vector relative to a reference position. The intensity of

a particular color reflects the magnitude of the displacement relative to the maximum displacement

in that channel in the entire scan area. The scan plane was parallel to the surface of the sample.

(a) At room temperature, the lattice is relatively uniform. (b) In contrast, at 80 K, below the

cubic-to-tetragonal structural transition, the sample displays features whose orientation and size

are consistent with tetragonal domain structure. The white box in (b) indicates the position of the

room temperature image in (a). The horizontal feature at the top of (a) and (b) did not change

with thermal cycling and is likely due to physical damage to the sample.
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FIG. 6. Color. Regions of modulated Tc in 0.2 at.% Nb δ-doped STO. The scans shown in (a) and

(b) were taken in different areas of the same sample.
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FIG. 7. Color. We detected considerable variation in the widths of the regions that had Tc higher

than their surroundings, indicating that at least some of the features are not resolution-limited.

(a) Averaged linecuts of the vertical features in (b) and (c). (d) Averaged linecuts of the horizontal

features in (e) and (f). The curves in (a) and (d) are offset by intervals of 0.8 Φ0/A for clarity.

Dotted lines indicate zero susceptibility for each curve. The schematics of the SQUID pickup loop

(red) and field coil (blue) in (a) and (d) are to scale and are oriented relative to the linecuts as

they were during data acquisition. All images were taken at 320 mK and are of the δ-doped sample

with 1 at.% Nb doping.
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FIG. 8. Allowed orientations of boundaries between tetragonal domains as seen in a cubic (001)

plane. Arrows indicate the former cubic [100] and [010] directions. Boundaries between a domain

with its tetragonal c axis parallel to the plane and a domain with c axis perpendicular to the plane

are at (a) 0◦ or (b) 90◦ to the cubic [100] direction. (c) Boundaries between two domains with c

axis parallel to the plane are at 45◦ to the cubic [100] direction.
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FIG. 9. Color. A single feature oriented at -45◦ to the former cubic [100] axis exhibits higher Tc

than its surroundings. Repeated scans at a single location on the 1 at.% Nb δ-doped sample at

the temperatures indicated on the images.
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FIG. 10. Color online. Comparison of superconducting transitions measured in global transport

and local susceptibility for the δ-doped sample with ND = 1 at.% Nb and d = 5.5 nm shows that

zero resistance occurs just below the lower Tc determined from local susceptibility. Resistance as

a function of temperature measured in a separate cooldown is shown in black dots; ranges of lower

and upper transition temperatures inferred from maps of susceptibility (and reported in Table I)

are shown by blue (left) and red (right) vertical bands, respectively. Inset: Resistance as a function

of temperature for the two δ-doped samples studied shows that the overall temperature scale for

superconductivity in the sample with ND = 0.2 at.%, d = 36.9 nm is lower than for the ND = 1

at.% Nb, d = 5.5 nm sample.

30 µm 
 

 

325 mK(a)

Φ
0
/A

−6

−4

−2

0
 

30 µm 
 

335 mK(b)

FIG. 11. Color. Susceptibility images of bulk 1 at.% Nb-doped STO near Tc reveal faint regions

of enhanced diamagnetic response oriented along cubic axes. (a,b) Scans in the same area at (a)

325 mK and (b) 335 mK. At 325 mK, the entire image area still is superconducting. The band of

faint features in the upper half of (a) is oriented along cubic [100] but does not persist above the

bulk Tc of its surroundings.
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TABLE I. Estimates of lower and upper Tc and ∆Tc/Tc for regions of the 1 at.% δ-doped sample

displayed in the main text.

Fig. Tc,low(mK) Tc,high (mK) ∆Tc/Tc (%) Scanned area (µm2) Notes

1(a) 310 350 13 4.2×104

1(b) 300 340 13 4.2×104 Small region remained dia-

magnetic up to at least 370

mK

1(c) 300 340 13 2.9×104

2(b) 320 380 19 4.4×104 Scan area overlapped with re-

gion that was masked with

clip during growth; small re-

gions remained diamagnetic

up to at least 400 mK

3(a) 320 370 16 1.9×104

3(b) 320 350 9 1.9×104 Small region remained dia-

magnetic up to at least 380

mK

4(a) 320 360 13 1.9×104 Small region remained dia-

magnetic up to at least 380

mK
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