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Abstract

This thesis focuses on statistical methods for estimating the number of species

which is a natural index for measuring biodiversity. Both parametric and

nonparametric approaches are investigated for this problem. Species abun-

dance models including homogeneous and heterogeneous model are explored

for species richness estimation. Two new improvements to the Chao estimator

are developed using the Good-Turing coverage formula.

Although the homogeneous abundance model is the simplest model, the species

are collected with different probability in practice. This leads to overdispersed

data, zero inflation and a heavy tail. The Poisson-Tweedie distribution, a

mixed-Poisson distribution including many special cases such as the negative-

binomial distribution, Poisson, Poisson inverse Gaussian, Pólya-Aeppli and so

on, is explored for estimating the number of species. The weighted linear re-

gression estimator based on the ratio of successive frequencies is applied to

data generated from the Poisson-Tweedie distribution. There may be a prob-

lem with sparse data which provides zero frequencies for species seen i times.

This leads to the weighted linear regression not working. Then, a smoothing

technique is considered for improving the performance of the weighted linear

regression estimator. Both simulated data and some real data sets are used

to study the performance of parametric and nonparametric estimators in this

thesis.



ii

Finally, the distribution of the number distinct species found in a sample is

hard to compute. Many approximations including the Poisson, normal, COM-

Poisson Binomial, Altham’s multiplicative and additive-binomial and Pólya

distribution are used for approximating the distribution of distinct species.

Under various abundance models, Altham’s multiplicative-binomial approxi-

mation performs well. Building on other recent work, the maximum likelihood

and the maximum pseudo-likelihood estimators are applied with Altham’s

multiplicative-binomial approximation and compared with other estimators.
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Chapter 1

Introduction

1.1 Background

Biodiversity is a critical feature of an ecosystem. Currently, there are many

studies focused on measuring biodiversity. One particular measure is species

richness – “the number of species in a community, in a landscape or mari-

nescape, or in a region” (Colwell, 2009). Species richness is one of the primary

indicators which measures biodiversity and represents a feature of community

ecology (Longino et al., 2002). In addition, estimating the number of species

provides significant information for planning conservation and handling natu-

ral resources (Boulinier et al., 1998).

Bunge and Fitzpatrick (1993) present a survey of methods for estimating the

number of species. There are different sampling models including hyperge-

ometric, Bernoulli, multinomial, Poisson and multiple Bernoulli distribution.

Data analytic methods using extrapolation of curves is another approach used

to estimate the number of species. The number of observed species is plotted

as a function of the number of individuals in the sample and extrapolated to

give the number of species as the sample size tends to infinity.
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As a result of anthropogenic and environmental changes such as physical, chem-

ical and biological factors, local extinctions of some species occur and new

species emerge (El-Shaarawi et al., 2011). Researchers have studied and de-

veloped many methods to estimate species richness. The key issue that makes

species richness complicated to estimate is that there may be species that es-

cape detection. In addition, each species is likely to have a different level of

abundance in the population. Hence, there is a need for appropriate methods

that can incorporate these issues.

Although of great interest to ecologists, conservationists and biologists, species

richness estimation is fundamentally a statistical problem and has attracted

considerable attention from statisticians. Both parametric and nonparametric

estimators have been proposed for species richness estimation.

Nonparametric estimators are attractive for this problem because they do

not require assumptions about the distribution of the abundance data. Chao

(1984) proposed a nonparamatric estimator for estimating the number of species

and it is called the Chao1 estimator in this thesis. The Chao1 estimator is used

for estimating a lower bound of species richness. It performs well for a homo-

geneous population or for large sample size. The Chao1 estimator is improved

by Chiu et al. (2014) using a modified Good-Turing frequency and called it the

iChao1 estimator. The performance in terms of bias and mean square error are

improved especially in a highly heterogeneous population. Other nonparamet-

ric estimators such as Good-Turing, the first-order, the second order jackknife

are explored in this thesis.

Alternatively, the maximum likelihood estimation (MLE) is discussed for esti-

mating the unknown parameter. The Poisson distribution can be used for

homogeneous abundance data. Due to heterogeneous abundance in prac-
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tice, Fisher et al. (1943) considered mixed-Poisson models such as the gamma

mixed-Poisson known as the negative binomial distribution for estimating the

number of species.

El-Shaarawi et al. (2011) investigated the Poisson-Tweedie (PT) distribution

for abundance data, the mixed-Poisson distribution between the Poisson and

Tweedie distribution. It includes many special cases such as the Poisson, neg-

ative binomial, Poisson-inverse Gaussian, Neyman Type A, Pólya-Aeppli and

so on.

Additionally, the zero-truncated mixed-Poisson distribution is another way

used to estimate the number of species. Cruyff and van der Heijden (2008)

investigated the zero-truncated negative binomial distribution to estimate the

population size. Bunge and Barger (2008) investigated the zero-truncated

mixed-Poisson distribution including the log-normal mixed-Poisson, the in-

verse Gaussian mixed-Poisson, the Pareto mixed-Poisson distribution and so

on. However, the MLE approach might lead to convergence problems in opti-

mization.

Rocchetti et al. (2011) proposed the weighted linear regression (WLR) estima-

tor based on the ratio of successive counts for heterogeneous model. For small

sample size, there might be zero frequencies that cause the WLR approach to

fail. Rocchetti et al. (2011) used truncated data in analysis for avoiding this

problem. Smoothing data using the kernel estimation is another way to handle

this issue. This choice is investigated in this thesis.

Hidaka (2014) introduced another parametric estimator of species richness

using maximum pseudo-likelihood estimation. The distribution of observed

species is considered under the occupancy distribution. Williamson (2012)
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explored some approximations to the occupancy distribution based on the

classical occupancy problem including the Poisson and normal distribution.

The question about “How many species are there?” is studied in this the-

sis. Many species richness estimators, both nonparametric and parametric

approach, are explored. In this thesis, alternative species richness estimators

under the closed population and various species abundance models are devel-

oped and applied to real data sets.

1.2 Real data examples

In this thesis, we select some examples from many fields including ecology,

social science and environment. Species abundance data for animal and plant

are used to estimate the number of species. Additionally, capture-recapture

data is used in this thesis for estimating the population size. We select heroin

users data who were treated at health treatment centres to estimate the number

of total drug users. Other example about environment is used to compare our

approach. In the following tables fi denotes the number of species seen i times

and K denotes the number of distinct species in the sample.

1.2.1 Malaysian butterfly data

Malaysian butterfly data (Fisher et al., 1943) is a large data set collected in

Malaysia. It is used in many studies about species richness estimation. The

frequencies of the butterflies are observed from 9031 individuals and represent-

ing 620 species as shown in Table 1.1.
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Table 1.1: Frequency counts for Malaysian Butterfly Data (Fisher et al., 1943)

i 1 2 3 4 5 6 7 8 9 10 11 12 13
fi 118 74 44 24 29 22 20 19 20 15 12 14 6

i 14 15 16 17 18 19 20 21 22 23 24 24+ K
fi 12 6 9 9 6 10 10 11 5 3 3 119 620

1.2.2 Pollutant data

In Table 1.2, the frequency of occurrence of organic compounds identified in

water between 1970 and 1976 is shown. There are 5720 observations which are

classified as 1258 organic compounds.

Table 1.2: Frequency counts for Pollutant Data (Janardan and Schaeffer, 1981)

i 1 2 3 4 5 6 7 8 9 10 11 12 13
fi 503 238 133 80 56 46 20 14 15 18 15 16 10

i 14 15 16 17 18 19 20 21 22 23 24 24+ K
fi 10 9 4 12 6 7 4 4 1 4 0 33 1258

1.2.3 Christmas bird data

These data were collected at Fort Myers in Florida. The number of Christmas

bird species has been investigated from this data set classified as 126 species

from 20042 individuals (Chao and Bunge, 2002) (Table 1.3).

Table 1.3: Frequency counts for the Christmas bird data at Fort Myers,
Florida, USA. (Chao and Bunge, 2002)

i 1 2 3 4 5 6 7 8 9 10 11 15 16
fi 12 9 6 6 2 2 5 1 2 3 3 1 2

i 17 18 19 20 21 22 25 25+ K
fi 1 2 1 1 2 1 2 62 126



1. Introduction 6

1.2.4 Heroin users data

In Table 1.4, data that was collected in 2002 by the Office of the Narcotics

Control Board in Thailand (Lanumteang and Böhning, 2011) is shown. There

are 9302 unique drug users who were treated from a total of 39086 contacts at

health treatment centres.

Table 1.4: Frequency counts for the heroin user data in Thailand (Lanumteang
and Böhning, 2011)

i 1 2 3 4 5 6 7 8 9 10 11 12 13
fi 2176 1600 1278 976 748 570 455 368 281 254 188 138 99

i 14 15 16 17 18 19 20 21 K
fi 67 44 34 17 3 3 2 1 9302

1.2.5 Beetle data

The beetle data set is separated into two sites, Osa second growth and Osa

old growth, and collected in southwestern Costa Rica (Janzen, 1973). There

are 976 individuals collected from 140 species in the Osa second growth site.

For the Osa old growth, there are 237 individuals collected from 112 species

as shown in Table 1.5.

Table 1.5: Frequency counts for the beetle data collected from two sites in
southwestern Costa Rica (Janzen, 1973)

Osa second growth (M=976)
i 1 2 3 4 5 6 7 8 9 10 11 12 14
fi 70 17 4 5 5 5 5 3 1 2 3 2 2

i 17 19 20 21 24 26 40 57 60 64 71 77 K
fi 1 2 3 1 1 1 1 2 1 1 1 1 140

Osa old growth (M=237)
i 1 2 3 4 5 6 7 8 14 42 K
fi 84 10 4 3 5 1 2 1 1 1 112
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1.2.6 Tropical trees data

Norden et al. (2009) present the frequencies of tropical trees data from three

forest sites in northeastern Costa Rica (Table 1.6). A total of 943 individuals

were collected in Lindero EL Peje (LEP) old growth which included 152 dis-

tinct species. The tropical trees in the second site collected from LEP second

growth which found 106 district species from a total of 1263 individuals. An-

other site, the data is collected from Lindero sur second growth site which has

76 distinct species found from 1020 individuals.

Table 1.6: Frequency counts for the tropical tree data observed from three
forest sites in northeastern Costa Rica (Norden et al., 2009)

LEP old growth (M=943)
i 1 2 3 4 5 6 7 8 9 10 11 13 15
fi 46 30 16 12 6 6 3 4 5 4 1 3 1

i 16 18 19 20 25 38 39 40 46 52 55 K
fi 1 1 1 4 3 1 1 1 1 1 1 152

LEP older second growth (M=1263)
i 1 2 3 4 5 6 7 8 9 10 11 12 13
fi 33 15 13 4 5 3 3 1 2 1 4 2 2

i 14 15 16 17 20 22 39 45 57 72 88 132 133 178 K
fi 1 2 1 1 1 1 1 1 1 1 2 1 1 1 104

Lindero Sur younger second growth growth (M=1020)
i 1 2 3 4 5 7 8 10 11 12 13 15 31
fi 29 13 5 2 3 4 1 2 2 1 2 2 1

i 33 34 35 66 72 78 127 131 174 K
fi 1 1 1 1 1 1 1 1 1 76

1.3 Thesis Structure

This thesis consists of eight chapters including an introduction as Chapter 1,

six core chapters and conclusions as the final Chapter. The first Chapter
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presents the background of the study, real data examples and thesis structure.

Chapter 2 reviews the literature on species richness estimation. We initially in-

troduce the models of species sample frequency such as the multinomial model

and the Poisson model. After that, the distribution of the number of observed

species is discussed. Additionally, species abundance models such as the Zipf,

Zipf-Mandelbrot, exponential-decay, broken-stick and log-normal models are

reviewed. In this chapter, species richness estimation with nonparametric es-

timators is discussed. Two alternative estimators of species richness are devel-

oped and compared with Chao1, iChao1, the first-order and the second-ordered

jackknife estimators. We also applied these nonparametric estimators to some

real data examples.

Chapter 3 presents maximum likelihood estimation (MLE) for estimating species

richness. The mixed-Poisson distribution and the zero-truncated mixed-Poisson

distribution are considered for the MLE approach. Several problems about

estimating the number of species using the MLE approach are presented in-

cluding flat likelihood function, boundary problem and so on. For avoiding

these problems in MLE, the weighted linear regression (WLR) analysis is in-

vestigated in the next Chapter.

Chapter 4 considers the mixed-Poisson distribution such as the Poisson-Tweedie

(PT) distribution that exhibits overdispersion, zero inflation and heavy right

tails to fit the model for species abundance data. We have focused on the WLR

estimator to estimate the number of species based on the PT distribution. The

PT distribution and its sub-families is introduced. The probability generating

function is used to define the probability mass function of the PT distribution.

In a separate section, we discuss the reparametrization of the PT distribution.

Additionally, The tweeDEseq package in R is used to generate data and com-
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pute the probability mass function in a simulation study. The WLR estimator

based on the PT distribution is compared to the other estimators both in real

and simulated data.

In Chapter 5, we improve the WLR estimator using kernel smoothing. Discrete

kernel estimators and bandwidth selection are considered. The frequencies are

smoothed using the kernel of Wang and Van Ryzin (1981) and Li and Racine

(2010) before estimating the number of species by the WLR estimator. Abun-

dance data are generated from the PT distribution. In addition, the np package

in R is used for density estimation. In a simulation study, we investigate the

performance of the WLR estimator with smoothing method. We then summa-

rize the results of kernel smoothing and compare them with the nonsmoothing

method and the Chao1 estimator.

Chapter 6 considers estimating the number of unseen species based on the oc-

cupancy distribution. The occupancy distribution and the classical occupancy

problem are reviewed. Some approximations such as the Possion, the normal,

the COM-Poisson Binomial, Altham’s multiplicative and additive binomial

and the Pólya distribution are explored. We apply the approximations to the

example about birthday coincidences in Feller (1950). Then, we investigate

the performance of approximations for both homogeneous and heterogeneous

models in the simulation study and conclude the results.

In Chapter 7, the number of species is estimated using the pseudo-likelihood

estimation based on the occupancy distribution. The distribution of observed

species is considered for constructing the pseudo-likelihood function. The Hi-

daka (2014) study is extended. The pseudo-likelihood function and some ap-

proximations such as the Poisson-binomial and Altham’s multiplicative bino-

mial distribution are investigated. Additionally, the least squares estimation
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is used to estimate the number of species. Then, we investigate the perfor-

mance of the pseudo-likelihood and the least square estimator based on various

approximations. Under the homogeneous abundance model, these approaches

are compared with some nonparametric estimators in simulation study.

In this thesis, the computational work is carried out using R. Conclusion and

suggestions for future work are included in the final chapter.



Chapter 2

Species richness estimation

2.1 Introduction

Species richness is a natural index and the simplest indicator for biodiversity

assessment (Gotelli and Colwell, 2011; Chao and Jost, 2012). Although of

great interest to ecologists, conservationists and biologists, species richness es-

timation is fundamentally a statistical problem and has attracted considerable

attention from statisticians. Both parametric and nonparametric estimators

have been proposed for species richness estimation (Chao and Bunge, 2002).

The Chao1 estimator is a very popular nonparametric estimator for species

richness estimation, given a random sample from the population. It is ap-

proximately unbiased for a homogeneous abundance model. Additionally, the

performance of the Chao1 estimator is good for a large sample size but de-

pends on the under lying abundance model, as illustrated by results later in

this Chapter. However, it is negatively biased for heterogeneous models or

small sample size. A recent paper Chiu et al. (2014) describes a new improved

estimator which is called the iChao1 estimator. It attempts to reduce the bias

of the original Chao1 estimator by using additional data. In this Chapter,

an alternative estimator which is intended to perform similarly to the iChao1
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estimator but uses the same data as the original Chao1 estimator is developed

and the results are shown later.

In this Chapter, the literature on species richness estimation is reviewed as

follows. In Section 2.2, models of species sample frequency are discussed in-

cluding the multinomial and the Poisson models. Species abundance models

particularly the heterogeneous models which are used in practice, are discussed

in Section 2.3. Nonparametric estimators of species richness are reviewed in

Section 2.4. Two novel alternative species richness estimators designed to im-

prove upon the Chao1 estimator are introduced in Section 2.5. The mean rel-

ative abundance of species seen k times is estimated using various approaches

and their performance are investigated in Section 2.6. In Section 2.7, the per-

formance of these new estimators is compared with Chao (1984), Chiu et al.

(2014) and two jackknife estimators in a simulation study and applied to real

data sets in Section 2.8. Finally, conclusions are summarized in Section 2.9.

2.2 Sampling Models

Let N denote the true species richness, the total number of species in the

population, and pi (i = 1, . . . , N) be the relative species abundance for species

i or the probability of species i being observed,
∑N

i=1 pi = 1. In ecological

applications, this will depend on the difficulty of capturing this species as well

as the relative abundance of the species, but we use relative abundance as a

convenient shorthand term.

The sample size M denotes the number of individuals collected independently

with replacement from the population of N species. Suppose that there are

K distinct species in the sample. Let Xi denote the frequency with which

species i is detected in the sample, so that, M =
∑N

i=1Xi. When M is fixed,
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the Xi’s have a multinomial distribution which is often called the multinomial

model. Alternatively, we may consider the Poisson model that arises when

M is itself a random variable with a Poisson distribution. In this model, the

Xi’s are independent Poisson random variables with Xi ∼ Poi(λpi) ≡ Poi(λi)

and then M ∼ Poi(
∑
λpi) ≡ Poi(λ). In the multinomial model, the Xi’s

are not independent because they add up to the fixed total M . Note also

that in the multinomial model, the marginal distribution of a particular Xi is

Xi ∼ Bin(M, pi). Another connection between the two models is that if M is

large and pi is small then the binomial distribution of Xi will be approximated

well by a Poisson distribution with the same mean.

Let fk be the frequency of species seen k times, k = 1, 2, . . . ,M . We have,

K =
kmax∑

k=1

fk =
N∑

i=1

I(Xi > 0),

where kmax is the maximum number of times that any species is seen and

I(Xi > 0) = 1 if the event Xi > 0 occurs (species i occurs in the sample) and

0 otherwise. The total number of species can be written as

N = E(K) + E(f0), (2.1)

which is a common idea for species richness estimation, where E(K) is the

expected number of observed species and E(f0) is the expected number of

unobserved species. E(K) can be estimated by the number of seen species,

K,from the data.

2.3 Species abundance model

Species abundance is a simple method to describe biodiversity. Different ecol-

ogy influences the abundance of a species (Huang and Zhan, 2014). The com-
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monness and rarity of species have been described using species abundance

models (McGill et al., 2007). The homogeneous model pi =
1
N

(i = 1, . . . , N)

is the simplest model to fit the abundance data. However, the chances of

collecting different species are typically far from equal in practice. Species

abundance data normally exhibit overdispersion, zero inflation and a heavy

right tail. These features indicate that a heterogeneous model is required

rather than the homogeneous model.

Many models such as negative binomial, log-series, log-normal distributions,

broken-stick, Zipf, Zipf-Mandelbrot models and so on have been developed to

fit the species abundance data by ecologists (Huang and Zhan, 2014). The pi

can be defined as a function of different abundance model, pi = f(i). When

the Xi’s follow the Poisson distribution, the model of pi’s are discussed into

two groups as follows:

2.3.1 Deterministic models

Deterministic models are used to describe the rank-ordered probabilities (ie.

p1 ≥ p2 ≥ . . . ≥ pN) and include the Zipf, Zipf-Mandelbrot, exponential decay

and power decay (a special case of Zipf) models.

The Zipf model

The Zipf model describes the relative abundance rank of the N species. The

Zipf model is a discrete probability distribution which is used to model the

species abundance distribution and is based on Zipf’s law. It is also known as

the power-decay model (Chao et al., 2013). The relative abundance of the ith

ranked species based on the Zipf model is given by

pi =
c

iα
(i = 1, . . . , N),
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where c is the normalising constant, c =
∑N

i=1(1/i
α), and α ≥ 1. When α = 0,

it gives the homogeneous model, pi = 1/N (Chao and Chiu, 2014).

The Zipf-Mandelbrot model

The Zipf-Mandelbrot model is another model of ranked abundance, which can

be defined by

pi =
c

(i+ q)α
, (i = 1, . . . , N),

where q > −1, α ≥ 1 and c is a normalising constant, c =
∑N

i=1(1/(i + q)α)

(Mouillot and Lepretre, 2000). When q = 0, it reduces to the Zipf model.

Exponential-decay model

The exponential decay model has

pi = c e−βi (i = 1, . . . , N),

where β is the decay rate parameter, β > 0, i is ranked abundance and c is

the normalising constant.

2.3.2 Random models

In random models, the pi are drawn as a random sample from some probability

distribution. The resulting pi values are not ordered.

Broken-stick model

A natural distribution to choose is the Dirichlet distribution, since this auto-

matically gives
∑N

i=1 pi = 1. The general form of the Dirichlet distribution has

parameters θ1, . . . , θN and is generated as

pi =
Zi

N∑
i=1

Zi
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where Zi are independent Ga(θi, 1) random variables. The broken stick model

has all θi = 1 so that the Zi are independent exp(1) variables.

Therefore, the broken-stick model describes the pattern of species abundance

which is given by

pi = cZi (i = 1, . . . , N),

where (Z1, Z2, . . . , ZN) are a random sample from the exponential distribution

with mean 1, and c is the normalising constant (Chao et al., 2013).

Log-normal model

The log-normal model is another distribution used widely for species abun-

dance, and is given by

pi = cVi (i = 1, . . . , N),

where (V1, V2, . . . , VN) are a random sample from the log-normal distribution

with parameters, µ and σ, and c is the normalising constant. In the study of

Chao et al. (2013), species abundances are simulated using this model with

parameters µ = 0 and σ = 1.

Negative binomial model

Let U1, U2, . . . , UN are a random sample from the negative binomial distri-

bution with parameter s and r. Then, the species abundance model is given

by

pi = cUi (i = 1, . . . , N),

where the probability density function of the negative binomial is

f(U) =
(U − 1)!

(s− 1)!(U − s)!
(1− r)U−srs.
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2.3.3 Some numerical examples about species abundance

models

Magurran and Henderson (2011) mention that species abundance data can be

presented using a rank abundance plot which is also called a Whittaker plot.

The pattern of species abundance is displayed similarly for different models as

shown in Figure 2.1.

0 10 20 30 40 50

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Zipf−Mandelbrot

ithrank

R
el

at
iv

e 
sp

ec
ie

s 
ab

un
da

nc
e

0 10 20 30 40 50

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Negative binomial

ithrank

R
el

at
iv

e 
sp

ec
ie

s 
ab

un
da

nc
e

0 10 20 30 40 50

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Broken−stick

ithrank

R
el

at
iv

e 
sp

ec
ie

s 
ab

un
da

nc
e

0 10 20 30 40 50

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Log−normal

ithrank

R
el

at
iv

e 
sp

ec
ie

s 
ab

un
da

nc
e

0 10 20 30 40 50

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Power−decay

ithrank

R
el

at
iv

e 
sp

ec
ie

s 
ab

un
da

nc
e

0 10 20 30 40 50

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Expo−decay

ithrank

R
el

at
iv

e 
sp

ec
ie

s 
ab

un
da

nc
e

Figure 2.1: Probability pi for distinct species i = 1, 2, . . . , N , with N =
50 using different models, Zipf-Mandelbrot pi = 1/(i − 0.1), negative bi-
nomial(4,0.04), broken-stick (or Dirichlet(1)), log-normal(0,1), power-decay
pi = 1/i1.2 and expo-decay pi = exp(−i).

The most abundant species is presented at rank 1, the second most abundant

species at rank 2 and so on. The exponential-decay model has a long right tail
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with the highest first rank of abundance. The shape of rank abundance plot

decreases rapidly compared to other models. For the log-normal, broken-stick

and negative-binomial models, relative abundance decreases gradually and pi

is in the range 0 to 0.1.
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Figure 2.2: Plot of ranked pi’s values for the Zipf model with N = 100, α in
the range [0.3,0.9] and broken-stick model with 20 simulations.

Relative abundance for Zipf model depends on the parameter α and pi = c/iα

(i = 1, . . . , N). This model explains species abundance data with a similar

shape to other models when choosing an appropriate value of α. For example,

the Zipf model with α = 0.5 provides the rank species abundance similar to

log-normal(0,1) and broken-stick model (Figures 2.2 and 2.3). When α = 0.4,

the species abundance curve for the Zipf model displays the same results as

negative binomial model NB(4,0.04) (Figure 2.4). When α = 2, the Zipf model

gives the species abundance which are similar the expo-decay model (Figure

2.5).
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Figure 2.3: Plot of ranked pi’s values for the Zipf model with N = 100, α in
the range [0.3,0.9] and log-normal(0,1) model 20 simulations.
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Figure 2.4: Plot of ranked pi’s values for the Zipf model with N = 100, α in
the range [0.2,0.8] and NB(4,0.04) model with 20 simulations.
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Figure 2.5: Plot of ranked pi’s values for the Zipf model and expo-decay model
with N = 100, α in the range [1,4].

2.4 Nonparametric approach

Nonparametric estimators are useful methods as there are no requirements

about assumptions for community structure (Chiarucci et al., 2003). Many

estimators have been proposed for estimating the number of species and these

are constructed based on the number of seen and unseen species. In particu-

lar, the number of unseen species is key for species richness estimation. The

following nonparametric estimators are reviewed in this section.

2.4.1 Good-Turing estimator

Good-Turing estimation is a simple technique that estimates the number of un-

seen species using the frequency of singletons (species observed exactly once)

in the sample, f1 =
∑N

i=1 I(Xi = 1). Because Good (1953) credits this idea to

Turing, it is now known as the Good-Turing estimator.
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The following explanation of the Good-Turing estimator is based on Chiu et al.

(2014). Recall thatM is the sample size or the number of individuals observed,

M =
∑kmax

k=1 kfk, where fk is the frequency of species seen k times. The mean

relative abundance of the species seen k times in the sample, denoted as αk, is

αk =

∑N
i=1 piI(Xi = k)

fk
, k = 0, 1, . . . .

Good (1953) proposed that αk could be estimated by

α̂k =
(k + 1)

M

fk+1

fk
. (2.2)

By definition of αk, the total relative abundance of all species seen k times is

αkfk which can be estimated by

α̂kfk =
(k + 1)fk+1

M
.

In particular, for k = 0,

α̂0f0 =
f1
M

is the estimated total relative abundance of all unseen species,
∑N

i=1 piI(Xi = 0).

Then, the expected number of unobserved species is

E(f0) =M
N∑

i=1

piI(Xi = 0) =Mα0f0 = f1.

Hence, the Good-Turing estimator of the number of species based on equation

(2.1) is

N̂G = K + f1. (2.3)

This form of the Good-Turing estimator is given for example by Hidaka (2014)

as his estimator N̂GT . This is also approximately the first-order jackknife

estimator in Section 2.4.4, if the factor
(M − 1)

M
is omitted, see in Chiu et al.
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(2014).

2.4.2 Chao1 Estimator

Chao (1984) proposed an estimator of a lower bound for species richness, al-

though in practice it is often used as an estimator of species richness itself.

Rare species have been considered in order to construct this estimator, which

is based only on the number of species seen once and twice. Recall that Xi

is the species frequency for species i in the sample and pi is the probability

that a randomly selected individual belongs to species i. The estimator can

be derived under the multinomial and the Poisson sampling models as follows:

Multinomial Model

Under the multinomial sampling model, Xi ∼ Bin(M, pi) which implies that

E(fk) = E

[
N∑
i=1

I(Xi = 0)

]

=
N∑
i=1

(
M
k

)
pki (1− pi)

M−k, k = 0, 1, 2, . . . ,M.

(2.4)

The Cauchy-Schwarz inequality states that for any ai, bi ∈ R,

N∑

i=1

(
a2i
) N∑

i=1

(
b2i
)
≥
(

N∑

i=1

aibi

)2

. (2.5)

Setting ai = (1− pi)
M/2, bi = pi(1− pi)

M/2−1 and aibi = pi(1− pi)
M−1, gives

[
N∑
i=1

(1− pi)
M

] [
N∑
i=1

p2i (1− pi)
M−2

]
≥

[
N∑
i=1

pi(1− pi)
M−1

]2
,

E(f0)
1(
M
2

)E(f2) ≥ 1

M2
[E(f1)]

2 ,

E(f0) ≥ (M − 1)

M

[E(f1)]
2

2E(f2)
.
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Using equation (2.1), a lower bound for the number of species becomes

N > E(K) +
(M − 1)

M

[E(f1)]
2

2E(f2)
,

which can be estimated using the observed data as

N̂Chao1 = K +
(M − 1)

M

f 2
1

2f2
, (2.6)

where f1 and f2 are the number of species seen once and twice.

The standard asymptotic approach known as the delta method is used for

estimating the variance of N̂Chao1 (Chiu et al., 2014).

v̂ar(N̂Chao1) =
n∑

i=1

n∑

j=1

∂N̂Chao1

∂fi

∂N̂Chao1

∂fj
ĉov(fi, fj),

where

ĉov(fi, fj) =





fi(1− fi/N̂Chao1), if i = j;

−fifj/N̂Chao1, if i 6= j.

After some algebra, the variance estimator is derived as

v̂ar(N̂Chao1) = f2

[
1

4

(
M − 1

M

)2(
f1
f2

)4

+

(
M − 1

M

)2(
f1
f2

)3

+
1

2

(
M − 1

M

)(
f1
f2

)2
]

(2.7)

Poisson Model

When M is large and p is small, the expected number of species seen k times

can be approximated using the Poisson distribution with λi = Npi which gives

E(fk) =
N∑
i=1

λki e
−λi

k!
, k = 0, 1, 2, . . . ,M. (2.8)

Under the Cauchy-Schwarz inequality with ai = e−λi/2, bi = λie
−λi/2 and
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aibi = λie
−λi , the lower bound for E(f0) is given by

[∑N
i=1 e

−λi

] [∑N
i=1 λ

2
i e

−λi

]
≥

[∑N
i=1 λie

−λi

]2
,

E(f0) 2E(f2) ≥ [E(f1)]
2 ,

E(f0) ≥ [E(f1)]
2

2E(f2)
,

which again leads to the estimator

N̂Chao1 = K +
f 2
1

2f2
. (2.9)

When M is large, the variance estimator of N̂Chao1 in equation (2.7) can be

reduced as (Chao, 1987)

Var(N̂Chao1) = f2

[
1

4

(
f1
f2

)4

+

(
f1
f2

)3

+
1

2

(
f1
f2

)2
]
. (2.10)

When the estimator breaks down at f2 = 0, a modified bias-corrected estimator

is proposed

N̂Chao1 = K +
f1(f1 − 1)

2(f2 + 1)
. (2.11)

The Chao1 estimator is extended in the study of Chiu et al. (2014) using the

first four frequencies of distinct species and by Lanumteang and Böhning (2011)

using the first three frequencies of distinct species. In the next section, the

improved Chao1 estimator by Chiu et al. (2014) is investigated and compared

to the original Chao1 estimator.

2.4.3 iChao1 estimator

An improved Chao1 estimator called iChao1 is developed by Chiu et al. (2014)

based on a modified Good-Turing frequency formula. The new estimator ob-

tains a new lower bound using the number of singletons, doubletons, tripletons

and quadrupletons (i.e. f1, f2, f3 and f4). The improved estimator by Chiu

et al. (2014) usually outperforms the traditional Chao1 estimator with reduced
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bias, in particular when relative abundances are highly heterogeneous.

Chiu et al. (2014) proposed estimating the true mean relative abundance of

species seen k times as

α̂k =
(k + 1)fk+1

(M − k)fk + (k + 1)fk+1

, k = 1, 2, . . . , (2.12)

The new lower bound is derived by considering the magnitude of the first-order

bias of N̂Chao1 which can be derived as

|bias(N̂Chao1)| = E(f0)−
(M − 1)

M

E(f1)
2

2E(f2)

=
E(f0) {2E(f2)/[M(M − 1)]} − [E(f1)/M ]2

2E(f2)/[M(M − 1)]

≈
[
1− α3

α3

1− α1

α1

−
(
1− α3

α3

)2
]

×
[

N∑
i=1

pi(1− pi)
n−1

]
×
[

N∑
i=1

p3i (1− pi)
n−3

]
,

and applying the Cauchy Schwarz inequality yields

[
N∑

i=1

pi(1− pi)
n−1

]
×
[

N∑

i=1

p3i (1− pi)
n−3

]
≥
[

N∑

i=1

p2i (1− pi)
n−2

]2
.

Hence, the approximate bias of the estimator becomes

|bias(N̂Chao1)| ≈
[
1− α3

α3

1− α1

α1

−
(
1− α3

α3

)2
]
×
[

N∑
i=1

p2i (1− pi)
n−2

]2

≈ 1− α3

α3

[
1− α1

α1

− 1− α3

α3

]
2E(f2)

M(M − 1)
.

(2.13)

Using the modified Good-Turing frequency in equation (2.12), we obtain the
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improved Chao1 estimator as N̂Chao1 + |bias(N̂Chao1)|, that is,

N̂iChao1 = N̂Chao1 +
(M − 3)

4M

f3
f4

×max

(
f1 −

(M − 3)

2(M − 1)

f2f3
f4

, 0

)
. (2.14)

When f4 = 0, it is replaced by f4 + 1. For large sample size or equal species

abundance, the iChao1 estimator is close to being an asymptotically unbiased

estimator which leads to good approximation (Chiu et al., 2014). On the other

hand, a negative bias may exist for unequal species abundance or small sample

size (Chao and Chiu, 2014).

When M is large, equation (2.14) can be simplified to

N̂iChao1 = N̂Chao1 +
f3
4f4

×max

(
f1 −

f2f3
2f4

, 0

)
. (2.15)

The variance of iChao1 estimator can be approximated using the delta method

by

v̂ar(N̂iChao1) ≈ ▽g




f0
f1
f2
f3
f4




T

ĉov




f0
f1
f2
f3
f4




▽ g




f0
f1
f2
f3
f4



, (2.16)

where

▽g




f0
f1
f2
f3
f4




=

(
∂N̂

∂f0

∂N̂

∂f1

∂N̂

∂f2

∂N̂

∂f3

∂N̂

∂f4

)T

,

with N̂ = N̂iChao1. The partial derivatives
∂N̂

∂fi
for j = 0, 1, 2, 3, 4 are

∂N̂

∂f0
= −1,

∂N̂

∂f1
=

1

4

[
4f1f4(M − 1) + f2f3(M − 3)

Mf2f4

]
,
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∂N̂

∂f2
= −1

8

[
4f 2

1 f
2
4 (M − 1)2 + f 2

2 f
2
3 (M − 3)2

M(M − 1)f 2
2 f

2
4

]
,

∂N̂

∂f3
=

(M − 3)

4

[
(f1f4(M − 1)− f2f3(M − 3))

M(M − 1)f 2
4

]
,

∂N̂

∂f4
= −(M − 3)f3

4

[
(f1f4(M − 1)− f2f3(M − 3))

M(M − 1)f 3
4

]
.

and the variance-covariance matrix of the multinomial vector (f0, f1, f2, f3, f4)
T

can be estimated by

ĉov




f0
f1
f2
f3
f4




=




f0

(
1− f0

N

)
−f0f1

N
−f0f2

N
−f0f3

N
−f0f4

N

−f0f1
N

f1

(
1− f1

N

)
−f1f2

N
−f1f3

N
−f1f4

N

−f0f2
N

−f1f2
N

f2

(
1− f2

N

)
−f2f3

N
−f2f4

N

−f0f3
N

−f1f3
N

−f2f3
N

f3

(
1− f3

N

)
−f3f4

N

−f0f4
N

−f1f4
N

−f2f4
N

−f3f4
N

f4

(
1− f4

N

)




.

For practical calculation, f0 andN can be replaced by f̂0 =
(M − 1)f2

1

2Mf2
+ |bias(N̂Chao1)|

and N̂iChao1. For the homogeneous model, the expected value of f1 − f2f3/2f4

tends to zero as the sample size increases. Then, the iChao1 estimator can be

replaced by the Chao1 estimator (Chiu et al., 2014) .

2.4.4 Jackknife estimators

Jackknife estimators were proposed by Quenouille (1949) and expanded by

Tukey (1958). Suppose we have a biased estimator, θ̂, of a parameter θ. The

basic idea of the jackknife method is to calculate a series of estimators θ̂−i,

missing out the ith sample observation and calculate the new estimators

θ̂
(1)
J =Mθ̂ −

(
M − 1

M

) M∑

i=1

θ̂−i.

This estimator is known as the first-order jackknife method and has reduced
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bias compared to θ̂.

Jackknife estimators of species richness were introduced by Burnham and Over-

ton (1978). The basic estimator is θ̂ = K, the observed number of species. Let

θ̂−i be the number of distinct species by leaving out species i, which is given

by

θ̂−i =





K − 1 if species Xi seen only once,

K otherwise.

.

The first-order jackknife estimator can therefore be derived as

N̂
(1)
J =Mθ̂ −

(
M − 1

M

) M∑

i=1

θ̂−i

=MK −
(
M − 1

M

)
{f1(K − 1) + (M − f1)K}

=MK −
(
M − 1

M

)
{MK − f1}

=MK − (M − 1)K +

(
M − 1

M

)
f1

= K +

(
M − 1

M

)
f1. (2.17)

It is also possible to derive higher-order jackknife estimators by omitting more

than one observation from the sample. The second-order jackknife estimator

involves estimators θ̂−ij, calculated by excluding each pair of observations i, j

from the sample. The general formula for the second-order jackknife estimator

is

θ̂
(2)
J =

1

2

{
M2θ̂ − 2(M − 1)2

M

M∑

i=1

θ̂−i +
2(M − 2)2

M(M − 1)

∑

i<j

θ̂−ij

}
.

To apply this to species sampling, let θ̂−ij be the number of distinct species
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by leaving out samples i and j

θ̂−ij =





K − 2 if species Xi and Xj both seen once,

K − 1 if either species Xi or species Xj seen once,

K otherwise.

Burnham and Overton (1978) show that this leads to the estimator

N̂
(2)
J =

1

2

{
M2θ̂ − 2(M − 1)2

M

M∑

i=1

θ̂−i +
2(M − 2)2

M(M − 1)

∑

i<j

θ̂−ij

}

= K +
(2M − 3)f1

M
− (M − 2)2f2
M(M − 1)

. (2.18)

In practice, simplified forms of these estimators are often used, based on large

values of M

N̂
(1)
J = K + f1 (2.19)

N̂
(2)
J = K + 2f1 − f2. (2.20)

The result in equation (2.22) shows that the first-order Jackknife estimator is

identical to the Good-Turing estimator in equation (2.3) when M is large.

Burnham and Overton (1978) proposed the general simplified formula for the

kth-order jackknife estimator which is given by

N̂
(k)
J = K +

k∑

j=1

(−1)j+1

(
k

j

)
fj. (2.21)

Ji-Ping Wang developed the R package called SPECIES in 2011 which pro-

vides a function jackknife to calculate these estimators.

The first-order jackknife estimator is constructed using the number of rare
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species which are seen only once. For the second order jackknife estimator,

it is formed using both the number of species seen once and the number seen

twice. The bias and variance of estimator are balanced by choosing the kth-

order. A higher order is appropriate for improving bias. However, this might

lead to a higher variance of estimator (Wang, 2011).

Under the distribution of K and the expectation of f1 in equation (2.4), the

expected value of the first-order jackknife estimator can be derived as

E(N̂
(1)
J ) = E(K) +

M − 1

M
E(f1)

= E(K) +
M − 1

M

N∑
i=1

(
M
1

)
pi(1− pi)

M−1

= E(K) + (M − 1)
N∑
i=1

pi(1− pi)
M−1.

where E(K) = N −
N∑
i=1

(1− pi)
M (Hidaka, 2014). Then, we have

Bias(N̂
(1)
J ) = E(N̂

(1)
J )−N

=
N∑

i=1

(1− pi)
M + (M − 1)

N∑

i=1

pi(1− pi)
M−1. (2.22)

Considering the same approach, the bias of the second-order jackknife estima-
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tor can be written as

E(N̂
(2)
J ) = E(K) +

(2M − 3)

M
E(f1)−

(M − 2)2

M(M − 1)
E(f2)

= N −
N∑
i=1

(1− pi)
M +

(2M − 3)

M

N∑
i=1

(
M
1

)
pi(1− pi)

M−1 −

(M − 2)2

M(M − 1)

N∑
i=1

(
M
2

)
pi(1− pi)

M−2

= N −
N∑
i=1

(1− pi)
M + (2M − 3)

N∑
i=1

pi(1− pi)
M−1 −

(M − 2)2

2

N∑
i=1

p2i (1− pi)
M−2,

and this gives

Bias(N̂
(2)
J ) = E(N̂

(2)
J )−N

=
N∑

i=1

(1− pi)
M + (2M − 3)

N∑

i=1

pi(1− pi)
M−1 −

(M − 2)2

2

N∑

i=1

p2i (1− pi)
M−2. (2.23)

2.4.5 Horvitz-Thompson estimator

The Horvitz-Thompson (HT) estimator is an unbiased estimator of the popu-

lation size N proposed by Horvitz and Thompson (1952). It is applied in many

fields including the problem of estimating the number of species in ecology and

estimating vocabulary size in linguistics, for example Böhning (2008), Cruyff

and van der Heijden (2008) and Hidaka (2014). Assume πi is the probability

that species i is included in the sample, termed the inclusion probability. The

estimator of species richness is given by

N̂H =
M∑

i=1

fi
πi
. (2.24)
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An unbiased estimator of variance is

V̂ar(N̂H) =
M∑

i=1

(
1− πi
π2
i

)
y2i +

M∑

i=1

∑

i 6=j

(
πij − πiπj
πiπjπij

)
yiyj, (2.25)

where πi = 1 − (1− pi)
M is the inclusion probability of species i and πij =

πi + πj −
[
1− (1− pi − pj)

M
]
is the inclusion probability for species i and j.

The species abundance model or the probability of species i collected is un-

known in practice. The Horvitz-Thompson-Like estimator is an alternative

estimator which can be used instead of the Horvitz-Thompson estimator. The

unknown probability pi is replaced by i/M . Then, the Horvitz-Thompson-Like

estimator is given by (McCrea and Morgan, 2014)

N̂HL =
M∑

i=1

fi

1−
(
1− i

M

)M
. (2.26)

2.5 An alternative improvement to the Chao1

estimator

In this section, two new estimators of species richness are developed using α̂k

based on the Good-Turing coverage estimator. The sample coverage is the pro-

portion of all individuals in the population belonging to the observed species

in the sample. The concept of the sample coverage is presented in an example

of Chao and Jost (2012) who discussed the sample coverage of a terrestrial

arthropod community with 50 species. Assume that the relative abundance of

species 1 is 0.3, species 2 is 0.1, species 3 through 5 is 0.05 each and species

6 through 50 are 0.01 each. In sample of 20 individuals, there are 12 species

collected (e.g. species 1, 2, 3, 4, 5, 6, 9, 14, 23, 27, 41, 47) and then the sample

coverage is 62% (0.3 + 0.1 + 0.05× 3 + 0.01× 7). This means there is 62% of
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all individuals belonging to the observed species in the sample.

Good (1953) proposed estimating the sample coverage using

Ĉ =
N∑

i=1

piI(Xi = 0) = 1− α0f0 = 1− f1
M
.

Then, an estimator for the true mean relative abundance of species seen k

times based on the Good-Turing coverage approach is given by

α̂k =

(
1− f1

M

)
k

M
. (2.27)

The following two new estimators, N̂new1 and N̂new2, are constructed using

the same idea of the iChao1 estimator. The bias of N̂Chao1 is estimated using

equation (2.13). The N̂new1 estimator is constructed using α̂1 by Chiu et al.

(2014) in equation (2.12) and α̂3 by equation (2.27). This provides

N̂new1 = N̂C +
1

9

[
(3Mf1(M − 1)− 2Mf2(M − 3)− 3f 2

1 (M − 1)− 6f1f2) (M
2 − 3(M − f1))

M(M − 1)(M − f2)2

]
.

(2.28)

The N̂new2 estimator estimates both α̂1 and α̂3 by equation (2.27), giving

N̂new2 = N̂C +
4

9

[
(M2 − 3M + 3f1)Mf2
(M − 1)(M − f1)2

]
. (2.29)

The delta method is used to estimate the variance of both alternative estima-

tors followings the same approach as for the iChao1 estimator. The formulae

are lengthy and are not given here, but are incorporated into R code.
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2.6 Comparing previous model using simula-

tion

The mean relative abundance of species seen k times (αk) can be estimated

using the estimator as follows

• Crude estimator : α̂k =
k

M

• Good-Turing (GT) estimator : α̂k =
(k + 1)

M

fk+1

fk

• Modified Good-Turing (GTchiu) estimator : α̂k =
(k + 1)fk+1

(M − k)fk + (k + 1)fk+1

• Good-Turing coverage (GTcov) estimator : α̂k =

(
1− f1

M

)
k

M
.

• Chao and Jost (2012) coverage (CJcov) estimator : α̂k = Ĉ × k

M
, where

Ĉ =





1− f1
M

[
(M − 1)f1

(M − 1)f1 + 2f2

]
, if f2 > 0,

1− f1
M

[
(M − 1)(f1 − 1)

(M − 1)(f1 − 1) + 2f2

]
, if f2 = 0.

Here, these estimators above are applied to abundance data simulated from

the negative binomial model with parameter (4,0.04). The performance of α̂1

and α̂3 is compared by plotting boxplots of their root mean square error (rmse)

and of the bias (Figures 2.6 and 2.7). In the simulation study, the bias is cal-

culated as the mean of (α̂k − αk), where αk is a sample quantity that varies

from sample to sample, rather than a fixed parameter.

The results indicate that crude estimator outperforms other estimators for

small N while GT and GTchiu estimate α̂1 well for large N (Figure 2.6). Al-

though GTcov estimator is not very good for α̂1, it works very well with α̂3 for

both small and large sample size, M = 200 and 400 respectively (Figure 2.7).
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Figure 2.6: RMSE and Bias of α̂1 based on the Negative Binomial model
with parameter k = 4 and r = 0.04, N = 200, M =200 and 400 with 10000
simulations.
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Figure 2.7: RMSE and Bias of α̂3 based on the negative binomial model with
parameter k = 4 and r = 0.04, N = 200, M =200 and 400 with 10000
simulations.
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Tables 2.1 and 2.2 present the bias and root means square error (RMSE)

(×10000) under various species abundance models for α̂1 and α̂3 respectively.

When considering the performance in terms of RMSE for small sample size

M = 200, crude estimator for α̂1 approximates well based on NB, expo-decay

and broken-stick models.

For the GTcov, it approximates well when using the log-normal and the Zipf-

Mandelbrot model, while the GT and GTchiu yield good approximations for

the power-decay model. For example, the broken-stick model with N = 200,

the crude estimator gives the best accuracy with smallest RMSE=3.64 while

GT, GTchiu, CJcov and GTcov obtain large RMSE with 10.49, 10.44, 11.18

and 11.24 receptively (Table 2.1). It clearly outperforms other approaches.

Additionally, it obtains smallest bias with 0.99, in contrast to CJcov and GTcov

which gives a negative bias with -11.15 and -11.21 respectively.

On the other hand, the performance of estimators of α̂1 for large sample size

show that the GTchiu estimator approximates the best for all models in terms

of RMSE and bias. For example for the broken-stick model and N = 800,

the GTchiu estimator gives the smallest RMSE and smallest bias 4.43 and 0.63

respectively. Other estimators have higher RMSE and bias, see in Table 2.1.

When considering α̂3, it is clear that GTcov estimator works well for both small

and large sample size (Table 2.2). The results show small RMSE for GTcov

estimator. For example with N = 200, GTcov estimator can approximate very

well with the smallest RMSE for all models. The RMSE for the broken-stick

model and using the GTcov estimator is 13.32 while the Crude, GT, GTchiu

and CJcov estimators are 44.80, 46.20, 45.71 and 13.40 respectively (Table 2.2).
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Table 2.1: Bias and RMSE of α̂1 (× 10000) with 10000 times

M Model Crude GT GTchiu CJcov GTcov

Bias
200 Negative Binomial 0.27 0.68 0.67 -15.57 -15.64

Expo-decay -1.49 0.97 0.94 -14.61 -14.68
Log-normal 7.68 0.99 1.00 -5.06 -5.11
Zipf-Mandelbrot 19.48 0.97 1.02 8.08 8.05
Power 22.68 0.87 0.92 13.72 13.70
Broken-stick 0.99 1.05 1.03 -11.15 -11.21

400 Negative Binomial -14.77 0.62 0.55 -18.03 -18.04
Expo-decay -10.44 0.84 0.79 -13.24 -13.25
Log-normal -4.35 0.69 0.67 -7.52 -7.53
Zipf-Mandelbrot 3.56 0.43 0.43 0.11 0.10
Power 7.48 0.39 0.40 4.57 4.56
Broken-stick -6.06 0.90 0.87 -8.85 -8.86

800 Negative Binomial -16.20 1.21 1.15 -16.62 -16.62
Expo-decay -8.50 0.86 0.83 -8.97 -8.97
Log-normal -7.03 0.59 0.57 -7.65 -7.65
Zipf-Mandelbrot -3.48 0.36 0.36 -4.32 -4.32
Power 0.55 0.22 0.22 -0.28 -0.28
Broken-stick -6.49 0.64 0.63 -7.03 -7.03

RMSE
200 Negative Binomial 2.09 8.61 8.56 15.57 15.64

Expo-decay 3.29 10.22 10.17 14.61 14.68
Log-normal 7.77 9.17 9.14 5.43 5.47
Zipf-Mandelbrot 19.48 8.22 8.21 8.17 8.13
Power 22.68 8.90 8.89 13.74 13.71
Broken-stick 3.64 10.49 10.44 11.18 11.24

400 Negative Binomial 14.77 6.81 6.78 18.03 18.04
Expo-decay 10.44 7.18 7.15 13.24 13.25
Log-normal 4.41 5.91 5.89 7.52 7.53
Zipf-Mandelbrot 3.63 4.50 4.49 1.54 1.54
Power 7.49 4.44 4.44 4.62 4.61
Broken-stick 6.09 6.65 6.62 8.85 8.86

800 Negative Binomial 16.20 6.56 6.53 16.62 16.62
Expo-decay 8.50 5.12 5.10 8.97 8.97
Log-normal 7.03 4.08 4.07 7.65 7.65
Zipf-Mandelbrot 3.48 3.03 3.03 4.32 4.32
Power 0.99 2.50 2.50 0.88 0.88
Broken-stick 6.49 4.44 4.43 7.03 7.03
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Table 2.2: Bias and RMSE of α̂3 (× 10000) with 10000 times

M Model Crude GT GTchiu CJcov GTcov

Bias
200 Negative Binomial 74.50 7.90 8.22 27.00 26.77

Expo-decay 55.59 8.31 8.51 16.23 16.02
Log-normal 52.38 12.51 12.45 14.18 14.02
Zipf-Mandelbrot 48.87 27.03 25.92 14.66 14.56
Power 41.36 36.82 34.67 14.49 14.41
Broken-stick 44.78 10.75 10.77 8.36 8.18

400 Negative Binomial 15.07 2.47 2.51 5.30 5.26
Expo-decay 8.71 3.61 3.58 0.32 0.29
Log-normal 15.25 4.21 4.21 5.74 5.72
Zipf-Mandelbrot 22.94 6.72 6.69 12.59 12.57
Power 20.28 11.32 11.08 11.53 11.51
Broken-stick 6.62 4.04 3.97 -1.76 -1.79

800 Negative Binomial -4.97 1.35 1.31 -6.24 -6.25
Expo-decay -4.55 2.23 2.18 -5.96 -5.97
Log-normal 1.75 1.75 1.73 -0.09 -0.10
Zipf-Mandelbrot 9.22 1.45 1.46 6.72 6.71
Power 9.52 2.55 2.54 7.04 7.03
Broken-stick -0.16 2.00 1.97 -1.77 -1.77

RMSE
200 Negative Binomial 74.50 35.81 35.65 27.04 26.80

Expo-decay 55.59 40.57 40.25 17.38 17.21
Log-normal 52.59 51.97 51.41 20.10 20.01
Zipf-Mandelbrot 51.56 80.16 78.61 27.68 27.64
Power 48.77 100.15 97.62 33.25 33.23
Broken-stick 44.80 46.20 45.71 13.40 13.32

400 Negative Binomial 15.07 15.85 15.76 5.82 5.79
Expo-decay 9.21 19.80 19.67 4.98 4.97
Log-normal 15.46 21.10 20.98 7.77 7.76
Zipf-Mandelbrot 23.25 26.68 26.53 14.22 14.20
Power 21.67 35.79 35.44 15.12 15.11
Broken-stick 8.44 22.51 22.34 6.36 6.37

800 Negative Binomial 5.08 9.76 9.71 6.27 6.28
Expo-decay 5.00 11.86 11.80 6.17 6.17
Log-normal 3.33 10.39 10.35 2.97 2.97
Zipf-Mandelbrot 9.26 9.70 9.68 6.89 6.88
Power 9.75 12.43 12.39 7.57 7.56
Broken-stick 3.39 11.61 11.56 3.65 3.66
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2.7 Simulation Study

In a simulation study, the N̂new1
and N̂new3

estimators have been investigated.

Their performances are compared with other estimators including the first-

order jackknife, the second-order jackknife, Chao1 and iChao1 in terms of root

mean square error (RMSE) and the coverage and width of 95% confidence

intervals (C.I.) for N of the form

[K + (N̂ −K)/R, K + (N̂ −K)×R],

where R = exp

{
1.96

[
log(1 +

V̂ar(N̂)

(N̂ −K)2

]}
(Chiu et al., 2014).

The following species abundance models were used to construct simulated data

sets with N = 200, M = 200, 400, 800 and 1600. There were 10000 simulated

data sets for each combination of N and M .

• model 1 : homogeneous model with pi = 1/N

• model 2 : negative binomial model with parameter (0,0.04)

• model 3 : power-decay model with pi = c/i1.2

• model 4 : log-normal model with parameters µ = 0 and σ = 1

• model 5 : Zipf-Mandelbrot model with pi = c/(i− 0.1), i = 1, 2, . . . , N

• model 6 : broken-stick model or Dirichlet(1, 1, . . . , 1) model

In Figure 2.8, the estimated number of species using various estimators are

plotted against the sample size, M . For the homogeneous model, the Chao1

estimator estimates the number of species very well (Figure 2.8a). It outper-

forms other estimators with small bias for allM . WhenM tends to infinity, the

estimated the number of species for all estimators is close to the true species

richness N = 200. In Table 2.3, the Chao1 estimator yields the estimated the



2. Species richness estimation 40

number of species close to N = 200 for all M = 200, 400, 800, 1600, with mean

N̂Chao1 = 202.74, 201.03, 200.37, 200.16 respectively.

When addressing other estimators under the homogeneous model, the perfor-

mance is not stable for allM . For example, the first-order Jackknife estimator

can approximate well for M = 200, more bias for M = 400, 800 before becom-

ing close to the true number of species atM = 1600, with mean N̂J1 = 200.25,

227.28, 210.93 and 200.46, respectively.

For the heterogeneous models, the new1 estimator performs very similar to

the iChao1 estimator. Figure 2.8b shows the performance of various estima-

tors based on the negative binomial model. The results show the iChao1 and

the new1 estimators work well with the negative binomial model and are close

to true number of species for all M . For the Chao1 estimator, it fits well

when M is large. For example, when using the negative binomial model with

M = 200, the new1 estimator performs well and has a good coverage probabil-

ity of the 95% confidence interval, with mean N̂ = 200.45 and coverage 0.9464

respectively (Table 2.4). When M = 800, the Chao1 estimator performs the

best in terms of RMSE and coverage probability of the 95% confidence in-

terval, with values of 6.21 and 0.9443 respectively, while the new1 estimator

yields 7.22 and 0.9261 respectively.
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(a) Homogeneous model
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(b) Negative binomial model
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(c) Broken-stick model
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(d) Log-normal model
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(e) Zipf-Mandelbrot model
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(f) Power-decay model

Figure 2.8: Comparison of biases for species richness estimators under ho-
mogeneous, negative binomial (NB), broken-stick, log-normal model, Zipf-
Mandelbrot and power-decay models N=200, M=100-1600 and repeated 10000
times.
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For the broken-stick model, all estimators underestimate the true number of

species. The results indicate that the second-order jackknife performs well

when compared with other estimators (Figure 2.8c). The new2 estimator per-

forms the second best and better than the new1 and the iChao1 estimator.

As shown in Table 2.8, the second-order jackknife estimator outperforms other

estimators in terms of bias, RMSE and the coverage probability of the 95% con-

fidence interval especially when M = 200, 400. For example, when M = 400,

the lower bound is estimated by the Chao1 estimator as mean 169 species.

The results show the best approximation is mean 193.32 by the second-order

jackknife with RMSE=17.38.

For the log-normal abundance model, the first-order jackknife, the second-

order jackknife and the new2 estimators underestimate true number of species

for small M before overestimating for large M . For other estimators, they

underestimate for small M and tend to true number of species for large M

(Figure 2.8d). Table 2.6, the iChao1 and the new1 estimators have a similar

results and approximate well for large M . For example with M = 1600, the

results show the Chao1 estimator gives the lower bound of species richness as

mean N̂Chao1 = 196.82, N̂iChao1 = 199.17 and N̂new1
= 199.27. The first-order

jackknife, the second-order jackknife and the new2 overestimate with mean

N̂J1 = 206.47, N̂J2 = 206.57 and N̂new2
= 206.59.

For the Zipf-Mandelbrot and the power-decay, the results show the new1, the

new2 and the iChao1 estimators perform similarly and better than other es-

timators when M is small (Figures 2.8e and 2.8f). In Tables 2.5 and 2.7, the

new1 estimator approximate better than other estimators for small sample size

with M = 200 while the Chao1 estimator yields the estimated species richness

very well for large M . For example with the Zipf-Mandelbrot model, the new1

estimator gives the best results with mean N̂new1
= 172.46 and the coverage
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Table 2.3: Comparison of the mean of species richness estimators based on the
homogeneous model pi = 1/N with N = 200 and 10000 simulations.

M K Estimator N̂ Se(N̂)
̂
Se(N̂) RMSE 95% CI

coverage

200 126.54 Jackknife1 200.25 10.91 12.14 10.91 96.94

Jackknife2 237.16 19.78 21.03 42.09 42.57

Chao1 202.74 23.83 24.22 23.99 94.40

iChao1 210.21 29.05 32.30 30.79 91.60

new1 221.31 28.99 29.75 35.98 86.30

new2 243.69 24.84 26.90 50.26 47.58

400 173.12 Jackknife1 227.28 8.78 10.41 28.65 88.20

Jackknife2 227.15 16.91 18.03 31.98 44.81

Chao1 201.03 10.05 10.20 10.10 94.37

iChao1 203.49 12.16 12.87 12.65 92.26

new1 205.93 12.81 13.20 14.12 88.40

new2 233.15 9.93 11.99 34.60 35.20

800 196.37 Jackknife1 210.93 4.09 5.40 11.67 12.35

Jackknife2 199.97 5.85 9.35 5.85 37.49

Chao1 200.37 2.98 3.11 3.00 88.29

iChao1 200.83 3.45 3.74 3.55 86.98

new1 200.52 3.27 3.54 3.32 88.36

new2 213.84 3.15 5.12 14.20 11.60

1600 199.93 Jackknife1 200.46 0.77 1.03 0.90 56.88

Jackknife2 200.32 0.98 1.78 1.03 75.53

Chao1 200.16 0.64 1.10 0.66 60.01

iChao1 200.19 0.69 1.18 0.72 59.99

new1 200.20 0.75 1.25 0.77 56.89

new2 201.10 0.84 1.55 1.39 14.89

probability of the 95% interval is 0.8628, while the Chao1 estimator has mean

N̂Chao = 199.35 and the coverage probability of the 95% interval is 0.9455.
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Table 2.4: Comparison of the mean of species richness estimators based on the
negative binomial (4, 0.04) model with N = 200 and 10000 simulations.

M K Estimator N̂ Se(N̂)
̂
Se(N̂) RMSE 95% CI

coverage

200 118.35 Jackknife1 183.98 10.72 11.46 19.28 81.36

Jackknife2 216.61 18.91 19.84 25.17 81.45

Chao1 186.06 22.57 22.90 26.52 90.51

iChao1 195.85 27.74 30.45 28.05 93.10

new1 202.50 27.13 27.79 27.25 95.15

new2 218.47 22.98 24.41 29.48 87.60

400 160.66 Jackknife1 213.13 9.43 10.24 16.16 65.64

Jackknife2 221.63 17.09 17.74 27.57 62.09

Chao1 193.20 12.15 12.04 13.92 92.06

iChao1 198.74 15.09 15.54 15.15 93.20

new1 200.45 15.05 15.17 15.05 94.64

new2 218.96 11.81 12.94 22.34 56.57

800 187.40 Jackknife1 212.12 5.93 7.03 13.50 35.73

Jackknife2 206.05 11.39 12.18 12.90 75.94

Chao1 197.98 5.87 5.91 6.21 94.43

iChao1 199.90 7.02 7.30 7.02 93.19

new1 199.54 7.21 7.49 7.22 92.61

new2 212.60 5.60 6.92 13.79 29.67

1600 197.35 Jackknife1 203.83 2.92 3.60 4.82 52.12

Jackknife2 200.89 4.56 6.24 4.65 46.67

Chao1 199.82 2.76 3.08 2.76 89.72

iChao1 200.26 3.13 3.55 3.14 87.88

new1 200.14 3.21 3.65 3.21 88.69

new2 204.71 2.65 3.80 5.40 39.72
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Table 2.5: Comparison of the mean of species richness estimators based on the
power decay model pi = c/i1.2 with N = 200 and 10000 simulations.

M K Estimator N̂ Se(N̂)
̂
Se(N̂) RMSE 95% CI

coverage

200 59.73 Jackknife1 95.58 9.49 8.47 104.85 -

Jackknife2 121.54 15.04 14.66 79.89 63.00

Chao1 134.06 41.31 44.48 77.81 61.34

iChao1 144.95 45.73 50.14 71.57 73.75

new1 145.33 43.68 46.76 69.98 70.77

new2 140.52 40.36 43.72 71.88 61.75

400 88.47 Jackknife1 135.26 10.65 9.67 65.61 4.00

Jackknife2 165.68 16.95 16.76 38.28 62.28

Chao1 161.04 31.40 32.13 50.04 75.28

iChao1 173.06 35.73 38.21 44.75 86.54

new1 174.01 34.02 34.82 42.81 86.38

new2 170.32 30.35 31.27 42.45 78.53

800 123.43 Jackknife1 176.39 10.87 10.29 26.00 51.97

Jackknife2 203.95 17.63 17.82 18.07 93.33

Chao1 181.88 22.41 22.47 28.82 86.40

iChao1 193.11 26.35 27.22 27.23 93.50

new1 194.30 25.06 25.33 25.70 94.53

new2 194.78 21.36 21.74 21.99 92.93

1600 159.18 Jackknife1 206.73 9.31 9.75 11.49 85.54

Jackknife2 221.05 16.02 16.89 26.46 62.56

Chao1 194.93 13.77 14.01 14.68 93.86

iChao1 201.92 16.77 17.60 16.88 93.45

new1 203.43 16.18 16.68 16.54 93.99

new2 210.60 12.88 13.72 16.68 85.40
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Table 2.6: Comparison of the mean of species richness estimators based on the
log-normal(0,1) model with N = 200 and 10000 simulations.

M K Estimator N̂ Se(N̂)
̂
Se(N̂) RMSE 95% CI

coverage

200 97.91 Jackknife1 150.04 10.44 10.21 51.04 12.00

Jackknife2 179.12 17.55 17.69 27.28 87.58

Chao1 160.26 24.58 24.52 46.73 67.94

iChao1 171.54 29.20 30.30 40.77 83.90

new1 174.44 28.29 28.40 38.12 85.72

new2 178.90 24.05 24.42 32.00 83.53

400 133.92 Jackknife1 184.12 10.02 10.02 18.78 76.00

Jackknife2 203.51 17.04 17.35 17.39 93.50

Chao1 176.88 16.61 16.50 28.46 75.89

iChao1 185.59 19.87 20.32 24.54 90.25

new1 187.08 19.48 19.60 23.37 91.41

new2 194.70 15.88 16.36 16.74 93.03

800 164.59 Jackknife1 202.01 8.37 8.65 8.61 93.22

Jackknife2 209.27 14.68 14.98 17.36 83.68

Chao1 189.19 11.08 10.90 15.48 85.72

iChao1 194.27 13.21 13.36 14.39 93.22

new1 194.91 13.28 13.30 14.22 95.04

new2 203.90 10.44 10.97 11.14 93.29

1600 184.98 Jackknife1 206.47 5.99 6.56 8.82 72.20

Jackknife2 206.57 11.02 11.36 12.84 78.50

Chao1 196.82 7.07 7.08 7.75 92.84

iChao1 199.17 8.32 8.55 8.36 93.22

new1 199.27 8.57 8.74 8.60 91.72

new2 206.59 6.55 7.36 9.29 77.18
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Table 2.7: Comparison of the mean of species richness estimators based on
the Zipf-Mandelbrot model pi = c/(i− 0.1), i = 1, 2, . . . , N with N = 200 and
10000 simulations.

M K Estimator N̂ Se(N̂)
̂
Se(N̂) RMSE 95% CI

coverage

200 75.81 Jackknife1 121.57 10.22 9.57 79.09 -

Jackknife2 153.32 16.58 16.57 49.54 35.11

Chao1 157.93 38.01 38.86 56.70 75.79

iChao1 170.74 43.13 46.71 52.12 85.96

new1 172.46 41.16 42.03 49.52 86.28

new2 168.32 36.91 38.03 48.64 79.40

400 111.25 Jackknife1 166.61 10.92 10.52 35.13 23.26

Jackknife2 198.19 17.87 18.23 17.97 95.91

Chao1 179.52 26.01 26.13 33.10 86.48

iChao1 191.98 30.45 31.91 31.49 93.47

new1 193.81 29.03 29.35 29.69 94.51

new2 193.69 24.94 25.40 25.72 92.86

800 149.80 Jackknife1 203.20 10.09 10.33 10.58 92.35

Jackknife2 222.32 17.21 17.90 28.18 63.43

Chao1 193.30 16.03 16.09 17.37 92.89

iChao1 201.68 19.47 20.32 19.54 93.57

new1 203.63 18.71 19.06 19.06 94.22

new2 210.74 15.12 15.77 18.55 88.07

1600 181.25 Jackknife1 216.03 7.18 8.34 17.57 30.46

Jackknife2 215.47 13.68 14.45 20.65 61.83

Chao1 199.35 8.16 8.34 8.19 94.55

iChao1 202.36 9.96 10.56 10.24 91.75

new1 203.06 10.13 10.53 10.58 90.32

new2 215.74 7.55 8.85 17.46 33.24
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Table 2.8: Comparison of the mean of species richness estimators based on
the broken-stick model (or Dirichlet(1, 1, . . . , 1)) with N = 200 and 10000
simulations.

M K Estimator N̂ Se(N̂)
̂
Se(N̂) RMSE 95% CI

coverage

200 99.34 Jackknife1 149.12 10.08 9.98 51.87 79.00

Jackknife2 174.46 17.13 17.28 30.75 81.44

Chao1 152.93 21.20 21.22 51.63 53.40

iChao1 162.92 25.20 26.29 44.83 75.35

new1 165.44 24.75 24.94 42.50 76.33

new2 172.06 20.79 21.33 34.83 74.02

400 132.72 Jackknife1 177.74 9.33 9.49 24.14 51.49

Jackknife2 193.32 16.05 16.43 17.38 97.29

Chao1 169.05 14.84 14.74 34.32 58.19

iChao1 176.57 17.69 17.95 29.36 80.60

new1 177.68 17.51 17.62 28.37 81.37

new2 185.58 14.13 14.68 20.19 83.10

800 159.66 Jackknife1 191.91 7.78 8.03 11.22 91.05

Jackknife2 197.74 13.78 13.91 13.96 96.97

Chao1 180.74 10.36 10.13 21.87 65.85

iChao1 185.04 12.28 12.30 19.35 83.60

new1 185.59 12.41 12.33 19.02 86.06

new2 193.46 9.72 10.19 11.72 90.50

1600 177.09 Jackknife1 196.07 5.88 6.16 7.07 95.60

Jackknife2 197.73 10.41 10.67 10.66 95.91

Chao1 188.66 7.41 7.42 13.55 75.76

iChao1 190.98 8.55 8.76 12.42 86.50

new1 191.16 8.82 8.99 12.49 89.74

new2 196.54 6.91 7.52 7.73 94.08

It is concluded that the Chao1 estimator works very well for homogeneous

model. The new1 and the iChao1 estimator perform similarly and are ap-

propriate for the negative binomial, the Zipf-Mandelbrot and the power-decay

abundance model. The second-order jackknife and the new2 estimator approx-
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imates well for the broken-stick model.

2.8 Real Data Examples

The species richness estimators that we consider in this Chapter are applied

to some real data sets including Malaysian butterfly data (Fisher et al., 1943),

the Pollutants data (Janardan and Schaeffer, 1981), Christmas bird count data

(Chao and Bunge, 2002), Bangkok heroin users (Lanumteang and Böhning,

2011), beetle species abundance frequency counts data (Janzen, 1973) and

species abundance frequency counts data for tree samples (Norden et al., 2009).

The results are shown in Table 2.9.

The results indicate that the iChao1 and the new1 estimators for N are the

same results for Malayan butterfly, Christmas bird, heroin users, Tropical

tree1, Tropical tree2 and Tropical tree3 data. When considering the Chao1

estimator as a lower bound, the first-order Jackknife estimator estimates lower

than the Chao1 estimator in many data sets (e.g. pollutants, beetle site1,

beetle site2, Tropical trees2 and tropical tree3).

2.9 Conclusion

It is clear that the performance of each estimator depends on species abundance

model and sample size. Their performance improves when the sample size

tends to infinity. In ecology, the heterogeneous population is considered in

practice for species richness estimation. The iChao1 estimator is an improved

the Chao1 estimator which can reduce bias and perform well especially under

highly heterogeneous abundance. However, it requires more informations than

the Chao1 estimator by adding the number of tripletons and quadrupletons in

order to construct the iChao1 estimator.



2. Species richness estimation 50

In this thesis, we developed an alternative improvement to the Chao1 esti-

mator. The performance of the new1 is similar to the iChao1 estimator, but

the new1 estimator requires less information than the iChao1 estimator. The

new1 performs well with the negative binomial, the power-decay and the Zipf-

Mandelbrot. The new2 estimator approximates better than both the iChao

and the new1 estimators for the broken-stick model. When sample size is

large, the new2 estimator gives similar results to the first-order jackknife and

the second-order jackknife estimator.

Although there is a larger variance of the higher order of jackknife, the second-

order jackknife gives a better bias than the first-order jackknife estimator. In

our simulation study, the second-order jackknife estimator was found to work

well with the broken-stick.

Problem about estimating species richness has been investigated using non-

parametric approaches. In this Chapter, we have investigated nonparametric

estimation of species richness. In the next chapter, we consider the some prob-

lem using the maximum likelihood estimation in a parametric approach. The

distribution of the number of individuals seen for species i have been investi-

gated. Mixed Poisson models have been considered for the maximum likelihood

estimation based on the heterogeneous model.
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Table 2.9: Comparison of six estimators of total number for real data sets.

M K Estimator N̂
̂
Se(N̂) LC UC

Malayan Butterfly
9031 620 Jackknife1 738 15.36 711.51 772.12

Jackknife2 782 26.60 737.65 843.02
Chao1 714 22.66 679.06 769.85
iChao1 737 28.81 692.78 808.30
new1 737 26.91 695.01 802.61
new2 745 21.90 711.58 798.42

Pollutants
5720 1258 Jackknife1 1761 31.71 1702.50 1827.00

Jackknife2 2026 54.92 1925.54 2141.26
Chao1 1789 62.96 1679.66 1927.80
iChao1 1916 74.13 1786.22 2078.25
new1 1910 72.50 1782.34 2067.89
new2 1917 60.79 1807.77 2046.87

Christmas Bird
20042 126 Jackknife1 138 4.90 131.56 151.90

Jackknife2 141 8.48 131.34 168.13
Chao1 134 6.04 128.15 155.82
iChao1 136 7.03 128.82 160.63
new1 136 7.38 128.75 162.41
new2 138 5.93 130.81 155.98

Heroin users
39086 9302 Jackknife1 11478 65.97 11352.44 11611.13

Jackknife2 12054 114.26 11838.97 12287.16
Chao1 10782 82.90 10627.87 10953.24
iChao1 11151 100.60 10964.14 11358.96
new1 11151 102.14 10961.41 11362.28
new2 11579 82.77 11422.49 11747.13

Beetle Site1
976 140 Jackknife1 210 11.82 190.32 237.18

Jackknife2 263 20.47 228.81 309.90
Chao1 284 50.47 213.87 420.60
iChao1 297 52.52 222.56 436.92
new1 305 53.57 228.44 446.62
new2 293 49.23 222.46 422.85

Beetle Site2
237 112 Jackknife1 196 12.92 173.91 225.02

Jackknife2 269 22.33 231.03 319.24
Chao1 463 136.27 280.66 843.78
iChao1 489 139.78 298.39 873.63
new1 501 141.58 306.91 888.61
new2 474 134.33 291.00 843.83
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M K Estimator N̂
̂
Se(N̂) LC UC

Tropical trees1
943 152 Jackknife1 198 9.58 182.67 220.86

Jackknife2 214 16.59 188.99 255.76
Chao1 187 13.58 168.98 225.08
iChao1 196 16.21 173.77 240.45
new1 196 16.35 173.72 241.03
new2 202 13.29 181.91 235.38

Tropical trees2
1263 104 Jackknife1 137 8.12 124.50 157.05

Jackknife2 155 14.06 133.97 190.64
Chao1 140 16.84 119.26 190.21
iChao1 147 24.57 119.37 225.97
new1 148 19.05 123.56 203.17
new2 147 16.17 125.32 191.91

Tropical trees3
1020 76 Jackknife1 105 7.61 93.46 124.07

Jackknife2 121 13.17 101.61 154.90
Chao1 108 16.02 88.89 156.99
iChao1 116 20.44 91.76 178.93
new1 115 18.10 92.55 168.78
new2 114 15.39 94.04 157.84



Chapter 3

Estimating the number of

species using maximum

likelihood estimation

3.1 Introduction

Maximum likelihood estimation (MLE) is a parametric approach which has a

long history in statistics for estimating unknown parameters. For species rich-

ness estimation, the MLE has been used for estimating the number of species.

If the abundance of each species is the same, the Poisson model is used to

construct the likelihood function. In practice, there is usually heterogeneity

in the abundance of different species that leads to an overdispersed model, in

which the variance exceeds the mean (Bunge and Barger, 2008). Mixed Pois-

son models have been proposed for this issue, which is discussed in Section 3.2.

Fisher et al. (1943), Bunge and Barger (2008) and Cruyff and van der Heijden

(2008) proposed alternative models for overdispersion and heterogeneous data.

For species richness estimation, when the number of unseen species is unknown,

the zero truncated model based on the mixed model (e.g. gamma-Poisson) is
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used to construct the likelihood function. In Section 3.3, the MLE based

on the zero truncated mixed Poisson model is investigated. Although the

MLE approach is the preferred method of estimation in statistics in general,

in species richness estimation problems of nonconvergence and the so-called

boundary problem can arise in practice, particularly when the sample size is

small. These problems with the MLE approach are reviewed in Section 3.4.

Finally, conclusions are summarized in Section 3.5.

3.2 Mixed Poisson Models

Estimating the number of species has been discussed in many studies (e.g.

Fisher et al. (1943), Chao (1984), Bunge and Barger (2008) and Colwell et al.

(2012)). It is similar to the problem of the population size estimation in other

fields such as estimating the size of vocabulary in linguistics (Hidaka, 2014),

estimating the number of drug users in social science such as Hay and Smit

(2003) and Lanumteang and Böhning (2011).

In ecological applications, the population is divided into N groups, just as

individual plants and animals are classified into N species. The simplest as-

sumption is that the number of individuals of each species which were found in

the sample or trap or region of interest follows a Poisson distribution (Fisher

et al., 1943). The Poisson is the appropriate distribution for discrete count

data that result from a process of random and independent incidents that oc-

cur in a fixed time period and a limited area of space (Valero et al., 2010).

For example, this might apply to the number of moths of a given species that

enter a light trap during one night.

One of the features of the Poisson distribution is equality of the mean and

variance. In practice, the variance of observed species counts usually exceeds
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the mean as a consequence of variability or heterogeneity between species of

the parameter of the Poisson distribution λ, the expected number of observed

individuals seen for each species in the sampled region. When the variance ex-

ceeds the mean, the distribution is called ‘overdispersed’. If the homogeneous

Poisson model is fitted when the data are overdispersed, it leads to underesti-

mation of the number of species (Cruyff and van der Heijden, 2008).

To accommodate heterogeneity, Fisher et al. (1943) proposed using a gamma

mixed Poisson distribution which is also known as the negative binomial dis-

tribution. It has been applied by many researchers including Grogger and

Carson (1991), Cruyff and van der Heijden (2008), Bunge and Barger (2008),

Rocchetti et al. (2011) and Vergne et al. (2012).

However, there are many other mixed Poisson models that can be used. Bunge

and Barger (2008) compared a variety of mixed Poisson models for estimating

the number of species, specifically the standard (unmixed) Poisson, the gamma

mixed Poisson, the lognormal mixed Poisson, the inverse Gaussian mixed Pois-

son, the Pareto mixed Poisson, the exponential mixed Poisson and mixtures

of two or three exponential mixed Poisson distributions.

The variation in the behaviour of organisms in each species and/or heterogene-

ity in species abundance (i.e. some species are abundant while some species

are rare), has an effect on the overdispersion. For a given sampling effort, a

simple assumption is that the number of individuals seen for species i follows

a Poisson distribution with a single parameter, λi, which is the discovery rate

for species i (i.e. the average of the number of individuals seen for the species

during the sampling period). Variability of the Poisson parameter between

species reflects differences in the species abundance, but may also reflect the

difficulty of sampling the species because some species may be more difficult
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to detect.

We use the following notation:

N the true number of species present

Xi the number of individuals seen for species i (i = 1, . . . , N)

λi the Poisson parameter or discovery rate of species i (i = 1, . . . , N)

M the total number of individuals observed (M =
∑N

i=1Xi)

fk the number of species seen k times (k = 0, 1, . . . ,M)

K the number of distinct species seen (K =
∑M

i=1 fk)

Although the discovery rates λ1, λ2, ..., λN , are expected to vary between species,

there is insufficient data for each species, including an unknown frequency of

undetected species, to make any progress with estimating a separate parame-

ter λi for each species. Therefore, we define the parameters λi to be random

variables which are based on some distribution with probability density func-

tion f(λ). This means that the discovery rates λ1, λ2, ..., λN , are a random

sample from this distribution and are treated as independent and identically

distributed random variables.

Let Xi denote the number of individuals seen for species i, for i = 1, 2, . . . N .

Then, conditional on λi

Xi|λi ∼ Pois(λi)

and the probability mass function (pmf) of Xi given by

Pr(Xi = x|λi) = f(x|λi) =
e−λi λxi
x!

.

If λi is a random variable with the probability density function f(λ; θ), the

marginal distribution of Xi is called a mixed Poisson distribution, where the
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distribution of λi is termed the mixing distribution. Then, the mixed Poisson

model has probability density function as

Pr(X = x) =

∫ ∞

0

e−λi λxi
x!

f(λ; θ)dλ, x = 0, 1, . . .

The probability for unseen species is

Pr(X = 0) =

∫ ∞

0

e−λ f(λ; θ)dλ.

The mean of the mixed Poisson distribution is given by

Eλ[λ] =

∫ ∞

0

λf(λ; θ)dλ = µ.

Under the overdispersed model, Pr(X = 0) > e−µ. Then,

∫ ∞

0

f(λ; θ)e−λdλ > e(−
∫
∞

0
λf(λ;θ)dλ). (3.1)

(Böhning and Schön, 2005).

In Figure 3.1, the empirical probability mass function is compared with the

Poisson distribution. 400 individuals are selected with replacement from the

population consisting of 200 species using the broken-stick abundance model.

The results show the smaller value for the Poisson distribution when compared

to the true probability with 0.1353 and 0.310 respectively. Therefore, using

the Poisson distribution for abundance data is not appropriate. This leads to

underestimation of the number of species.

The mixed Poisson distribution is considered to improve the performance of

the Poisson distribution for overdispersed data. The Poisson-gamma distri-

bution is a common mixed Poisson model known as the negative binomial
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Figure 3.1: Plot of probability mass function under the overdispersed data
with N = 200,M = 400, µ = 2 and the estimated probability from the Poisson
distribution with mean=2.

distribution. It has the variance grater than mean which is suitable for the

overdispersed data (Cruyff and van der Heijden, 2008).

When λi is generated by the gamma distribution with shape parameter α and

rate parameter β, the probability density function (pdf) of species discovery

rate is given by

f(λi;α, β) =
βα λα−1

i e−λiβ

Γ(α)
, λi > 0, α > 0, β > 0,

and the probability mass function of the gamma mixed Poisson distribution is
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Pr(Xi = x) =

∫ ∞

0

f(x, λi) dλi

=

∫ ∞

0

f(x|λi) f(λ;α, βi) dλi

=

∫ ∞

0

e−λi λxi
x!

βα λα−1
i e−λiβ

Γ(α)
dλi

=
βα

x! Γ(α)

∫ ∞

0

λx+α−1
i e−λi(1+β)dλi

=
βα

x! Γ(α)

Γ(x+ α)

(1 + β)x+α

This can be written as (Cruyff and van der Heijden, 2008)

Pr(Xi = x) =
Γ(x+ α)

Γ(x+ 1) Γ(α)

(
β

1 + β

)α (
1

1 + β

)x

. (3.2)

This is the negative binomial distribution with mean µ =
α

β
and variance

α(1 + β)

β2
= µ + µ2/α, where the parameter α refers to the heterogeneity of

the parameter λ in the Poisson process. The smaller the value of α, the more

heterogeneity in the population when the mean is kept fixed. There are many

studies that have used the negative binomial model to estimate the number

of species. For example, fitting the model to counts of Malaysian butterflies,

it was found that this model can work well (Fisher et al., 1943). Although

the gamma mixed Poisson model can perform well for heterogeneous data, it

might give a biased estimator that overestimates N when the mean count, µ,

is small (Cruyff and van der Heijden, 2008).
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3.3 Maximum likelihood estimation based on

zero-truncated Mixed-Poisson distribution

Assume that Θ represents the unknown parameters of the mixture distribution.

Thus, for the negative binomial, this is a vector of two parameters, α and β. Let

fk denote the number of species seen k times for k = 0, 1, 2, . . . ,M . Therefore,

the number of observed species is K = ΣM
k=1fk. We can write the multinomial

likelihood function for θ and N as (Chao and Bunge, 2002)

L(N, θ) =
N !

(N −K)!
∏

k>1 fk!
P0(θ)

N−K
∏

k>1

(Pk(θ))
fk ,

which is the full likelihood for N and θ, where P0(θ) refers to the proba-

bility of not observing a species and Pk(θ) is the probability of observing a

species k times for k > 1. This likelihood function can be partitioned as

L(N, θ) = L1(N, θ)× L2(θ), where the first term can be written as a binomial

likelihood

L1(N, θ) =

(
N

K

)
P0 (θ)

N−K [1− P0(θ)]
K

and the second term formulated as a multinomial likelihood given by

L2(θ) =
K!∏
k>1 fk!

∏

k>1

(
Pk(θ)

1− P0(θ)

)fk

,

which is the multinomial likelihood based on the zero-truncated distribution

for the number of species seen k times, conditional on k > 1 (Chao and Bunge,

2002).

Since K and fk are known

L2(θ) ∝
∏

k>1

(
Pk(θ)

1− P0(θ)

)fk
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for computational work.

Sanathanan (1977) proposed two types of maximum likelihood estimators used

to estimate N , known as the unconditional and the conditional MLEs. The

unconditional MLE maximizes the full likelihood L(N, θ) as a function of θ

and N , which obtains θ̂ and N̂ . The conditional MLE maximizes L2(θ) first,

for finding θ̂, and then maximizes L1(N, θ̂) for finding the estimator of N . This

yields the estimator of N which is given by N̂H =
K

1− P0(θ̂)
and known as the

Horvitz-Thompson estimator. The conditional approach has been often used,

as a consequence of easier calculation and the fact that it usually gives very

similar values of N̂ (Sanathanan, 1977).

As the number of unseen species is unknown, the idea of the zero-truncated

model is considered. The simplest such model is the zero-truncated Poisson

(ZTP), which is appropriate when the λi are homogeneous (λi = λ) that

leads to the equality of the mean and variance in the non-truncated distribu-

tion. For the heterogeneous case, where λi are not assumed equal, the zero-

truncated mixed Poisson distributions, such as the zero-truncated negative

binomial (ZTNB) are used for fitting the model, to incorporate the overdis-

persion (van der Heijden et al., 2003).

The probability function of a the zero truncated distribution is given by

Pr(Xi = x|Xi > 0, θ) =
Px(θ)

1− P0(θ)
,

where θ denotes the parameter(s) of the untruncated distribution, and the

likelihood function for the K observed species is

L2(θ) ∝
K∏

i=1

Px(θ)

1− P0(θ)
=

M∏

k=1

{
Pk(θ)

1− P0(θ)

}fk
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Then the log-likelihood for the zero-truncated distribution can be written as

log L2(θ) = C +
M∑

k=1

fk log

[
Pk(θ)

1− P0(θ)

]

= C +
M∑

k=1

fk [log Pk(θ)− log (1− P0(θ))]

= C +
M∑

k=1

fk log Pk(θ)−
(

M∑

k=1

fk

)
log (1− P0(θ))

= C +
M∑

k=1

fk log Pk(θ)−K log (1− P0(θ)), (3.3)

where C is a constant and Pk(θ) is the probability mass function of the un-

truncated distribution. For the zero truncated Poisson model, P0(θ) = e−λi

and Pk(θ) =
e−λiλki
k!

. For the zero truncated negative binomial model, we have

P0(θ) =

(
β

1 + β

)α

and Pk(θ) =
Γ(k + α)

Γ(k + 1) Γ(α)

(
β

1 + β

)α (
1

1 + β

)k

.

In the conditional likelihood approach to estimating N , the zero-truncated

model is fitted based on the observed counts and then the point estimator of

the total number of species can be written as

N̂H =
K

1− P0(θ̂)
(3.4)

where θ̂ (i.e. α̂ and β̂ for the zero-truncated negative binomial) refers to the

MLE of the parameters of the zero-truncated model. If the number of observed

species is large, the estimated total number of species N̂H and the estimated

parameters of the abundance model, θ̂, are approximately unbiased estimators

(van der Heijden et al., 2003).

The variance of N̂H can be estimated by

Var(N̂H) = E[Var(N̂H |Ii)] + Var(E[N̂H |Ii]) (3.5)
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which is formulated using the law of total variance (van der Heijden et al.,

2003).

For example with the zero truncated negative binomial (ZTNB) model with

parameters α and β, the first term can be estimated using the delta method

by

V̂ar(N̂H |Ii) = a(θ̂)TJ(θ̂)−1a(θ̂) |θ̂

where a′ =

(
∂N̂H

α
,
∂N̂H

β

)
and J(θ̂) = −




∂2ℓ(α, β)

∂β∂β′

∂2ℓ(α, β)

∂β∂α
∂2ℓ(α, β)

∂α∂β′

∂2ℓ(α, β)

∂α2


 and the

second term can be defined as

Var(E[N̂H |Ii]) =
N∑

i=1

Ii
1− Pr(Yi > 0)

[Pr(Yi > 0)]2
,

which may be estimated as

V̂ar(E[N̂H |Ii]) = K × P0(θ̂)

[1− P0(θ̂)]2

(van der Heijden et al., 2003).

We assume that log(N̂ − K) is normally distributed when M is large and

N̂ > K, following Chiu et al. (2014). Therefore, an approximate 95% confi-

dence interval for N is given by

[K + (N̂ −K)/R,K + (N̂ −K)R],

where R = exp
{
1.96[1 + V̂ ar(N̂)/(N̂ −K)2]1/2

}
. Since N̂ is not normally

distributed, this formulae is used for finding confidence intervals for N̂ instead.
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Table 3.1: Estimated N , estimated standard error of N , Ŝe(N̂), 95% confi-
dence interval of N and AIC criterion.

N̂ Ŝe(N̂) LC UC AIC

Butterfly (K=620, M=9031)

Chao 714 22.66 670 758 -

Poisson 621 0.92 620 625 4362

NB 913 17.13 882 949 2792

Pollutant (K=1258, M=5720)

Chao 1789 62.96 1680 1928 -

Poisson 1299 6.41 1288 1314 7445

NB * * * * *

Christmas Bird (K=126, M=20042)

Chao 134 6.04 128 156 -

Poisson 128 1.38 127 133 274

NB 154 5.28 145 166 239

Heroin (K=9302, M=39086)

Chao 10782 82.90 10628 10953 -

Poisson 9453 12.30 9431 9479 50092

NB 11581 47.74 11489 11677 42870

Beetle site1 (K=140, M=976)

Chao 284 50.47 214 421 -

Poisson 152 3.47 147 161 579

NB * * * * *

Beetle site2 (K=112, M=237)

Chao 463 136.27 282 845 -

Poisson 168 7.50 155 185 284

NB * * * * *

Tropical tree1 (K=152, M=943)

Chao 187 13.58 169 225 -

Poisson 160 2.90 156 168 596

NB 258 10.28 239 280 517

Tropical tree2 (K=104, M=1263)

Chao 140 16.84 119 190 -

Poisson 106 1.31 104 110 598

NB 323 14.81 296 354 421

Tropical tree3 (K=76, M=1020)

Chao 108 16.02 89 157 -

Poisson 104 5.33 96 117 133

NB 159 9.11 143 179 130

Note: * is optimization fail.



3. Estimating the number of species using maximum likelihood estimation 65

Table 3.1 displays the ZTP and ZTNB models applied to several real data

sets. The 95 % confidence interval of N is computed. Akaike Informa-

tion Criterion (AIC) is used to select the best model, which is calculated

by 2(no.parameter)-ln(L), where L is the maximum value of the likelihood

function. Considering the Chao1 estimator as a lower bound of N , the results

indicated that ZTP model underestimates for all data set. The ZTNB model

performs better than ZTP with smaller AIC. For example with heroin data, the

Chao1 estimator estimates N̂C = 10782 while the ZTP model underestimates

with N̂P = 9453 and AICP = 50092. The ZTNB model yields N̂NB = 11581

and performs better with AICNB = 42870. However, the ZTNB model cannot

be used to estimate N in some data sets including Pollutant, Beetle site1 and

site2. There is a numerical problem in optimization. This yields very large

estimated N for the ZTNB model.

3.4 Problems with maximum likelihood esti-

mation

In statistics, it is generally accepted that the MLE is the preferred method

of estimating the parameters in frequentist inference. Bayesian approaches

for estimating the number of species have been also used (e.g. Barger and

Bunge (2008)), but are not explored in this thesis. However, when applied

to estimating the number of species there might be several problems with the

MLE, especially for small sample size. Cruyff and van der Heijden (2008) note

that the coverage probabilities of confidence intervals calculated for the NB

model using the MLE approach decrease in a small sample. The potential

problems with maximum likelihood for estimating the number of species are

as follows:

1. It can be difficult to calculate the MLE. The convergence of MLE may be
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slow because the likelihood function is very flat in some situations; con-

sequently, the variance of the estimator is very large. Li and Sudjianto

(2005) and Coull and Agresti (1999) note that the cause of the flat likeli-

hood is a large heterogeneity which leads to an unstable estimate. When

applying to the ZTNB model with small Poisson parameter and small

sample size, the MLE may fail to converge (van der Heijden et al., 2003).

This problem occurs in many capture-recapture studies. To illustrate,

Rocchetti et al. (2011) mention that the MLE method cannot fit the neg-

ative binomial model in some cases and gives examples involving scrapie,

methamphetamine use and microbial data. The variation in population

results in the numerical algorithms failing to converge. Hence, the esti-

mator cannot be computed. Recently, Böhning (2015) has investigated

the difficulties with the negative binomial in more detail.

2. Extreme heterogeneity in species discovery rates can lead to a problem

known as the boundary problem (Pledger and Phillpot, 2008). It can be

found in the mixed exponential family of discrete distributions such as

the mixed binomial and the mixed Poisson model. This results in very

large estimates of the total number of species N̂ . Wang and Lindsay

(2008) handled the boundary problem in estimating species richness us-

ing a penalized conditional nonparametric maximum likelihood estimator

(NPMLE) and Wang later developed the SPECIES package in R to im-

plement this method. This package includes a function to estimate the

number of species under the conditional likelihood of the mixed Poisson

model.

3. As a result of the previous problems, there is a possible lack of robustness.

Even if the model can be fitted, it is difficult to know whether the model

that has been assumed is really appropriate.

4. Another issue is the problem of lack of identifiability; there may be sev-
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eral different models where the distribution of non-zero counts is basi-

cally the same, but the probability of a zero count is different. So all

the models would appear to fit the observed data equally well, but they

would all give different estimates of N . However, this last point is really

a general issue about the difficulty of estimating species richness; it is

not specific to the maximum likelihood approach. See Link (2003) for

related discussion in connection with capture-recapture data.

3.5 Conclusion

The Poisson distribution is considered for a homogeneous population. It is

usually well-fitting for count data that exhibit the equivalence of the mean

and variance. For species abundance data, it cannot work well as a result of

the variation in population. The mixed Poisson distribution is considered in-

stead of the original Poisson to estimate the total number of species. Models

whose variance exceeds the mean are proposed including the Poisson-gamma

distribution or the negative binomial distribution.

The number of unseen species is unknown in species richness estimation. Mod-

elling the number of species based on the zero truncated mixed Poisson model

is proposed. The zero truncated negative binomial distribution is used for

overdispersed data without zero frequency. Maximum likelihood estimation

for truncated data is an approach used to estimate the unknown parameter

in the model. Although in principle, maximum likelihood estimation can be

used based on a mixed Possion model, the results indicate that this approach

sometimes leads to poor inference about the number of species, especially for

small sample sizes. There might be several problems such as flatness of the

likelihood function and the boundary problem that lead to a lack of robust-

ness. The penalized NPMLE by Wang and Lindsay (2008) are proposed to
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avoid the boundary problem.

Other mixed Poisson models for overdispersion have been investigated in many

studies including log-normal mixed Poisson, inverse Gaussian mixed Poisson

and so on. In Chapter 4, the Poisson-Tweedie distribution, where the mixing

distribution is the flexible 3-parameters Tweedie distribution is considered for

estimating the number of species. Therefore, the weighted linear regression

analysis is investigated instead in order to avoid MLE problems.



Chapter 4

Estimating the number of

species using Poisson-Tweedie

model

4.1 Introduction

Species abundance data are often described using overdispersed model such as

the negative binomial distribution. In this Chapter, we investigated species

abundance data using the Poisson-Tweedie (PT) distribution. It is a mixed

Poisson model where the mixing distribution is the Tweedie distribution. This

model is useful for modelling species abundance data. It often exhibits overdis-

persion, zero inflation and a heavy right tail. Not only is the negative binomial

distribution in the PT family, it includes many well-known discrete distribu-

tions such as the Poisson, Poisson inverse Gaussian, discrete stable, Pólya-

Aeppli, Neyman Type A and so on (El-Shaarawi et al., 2011). In Section 4.2,

the PT model including sub families, the probability mass function, mean,

variance, dispersion, skewness, and reparametrization are reviewed.

For inference, in addition to maximum likelihood estimation (MLE), We have
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focused on the weighted linear regression (WLR) approach to model the num-

ber of unseen species for estimating the total number of species. This approach

has been proposed recently for avoiding the numerical problems which occur

in some circumstances when using MLE under the negative binomial distribu-

tion (Rocchetti et al., 2011). Although, the MLE is well known in statistics

for estimating the unknown parameter, there might be problems about flatness

of the likelihood and the boundary problem especially for small sample size.

Therefore, the WLR estimator is used instead and is more robust than the

MLE. In Section 4.3, the WLR model, which is based on ratios of successive

counts, is discussed. The performance of the WLR estimator based on the

PT distribution is investigated in a simulation study. The WLR approach is

compared with other estimators including Chao1, iChao1, new1 and new2 es-

timators and applied to real data sets. The results are shown in Section 4.4.

The conclusions are presented in Section 4.5.

4.2 Poisson-Tweedie (PT) model for overdis-

persed data

Environmental changes including physical, chemical and biological result in

the heterogeneity of abundance data (El-Shaarawi et al., 2011). The models

for overdispersed data are discussed instead of Poisson model which has the

variance equal to the mean. Dispersion index can be defined as the variance

divided by the mean and denoted by φ. When φ > 1, it represents ovedispersed

model, the variance exceeds the mean. Then, the Poisson distribution with

φ = 1 cannot fit well for overdispersed data. El-Shaarawi et al. (2011) proposed

the PT distribution with three parameters to model species abundance data. It

is a flexible model which can describe overdispered data. The PT distribution

is a mixed Poisson model using the mixing model from the Tweedie distribution
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which is a family of exponential dispersion models.

4.2.1 Tweedie distribution

A distribution belongs to the family of exponential dispersion models(Jorgensen,

1987) if it has probability density function of the form

f(y; θ, φ) = a(y, φ) exp

[
1

φ
{yθ −K(θ)}

]
, (4.1)

where θ is a canonical parameter, φ is a dispersion parameter (φ > 0) and

K() is a cumulant function. If Y follows the exponential dispersion model, the

relationship between the mean and the variance of the exponential dispersion

model is given by

var(Y ) = φvar(µ),

where µ is the mean of the distribution, µ = K ′(θ), and var(µ) = K ′′(θ) is

called the variance function of the exponential dispersion model, where K ′(θ)

and K ′′(θ) denote the first and the second derivative of the cumulant function

(Dunn and Smyth, 2005).

The Tweedie distribution is a member of the family of exponential dispersion

models. The second derivative of the cumulant function can be calculated by

K ′′(θ) = dµ/dθ = µp and then var(µ) = µp. Jorgensen (1987) named it the

Tweedie distribution. If Y follows the Tweedie distribution, the parameters

(µ, φ, p) of the Tweedie distribution satisfy µ > 0, φ > 0 and the power

parameter varies outside the interval (0,1). The probability density function

of the Tweedie distribution is given by equation (4.1) based on

θ =





µ(1−p)

1− p
, for p 6= 1

log µ, for p = 1
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and

K(θ) =





µ(2−p)

2− p
, for p 6= 2

log µ, for p = 2.

The Tweedie distribution for values of p < 0 seems to be used less in practice

and Dunn and Smyth (2005) investigated the model for values of p > 1 in their

study. The value of p can be used to define the special case of the Tweedie

distribution which includes normal distribution (p = 0), Poisson distribution

(p = 1), compound Poisson-gamma distribution (1 < p < 2), gamma distribu-

tion (p = 2), positive stable distribution (2 < p < 3 and p > 3) and inverse

Gaussian distribution (p = 3) (Jorgensen, 1987).

In general it is difficult to evaluate the function a(y, φ). Considering the value

of p > 1, Dunn and Smyth (2005) have focused on the series expansions for

1 < p < 2 and p > 2. For the case of 1 < p < 2, the probability density

function of the Tweedie distribution can be written by

f(y;µ, φ, p) =





exp

{
− µ2−p

φ(2− p)

}
, for y = 0

a(y;φ) exp

[
1

φ

{
y
µ1−p

1− p
− µ2−p

2− p

}]
, for y > 0

where a(y;φ) =
1

y

∑∞
j=1

y−jα(p− 1)αj

φj(1−α)(2− p)jj!Γ(−jα) and α =
2− p

1− p
.

For the case of p > 2, the probability can be defined similarly using

a(y;φ) =
1

πy

∞∑

k=1

Γ(1 + αk)φk(α−1)(p− 1)αk

Γ(1 + k)(p− 2)kyαk
(−1)k sin(−kπα)

and 0 < α < 1.
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4.2.2 Poisson-Tweedie distribution

The PT distribution is the mixture model between Poisson and Tweedie dis-

tributions which is flexible and suitable for count data that exhibit over-

dispersion, zero-inflation and heavy right tail, in particular, species abundance

data that are sampled from heterogeneous population. (El-Shaarawi et al.,

2011).

The Poisson-Tweedie distribution has been investigated in many studies. It

was discovered and called by different names: the generalised negative binomial

distribution by Gerber (1992), the Poisson Gaussian by Hougaard et al. (1997),

the Poisson-Tweedie by Kokonendji et al. (2004) and the Tweedie-Poisson fam-

ily by Johnson et al. (2005). The PT family includes many standard discrete

distributions as special cases, such as the Poisson, negative binomial, Poisson-

inverse Gaussian (PIG), Neyman Type A, Pólya-Aeppli and Poisson Pascal.

Let X be a random variable generated by the PT distribution with parameters

a, b, c. The probability mass function (pmf) of the PT distribution is impossible

to define in an explicit form. However, it can be defined in terms of the

probability generating function (pgf), which can be written as

GX(t; a, b, c) = exp

{
b

a
[(1− c)a − (1− ct)a]

}
, (4.2)

where a 6 1, b > 0 and 0 6 c < 1 (El-Shaarawi et al., 2011), as explained in

Section 4.2.5.
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4.2.3 Sub-families of the PT distribution

The pgf of the PT distribution gives rise to several special cases which are

defined by different ranges of the parameters a, b and c as follows (El-Shaarawi

et al., 2011):

• When c = 1 and 0 < a 6 1, the pgf of the PT distribution reduces

to GX(t; a, b, 1) = exp

{−b
a
(1− t)a

}
and is called the discrete stable

distribution.

• When c = 0, it becomes the degenerate distribution with the pgf which

is given by GX(t; a, b, 0) = 1.

• When a = 1, and c 6= 0, it represents the Poisson distribution. The pgf

can be written as GX(t; 1, b, 1) = exp {bc(t− 1)}.

• When a = 1/2, b =
λ

2m

√
1 +

2m2

λ
and c =

2m2

λ

/(
1 +

2m2

λ

)
, it gives

the Poisson inverse Gaussian distribution. Then,

GX(t; 1/2, b, c) = exp

{
λ

m

[
1−

(
1 +

2m2

λ
(1− t)

)1/2
]}

, λ > 0,m > 0.

• When 0 < a < 1 and 0 < c < 1, it is the generalized Poisson inverse

Gaussian distribution.

• When a = 0, and 0 < c < 1, it becomes the negative binomial distribu-

tion with pgf GX(t; 0, b, c) =

(
1− c

1− ct

)b

. These parameters are related

to the form of the negative binomial distribution given in the previous

Chapter by equation (3.1) with the relationship c =
1

1 + β
and b = α.

• When a < 0 and 0 < c < 1, it is the pgf of the Poisson-Pascal distribu-

tion. For a = −1, it is the Pólya-Aeppli distribution.

• When a → −∞, b → ∞ and c → 0, it represents the Neyman Type A

distribution.
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Figure 4.1: Partition of sub-families of the PT distribution based on parame-
ters a and c (El-Shaarawi et al., 2011)

.

Figure 4.1, from El-Shaarawi et al. (2011), illustrates a partition of sub-families

of the PT distribution based on the values of the parameters a and c above.

This gives the special cases including distributions that can model overdis-

persed and heavy-tailed data. The Poisson inverse Gaussian, the generalized

Poisson inverse Gaussian and the discrete stable distribution can model ex-

tremely heavy-tailed count data. Overdispersed data with shorter right tail

can be fitted using the negative binomial and Poisson-Pascal distribution.

4.2.4 Mean, Variance, Dispersion and Skewness

We can calculate the derivatives of the pgf when t = 1 to obtain the mean,

variance, dispersion and skewness. We have

G
′

X(1; a, b, c) = E[X]

G
′′

X(1; a, b, c) = E[X(X − 1)]

G
′′′

X(1; a, b, c) = E[X(X − 1)(X − 2)]
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These derivatives are used to derive the mean, variance, dispersion (ratio of

variance to mean) and skewness for the PT model, which are given by (El-

Shaarawi et al., 2011).

µ =
bc

(1− c)1−a
,

σ2 =
bc(1− ac)

(1− c)2−a
,

D =
σ2

µ
=

1− ac

1− c
,

ψ =
E[(X − E(X))3]

σ3
=

a2c2 − 3ac+ c+ 1√
bc(1− c)a(1− ac)3

.

4.2.5 The probability mass function

El-Shaarawi et al. (2011) derived the probability mass function of the PT

distribution using a recursive algorithm. The first derivative of the pgf of the

PT distribution

G
′

X(t; a, b, c) = bc(1− ct)a−1GX(t; a, b, c),

is considered under Taylor expansion. This gives the formula of the probability

mass function which can be generated recursively as

p0 =





exp

{
b

a
[(1− c)a − 1]

}
for a 6= 0

(1− c)b for a = 0

,

p1 = bcp0,

pk+1 =
1

k + 1

(
bcpk +

∑k
i=1 irk+1−ipi

)
for k = 1, 2, . . . ,

where r1 = (1 − a)c and rj+1 =

(
j − 1 + a

j + 1

)
crj (for j = 1, 2, . . .), are the
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recursive relationships among the rjs.

The likelihood function is constructed using these probabilities in order to es-

timate the unknown parameters of the PT distribution a, b, c . For example,

when a is fixed as zero, the count data follows the negative binomial distri-

bution. The MLE method is used to estimate the parameter b and c. Other

sub-families are identified by different constraints, but there are similar pro-

cedures for estimating the parameters. Therefore, the PT distribution is used

as a tool to investigate the robustness issue.

4.2.6 The Reparametrization (µ,D, a)

Additionally, we can reparametrize the parameters (a, b, c) to new parameters

(µ,D, a), where µ is the mean, D is the dispersion index and a is the shape

parameter that can determine the distribution of count data. These calcula-

tions are implemented in the R package tweeDEseq. The parameter (a, b, c) is

reparametrized to (µ,D, a) using the relationship

b =
µ(1− a)1−a

(D − 1)(D − a)−a
, c =

D − 1

D − a

In tweeDEseq package, count data can be generated based on the PT distribu-

tion using the function rPT(). The probability mass function can be calculated

using the function dPT(). The parameters of the PT distribution, µ,D, a, can

estimated by optimizing the likelihood function.

When the parameters µ and D are fixed in the range, µ > 0 and D > 1,

the parameter a is called the family index and identifies different PT families.

When a = −1, it becomes Pólya-Aeppli distribution. When a < 0, it becomes

Poisson-Pascal distribution. When a = 0, it becomes the negative binomial

distribution. When a = 0.5, it becomes the Poisson inverse Gaussian distri-
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bution. When 0 < a < 1, it becomes the generalized Poisson inverse Gaussian

distribution. When a → −∞, it becomes the Neyman Type A (El-Shaarawi

et al., 2011).
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Figure 4.2: Comparison of the probability mass function for the PT distribu-
tion when µ = 6, D = 4 and a = −1, 0, 0.25, 0.5, 0.75, 0.9.

Figure 4.2 shows the probability mass function of the PT distribution based

on varying parameter a with µ = 6 and D = 4 fixed, which changes the shape

of the PT distribution. The probability for unseen species decreases when the

value of a decreases. For a = −1, the probability for unseen species is the

highest. When a increases to 0.9, the probability for unseen species has the
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lowest value when compared to other models.

When a = −1, p0 > p1 and p1 < p2, then we found the PT distribution can

be bimodal. (El-Shaarawi et al., 2011) mention that it is probably unimodal

and bimodal for the PT distribution when 0 ≤ a < 1 and a < 0 respectively.

Additionally, the probability mass function of the PT distribution has longer

tail when a is close to 1. For example, when looking at the negative binomial

distribution (a = 0) and the Poisson Inverse Gaussian distribution (a = 0.5),

the pmf for the negative binomial decreases more slowly for the Poisson Inverse

Gaussian distribution. Then, the Poisson Inverse Gaussian distribution is more

suitable for a right long tail than the negative binomial distribution.

4.3 Models based on ratios of successive counts

The ratios of probabilities of successive counts are considered for estimating the

number of species in the study of Rocchetti et al. (2011). The ratio of successive

probabilities is considered for the Katz family of distributions, of which the

Poisson, the binomial and the negative binomial distribution are special cases.

Let px denote the probability distribution of X over the nonnegative integers.

In the Katz family, this ratio is given by

px+1

px
=
γ + δx

x+ 1
, x = 0, 1, 2, . . . ,

and it follows that

rx = (x+ 1)
px+1

px
= γ + δx, (4.3)

where γ > 0 and δ < 1. Under the condition δ < 0, the distribution of X be-

comes the binomial distribution. When δ = 0, the distribution of X represents

the Poisson distribution. When 0 < δ < 1, the negative binomial distribution

arises. The ratio rx is a monotone increasing pattern for the mixed-Poisson
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distribution (Rocchetti et al., 2011). Then, this ratio is a linear function of x.

The idea of ratio plot is considered for estimating the number of species. When

px is unknown, it can be estimated as p̂x = fx/N . Considering the ratio of

probability of successive counts, N cancels out and the ratio in equation (4.3)

can be estimated without N as follows:

r̂x = (x+ 1)
p̂x+1

p̂x
= (x+ 1)

fx+1

fx
, (4.4)

where fx is the number of species seen x times. When x = 0, the number of

unseen species can be estimated by f̂0 =
f1
γ̂
.

Although equation (4.4) gives a linear regression of r̂x on x, the logarithmic

transformation of the response rx is considered to avoid the possibility of neg-

ative predicted values from the model (Rocchetti et al., 2011). So equation

(4.4) is replaced by

log r̂x = γ + δx. (4.5)

This results in r̂x = exp
{
γ̂ + δ̂x

}
and we have

(x+ 1)fx+1

fx
= exp

{
γ̂ + δ̂x

}
.

Thus, under the log-scale of the ratio, the number of unseen species is given

by

f̂0 =
f1

exp {γ̂} . (4.6)

Therefore, we have

N̂ = K + f̂0. (4.7)

where K be the number of seen species in the sample. The delta method

is used to approximate the variance of f̂0 based on the conditional variance

(Böhning 2008) which gives

Var(f̂0) ≈ exp {−γ̂}2 f1 [Var(γ̂)f1 + 1] , (4.8)
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Let K denote a binomial random variable with parameters N and (1 − p0).

The variance of K is Var(K) = N(1− p0)p0 and the estimated variance of K

based on the delta method is given by

Var(K) ≈ Kf̂0

N̂
. (4.9)

Therefore, the variance of N̂ can be estimated, by

Var(N̂) ≈ Var(K) + Var(f̂0) =
Kf̂0

N̂
+ exp {−γ̂}2 f1[Var(γ̂)f1 + 1] (4.10)

In Figures 4.3 and 4.4, count data are generated under the PT distribution with

parameters µ = 1, D = 2 and a = −1, 0, 0.25, 0.5, 0.75, 0.9. The results show

the relationship of the ratio of successive counts after using log-transformation

and show that rx is non linear. The Poisson-Tweedie distribution is not a

member of the Katz family in general, as is seen in Figures 4.3 and 4.4, where

the points do not lie on straight lines. Therefore some bias is expected. There

is no simple expression for rx for the PT distribution.

For example with a = 0, it presents the negative binomial distribution which

is given by

px =
Γ(x+ α)

Γ(x+ 1) Γ(α)

(
β

1 + β

)α(
1

1 + β

)x

.

The ratio of successive probability can be written as

px+1

px
=

Γ(x+ α + 1)

Γ(x+ 2) Γ(α)

(
β

1 + β

)α(
1

1 + β

)x+1

Γ(x+ α)

Γ(x+ 1) Γ(α)

(
β

1 + β

)α(
1

1 + β

)x

=

(
x+ α

x+ 1

)(
1

1 + β

)
. (4.11)
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Figure 4.3: The ratio of successive frequencies based on the true probability of
PT distribution with the parameters µ = 1, D = 2 and a = −1, 0, 0.25, 0.5,
0.75, 0.9.
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Figure 4.4: The logarithmic transformation of the ratio of successive frequen-
cies based on the true probability of PT distribution with the parameters
µ = 1, D = 2 and a = −1, 0, 0.25, 0.5, 0.75, 0.9.
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From the equation (4.5), the log-transformation gives

log r̂x = log

{
(x+ 1)px+1

px

}

= log(x+ 1) + log

(
px+1

px

)

= log(x+ α) + log

(
1

1 + β

)
. (4.12)

The first order Taylor expansion of log(x+ α) around α is

log(x+ α) ≈ log(α) +
x

α
.

Therefore,

log r̂x ≈ log

(
α

1 + β

)
+
x

α
(4.13)

which is the linear regression model with γ = log

(
α

1 + β

)
and δ =

1

α
(Roc-

chetti et al., 2011). When considering the situation for unseen species, this

approximation in equation (4.13) has the model similar to equation (4.12).

0 2 4 6 8 10

1
2

3
4

5

x

(x
+

1)
p x

+1
p x

0 2 4 6 8 10

−
0.

5
0.

0
0.

5
1.

0
1.

5

x

lo
g 

((
x+

1)
p x

+1
p x

)

0 2 4 6 8 10

0
2

4
6

8
10

x

lo
g 

(x
+

α)
 −

 lo
g 

(1
/(

1+
β)

)

Figure 4.5: The ratios rx, log
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+
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under the

PT distribution; µ = 1, D = 2, a = 0

Figure 4.5 presents the relation between log-transformation of the ratio of
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successive and x. Count data is generated from the PT distribution with

a = 0 which displays the negative binomial distribution. When using the first

order Taylor expansion for the the negative binomial distribution, it is clear

that the linear approximation works well for the negative binomial model as

shown in Figure 4.5 on the right hand side. Hence, the WLR approach should

work well for this model.

4.4 Weighted Linear Regression Analysis

Multiple linear regression is a technique used to explain the relationship be-

tween the continuous response variable and two or more independent variables.

The least square method is used to estimate the regression parameter. How-

ever, it is not appropriate for fitting the model in equation (4.5) as a result of

condition of assumptions especially the problem about dependence and het-

eroscedasticity (Rocchetti et al., 2011).

Since the elements of the response are correlated and have unequal variance,

the weighted linear regression is more appropriate than ordinary unweighted

regression. For the analysis, the two parameters γ and δ are estimated using

the weighted least squares method that is given by

(
γ̂

δ̂

)
= (XTWX)−1XTWY. (4.14)

where

Y =




log(r1)

log(r2)

...

log(rm−1)



, X =




1 1

1 2

...
...

1 m− 1



.

where log(ri) = log

(
(i+ 1)fi+1

fi

)
and m refers to the number of frequencies
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used for fitting model, e.g. for truncated data, m is the maximum frequency

used to estimate population size. The count data which arise from the PT dis-

tribution might have a heavy right tail and this sometimes leads to problems

with sparse data. We might find zero frequencies that lead to the WLR not

working. The truncation of data is proposed for this issue. Rocchetti et al.

(2011) chose the truncation point to be the smallest m such that fm > 0 and

fm+1 = 0 for the WLR approach.

Rocchetti et al. (2011) considered setting the weight matrix W to be an ap-

proximation to the inverse of the covariance matrix of Y , W ≈ (cov(Y ))−1,

obtained using the delta method and ignoring the terms of the off-diagonal

of cov(Y ). The precision is slightly lost when dropping the off-diagonal term.

the weight matrix W can be approximated by (Rocchetti et al., 2011)

W =




1

f1
+

1

f2
0 0 0

0
1

f2
+

1

f3
0 0

...
...

. . .
...

0 0 0
1

fm
+

1

fm+1




−1

4.5 Simulation study and real data examples

4.5.1 Simulation study

We have investigated the performance of various estimators applied to simu-

lated data from the PT distribution. Simulations were carried out as follows.

• Data are simulated using the PT distribution with parameters µ = 1,

D = 1.1, 1.25, 1.5, 2, a = −1, 0, 0.25, 0.5, 0.75, 0.9, N = 100, 200, 1000

and repeated 10000 times.

• The WLR estimator is used to estimate species richness and compared

with the Chao1, the iChao1, the new1 and the new2 estimators. For
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the WLR estimator, truncated data is used in the analysis. Data are

truncated at the first m frequencies where m is the smallest value such

that fm > 0 and fm+1 = 0. For the Chao1, the iChao1, the new1 and

the new2 estimators, when the number of doubletons and/or bias of the

estimator is zero, the Chao1 estimator is used instead.

• The performance of the different estimators is measured in terms of the

root mean square error (RMSE) and the bias.

Considering the results in Tables 4.1, 4.2 and 4.3, the performance of the WLR

estimator based on the PT distribution with fixed µ = 1 depends on the choice

of the parameters D and a. For small N , the performance with small a has

good approximation. When µ > 1, D > 1 and a = −1, the PT distribution

becomes the Pólya-Aeppli distribution. The results show the WLR estimator

works well with the Pólya-Aeppli distribution for small N . Table 4.1 shows

the result for N = 100. The model with a = 0 gives the best estimates when

D = 1.1 in terms of RMSE and the model with a = −1 gives the smallest

RMSE when D = 1.25, 1.5 and 2. Table 4.2 presents the performance for

N = 200. The results show the model with a = −1 leads to the best estimates

when D = 1.1, 1.25 and 1.5.

Considering the results in Tables 4.1, 4.2, 4.3 and 4.4, the performance of the

WLR estimator based on the PT distribution depends on the value of the

parameters D and a. The value of parameter µ affects the performance of

the WLR estimator significantly. The results show the WLR estimator based

on the PT distribution with µ = 2 performs better than µ = 1 significantly.

Additionally, the performance of the WLR estimator is improved when using

small a and small D.

In table 4.1, when a = −1, the PT distribution becomes the Pólya-Aeppli
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Table 4.1: Performance of N̂WLR based on the PT distribution with N = 100,
µ = 1, D = 1.1, 1.25, 1.5, 2, a = −1, 0, 0.25, 0.5, 0.75, 0.9 and 10000 simulations.

a Bias RMSE se(N̂) ŝe(N̂)
N = 100 D = 1.1 -1 10.88 36.01 34.33 42.40

0 11.68 37.36 35.48 46.51
0.25 11.43 37.36 35.57 46.60
0.50 12.29 37.59 35.53 46.82
0.75 13.23 39.10 36.80 50.79
0.90 13.64 38.71 36.23 45.87

D = 1.5 -1 7.83 34.78 33.89 45.61
0 9.64 37.49 36.23 48.46

0.25 10.06 37.42 36.04 46.55
0.50 11.84 39.10 37.26 47.63
0.75 13.62 41.85 39.57 60.72
0.90 16.29 43.52 40.35 51.04

D = 1.5 -1 -0.89 31.26 31.24 40.53
0 4.03 35.96 35.74 44.94

0.25 5.64 35.32 34.87 45.51
0.50 9.51 38.39 37.19 48.64
0.75 15.69 44.18 41.30 57.18
0.90 17.66 44.77 41.14 50.48

D = 2 -1 -18.22 29.94 23.76 30.24
0 -7.99 31.27 30.23 39.51

0.25 -2.94 32.79 32.66 43.56
0.50 4.71 38.79 38.51 52.40
0.75 15.95 49.42 46.77 57.62
0.90 20.76 51.49 47.12 61.15

distribution. The results show the WLR estimator works well with the Pólya-

Aeppli distribution with N = 100 and µ = 1. In particular, the performance

of the estimator improves when D increases. When looking at N = 100 and

µ = 2, the performance of the WLR estimator with the same D provides simi-

lar results for various a as shown in Table 4.2. When comparing between µ = 1

and µ = 2, RMSE of the WLR estimator for µ = 2 reduces around three times.

Table 4.3, when N = 1000, the WLR estimator gives the positive bias when

D = 1.1 and it gives the negative bias when D > 1.1 in most situations. When

the parameters change, the best model is different. When D = 1.1, the model
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Table 4.2: Performance of N̂WLR based on the PT distribution with N = 100,
µ = 2, D = 1.1, 1.25, 1.5, 2, a = −1, 0, 0.25, 0.5, 0.75, 0.9 and 10000 simulations.

a Bias RMSE se(N̂) ŝe(N̂)
N = 100 D = 1.1 -1 2.08 9.22 8.98 9.43

0 2.19 9.19 8.93 9.43
0.25 2.22 9.03 8.76 9.45
0.50 2.16 9.27 9.02 9.44
0.75 2.28 9.17 8.89 9.39
0.90 2.47 9.24 8.90 9.46

D = 1.5 -1 1.50 9.71 9.60 10.17
0 1.77 9.68 9.51 10.02

0.25 1.89 9.56 9.37 9.93
0.50 2.14 9.91 9.67 10.07
0.75 2.75 9.95 9.57 10.16
0.90 3.01 9.99 9.52 10.09

D = 1.5 -1 -0.56 10.10 10.09 10.66
0 0.58 10.24 10.22 10.85

0.25 1.24 10.53 10.45 11.05
0.50 2.09 10.72 10.52 11.25
0.75 3.13 10.99 10.53 11.13
0.90 3.63 10.83 10.20 10.86

D = 2 -1 -6.75 12.44 10.45 10.77
0 -2.87 11.75 11.40 11.89

0.25 -1.18 11.85 11.79 12.27
0.50 1.25 12.12 12.05 12.99
0.75 3.92 12.59 11.97 12.89
0.90 4.25 11.98 11.21 11.72

with small a gives a better performance. When D = 2, the WLR estimator

can estimate well when a increases. Considering the standard error of N̂WLR

and the estimated standard error of N̂ in equation (4.10), the results for large

N give a good approximation.

Table 4.4 shows the performance of the WLR estimator for N = 1000 and

µ = 2. The bias and RMSE are improved when comparing to µ = 1 around

four times. The results show the best estimator for each situation is similar to

µ = 1.
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Table 4.3: Performance of N̂WLR based on the PT distribution with N = 1000,
µ = 1, D = 1.1, 1.25, 1.5, 2, a = −1, 0, 0.25, 0.5, 0.75, 0.9 and 10000 simulations.

a bias RMSE se(N̂) ŝe(N̂)
N = 1000 D = 1.1 -1 8.94 75.82 75.29 76.50

0 12.44 76.82 75.80 77.96
0.25 13.76 77.99 76.76 77.51
0.50 16.06 78.44 76.77 78.01
0.75 24.07 81.32 77.68 79.27
0.90 36.37 87.46 79.54 81.67

D = 1.25 -1 -25.49 74.34 69.83 72.03
0 -11.59 73.51 72.59 73.56

0.25 -3.80 74.17 74.07 75.30
0.50 10.24 76.30 75.61 75.98
0.75 35.75 86.69 78.97 78.91
0.90 63.11 102.31 80.53 83.26

D = 1.5 -1 -100.16 117.56 61.55 63.33
0 -63.19 91.10 65.62 68.11

0.25 -44.00 80.75 67.70 70.21
0.50 -12.39 72.15 71.08 73.62
0.75 42.42 88.59 77.77 78.59
0.90 86.17 120.63 84.41 85.23

D = 2 -1 -254.02 258.42 47.44 47.12
0 -175.15 183.61 55.09 58.17

0.25 -133.97 146.78 59.98 63.05
0.50 -71.08 97.11 66.16 70.01
0.75 32.39 84.32 77.85 78.45
0.90 102.93 133.83 85.53 87.92

Tables 4.5 - 4.8 present the performance of the WLR estimator compared with

other estimators for N = 100 and 1000. The results show the approximation

of the WLR estimator is a poor fit based on the PT distribution with µ = 1

especially for small N .

When N = 100 and µ = 1, the Chao1 estimator outperforms other estimators

with the smallest RMSE when D = 1.1 and D = 1.25 for all values of a. The

new2 estimator works well with the PT distribution with D = 1.5, a < 0.75

and D = 2, a < 0.9 (Table 4.5). When N = 100 and µ = 2, the Chao estima-

tor is the best performance in most situations. However, it is found that the
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Table 4.4: Performance of N̂WLR based on the PT distribution with N = 1000,
µ = 2, D = 1.1, 1.25, 1.5, 2, a = −1, 0, 0.25, 0.5, 0.75, 0.9 and 10000 simulations.

a bias RMSE se(N̂) ŝe(N̂)
N = 1000 D = 1.1 -1 1.56 24.04 23.99 23.17

0 2.36 24.17 24.05 23.21
0.25 2.49 24.11 23.98 23.27
0.50 3.29 24.39 24.17 23.32
0.75 4.97 24.57 24.07 23.35
0.90 6.57 24.93 24.05 23.50

D = 1.25 -1 -4.93 25.94 25.47 24.52
0 -1.99 25.72 25.64 24.65

0.25 -0.23 25.46 25.46 24.79
0.50 2.36 25.68 25.57 24.75
0.75 7.95 27.05 25.86 24.94
0.90 13.93 29.06 25.50 25.00

D = 1.5 -1 -26.49 37.75 26.89 25.79
0 -15.95 31.58 27.25 26.19

0.25 -9.73 29.46 27.81 26.50
0.50 -1.63 27.47 27.42 26.66
0.75 12.08 30.47 27.98 26.91
0.90 21.33 34.60 27.24 26.84

D = 2 -1 -91.03 95.05 27.35 26.02
0 -56.20 62.95 28.37 28.07

0.25 -39.48 49.55 29.94 28.75
0.50 -16.73 34.51 30.19 29.25
0.75 13.91 33.25 30.20 29.16
0.90 28.77 41.05 29.28 28.66

performance of the WLR estimator becomes the second best and outperforms

the iChao1, the new1 and the new2 in terms of RMSE especially when D < 2

(Table 4.6).
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Table 4.5: RMSE and bias of five estimators based on the PT distribution
with N = 100 µ = 1, D = 1.1, 1.25, 1.5, 2, a = −1, 0, 0.25, 0.5, 0.75, 0.9 and
10000 simulations.

a Chao1 iChao1 new1 new2 WLR
N = 100
D = 1.1 RMSE -1 17.61 21.21 22.54 25.29 36.01

0 17.92 21.63 23.07 25.88 37.36
0.25 17.90 21.57 22.95 25.67 37.36
0.50 17.84 21.69 23.16 26.13 37.59
0.75 18.43 22.54 24.04 26.94 39.10
0.90 18.37 22.54 24.28 27.60 38.71

bias -1 -0.97 3.58 7.94 17.61 10.88
0 -0.47 4.18 8.54 18.15 11.68

0.25 -0.72 3.91 8.23 17.85 11.43
0.50 -0.13 4.49 8.94 18.51 12.29
0.75 0.44 5.20 9.61 19.16 13.23
0.90 1.10 5.91 10.41 20.12 13.64

D = 1.25 RMSE -1 18.40 20.53 20.78 20.37 34.78
0 18.65 21.16 21.58 21.46 37.49

0.25 18.27 20.90 21.34 21.44 37.42
0.50 18.71 21.70 22.36 22.65 39.10
0.75 18.90 22.40 23.24 24.07 41.85
0.90 19.23 23.51 24.79 26.54 43.52

bias -1 -5.99 -1.29 2.24 10.13 7.83
0 -4.99 -0.12 3.44 11.22 9.64

0.25 -4.57 0.36 3.91 11.73 10.06
0.50 -3.53 1.50 5.15 12.86 11.84
0.75 -2.06 3.06 6.90 14.69 13.62
0.90 0.32 5.57 9.68 17.94 16.29

D = 1.5 RMSE -1 21.97 21.87 20.87 16.77 31.26
0 20.84 21.39 20.69 17.48 35.96

0.25 20.47 21.27 20.74 17.86 35.32
0.50 20.26 22.04 21.74 19.51 38.39
0.75 20.18 23.40 23.67 22.56 44.18
0.90 19.44 23.80 24.66 25.50 44.77

bias -1 -14.25 -9.78 -7.18 -1.09 -0.89
0 -11.58 -6.72 -4.01 1.74 4.03

0.25 -10.49 -5.58 -2.73 3.07 5.64
0.50 -8.00 -2.76 0.19 5.78 9.51
0.75 -3.79 1.88 5.10 10.91 15.69
0.90 -0.36 5.36 9.11 16.13 17.66

D = 2 RMSE -1 31.67 29.73 28.44 23.61 29.94
0 27.63 26.10 24.87 20.56 31.27

0.25 25.79 24.82 23.62 19.44 32.79
0.50 24.14 24.25 23.32 19.61 38.79
0.75 21.75 24.04 23.87 21.31 49.42
0.90 21.26 25.88 26.45 26.02 51.49

bias -1 -28.08 -24.49 -22.86 -18.61 -18.22
0 -21.71 -17.28 -15.42 -11.77 -7.99

0.25 -18.60 -13.80 -11.82 -8.33 -2.94
0.50 -14.01 -8.70 -6.49 -3.20 4.71
0.75 -6.67 -0.74 2.04 5.80 15.95
0.90 -0.25 5.99 9.43 14.95 20.76
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Table 4.6: RMSE and bias of five estimators based on the PT distribution
with N = 100 µ = 2, D = 1.1, 1.25, 1.5, 2, a = −1, 0, 0.25, 0.5, 0.75, 0.9 and
10000 simulations.

a Chao1 iChao1 new1 new2 WLR
N = 100
D = 1.1 RMSE -1 7.85 9.68 10.32 17.41 9.22

0 7.80 9.67 10.30 17.45 9.19
0.25 7.79 9.66 10.31 17.47 9.03
0.50 7.91 9.77 10.39 17.49 9.27
0.75 7.76 9.58 10.24 17.62 9.17
0.90 7.80 9.63 10.35 17.93 9.24

bias -1 0.35 2.27 3.31 15.58 2.08
0 0.43 2.33 3.38 15.68 2.19

0.25 0.49 2.41 3.47 15.72 2.22
0.50 0.38 2.28 3.32 15.68 2.16
0.75 0.51 2.37 3.44 15.86 2.28
0.90 0.68 2.51 3.61 16.20 2.47

D = 1.25 RMSE -1 8.55 10.35 10.75 15.63 9.71
0 8.37 10.14 10.62 15.84 9.68

0.25 8.16 9.94 10.41 15.84 9.56
0.50 8.42 10.28 10.80 16.21 9.91
0.75 8.27 10.27 10.82 16.83 9.95
0.90 8.25 10.28 10.92 17.57 9.99

bias -1 -0.91 1.41 2.38 13.26 1.50
0 -0.73 1.53 2.57 13.57 1.77

0.25 -0.64 1.63 2.67 13.69 1.89
0.50 -0.41 1.84 2.91 13.98 2.14
0.75 0.12 2.38 3.47 14.75 2.75
0.90 0.54 2.65 3.80 15.62 3.01

D = 1.5 RMSE -1 9.63 10.77 10.90 12.58 10.10
0 9.41 10.83 11.03 13.43 10.24

0.25 9.39 10.99 11.25 14.03 10.53
0.50 9.28 11.06 11.43 14.71 10.72
0.75 9.04 11.05 11.50 15.95 10.99
0.90 8.68 10.79 11.46 17.41 10.83

bias -1 -3.57 -0.86 0.04 9.10 -0.56
0 -2.70 0.06 1.02 10.18 0.58

0.25 -2.17 0.63 1.63 10.85 1.24
0.50 -1.52 1.25 2.30 11.75 2.09
0.75 -0.58 2.04 3.21 13.31 3.13
0.90 0.44 2.73 4.04 15.22 3.63

D = 2 RMSE -1 13.84 13.37 13.09 9.50 12.44
0 12.29 12.64 12.51 10.78 11.75

0.25 11.66 12.43 12.38 11.52 11.85
0.50 11.11 12.51 12.64 13.05 12.12
0.75 10.22 12.36 12.74 15.38 12.59
0.90 9.16 11.34 12.03 17.21 11.98

bias -1 -9.82 -6.88 -6.11 0.51 -6.75
0 -6.74 -3.49 -2.59 4.13 -2.87

0.25 -5.43 -2.09 -1.14 5.74 -1.18
0.50 -3.50 -0.11 0.98 8.20 1.25
0.75 -1.07 2.11 3.42 11.84 3.92
0.90 0.23 2.73 4.24 14.73 4.25
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Table 4.7: RMSE and bias of five estimators based on the PT distribution
with N = 1000, µ = 1, D = 1.1, 1.25, 1.5, 2, a = −1, 0, 0.25, 0.5, 0.75, 0.9 and
10000 simulations.

a Chao1 iChao1 new1 new2 WLR
N = 1000
D = 1.1 RMSE -1 60.38 72.09 80.69 159.10 75.82

0 59.61 72.82 82.68 161.21 76.82
0.25 59.40 73.52 83.77 162.36 77.99
0.50 58.78 73.66 84.88 163.99 78.44
0.75 56.71 75.96 89.34 169.43 81.32
0.90 54.43 79.17 97.43 179.69 87.46

bias -1 -34.15 7.60 53.25 150.36 8.94
0 -32.17 10.44 55.68 152.54 12.44

0.25 -31.22 11.76 56.79 153.67 13.76
0.50 -29.87 12.81 58.41 155.31 16.06
0.75 -24.97 19.25 64.31 160.95 24.07
0.90 -16.65 27.63 74.19 171.41 36.37

D = 1.25 RMSE -1 100.74 75.61 58.25 86.81 74.34
0 93.78 72.73 59.59 95.75 73.51

0.25 90.07 71.76 60.57 100.52 74.17
0.50 83.24 71.23 64.13 109.95 76.30
0.75 71.67 74.42 73.74 128.80 86.69
0.90 58.42 80.95 89.86 156.61 102.31

bias -1 -88.76 -34.70 -8.61 71.64 -25.49
0 -79.79 -22.88 2.13 81.38 -11.59

0.25 -75.14 -16.99 7.77 86.70 -3.80
0.50 -65.95 -5.39 18.71 96.94 10.24
0.75 -49.25 12.85 38.55 117.25 35.75
0.90 -27.07 32.08 64.46 147.33 63.11

D = 1.5 RMSE -1 175.59 126.20 113.90 59.78 117.56
0 152.37 101.77 90.39 49.11 91.10

0.25 140.55 90.78 80.14 48.79 80.75
0.50 121.94 76.90 67.20 56.82 72.15
0.75 91.00 70.23 64.80 89.82 88.59
0.90 64.84 84.77 88.68 139.91 120.63

bias -1 -169.73 -111.41 -100.38 -38.65 -100.16
0 -144.93 -80.96 -70.78 -11.96 -63.19

0.25 -131.95 -65.10 -55.45 2.46 -44.00
0.50 -111.21 -40.63 -30.90 26.12 -12.39
0.75 -73.85 0.89 12.98 72.14 42.42
0.90 -34.01 35.15 58.88 128.17 86.17

D = 2 RMSE -1 308.46 263.17 258.85 215.14 258.42
0 251.28 196.09 192.75 154.98 183.61

0.25 222.61 163.84 160.64 124.97 146.78
0.50 180.45 118.99 115.33 82.57 97.11
0.75 116.32 73.22 67.93 59.68 84.32
0.90 69.97 85.04 85.85 122.05 133.83

Bias -1 -305.92 -258.55 -254.59 -211.47 -254.02
0 -247.35 -188.44 -185.55 -148.59 -175.15

0.25 -217.42 -153.20 -150.52 -115.63 -133.97
0.50 -173.19 -101.62 -98.84 -65.63 -71.08
0.75 -101.87 -20.77 -16.00 21.23 32.39
0.90 -41.22 35.52 53.30 107.90 102.93
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Table 4.8: RMSE and bias of five estimators based on the PT distribution
with N = 1000, µ = 2, D = 1.1, 1.25, 1.5, 2, a = −1, 0, 0.25, 0.5, 0.75, 0.9 and
10000 simulations.

a Chao1 iChao1 new1 new2 WLR
N = 1000
D = 1.1 RMSE -1 23.90 31.30 35.99 148.10 24.04

0 23.89 31.58 36.68 149.03 24.17
0.25 23.85 31.53 36.73 149.11 24.11
0.50 23.72 31.64 37.16 149.99 24.39
0.75 23.32 31.73 37.87 151.79 24.57
0.90 23.24 31.61 38.48 154.08 24.93

bias -1 -6.78 5.87 20.71 146.32 1.56
0 -6.06 6.57 21.52 147.25 2.36

0.25 -5.96 6.61 21.64 147.34 2.49
0.50 -5.31 7.27 22.34 148.21 3.29
0.75 -4.02 8.39 23.71 150.06 4.97
0.90 -2.93 8.47 24.50 152.37 6.57

D = 1.25 RMSE -1 31.41 33.14 33.02 124.89 25.94
0 30.12 33.40 34.14 127.88 25.72

0.25 29.24 33.69 34.79 129.73 25.46
0.50 28.32 33.67 35.64 132.51 25.68
0.75 26.43 34.61 38.11 139.04 27.05
0.90 24.52 34.47 40.41 148.53 29.06

bias -1 -19.82 1.28 11.75 122.54 -4.93
0 -17.52 3.46 14.29 125.55 -1.99

0.25 -16.10 4.74 15.90 127.47 -0.23
0.50 -14.32 5.98 17.63 130.28 2.36
0.75 -9.98 8.95 22.01 136.92 7.95
0.90 -4.78 10.68 26.30 146.61 13.93

D = 1.5 RMSE -1 53.89 38.48 34.59 84.27 37.75
0 46.80 35.80 32.87 94.30 31.58

0.25 42.96 35.37 33.38 100.52 29.46
0.50 38.14 35.28 34.49 108.72 27.47
0.75 31.39 37.52 39.19 125.12 30.47
0.90 26.34 37.18 42.99 143.63 34.60

bias -1 -47.10 -17.46 -11.81 80.23 -26.49
0 -38.70 -8.45 -2.30 90.69 -15.95

0.25 -33.64 -3.27 3.31 97.01 -9.73
0.50 -27.48 2.46 9.89 105.60 -1.63
0.75 -16.70 9.93 20.51 122.39 12.08
0.90 -6.57 12.56 28.31 141.43 21.33

D = 2 RMSE -1 115.00 84.38 82.25 28.39 95.05
0 86.81 56.17 53.86 38.73 62.95

0.25 74.44 47.27 44.63 52.59 49.55
0.50 58.38 39.44 36.94 73.37 34.51
0.75 38.93 40.06 40.25 107.48 33.25
0.90 28.53 40.40 45.94 138.64 41.05

Bias -1 -111.56 -76.95 -74.96 -7.70 -91.03
0 -81.94 -43.41 -41.10 26.89 -56.20

0.25 -68.14 -28.57 -25.69 43.81 -39.48
0.50 -50.18 -10.23 -6.12 67.38 -16.73
0.75 -25.87 9.77 18.08 103.71 13.91
0.90 -8.72 14.55 30.73 136.07 28.77
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For large N , it is found the best estimator for different situations. Table 4.7

presents the performance of various estimator for N = 1000 and µ = 1. The

Chao1 estimator outperforms other estimators when D = 1.1. The new1 esti-

mator performs well when D = 1.25 while the new2 estimator works well when

D > 1.25. When looking at the WLR estimator, it performs as the second

best in some situations. For example, when D = 1.5 and a = −1, the results

show the new2 estimator is the best compared to the other estimators with

RMSE=59.78. The WLR estimator has RMSEWLR = 117.56 which is better

than the Chao1 the iChao1 and the new1 estimators with RMSE as 175.59,

126.20 and 113.90 respectively (Table 4.7).

Table 4.8 shows the results for N = 1000 and µ = 2. It seems the WLR

estimator approximates better when compared to µ = 1. When D = 1.1, the

results indicate that the Chao1 estimator is a good approximation while the

WLR estimator performs well as the second best. However, the WLR estimator

performs the best in many situations for D > 1.1. For the new2 estimator, it

approximates not good especially for D < 2. For example with D = 1.25 and

a = 0, the WLR estimator is the best performance with RMSE=25.94 while

the new2 estimator has a bigger RMSE as five times with 127.88.

4.5.2 Real data example

Rocchetti et al. (2011) use the chi-squared goodness of fit statistic to assess

the overall fit of the regression model. The estimated frequencies are obtained

recursively by

f̂x+1 =
f̂x exp(ŷx)

(x+ 1)
,

where x = 1, 2, . . . ,m − 1 and m is the truncation point. The chi-square
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statistic for goodness of fit is defined by

χ2 =
m∑

x=1

(fx − f̂x)
2

f̂x

with degrees of freedom m− 2 as a result of estimating the parameters α and

γ in the regression model (Rocchetti et al., 2011).

Figures 4.6 and 4.7 show the log-scale of the ratio on x for real data sets with

the weighted linear regression line. The trend in some data sets are clearly

not linear such as pollutants, heroin and beetle site1 data. The inclusion of

quadratic terms is alternative way to model these data, but we do not consider

this approach in this thesis.

In Table 4.9, the WLR estimator is used to estimate the number of population

size by applying to the real data sets. The results of goodness of fit indi-

cate that the WLR estimator can be used to fit data for Christmas bird data,

tropical trees1 data and tropical tree3 data with N̂WLR = 135(K = 126, p =

0.1026), N̂WLR = 195(K = 152, p = 0.5495) and N̂WLR = 137(K = 76, p =

0.4333) respectively.

Considering the Chao1 estimator as the lower bound, the WLR estimator un-

derestimates the true number of species and the goodness of fit results indicate

that there are some real data sets for which the model fits poorly including

Malaysian butterfly data, pollutants data, heroin users data and tropical tree2

data. Amongst other estimators, the results of the iChao1 and the new1 es-

timator are similar for most data sets. For example, for Malaysian butterfly

data (K = 620), the WLR can estimate the species richness with N̂WLR = 692

while other estimators give N̂Chao1 = 714, N̂iChao1 = 737, N̂new1 = 737 and

N̂new2 = 748.
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In particular, the WLR estimator overestimates when compared with the

Chao1 estimator. Particularly, for the beetle site2 data, the WLR estima-

tor gives N̂WLR = 617 greater than the Chao1 estimator N̂Chao1 = 463. The

estimated standard error of the WLR estimator is very large for this data set

with 280.32, which is twice as large as that for other estimators.

Table 4.9: Comparison of six estimators of total number for real data sets and
p-value from χ2 goodness of fit test for the WLR estimator.

Data N̂Chao1 N̂iChao1 N̂new1 N̂new2 N̂WLR p-valuewlr

Malaysian Butterfly 714 737 737 748 692 0.0000

Pollutants 1789 1916 1910 1917 1738 0.0000

Christmas Bird 134 136 136 138 135 0.1026

Heroin users 10782 11151 11151 11579 10648 0.0000

Beetle Site1 284 297 305 293 295 0.0030

Beetle Site2 463 489 501 474 617 0.0027

Tropical tree1 187 196 196 202 195 0.5495

Tropical tree2 140 147 148 147 134 0.0043

Tropical tree3 108 116 115 114 137 0.4333

Data ŝeChao1 ŝeiChao1 ŝenew1 ŝenew2 ŝeWLR

Malaysian Butterlfy 22.66 28.81 26.91 21.90 15.17

Pollutants 62.96 74.13 72.50 60.79 62.12

Christmas Bird 6.04 7.03 7.38 5.93 4.95

Heroin users 82.90 100.60 102.14 82.77 119.15

Beetle Site1 50.47 52.52 53.57 49.23 53.23

Beetle Site2 136.27 139.78 141.58 134.33 280.32

Tropical tree1 13.58 16.21 16.35 13.29 10.83

Tropical tree2 16.84 24.57 19.05 16.17 9.77

Tropical tree3 16.02 20.44 18.10 15.39 24.41
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Figure 4.6: Scatter plot with the weighted linear regression line of log(rx) on
x for Malaysian butterfly, pollutants, Christmas bird, heroin users and beetle
data sets.
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Figure 4.7: Scatter plot with the weighted linear regression line of log(rx) on
x for tropical tree data sets.
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4.6 Conclusion

Estimating the number of species can provide a measure of biodiversity in an

ecosystem. The variation in environment affects the species abundance. That

leads us to consider the PT distribution, a model which has the property of

a flexible model for count data that exhibits overdispersion, zero-inflation and

long right-tail. The difficulty for the number of species estimation is how to
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estimate the frequency of unseen species. The WLR analysis can be used for

this issue and can address problems with MLE.

Because the probabilities of the PT distribution are only available recursively,

the relationship between the log ratio and the independent variable is com-

plex. In this study, we only considered the linear model. Using a nonlinear

regression model is an alternative approach which could improve estimation of

the number of species Böhning (2015).

In some situations, it is difficult to fit the model using the WLR approach,

especially for small sample size. Sometimes there are many small frequencies

that lead to the WLR not working well. In particular, the analysis does not

work when the frequency of fk is zero for k > 0. An alternative way to handle

this issue is smoothing the observed frequencies for improving the model. In

Chapter 5, We have investigated the use of nonparametric kernel estimation

to smooth the frequencies.



Chapter 5

Data Smoothing

5.1 Introduction

The idea of smoothing frequencies in relation to estimating the number of

species dates back to Good (1953), who proposed an estimator based on

smoothed frequencies for the probability that the next species detected will

be a previously unseen species. Simonoff (1995) mentions that for sparse data,

data smoothing can lead to an estimated probability function that has better

performance in analysis than simply using sample proportions. Many ap-

proaches for smoothing data have been proposed for discrete data including

the empirical estimator, shrinkage estimators, Bayes methods, penalized like-

lihood and kernel estimator.

In this chapter, smoothing the observed frequencies is considered for improving

estimation of the number of species. We have focused on the use of nonpara-

metric kernel estimation to smooth the frequencies. The kernel smoothing

method is considered in order to estimate the probability function. Although

it is used mostly for continuous data, the discrete kernel estimator has been

explored in many studies such as Aitchison and Aitken (1976), Aitken (1983),

Wang and Van Ryzin (1981), Racine and Li (2004), Li and Racine (2010) and
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Kokonendji and Kiessé (2011).

Discrete kernel estimators are reviewed in Section 5.2. Several weight func-

tions for discrete kernel estimation including the uniform, geometric and Li

and Racine (2010) kernel are considered along with the estimators from the

R package np. The performance of the discrete kernel estimators measured

using mean integrated squared error (MISE) is discussed in Section 5.3. The

performance of the kernel estimators depend on the bandwidth parameter.

Bandwidth selection is presented in Section 5.4. In Section 5.5, the np package

in R for density estimation has been explored . This package is proposed for

nonparametric and semiparametic kernel estimation. In our simulation study

under the Poisson-Tweeidie distribution, the performance of the weighted lin-

ear regression (WLR) estimator with smoothing is compared with nonsmooth-

ing. We compare the WLR with the Chao1 estimator which is used as a lower

bound for estimating the number of species. Their performance is measured

using mean squared error, bias and a risk function, which is defined later in

this chapter. All the results are shown in Section 5.6. The performance of

kernel estimators is summarised in Section 5.7

5.2 Discrete kernel estimator

The probability mass function of a discrete random variable which is unknown

can be estimated by

p̃x =
1

Mh

M∑

i=1

K

(
x−Xi

h

)
, i = 1, 2, . . . . ,M, (5.1)

where X1, X2, . . . , XM denote a set of independent and identically distributed

discrete random variables, K

(
x−Xi

h

)
is a kernel function and h is a smooth-

ing parameter, also called the bandwidth, h > 0 (Kokonendji and Kiessé, 2011).
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The kernel estimator in equation (5.1) can be written in terms of the associated

discrete kernel as

p̃x =
1

M

M∑

i=1

w(h, x,Xi), (5.2)

where w(h, x,Xi) is the weight function or associated discrete kernel function

for count data, w(h, x,Xi) =
1

h
K

(
x−Xi

h

)
> 0 and

∑M
i=1w(h, x,Xi) = 1

(Kokonendji and Kiessé, 2011).

5.2.1 Weight functions

Some weight functions for discrete kernel estimation are presented below.

• Empirical or naive estimator is the simplest weight function for dis-

crete kernel smoothing, for any h > 0 (Kokonendji and Kiessé, 2011), it

is given by

w(h, x,Xi) =





1 for x = Xi,

0 for x 6= Xi.

(5.3)

• Aitchison and Aitken (1976) introduced the following weight function

w(h, x,Xi) =





1− h for x = Xi,

h

c− 1
for x 6= Xi,

(5.4)

where c is the number of outcomes of x, for x ∈ {0, 1, . . . , c− 1}.

• Wang and Van Ryzin (1981) proposed several discrete weight func-

tions including the uniform weight function which is defined by
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wu(h, x,Xi) =





1− h for x = Xi,

h
2k

for |x−Xi| = 1, 2, . . . , k,

0 for |x−Xi| > k,

(5.5)

where 0 ≤ h ≤ 1, k is a fixed integer (k ≥ 1) and the geometric weight

function is expressed as

wg(h, x,Xi) =





1− h for x = Xi,

1
2
(1− h)h|x−Xi| for x 6= Xi,

(5.6)

where 0 ≤ h ≤ 1.

• Li and Racine (2010) presented another weight function which is given

by

w(h, x,Xi) =





1 for x 6= Xi,

h|x−Xi| for x 6= Xi,

(5.7)

where again, 0 ≤ h ≤ 1.

5.2.2 Other discrete kernels

Kokonendji and Zocchi (2010) recommend the discrete triangular kernel based

on the symmetric discrete triangular distribution with mode x, arm a can be

defined by

wt1(h, x,Xi) =
(a+ 1)h

D(a, h)

[
1− |Xi − x|h

(a+ 1)h

]
, Xi = x, x± 1, . . . , x± a, (5.8)

where D(a, h) = (2a+ 1)(a+ 1)h − 2
∑a

k=1 k
h and h > 0. It becomes the em-

pirical estimators, equation (5.3), when h→ 0 and the discrete uniform distri-

bution when h→ ∞.
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Kokonendji and Kiessé (2011) presented other discrete kernels using Poisson,

binomial and negative binomial distributions. Categorical data with small

sample size be used to estimate can estimate the probability mass function

using these kernels. Under the Poisson distribution with parameter λ = x+h,

the Poisson weight function can be written as

wp(h, x,Xi) =
(x+ h)Xie−(x+h)

Xi!
, h > 0. (5.9)

The binomial kernel is a discrete kernel based on binomial distribution with

parameters

(
x+ 1,

x+ h

x+ 1

)
, which is given by (Kokonendji and Kiessé, 2011)

wb(h, x,Xi) =
(x+ 1)!

Xi!(x+ 1−Xi)!

(
x+ h

x+ 1

)Xi
(
1− h

x+ 1

)x+1−Xi

, 0 < h 6 1.

(5.10)

For the negative binomial kernel, it follows the negative binomial distribution

with parameters

(
x+ 1,

x+ 1

2x+ 1 + h

)
(Kokonendji and Kiessé, 2011). The

weight function is expressed by

wnb(h, x,Xi) =
(x+Xi)!

x!Xi!

(
x+ h

2x+ 1 + h

)Xi
(

x+ 1

2x+ 1 + h

)x+1

, h > 0.

(5.11)

Figure 5.1 shows the sample frequencies and the smoothed frequencies using

the Li and Racine (2010) kernel function, for data were simulated from a PT

distribution with N = 100, µ = 2, D = 1.25, a = 0. When applying the kernel

estimation to smooth the frequencies, the kernel estimator can improve the

zero frequencies or small frequencies. Most smoothed frequencies are closer to

the expected value than the sample frequencies. For example, when X = 6,

there is sample frequency of zero. After using kernel estimation for smoothing

data, it can lead to improved estimated frequencies around one.

For sparse data, the number of species seen k times might be zero. Smoothing
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Figure 5.1: Plot of the unsmoothed and smoothed frequencies comparing to
the expected frequencies based on data simulated from the PT distribution
with N = 100, µ = 2, D = 1.25, a = 0. The smoothed frequencies were
estimated using the kernel estimator by Li and Racine (2010) .

data is an alternative way to handle this problem. When smoothing data, we

can sometimes increase the number of frequencies used in analysis, which may

improve the performance of the WLR method.

5.3 The performance measurement of the es-

timator

The difference between the true probability function and kernel estimator is

used to measure the performance of the smoothing method. Mean integrated

squared error (MISE) is a widely used criterion. This criterion assesses the
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error of kernel estimation in terms of expected total mean squared error (MSE)

which can be written as

MISE(p̃x) = E
[∑

x [p̃x − px]
2]

=
∑

x MSE(p̃x)

=
∑

x var[p̃x] +
∑

x bias
2[p̃x].

(5.12)

5.4 Bandwidth Selection

The choice of the smoothing parameter is a crucial factor that affects the

performance of a kernel estimator. A smoothing parameter that is too small

(h → 0) can give an undersmoothed estimator while a smoothing parameter

that is too large (h → ∞) can lead to oversmoothing. Plug-in methods are

a common approach for bandwidth selection. The optimal bandwidth can be

estimated by minimizing the mean integrated squared error (MISE) in equation

(5.12). Thus, we have that

hMISE = arg minh>0MISE(p̃x) (5.13)

is the optimal bandwidth.

Wang and Van Ryzin (1981) used this choice to derive a formula for the optimal

bandwidth for the uniform kernel, which is given by

hu = α1

(
1 +

1

2n
+ (K − 1)α10

)−1

, n = 1, 2, . . . (5.14)

where α1 = 1−∑x p
2
x +

1
2
A1/n, α10 =

∑
x p

2
x − A1/n+ 1

4
A0/n

2,

A0 =
∑

x

(∑n
|x−Xi|=1 pXi

)2
, A1 =

∑
x

∑n
|x−Xj |=1 pxpXi

and K is the number of

seen species.
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For the geometric kernel, the corresponding formula is given by

hg = β1

(
3

2
+B1 − B2 + (K − 1)β10

)−1

(5.15)

where β1 = 1−∑x p
2
x+

1
2
B1, β10 =

∑
x p

2
x−β1+1

4
B0, B0 =

∑
x (px−1 + px+1)

2,

B1 =
∑

x px(px−1 + px+1), B2 =
∑

x px(px−2 + px+2) and K is the number of

seen species.

However, these expressions depend on the true probability function, which

is unknown. Therefore, the empirical probabilities or relative frequencies are

used to estimate the optimal bandwidth.

Another bandwidth selection method which is widely used for kernel estimation

is least squares cross validation (LSCV). The accuracy between p̃x and px is

measured using the integrated squared error (ISE), which is given by

ISE(p̃x) =
∑

x [p̃x − px]
2

=
∑

x(p̃x)
2 − 2

∑
x p̃xpx +

∑
x p

2
x

(5.16)

where
∑

x p̃xpx is the expected value of p̃x. The last term is independent

of the bandwidth parameter so only the first two terms are considered for

estimating the optimal bandwidth. Rudemo (1982), Bowman (1984) and Stone

(1984) developed the LSCV approach by minimizing the first two terms of ISE.

This criterion can be used to find the optimal bandwidth for a discrete kernel

(Kokonendji and Kiessé, 2011). Let p̃−i denote the estimator of pi when cell

i is omitted. The second term,
∑

x p̃xpx, can be replaced by
1

M

∑M
i=1 p̃−i(Xi),

where p̃−i(Xi) =
1

M−1

∑M
i=1

∑
i 6=j w(h,Xi, Xj). Then, we have

hlscv = arg minh>0LSCV(h) (5.17)
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where

LSCV(h) =
M∑
x=1

(p̃x)
2 − 2

M

∑M
i=1 p̃−i(Xi)

=
M∑
x=1

{
1

M

M∑
i=1

w(h, x,Xi)

}2

− 2

M(M − 1)

M∑
i=1

∑
i 6=j

w(h,Xi, Xj).

5.5 The np package for density estimation

Hayfield and Racine (2008) created the np package in R to estimate the den-

sity which is unknown using kernel estimation, including nonparametric and

semiparametric estimators. The package can estimate both univariate and

multivariate distributions. We have investigated this package for estimating

the probability mass function for categorical data. Nonparametric density es-

timation with optimal bandwidth selection is available in this package.

The np package in R can calculate nonparametric kernel density estimates with

the function npudens(). The discrete kernel functions such as the geometric

and Li and Racine (2010) kernel are available in the np package. Automatic

bandwidth selection procedures, such as LSCV are also available. For large

sample sizes, the procedure requires quite a long computation time.

5.6 Simulation study

In this Section, we explored the performance of the kernel estimator for smooth-

ing data. Data were simulated from the PT distribution and analysed using

applied with the WLR estimator. The result for the WLR estimator with non-

smoothing and smoothing are compared to the Chao1 estimator. This study

was conducted as follows:

• The count data were generated under the PT distribution with the pa-

rameters µ = 1, 2, D = 2, 1.5, 1.25, 1.1 and a = −1, 0, 0.25, 0.5, 0.75, 0.9
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and N = 100, 1000.

• 1000 simulations were run for each set of parameters; 2 × 4 × 6 × 2

combinations.

• The frequencies were smoothed using the uniform kernel, the geometric

kernel and Li and Racine (2010) kernel functions. The bandwidth se-

lection of the uniform kernel function is chosen by equation (5.14). For

the geometric and Li and Racine (2010) kernel function, the probability

mass function is estimated using the np package with the LSCV method

for bandwidth selection.

• After smoothing the data, the frequency is greater than zero. Then,

all data can be used potentially in the WLR method. However, if the

smoothed frequencies are less than 0.5, the count data is cut at the first

smoothedm frequencies at fm > 0 and fm+1 < 0.5 for use in the analysis.

• The Chao1 estimator is used to estimate species richness as a lower bound

and compared with the WLR estimator with nonsmoothing (WLR), the

WLR with smoothing by the uniform kernel (WLRu), the geometric ker-

nel (WLRg) and Li and Racine (2010) kernel (WLRl). For the WLR

approach, when m = 2,3, the Chao1 estimator is used to estimate species

richness.

• The performance of each estimator was summarised by the root mean

square error (RMSE), the bias, and the estimated and true standard

error for each approach.

Figures 5.2 - 5.3 show RMSE of the WLR estimator using the kernel of Li

and Racine (2010) (WLRl) for µ = 1 and µ = 2. The results indicate that

the performance of the WLRl estimator for µ = 2 is better than µ = 1. The

performance of the WLRl improves significantly when µ = 2. In Figure 5.2,
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when N = 100 and µ = 1, the WLRl estimator performs the best under the

PT distribution with a = 0. When N = 100 and µ = 2, the WLRl estimator

works well with a = 0.9 as shown in Figure 5.3.

For large N , the WLRl estimator performs well with the different value of

a. When N = 1000 and µ = 1, the PT distribution with a = 0.5 provides

a small RMSE when 1.1 ≤ D ≤ 1.5 and the model a = 0.75 gives the best

approximation when D = 2 (Figure 5.4). When µ = 2, the PT distribution

with a = 0.75 is appropriate for the WLRl estimator (Figure 5.5).

The Chao1 estimator is considered as a lower bound for species richness es-

timation. In our simulation study, it is used to compare the performance

with the WLR estimator for both with and with out smoothing. Tables 5.1 -

5.4 show the performance of various estimators based on the PT distribution.

When a = 0 and a = 0.5, they present the negative binomial distribution and

the Poisson inverse Gaussian distribution respectively. The performance of all

estimators for µ = 2 is much more accurate than for µ = 1. There is some

decrease in RMSE and bias for µ = 2, a reduction of around three or four

times when compared to µ = 1.

In Tables 5.1 and 5.3, when µ = 1, the results indicate that the Chao1 esti-

mator performs the best when compared with other estimators for both a = 0

and a = 0.5. However, when µ = 2, the WLR estimator with smoothing out-

performs the Chao1 estimator for both a = 0 and a = 0.5 especially the kernel

of Li and Racine (2010) as shown in Tables 5.2 and 5.4.
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Figure 5.2: RMSE for the WLR estimator using the kernel of Li and
Racine (2010) based on data from the PT distribution; N = 100, µ = 1,
D = 2, 1.5, 1.25, 1.1, a = −1, 0, 0.25, 0.5, 0.75, 0.9.
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Figure 5.3: RMSE for the WLR estimator using the kernel of Li and
Racine (2010) based on data from the PT distribution; N = 100, µ = 2,
D = 2, 1.5, 1.25, 1.1, a = −1, 0, 0.25, 0.5, 0.75, 0.9.
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Figure 5.4: RMSE for the WLR estimator using the kernel of Li and
Racine (2010) based on data from the PT distribution; N = 1000, µ = 1,
D = 2, 1.5, 1.25, 1.1, a = −1, 0, 0.25, 0.5, 0.75, 0.9.
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Figure 5.5: RMSE for the WLR estimator using the kernel of Li and
Racine (2010) based on data from the PT distribution; N = 1000, µ = 2,
D = 2, 1.5, 1.25, 1.1, a = −1, 0, 0.25, 0.5, 0.75, 0.9.
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Table 5.1: RMSE, bias, true standard error and estimated standard error for
N̂ based on the WLR estimator with nonsmoothing, the WLR with smoothing
and the Chao1 estimator ; N = 100, 1000, µ = 1, D = 1.1.1.25.1.5.2, a = 0
using 1000 simulations.

D WLR WLRu WLRg WLRl Chao1

N = 100

RMSE 1.1 35.47 32.14 27.53 27.17 17.56

1.25 36.66 33.09 29.26 29.00 18.04

1.5 33.26 30.48 27.78 27.66 20.92

2 30.98 29.47 28.17 28.16 27.05

bias 1.1 11.39 8.33 6.17 5.93 -0.50

1.25 9.84 6.44 5.07 4.94 -4.61

1.5 2.69 -0.81 -0.80 -0.78 -12.04

2 -6.90 -10.71 -8.67 -8.59 -20.86

se(N̂) 1.1 33.59 31.04 26.83 26.52 17.55

1.25 35.31 32.46 28.82 28.57 17.44

1.5 33.15 30.47 27.76 27.65 17.11

2 30.21 27.46 26.81 26.82 17.22

ŝe(N̂) 1.1 45.41 39.06 32.97 32.46 18.59

1.25 48.66 41.66 36.32 35.90 18.19

1.5 40.64 34.24 31.66 31.45 17.48

2 45.08 37.59 36.73 36.67 17.59

N = 1000

RMSE 1.1 77.23 76.28 75.11 75.10 59.85

1.25 72.49 72.25 71.47 71.46 92.05

1.5 89.95 91.64 90.24 90.24 150.93

2 186.10 188.85 186.13 186.12 252.26

bias 1.1 11.04 8.82 7.84 7.83 -32.44

1.25 -7.98 -10.63 -10.47 -10.46 -77.92

1.5 -61.57 -64.52 -62.90 -62.89 -143.22

2 -177.38 -180.38 -177.52 -177.51 -248.20

se(N̂) 1.1 76.44 75.77 74.70 74.69 50.30

1.25 72.05 71.46 70.70 70.69 49.01

1.5 65.57 65.08 64.71 64.71 47.64

2 56.30 55.91 55.96 55.96 45.08

ŝe(N̂) 1.1 79.51 78.13 77.34 77.33 50.21

1.25 74.84 73.48 73.30 73.30 48.76

1.5 68.31 66.95 67.39 67.39 46.59

2 57.91 56.56 57.58 57.58 42.68
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Table 5.2: RMSE, bias, true standard error and estimated standard error for
N̂ based on the WLR estimator with nonsmoothing, the WLR with smoothing
and the Chao1 estimator ; N = 100, 1000, µ = 2, D = 1.1.1.25.1.5.2, a = 0
using 1000 simulations.

D WLR WLRu WLRg WLRl Chao1

N=100

RMSE 1.1 9.08 8.15 6.96 6.74 7.66

1.25 9.35 8.41 7.41 7.21 8.47

1.5 10.83 9.81 8.60 8.42 9.90

2 12.00 11.50 10.82 10.67 12.08

bias 1.1 2.07 1.86 0.37 0.08 0.58

1.25 0.91 0.51 -1.06 -1.32 -0.88

1.5 0.40 -0.40 -2.14 -2.35 -2.25

2 -4.06 -5.18 -6.36 -6.36 -6.81

se(N̂) 1.1 8.85 7.94 6.95 6.74 7.64

1.25 9.31 8.40 7.33 7.09 8.43

1.5 10.82 9.80 8.33 8.09 9.64

2 11.29 10.27 8.76 8.56 9.98

ŝe(N̂) 1.1 9.49 7.96 6.90 6.58 8.06

1.25 9.90 8.34 7.06 6.77 8.52

1.5 11.29 9.37 7.92 7.63 9.41

2 11.75 9.70 8.83 8.64 10.16

N=1000

RMSE 1.1 25.09 24.65 23.77 23.68 24.78

1.25 24.95 24.55 24.21 24.15 29.99

1.5 32.51 32.60 33.07 33.03 46.75

2 63.81 65.00 65.02 64.98 86.80

bias 1.1 1.79 2.10 -1.11 -1.36 -6.22

1.25 -2.19 -2.42 -5.66 -5.87 -18.01

1.5 -15.46 -16.30 -18.85 -18.92 -37.90

2 -57.12 -58.59 -58.96 -58.92 -81.96

se(N̂) 1.1 25.03 24.56 23.75 23.64 23.99

1.25 24.86 24.43 23.54 23.42 23.98

1.5 28.59 28.23 27.17 27.08 27.37

2 28.44 28.17 27.41 27.39 28.57

ŝe(N̂) 1.1 23.37 22.65 21.77 21.62 22.93

1.25 24.39 23.67 22.80 22.69 24.13

1.5 26.35 25.59 24.88 24.82 25.80

2 28.41 27.63 27.50 27.49 27.95
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For example with N = 100, µ = 1, D = 2 and a = 0 (Table 5.1), the WLR

without smoothing yields RMSE and bias as 35.47 and 11.39. When smoothed

is used with Li and Racine (2010) kernel, it can improve RMSE as 27.17and

5.93. For the Chao1 estimator, it gives the best performance with RMSE 17.56

and bias -0.50. For another example with N = 100, µ = 2, D = 2 and a = 0

(Table 5.2), the best estimator is the WLR with the Li and Racine (2010)

kernel. The WLRl gives RMSE and bias as 6.74 and 0.08, while the Chao1

estimator results are 7.66 and 0.58 respectively.

When N is large, all WLR estimators approximate well with the PT distribu-

tion and outperform the Chao1 estimator especially when D > 1.1. Smoothing

technique does not improve the WLR estimators by much. The performance

of the WLR with smoothing is close to the results of nonsmoothing. In some

situations such as N = 1000 and D = 2, the smoothing technique does not

improve the performance of the WLR estimator.

For example, when N = 1000, µ = 1, D = 1.5 and a = 0.5 (Table 5.3), the

WLR with nonsmoothing gives RMSE and bias as 68.68 and -12.95. When

using theLi and Racine (2010) kernel, the WLR estimator has improved results

with RMSE and bias as 68.11 and -14.88. For the Chao1 estimator, it yields

large RMSE and bias are 120.92 and -111.14.

It is clear that the performance of the WLRl estimator depends on the param-

eters of the PT distribution. The Li and Racine (2010) kernel outperforms

the uniform and geometric kernel. However, the performance of the WLR es-

timator with smoothing is improved only a little. Nonsmoothing approach is

sufficient for the WLR estimator based on the PT distribution.
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Table 5.3: RMSE, bias, true standard error and estimated standard error for
N̂ based on the WLR estimator with nonsmoothing, the WLR with smoothing
and the Chao1 estimator ; N = 100, 1000, µ = 1, D = 1.1, 1.25, 1.5, 2, a = 0.5
using 1000 simulations.

D WLR WLRu WLRg WLRl Chao1

N=100

RMSE 1.1 37.06 33.57 28.93 28.55 18.12

1.25 40.47 36.68 31.96 31.64 18.69

1.5 36.33 32.90 29.67 29.52 19.72

2 36.10 32.73 31.05 31.02 23.36

bias 1.1 12.95 9.84 7.54 7.30 0.37

1.25 12.01 8.52 6.70 6.54 -3.49

1.5 7.32 3.56 3.17 3.19 -8.60

2 2.53 -1.80 -0.47 -0.39 -15.11

se(N̂) 1.1 34.73 32.09 27.93 27.60 18.12

1.25 38.65 35.68 31.25 30.96 18.36

1.5 35.59 32.70 29.50 29.34 17.75

2 36.01 32.68 31.05 31.02 17.81

ŝe(N̂) 1.1 48.12 41.54 35.26 34.72 18.83

1.25 49.83 42.67 36.36 35.88 18.82

1.5 44.95 37.99 35.32 35.13 18.71

2 45.52 37.85 37.61 37.56 18.86

N=1000

RMSE 1.1 79.20 78.03 76.69 76.67 57.75

1.25 72.33 71.49 70.66 70.65 81.24

1.5 68.68 68.87 68.12 68.11 120.92

2 98.63 100.85 98.86 98.85 180.37

bias 1.1 20.02 17.74 16.64 16.63 -27.64

1.25 9.02 6.33 6.23 6.24 -65.41

1.5 -12.95 -16.07 -14.89 -14.88 -111.14

2 -71.71 -75.08 -72.63 -72.62 -172.59

se(N̂) 1.1 76.63 75.98 74.86 74.85 50.70

1.25 71.76 71.21 70.38 70.38 48.17

1.5 67.45 66.97 66.47 66.47 47.63

2 67.72 67.33 67.06 67.06 52.39

ŝe(N̂) 1.1 81.11 79.73 78.89 78.88 50.69

1.25 74.86 73.54 73.27 73.27 49.75

1.5 71.69 70.38 70.61 70.61 49.52

2 70.07 68.69 69.41 69.41 49.79
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Table 5.4: RMSE, bias, true standard error and estimated standard error for
N̂ based on the WLR estimator with nonsmoothing, the WLR with smoothing
and the Chao1 estimator ; N = 100, 1000, µ = 2, D = 1.1, 1.25, 1.5, 2, a = 0.5
using 1000 simulations.

D WLR WLRu WLRg WLRl Chao1

N=100

RMSE 1.1 9.08 8.16 7.00 6.77 7.85

1.25 10.04 8.95 7.65 7.40 8.68

1.5 11.26 10.16 8.86 8.65 9.44

2 11.92 10.94 9.89 9.70 11.05

bias 1.1 2.02 1.80 0.33 0.05 0.69

1.25 2.15 1.68 -0.02 -0.29 -0.01

1.5 1.10 0.36 -1.47 -1.69 -1.65

2 -0.15 -1.37 -3.15 -3.28 -3.32

se(N̂) 1.1 8.85 7.96 6.99 6.77 7.82

1.25 9.81 8.79 7.65 7.39 8.68

1.5 11.21 10.15 8.73 8.48 9.29

2 11.92 10.86 9.37 9.12 10.54

ŝe(N̂) 1.1 9.27 7.82 6.75 6.44 8.07

1.25 10.38 8.67 7.37 7.04 8.68

1.5 11.00 9.25 8.00 7.69 9.28

2 12.80 10.69 9.28 9.01 10.71

N=1000

RMSE 1.1 24.46 24.06 23.02 22.92 24.12

1.25 25.53 25.10 24.40 24.32 28.70

1.5 26.95 26.70 26.32 26.25 38.10

2 35.17 35.64 35.67 35.63 57.41

bias 1.1 3.41 3.73 0.50 0.25 -5.28

1.25 0.43 0.23 -3.08 -3.29 -15.50

1.5 -2.89 -3.73 -6.72 -6.84 -28.35

2 -16.47 -17.97 -19.72 -19.72 -48.48

se(N̂) 1.1 24.22 23.77 23.02 22.92 23.54

1.25 25.52 25.09 24.21 24.09 24.15

1.5 26.79 26.44 25.44 25.34 25.45

2 31.07 30.78 29.72 29.67 30.75

ŝe(N̂) 1.1 23.21 22.50 21.65 21.50 22.92

1.25 24.41 23.68 22.79 22.67 24.12

1.5 26.68 25.93 25.13 25.05 26.04

2 29.78 29.02 28.52 28.49 29.22
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Figure 5.6 shows the performance of estimators based on the PT distribution

with a = 0. When N = 100, Chao estimator performs better than the WLR

estimator for both nonsmoothing and smoothing. When N = 1000, all WLR

estimators perform well. Particularly when D > 1.25, all WLR estimators

outperform Chao estimator significantly.
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Figure 5.6: Comparison between the WLR with nonsmoothing and the WLR
estimator with smoothing data and the Chao1 estimator, N=100,1000, µ =
1, D = 1.1, 1.25, 1.5, 2, a = 0, 0.5.

In summary, the smoothing approach can improve the performance of the

WLR estimator a little. Due to the need for using a long time in bandwidth
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selection, the nonsmoothing approach is preferred when N is large using the

PT model. For example with Table 5.4, we used 28 hours for computation.

5.7 Conclusion

The WLR estimator based on the PT distribution for estimating the species

richness is considered with truncated data. Data is cut off at the frequency

seen m times with the condition fm > 0 and fm+1 = 0. Kernel smoothing

approach is an alternative way to improve sparse data which has zero fre-

quency count. This technique can handle the problem about zero frequency

in the weighted linear regression analysis. Therefore, smoothing can be used

in any situation. However, the kernel smoothing estimation can improve the

performance of WLR estimator only a little. It is not always necessary to use

smoothing.

The WLR estimator can work well with the PT distribution for large N . It

outperforms Chao estimator significantly especially when D increases. When

applying the smoothing technique, it takes a very long time to compute as a

result of the optimal bandwidth parameter selection. The performance of the

smoothing approach is not far from the nonsmoothing approach. Then, the

WLR approach with nonsmoothing can be used for large N . When N is small,

the Chao estimator is more appropriate for species richness estimation.

There are other kernel functions for discrete data such as triangular, binomial,

Poisson and negative binomial kernel and so on, but they are not explored in

our study. The boundary problem in optimization when choosing the band-

width selection may need to be solved. Kokonendji and Zocchi (2010) proposed

the kernel estimation for this problem. In future work, we could have explored

other kernels with the WLR estimator.
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In the next chapter, we investigate the distribution of the number of observed

species. The methods of Hidaka (2014) and Williamson (2012) are explored.

New approximations for the number of observed species are proposed and

compared to the Poisson and normal approximations.



Chapter 6

New approximations for the

number of observed species

6.1 Introduction

In this Chapter, we consider some alternative approximations for the distribu-

tion of the number of observed species which can be explained through the urn

models. In probability theory, the occupancy problem arises from considering

the distribution of the number of occupied urns when throwing M balls into

N urns randomly. Each ball is thrown in urn i with the probability pi and K

denotes the number of occupied urns. When p1 = p2 = . . . = pN = 1/N , it

is a special case of the distribution of occupied urns and called the classical

occupancy problem (Johnson and Kotz, 1977).

The literature on occupancy problems considers not only the number of occu-

pied urns, K, but also the number of urns occupied by exactly r balls, which

we denote by mr. In this notation, K = N −m0. These random variables are

also relevant in species sampling problems, because estimators of the number

of species are based on these variables. For example, the Chao1 estimator is

based on m1 and m2.
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The Poisson and the normal approximations are the common approaches for

approximating the discrete distribution. Williamson (2012) used both approx-

imations to the exact distribution of K under the classical occupancy problem.

Their performance depends on the ratio M/N . There are several situations

in which the Poisson and the normal distributions arise as limiting distribu-

tions, see in Williamson (2012), Johnson and Kotz (1977) and Kolchin et al.

(1978). In our study, we focus on new approximations for the distribution of

the number of observed species based on two-parameter generalisations of the

binomial distribution including Altham’s multiplicative and additive-binomial,

Pólya and COM-Poisson-Binomial distribution.

The exact probability distribution of K, along with the moment generating

function from the literature on occupancy distributions, is reviewed in Section

6.2. In Section 6.3, the probability function for the classical occupancy prob-

lem and some its properties is discussed. The mean and variance of K can be

derived from the low order moments of the number of occupied urns (David

and Barton, 1962) and also derived from the moment generating function of

the number of empty urns as well (Kolchin et al., 1978).

Various approximations to the distribution of K are presented in Section 6.4.

An example about birthday coincidences is used to illustrate the various ap-

proximations in Section 6.5. Section 6.6 presents a simulation study to investi-

gate the accuracy of the approximations for both homogeneous and heteroge-

neous models of pi for occupancy distribution. The performance of the various

approximations for the occupancy problem is compared in Section 6.6. Finally,

in Section 6.7, the performance of approximations is summarised to indicate

whether the true distribution can be approximated well by underdispersed

binomial distributions.
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6.2 Distribution of number of observed species

Suppose that an infinite population consists of N distinct species. Each indi-

vidual is collected randomly with the probability pi, where
∑N

i=1 pi = 1. The

random variable K is the number of different species encountered amongst the

first M individuals. Therefore K is a positive integer in the range 1, 2, . . . , n,

where n denotes the maximum number of species that could have been seen,

defined by n = min(N,M). The exact probability function of K is given by

(Hidaka, 2014)

P(K|M,N) =
K∑

k=1

(−1)K−k

(
N − k

N −K

) ∑

s⊆N̄ :|s|=k

Ps(θ)
M (6.1)

where s ⊆ N̄ : |s| = k denotes all subsets s of size k drawn from the set of N̄ ,

for N̄ = {1, . . . , N}. Ps(θ) be is the probability that an individual chosen at

random from the population belongs to a species in subset s, Ps(θ) =
∑
i∈s

pi,

depending on unknown parameters θ. However, this distribution is computa-

tionally intractable when N and/or M are large.

Although the exact probabilities are difficult to compute, there are reasonably

simple expressions for the exact mean and variance of K using

E(K) = N −
N∑

i

(1− pi)
M , (6.2)

E(K2) = E(K) +
N∑

i=1

N∑

j 6=i

{
1 + (1− p{i,j})

M − (1− pi)
M − (1− pj)

M
}

and

Var(K) = E(K2)− E(K)2, (6.3)

where pi and pj are the relative frequencies or species abundances for the ith

species and the jth species and p{i,j} = pi+pj, i, j = 1, 2, . . . , N . This suggests
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using a generalized binomial-type approximation with parameters chosen to

agree with the mean and variance of the true distribution. The generalized

binomial distribution needs to be underdispersed (relative to the binomial

distribution with the same mean), because it can be shown that

Var(K) = E(K2)− E(K)2 < M
E(K)

M

[
1− E(K)

M

]
.

Figures 6.1 and 6.2 are species accumulation curves with the x-axis showing

the number of individuals in a sample and the y-axis showing the number of

distinct species. As M tends to infinity, the number of distinct species in-

creases and becomes increasingly close to the true species richness. The slope

of the species accumulation curve depends on the species abundance model

(Gotelli and Colwell, 2011). The species accumulation increases more rapidly

for equal species abundance than for unequal species abundance as shown in

Figures 6.1 and 6.2. The red line is the expected number of distinct species

E(K) and the black dots are the number of distinct species K in samples of

increasing size M from a simulation of the model. The results show that K

and E(K) are similar. Then, it is clear that the expected number of distinct

species can be estimated using the number of distinct species from data.

The model of pi used in the occupancy distribution can be selected from both

homogeneous and heterogeneous models. The classical occupancy problem is a

special case of the occupancy distribution when pi following the homogeneous

model or pi = 1/N . It is discussed in the next Sections. However, in ecol-

ogy, the heterogeneity model is normally used as a result of unequal species

abundance.
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Figure 6.1: Example of species accumulation curve for N = 100 when all
species are equally likely to be observed, M is the number of individuals col-
lected or sample size.
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Figure 6.2: Example of species accumulation curve for N = 100 with unequal
abundance following the broken-stick model, M is the number of individuals
collected or sample size.
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6.3 The classical occupancy problem

The classical occupancy model arises, when species abundance or the proba-

bility for seen species are equal for each species pi =
1

N
. In relation to species

sampling, the number of N urns represents the number of species while the

number of balls, M , represents the number of individuals collected. The dis-

tribution of the number of urns containing at least one ball, which corresponds

to the number of observed species is explored in many studies including David

and Barton (1962). When pi =
1

N
, equation (6.1) reduces to (Williamson,

2012)

P (K = x) =

(
N

x

)
x!
S(M,x)

NM
, x = 1, 2, . . . , n (6.4)

where n = min(N,M), N and M are positive integer and S(M,x) denotes a

Stirling number of the second kind defined by

S(M,x) =
1

x!

x∑

i=0

(−1)i
(
x

i

)
(x− i)M .

An alternative recursive relationship is as follows:

S(M,x) = x S(M − 1, x) + S(M − 1, x− 1).

For large M and N , accurate computation of the Stirling numbers is diffi-

cult using double precision arithmetic, such as in R. Programs such as Maple

and Mathematica, that provide high precision arithmetic, are able to compute

these numbers directly (Williamson, 2012).

The moment properties of the occupancy distribution can be obtained by in-

troducing indicator variables for occupied and empty urns (David and Barton,

1962). Williamson (2012) and Samuel-Cahn (1974) present the mean and vari-
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ance of K considering the probability of occupied urn i. Let Zi = 0 if the ith

urn is empty whereas Zi = 1 denotes that the ith urn is occupied. Then

K =
∑N

i=1 Zi. When throwing M balls into N urns with the same probability,

we have the probability that urn i is empty as P(Zi = 0) = (1− 1/N)M and

therefore the probability that urn i is occupied is P(Zi = 1) = 1−(1− 1/N)M .

The mean of K is given by NP(Zi = 1). So

E(K) = N −N

(
1− 1

N

)M

(6.5)

and the variance of K can be written as

Var(K) = N

(
1− 1

N

)M

+N(N − 1)

(
1− 2

N

)M

−N2

(
1− 1

N

)2M

. (6.6)

Kolchin et al. (1978) discussed another way to find the mean and variance of

K by considering the moment generating function of the number of the urns

containing r balls, mr. Let Uri = 1 if there are r balls in urn i and Uri = 0

otherwise. Then mr =
∑N

i=1 Uri. When pi = 1/N , the probability that urn i

occupied by r balls is given by the binomial probability

P (Uri = 1) =

(
N

r

)
1

N r

(
1− 1

N

)M−r

. (6.7)

Then the first moment of mr is given by

E(mr) = NP(Uri = 1) = N

(
N

r

)
1

N r

(
1− 1

N

)M−r

. (6.8)

If r = 0, we have

E(m0) = N

(
1− 1

N

)M

,

where m0 = N −K. The second moment of mr is given by

E(m2
r) = E(mr) +N(N − 1)

M [2r]

(r!)2N2r

(
1− 2

N

)M−2r

(6.9)
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where factorial powers are defined by M [k] = M(M − 1) . . . (M + k + 1) and

M [0] = 1. From equation (6.8) and (6.9), if r = 0, the variance of m0 is derived

as

Var(m0) = E(m2
0)− [E(m0)]

2

= N

(
1− 1

N

)M

+N(N − 1)

(
1− 2

N

)M

−N2

(
1− 1

N

)2m

which gives the same result as Var(K) in equation (6.6). The classical occu-

pancy distribution is the simplest model which is relevant to species sampling,

although only in the rather unrealistic case when species abundances are all

equal. In practice, the heterogeneous model is generally applied more than

homogeneous model in ecology as a result of unequal species abundance.

6.4 Approximation to the distribution of K

Several familiar distributions including the Poisson and normal distributions,

have been discussed for approximating the distribution of K. We have inves-

tigated some alternative discrete distributions, specifically, the COM-Poisson-

Binomial(CMPB) distribution, Altham’s additive and multiplicative binomial

distributions and the Pólya or extended beta-binomial distribution.

Let p(x) = Pr(K = x) be the true probability function ofK and p∗(x) = Pr∗(K = x)

be an approximating probability function. The performance of each approxi-

mation is measured by calculating a measure of the discrepancy between p(x)

and p∗(x). There are three discrepancy criteria that are commonly used, which
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are given by

d1 =
n∑

i=1

{p(x)− p∗(x)}2 ,

d2 =
1

2

n∑
i=1

|p(x)− p∗(x)|,

d3 = max
x=1,...,n

|p(x)− p∗(x)|.

The first two criterions are chosen following Williamson (2012), who used

them to measure the performance of approximations. The measure d2 is called

the total variation distance. The third criterion is known as the Kolmogorov

distance.

6.4.1 Poisson Approximation

Poisson approximations are suggested by several limit distributions for urn

models as follows:

1. Let K be the number of urns occupied by the M balls and m0 = N −K

the number of empty urns. Then

Pr(K = x) = Pr(m0 = N − x).

If M,N → ∞ and Ne−M/N → λ, then m0 = N − x → Poisson(λ)

(Johnson and Kotz, 1977). This suggests the following approximation to

the distribution of K

Pr∗pois(K = x) =
exp(−λ)λN−x

(N − x)!
, x = 1, 2, . . . , n (6.10)

where n = min(N,M) and λ = Ne−M/N . Williamson (2012) investigated

the accuracy of Poisson approximation to the occupancy distribution

in the classical occupancy problem. The Poisson approximation to the
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distribution ofm0 can work well for largeM andN , in particular,M > N

or
M

N
> 1 (Williamson, 2012).

2. Williamson (2012) explored another result on limit distribution following

Barbour and Holst (1989) when M,N → ∞ and E(m0) → λ. The

distribution of m0 can be approximated by the Poisson distribution with

λ = E(m0), where E(m0) = N

(
1− 1

N

)M

.

3. Sevast’Yanov and Chistyakov (1964) show another results whenM,N → ∞.

When
M

N
− lnM → lnλ, the Poisson distribution can be used to approx-

imate the distribution of m0 similar to above results. Then the distribu-

tion of K in equation (6.10) can be used with parameter λ =
1

N
eM/N .

4. Kolchin et al. (1978) discussed the result on the limit distribution when

M,N → ∞,
M

N
→ 0 and Var(K) ∼ M2

2N
→ λ. We have

m0 − (N −M) =M −K → Poisson(λ)

Based on this result, the distribution of K can be approximated as fol-

lows:

Pr∗pois(K = x) =
exp(−λ)λM−x

(M − x)!
, x = 1, 2, . . . , n (6.11)

where λ = Var(K) by equation (6.6).

These limit theorems suggest that the Poisson approximation can perform

well for the classical occupancy problem under several different conditions.

However, under other conditions it may not approximate the exact probability

in equation (6.1) well including when the pi’s are unequal.
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6.4.2 Normal Approximation

Under the condition M → ∞ and Ne−M/N

{
1− e−M/N

(
1 +

M

N

)}
→ ∞,

Samuel-Cahn (1974) proved that the distribution of K becomes the normal

distribution. The mean and variance are given by equation (6.5) and equa-

tion (6.6) respectively. Williamson (2012) explored the performance of the

normal approximation to the distribution of K. Good results are obtained

when M/N ≤ 2. However, the normal distribution is appropriate for con-

tinuous random variables. When used to approximate a discrete distribution,

using a continuity correction improves the accuracy of the approximation. The

approximation is

Pr(K = x) ≈ Pr(x− 1

2
< W < x+

1

2
),

where W is the approximating normal variable. Therefore, the distribution of

K can be approximated by

Pr∗Norm(K = x) ≈
x+ 1

2∫

x− 1

2

1√
2π

exp

{
−1

2

(
(w − µ

σ

)2
}
dw

= Φ

(
x+ 1/2− µ

σ

)
− Φ

(
x− 1/2− µ

σ

)
, x ∈ R.

(6.12)

where µ = E(W ) and σ2 = Var(W ) are given by equation (6.5) and (6.6).

6.4.3 COM-Poisson-Binomial Approximation

Conway and Maxwell (1962) introduced a generalization of the Poisson dis-

tribution for use in queuing system problems. This distribution was redis-

covered by Shmueli et al. (2005), who termed it the COM-Poisson (Conway-

Maxwell Poisson) distribution. It is a flexible distribution which can be used to

model both overdispersion and underdispersion. The COM-Poisson-binomial

(CMPB) distribution is an analogous extension of the binomial distribution
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which is discussed briefly by Shmueli et al. (2005) and more extensively by

Borges et al. (2014). The probability function is given by

Pr∗CMPB(K = x) =

(
n

x

)ν

px(1− p)n−x

n∑
x=0

(
n

x

)ν

px(1− p)n−x

, x = 0, 1, . . . , n (6.13)

where n = min(N,M), p ∈ (0, 1) and ν ∈ R. The distribution is overdispersed

relative to the binomial when ν < 1 and underdispersed when ν > 1. For

ν = 1, it becomes the binomial distribution.

Borges et al. (2014) considered the alternative parametrization using θ =
p

1− p

and divide terms of (1 − p)n(n!)ν from equation (6.13). In terms of the pa-

rameters n, θ and ν, the distribution of K in equation (6.13) can be rewritten

as

Pr∗CMPB(K = x) =
1

Z(θ, ν)

θx

x![n− x)!]ν
, (6.14)

where Z(θ, ν) =
∑n

j=0

θj

j[n− j)!]ν
.

For the moments, there is no explicit form and they must be calculated nu-

merically from the formula

E(Kr) =
1

Z(θ, ν)

n∑

x=0

xr
θx

x![n− x)!]ν
.

There are potential computational issues with the distribution when ν > 1.

These can be avoided by writing the probability function in terms of loga-

rithms. Specifically, let ξx = ν log
(
n
x

)
+ x log(p) + (n− x) log(1− p). Then

Pr∗CMPB(K = x) = exp





ξx
n∑

j=0

ξj





(6.15)
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The R function lchoose is used to evaluate log

(
n

x

)
.

6.4.4 Altham’s multiplicative binomial Approximation

Altham (1978) developed two generalisations of the binomial distribution which

are able to model both overdispersion and underdispersion. The first of these

is termed the Altham’s multiplicative-binomial distribution. The probability

function is given by

Pr∗MB(K = x) =

(
n

x

)
px(1− p)n−x θx(n−x)

n∑
x=0

(
n

x

)
px(1− p)n−x θx(n−x)

, x = 0, 1, . . . , n (6.16)

where p ∈ (0, 1) and θ > 0. When θ = 1, it reduces to the binomial distribution

with parameters (n, p). This model allows for underdispersion when θ > 1,

and for overdispersion when θ < 1. However, computation issues can arise,

similarly to the CMPB distribution, for large θ. To avoid these, the probability

function is again expressed in terms of logarithms as follows:

Pr∗MB(K = x) = exp





ξx
n∑

j=0

ξj





(6.17)

where ξx = log

(
n

x

)
+ x log(p) + (n− x) log(1− p) + x(n− x) log(θ).

Let Fn(n, p, θ) =
n∑

x=0

(
n

x

)
px(1− p)n−x θx(n−x). The first and second moments

of K are given by (Altham, 1978)

E(K) = np(p+ (1− p))n−1Fn

(
p

p+ (1− p)θ
, θ, n− 1

)
/Fn(n, p, θ),

E[K(K−1)] = n(n−1)p2(p+(1−p)θ2)n−2Fn

(
p

p+ (1− p)θ2
, θ, n− 2

)
/Fn(n, p, θ).
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6.4.5 Altham’s additive binomial Approximation

The second generalized binomial distribution introduced by Altham (1978) is

called the additive binomial distribution. The probability function of K can

be written as

Pr∗AB(K = x) =

(
n

x

)
px(1− p)n−x

[
α

2

(
x(x− 1)

p
+

(n− x)(n− x− 1)

1− p
− n(n− 1)

)
+ 1

]

(6.18)

where x = 0, 1, . . . , n, p ∈ (0, 1), n = min(M,N) and to ensure a valid proba-

bility distribution, α must satisfy the conditions

−min

(
p

1− p
,
1− p

p

)
≤ α ≤ 1, n = 2, (6.19)

and

−2

n(n− 1)
min

(
p

1− p
,
1− p

p

)
≤ α ≤ 2

(
n+

(1− 2p)2

4p(1− p)

)−1

, n > 2.

(6.20)

The mean and variance of K can be derived as

E∗(K) = np and Var∗(K) = np(1− p)[1 + (n− 1)α],

respectively (Altham, 1978).

6.4.6 Pólya distribution

Pólya distribution was proposed by Eggenberger and Pólya (1923) as an urn

process. This refers to a sampling model with replacement from an urn con-

taining initially a black balls and b white balls. When a ball is drawn from

the urn, it is replaced along with c balls of the same color. This is repeated

n times and the random variable K denotes the number of times a black ball

is drawn. The probability distribution of K is given by (Johnson and Kotz,
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1977)

Pr∗Pol(K = x) =

(
n

x

)
a(a+ c) . . . (a+ (x− 1)c) b(b+ c) . . . (b+ (n− x− 1)c)

(a+ b)(a+ b+ c)(a+ b+ 2c) . . . (a+ b+ (n− 1)c)
,

(6.21)

where n = min(N,M). Although a, b, c are integers in the urn model, they

can be taken as real and equation (6.21) is still valid (with some restriction on

a, b, c). If c = 0, this model represents the binomial distribution. If c = −1, it

becomes a hypergeometric distribution.

Skipper et al. (2012) presented another form of this model which can be rewrit-

ten as

Pr∗Pol(K = x) =

(
n

x

)
p(p+ θ) . . . (p+ (x− 1)θ) q(q + θ) . . . (q + (n− x− 1)θ)

(1 + θ)(1 + 2θ) . . . (1 + (n− 1)θ)

(6.22)

where q = 1− p, p ∈ (0, 1) and θ ∈ R with the constraint

θ > −min(p, q)/(n− 1). (6.23)

This constraint is needed to ensure that the probabilities given by equation

(6.22) are non-negative. When θ = 0, it reduces to the binomial distribution

with parameter (n, p). Another special case is the hypergeometric distribution,

if n < a+ b, p = a/(a+ b) and θ = −1/(a+ b). The mean and variance of the

Pólya distribution are given by

E∗(K) = np and Var∗(K) = np(1− p)

(
1 + (n− 1)

θ

1 + θ

)
,

respectively (Skipper et al., 2012).
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6.4.7 Choosing parameters for the approximating dis-

tribution

In order to use the distributions in Sections 6.4.3-6.4.6 to approximate the oc-

cupancy distribution, the key thing is choosing parameters of the distribution.

The appropriate parameters are chosen so that the mean and variance of the

approximation match the exact mean and variance.

For the COM-Poisson-Binomial and Altham’s multiplicative-binomial distri-

bution, the parameters can be chosen using optimization to find

min
{
(E(K)− E∗(K))2 + (Var(K)− Var∗(K))2

}
,

where E(K) and Var(K) is given by equation (6.5) and (6.6), E∗(K) and

Var∗(K) are the mean and variance of the approximation. This provides p̂∗C , ν̂
∗
C

for CMPB model and p̂∗MB, θ̂
∗
MB for Altham’s multiplicative-binomial model.

For Altham’s additive-binomial and the Pólya distribution, their parameters

can be selected easily from the explicit formulae for the mean and variance of

K. The parameters of Altham’s additive binomial distribution are given by

p̂AB =
E(K)

n
and α̂AB =

1

N

(
Var(K)

np(1− p)
− 1

)
, where E(K) and Var(K) are

given by equations (6.5) and (6.6). However, α̂ might not follow the equation

(6.20). The parameters of the Pólya distribution given by p̂∗Pol = E(K)/n and

θ̂∗Pol = ρ̂/(1− ρ̂), where

ρ̂ =
Var(K)− E(K)(1− p)

E(K)(1− p)(n− 1)

where E(K) and Var(K) is given by equation (6.6) and (6.7). However, the

resulting value of θ̂∗Pol is not guaranteed to satisfy the constraint in equation

(6.23).
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6.5 Example-birthday coincidences

Williamson (2012) compared the performance of the Poisson and normal ap-

proximations in the classical occupancy problem using the example about

birthday coincidences in Feller (1950). In this problem, K is the number of

days that are a birthday amongst a random sample ofM people, N is the num-

ber of days in the year (N = 365). All days are assumed to be equally likely

as birthdays. However, the methods of this Chapter could also be adopted to

allow for seasonal variations in birth rate (e.g. Nunnikhoven (1992)).

In this example, we added the CMPB, Altham and Pólya distributions for

comparing with the Poisson and normal approximations. In the classical occu-

pancy problem, the exact probability from equation (6.4) is calculated instead

of the full expression in equation (6.1). Maple is used to compute the Stirling

number of the second kind. The performance of various approximations of K

for
M

N
→ 0, small

M

N
and large

M

N
are shown and compared with the exact

probability in Table 6.1.

As an example of large
M

N
, when M = 2000, N = 365, the Stirling number of

the second kind in term of log scale is calculated as log(S(2000, 365)) = 10005.93113.

The exact probability from equation (6.4) can be computed as

Pr(K < 365) = 1− Pr(K = 365)

= 1− exp (log(1) + log(365!) + log(S(2000, 365))− 2000 log(365))

= 0.7839.

When the distribution of m0 = N −K is approximated by the Poisson distri-

bution with parameter λ = 365e−2000/365 = 1.5226, equation (6.10) gives
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Pr∗Poi1(X < 365)) = 1− Pr(X = 365)

= 1− Pr(N −X = 0)

= 1− exp(1.5226) ∗ (1.52260)/0!

= 0.7819.

When N − K is approximated by the Poisson distribution with parameter

λ = 365(1− 1/365)2000 = 1.5112, equation (6.10) gives

Pr∗Poi2(K < 365) = 1− Pr(K = 365)

= 1− Pr(N −K = 0)

= 1− exp(1.5112) ∗ (1.51120)/0!

= 0.7794.

For Pois3, M −K is approximated by the Poisson distribution with parameter

λ = Var(K), where Var(K) = 1.470854 and M/N = 5.48. As a result of large

M/N , Pr∗Poi3(K = 365) → 0 and the results by equation (6.11) tend to 1.

Therefore, we don’t consider Pois3 for this situation.

For the normal approximation, the continuity correction is used for this approx-

imation in equation (6.12). The mean and variance are µ = E(K) = 363.4888

and σ2 = Var(K) = 1.470854. Therefore

Pr∗Norm(K < 365) ≈ Φ

(
364.5− 363.4888√

1.47084

)
= 0.8464.

Another approximation investigated is the CMPB distribution. The parame-

ters p and ν found using optimization are p̂∗C = 0.9966 and ν̂∗C = 1.0385 with

n = min(365, 2000) = 365, the approximate probability by equation (6.9) can
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be computed as

Pr∗CMPB(K < 365) = 1− P (K = 365) = 0.7847.

For Altham’s multiplicative binomial approximation, the parameters p and θ

are again calculated using optimization which give p̂∗MB = 0.9997 and θ̂∗MB =

1.0078. The probability can be approximated using equation (6.16) as

Pr∗MB(K < 365) = 1− P (K = 365) = 0.7839.

For Altham’s additive binomial approximation, the parameters p̂AB = 0.9959

and α̂AB = −0.000062. Then

Pr∗AB(K < 365) = 1− P (K = 365) = 0.7838.

WhenK is distributed by the Pólya distribution, we have parameters p̂ = 0.9959

and θ̂ = −0.000063. Then, the probability of birthday coincidences is calcu-

lated by

Pr∗Pol(K < 365) = 1− P (K = 365) = 0.7839.

However, it is found that the constraints in equation (6.20) and (6.23) for

Altham’s additive binomial and the Pólya distribution are not satisfied, so

that these approximations do not give a valid probability distribution over the

full range of K. They will give negative probabilities for some values of K.

Although it would be possible to constrain the parameters of the Pólya dis-

tribution, the constraint is awkward to work with. We have not investigated

this further because other distributions, such as the multiplicative binomial

distribution, work well without the need for constraints.
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Additionally, we have investigated in small group of people, 10 and 40 people.

The probability that at least two people have the same birthday can be calcu-

lated using various approaches as above. Table 6.1 shows the performance of

all approximations for M = 10, M = 40 and M = 2000.

Table 6.1: Probability of birthday coincidences P(K < M) for the occupancy
problem when N = 365

Probability M = 10 M = 40 M = 2000

Exact probability 0.1169 0.8912 0.7839

Pois1: Pois(Ne−M/N) 0.9788 0.9780 0.7819

Pois2: Pois(N(1− 1/N)M) 0.9788 0.9780 0.7794

Pois3: Pois(Var(K)) 0.1118 0.8331 -

Normal 0.1717 0.9065 0.8464

COM-Poisson Binomial 0.1170 0.8939 0.7847

Altham Multiplicative Binomial 0.1170 0.8915 0.7839

Altham Additive Binomial 0.1169 0.8911 0.7838

Pólya 0.1169 0.8912 0.7839

E(K) 9.8776 37.9353 363.4888

Var(K) 0.118534 1.79164 1.470854

Under the classical occupancy problem, the new approximations outperform

the Poisson and the normal approximations. Particularly, the Pólya distribu-

tion provides the best approximation which is similar to the exact probability

for all situations. For Altham distribution, both multiplicative and additive

binomial approach give good approximation which is a slightly different from

the exact one. For the COM-Poisson Binomial (CMPB) distribution, the ap-

proximated probability overestimates slightly. When M = 2000, the exact

probability is 0.7839 while the CMPB distribution provides 0.7847.

For Pois1 and normal approximations, the results agree withWilliamson (2012).

The Pois1 approximation is appropriate for large
M

N
while the Pois3 approxi-
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mation performs well when
M

N
→ 0. For the Pois2 approximation, it performs

similarly the Pois1 approximation. For the normal approximation, it is close

to the exact probability when M/N is not large. For example in Table 6.1,

the Pois1 approximation and the exact distribution give similar probabilities

of 0.7819 and 0.7839 respectively. For Pois3 approximation, it overestimates

whenM = 10 with the probability 0.9788, while the exact probability is 0.1169.

6.6 Simulation Study

In this section, we explore the performance of the various approximations to

the distribution of K. The useful approximations in the previous section are

compared in the following simulation study. In the next Chapter, the best

performing approximation is used for estimating the number of species. Due

to varying species abundances in ecology, we have investigated both homoge-

neous and heterogeneous populations, involving both equal and unequal pi.

However, the exact distribution cannot be computed for unequal pi. Instead,

the empirical probability function is considered and compared with the ap-

proximations.

1. The exact distribution is difficult to compute, especially for large N or

M . Here, the empirical probability distribution is used for approximating

the exact distribution, by resamplingM individuals from N species with

replacement based on various relative frequency or species abundance

models (pi) and repeated in 500,000 simulations. This large number

of simulations is used to ensure that the empirical distribution closely

approximates the exact distribution, so that the accuracy of the various

approximations can be assessed.

2. The following species abundance models for species i = 1, 2, . . . , N are

considered
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• model 1 : homogeneous model with pi = 1/N

• model 2 : Zipf model with pi = c/i0.5 (Zipf1)

• model 3 : Zipf model with pi = c/i2 (Zipf2)

• model 4 : log-normal model with parameters µ = 0 and σ = 1

• model 5 : broken-stick model or Dirichlet(1, 1, . . . , 1) model

• model 6 : exponential-decay model with pi = exp(−i)

3. Let p(x)=Pr(K = x) and p∗(x)=Pr∗(K = x). The accuracy of the ap-

proximation is measured using total variation distance d2 =
1

2

∑ |p(x)− p∗(x)|

and d3 = max |p(x)− p∗(x)|, where p∗(x) can be defined by the distribu-

tion as follows:

• Pois1: m0 is distributed by the Poisson (λ = Ne−M/N)

P(K = x) = P(m0 = N − x)

• Pois2: m0 is distributed by the Poisson (λ = N(1− 1

n
)M)

P(K = x) = P(m0 = N − x)

• Pois3: m0 − (N −M) is distributed by the Poisson (λ = Var(K))

P(K = x) = P(m0 − (N −M) =M − x)

• Norm: K is distributed by the normal(µ = E(K), σ2 = Var(K)))

• CMPB: K is distributed by the CMPB(p,ν)

• MB: K is distributed by the Altham’s multiplicative binomial(p,θ)

• AB: K is distributed by the Altham’s additive binomial(p,α)

• Pólya: K is distributed by the Pólya(p,θ)

4. The simulations are divided into three groups. Firstly, the small popula-

tions are defined using M,N ≤ 100. Secondly, the large populations are

defined with 100 < M,N < 4500. Lastly, the data are generated under

small M/N < 0.5 and large 6 ≤M/N ≤ 30 (Williamson, 2012).
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Figure 6.3 represents the performance of approximations for the homogeneous

model, pi =
1

N
. The results show that the total variation distance d2 as a

function of M/N for the Pólya and Altham’s multiplicative distribution (MB)

are quite similar. Both can approximate the empirical probability distribu-

tion very well. For the CMPB, it is a little bit worse than the Pólya and

MB approximation. For the AB approximation, it is suitable for large M/N

(i.e. M/N > 3). Additionally, the Pois1 and Pois2 can work well for large

M/N while the Pois3 is very close to the empirical probability when M/N

tends to 0. The normal approximation performs well when M/N is small (i.e.

0.5 < M/N < 1.5). When M/N is greater than 1.5, its performance decreases

significantly before improving again for large M/N .

On the other hand, the Pólya and AB approximations for occupancy distri-

bution sometimes give negative probabilities because their parameters do not

follow the conditions in equation (6.20) and (6.23). Therefore, these approx-

imations do not necessarily give valid probability distributions, although the

negative probabilities are usually close to zero. It may be possible to adapt

the method of choosing the parameters of these distributions to ensure that

the constraints are satisfied. However, this has not been investigated because

the multiplicative binomial distribution perform as well as the other approxi-

mations and does not have complicated constraints on its parameters.

Figure 6.4 compares the approximations with the empirical probability distri-

bution for equal pi. It is clear that the Pólya and Altham’s multiplicative bino-

mial approximations perform well for every situation considered. Although the

CMPB and normal approximations are not as good as the Pólya and Altham’s,

they can be used for occupancy problem. The Pois1 and Pois2 approximations

are suitable for large M and N (M/N > 4). For the Pois3, the probability is

appropriate for M/N → 0 (e.g. N = 2000,M = 40). When M/N is large,
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Figure 6.3: Total variation distance d2 =
1

2

∑ |P (K = x) − P ∗(K = x)| for
N = 10, 20, 50, 100 based on pi = 1/N

the Pois3 cannot approximate close to the empirical probability distribution.

When N = 400 and M = 2000, the Pois1, Pois2, Pólya, CMPB and Altham’s

are all very similar to the empirical probability.

Extending Williamson (2012), we have selected some situations to compare the

performance of approximations measured using d2 and d3. Table 6.2 presents

the distance measures d2 and d3 (×105) for pi = 1/N for various values of

M,N ≤ 100. The results indicate that the MB and Pólya distribution out-

perform others. The Pólya distribution outperforms the MB distribution for
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Figure 6.4: Distribution of K based on pi =

1

N
with various M and N

values of both d2 and d3 when M/N < 1 while the MB distribution outper-

forms the Pólya distribution when M/N > 2.7. When 1 ≤ M/N ≤ 2.7, there

is no clear preference between the MB and Pólya distribution.

When considering the Poisson distribution using λ = Ne−M/N (Pois1), λ =

N(1 − 1

n
)M (Pois2) and λ = Var(K) (Pois3), their performance depends on

the value of M/N . The performance of the Pois1 and Pois2 improves when

M/N is large whereas Poi3 works well when M/N is very small. When M/N

is large, Pois3 give Pr∗(K = x) → 0 for all values of K in the range 1 to n.

Therefore, it is not appropriate for approximation when M/N → ∞. For the

normal distribution, it shows good approximation when M/N is between 0.8

and 1. For the CMPB, it can perform well when M/N ≥ 4 and similar to the

MB and the Pólya distributions. For the AB distribution, it cannot perform

as well as the MB model until M/N ≥ 4.



6. New approximations for the number of observed species 147

Table 6.2: Distance measures (×105), d2 =
1

2

∑ |p(x) − p∗(x)| and

d3 = max |p(x) − p∗(x)|, for Poisson(Ne−M/N)), Poisson(N(1 − 1/N)M),
Poisson(Var(X)), Normal, CMPB, Altham’s (MB and AB) and Pólya based

on small N and M ≤ 100 with pi =
1

N
.

d2

N M
M

N
Pois1 Pois2 Pois3 Norm CMPB MB AB Pólya

6 80 12 0.15 5548 5540 980 1004 61 24 21 8
18 80 20 0.25 5161 5139 2144 401 121 19 61 11
21 100 50 0.50 4868 4854 7182 112 95 26 268 20
24 60 48 0.80 3782 3783 9550 40 86 33 640 25
31 100 100 1.00 3095 3089 9999 35 40 27 982 43
33 50 100 2.00 1233 1248 5000 191 131 33 207 20
35 40 100 2.50 802 802 5000 380 115 14 100 31
38 37 100 2.70 617 687 5000 437 126 25 66 16
48 35 100 2.86 597 565 5000 525 112 14 46 19
51 20 60 3.00 437 575 5000 838 66 7 62 29
53 33 100 3.03 522 535 5000 704 88 10 47 19
54 30 100 3.33 350 446 5000 815 67 9 33 12
55 15 60 4.00 195 144 5000 1121 8 8 16 10
58 15 65 4.33 190 76 5000 765 4 3 3 2
60 12 60 5.00 141 16 5000 160 1 1 1 1
64 14 98 7.00 28 1 5000 98 1 1 1 1

d3

N M
M

N
Pois1 Pois2 Pois3 Norm CMPB MB AB Pólya

6 80 12 0.15 3723 3722 962 1165 52 19 16 5
18 80 20 0.25 2583 2582 1254 335 56 15 28 10
21 100 50 0.50 1168 1167 1623 41 31 11 81 12
24 60 48 0.80 976 977 1750 17 32 15 198 11
31 100 100 1.00 625 626 1280 16 15 13 217 12
33 50 100 2.00 438 447 1928 75 53 14 81 9
35 40 100 2.50 390 374 2603 231 61 6 48 16
38 37 100 2.70 329 332 2904 325 65 17 35 14
48 35 100 2.86 351 354 3057 422 68 11 31 17
51 20 60 3.00 437 449 4116 978 56 6 56 28
53 33 100 3.03 262 338 3500 397 77 7 22 17
54 30 100 3.33 313 304 3983 952 60 7 24 9
55 15 60 4.00 195 144 7792 1266 6 7 15 10
58 15 65 4.33 190 76 8403 913 3 2 3 2
60 12 60 5.00 141 16 9364 209 1 1 1 1
64 14 98 7.00 28 1 9902 98 1 1 1 1

Table 6.3 shows the performance for heterogeneous models with unequal pi for

small M,N . It shows that the MB distribution dominates when the pi is the

Zipf1 model especially 1 ≤M/N ≤ 4. For the Pólya distribution, it works well

with pi from the log-normal and broken-stick model when M/N ≤ 2.7. For

the CMPB distribution, it can approximate domination for the Zipf2 model
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Table 6.3: Distance measures (×105), d2 =
1

2

∑ |p(x) − p∗(x)| and

d3 = max |p(x) − p∗(x)|, for Poisson(Ne−M/N)), Poisson(N(1 − 1/N)M),
Poisson(Var(K)), Normal, CMPB, Altham’s (MB and AB) and Pólya based
on small N and M ≤ 100 with various unequal pi.

d2 d3

Model N M
M

N
Norm CMPB MB AB Pólya Norm CMPB MB AB Pólya

Zipf1 (pi = c/i0.5)
6 80 12 0.15 684 45 7 19 14 794 39 6 17 9
21 100 50 0.50 90 69 24 207 13 31 19 9 57 5
31 100 100 1.00 27 23 21 780 29 13 7 8 157 11
33 50 100 2.00 141 92 21 234 22 54 32 11 67 12
38 37 100 2.70 319 104 12 110 25 160 46 5 50 14
54 30 100 3.33 475 96 10 45 23 404 60 6 36 12
55 15 60 4.00 1250 25 5 29 10 1481 22 4 25 7
60 12 60 5.00 901 4 5 11 7 1051 4 5 9 6

Zipf2 (pi = c/i2)
6 80 12 0.15 375 203 266 538 349 213 122 166 334 193
21 100 50 0.50 294 102 202 856 338 116 44 80 318 125
31 100 100 1.00 252 75 178 983 319 95 29 65 281 110
33 50 100 2.00 231 95 168 799 259 93 37 62 264 96
38 37 100 2.70 211 104 162 729 224 73 30 51 229 71
54 30 100 3.33 199 119 158 651 199 94 56 71 231 86
55 15 60 4.00 159 182 162 485 152 92 90 83 233 76
60 12 60 5.00 88 210 152 348 108 45 91 80 178 57

Log-Normal
6 80 12 0.15 566 84 31 32 22 357 76 29 23 21
21 100 50 0.50 40 81 44 292 27 12 24 16 81 13
31 100 100 1.00 33 26 28 822 29 9 8 8 164 8
33 50 100 2.00 45 83 34 521 24 16 22 8 145 6
38 37 100 2.70 56 105 45 448 16 25 37 16 144 9
54 30 100 3.33 166 133 16 451 90 86 72 10 210 40
55 15 60 4.00 367 188 51 140 30 312 160 37 116 19
60 12 60 5.00 352 202 76 118 13 282 172 61 101 11

Broken-stick
6 80 12 0.15 622 93 23 30 4 432 79 18 21 3
21 100 50 0.50 48 76 42 315 25 19 23 12 81 11
31 100 100 1.00 23 26 26 947 23 8 10 10 187 9
33 50 100 2.00 37 72 38 780 19 13 30 20 221 7
38 37 100 2.70 71 99 36 416 27 36 30 13 145 16
54 30 100 3.33 98 112 24 593 72 59 49 13 229 40
55 15 60 4.00 297 29 169 701 318 198 16 76 322 173
60 12 60 5.00 292 251 63 311 105 267 215 53 164 82

Expo-decay
6 80 12 0.15 361 113 210 1768 766 329 85 142 1469 621
21 100 50 0.50 375 104 268 3222 4757 374 90 217 1501 909
31 100 100 1.00 329 93 236 3323 * 323 65 170 2190 *
33 50 100 2.00 325 94 230 3201 2428 320 65 166 2117 1071
38 37 100 2.70 319 98 225 3104 1385 315 61 161 2059 961
54 30 100 3.33 318 106 225 3003 1171 310 70 163 2005 873
55 15 60 4.00 345 170 261 2557 666 289 143 219 1374 463
60 12 60 5.00 352 221 278 2263 494 302 188 237 1200 362

Note : * is huge value.

when M/N < 4 and dominates others for all M/N when choosing pi from the

expo-decay model. There is a problem about choosing the parameters of the

Pólya distribution for the expo-decay models. The parameters are very small

and violate the conditions for a valid probability distribution, which leads to
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Table 6.4: Distance measures (×105), d2 =
1

2

∑ |p(x) − p∗(x)| and

d3 = max |p(x) − p∗(x)|, for Poisson(Ne−M/N)), Poisson(N(1 − 1/N)M),
Poisson(Var(K)), Normal, CMPB, Altham’s (MB and AB) and Pólya based

on large N and M (fixed M and N) with pi =
1

N
.

d2

N M
M

N
Pois1 Pois2 Pois3 Norm CMPB MB AB Pólya

160 500 3.12 490 483 5000 341 60 13 42 14
154 500 3.25 446 441 5000 382 63 19 45 19
150 500 3.33 404 411 5000 411 64 22 34 19
140 500 3.57 311 325 5000 503 55 18 18 20
350 1000 2.86 615 621 5000 189 46 25 76 28
300 1000 3.33 412 411 5000 294 53 19 38 18
290 1000 3.45 375 379 5000 335 46 14 35 17
280 1000 3.57 333 333 5000 375 38 16 27 18
250 1000 4.00 230 235 5000 492 46 20 23 20
500 1500 3.00 538 538 5000 187 36 30 58 32
500 1700 3.40 377 375 5000 231 47 22 29 20
500 1800 3.60 315 315 5000 296 32 24 24 25
500 1875 3.75 284 288 5000 303 43 23 27 22
1000 3800 3.80 269 272 5000 223 33 23 22 22
1000 3900 3.90 263 264 5000 239 42 31 37 31
1000 4000 4.00 236 239 5000 245 40 32 36 32
1000 4300 4.30 179 182 5000 311 30 19 20 19

d3

N M
M

N
Pois1 Pois2 Pois3 Norm CMPB MB AB Pólya

200 500 2.50 179 183 1161 41 18 9 30 8
160 500 3.12 158 159 1648 123 20 5 16 6
154 500 3.25 155 155 1761 140 24 7 15 8
150 500 3.33 154 148 1888 142 30 8 18 9
140 500 3.57 134 136 2089 226 22 6 8 7
350 1000 2.86 119 119 1007 38 11 8 18 8
300 1000 3.33 106 108 1321 74 16 7 11 7
290 1000 3.45 110 108 1424 96 12 7 14 7
280 1000 3.57 100 101 1511 106 17 5 10 6
250 1000 4.00 88 87 1969 202 22 9 8 8
500 1500 3.00 96 97 892 39 12 8 12 9
500 1700 3.40 80 81 1047 51 12 9 7 9
500 1800 3.60 74 72 1156 63 9 8 6 8
500 1875 3.75 69 74 1232 67 19 15 17 14
1000 3800 3.80 45 47 890 41 8 5 7 5
1000 3900 3.90 52 50 938 43 11 9 11 9
1000 4000 4.00 52 54 978 54 16 13 12 12
1000 4300 4.30 43 41 1129 65 7 6 4 6

a problem about huge positive and negative values of probability.

Table 6.4 summarizes the performance of approximations for large M and N

using pi = 1/N . The MB and Pólya distribution give similar results for fixed
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M and N . Their performance is better than the CMPB by a factor of two

or three. They often perform better than the Poisson and normal approxima-

tions. For example, when N = 250 and M = 1000, d2 of the MB and Pólya

equal 20 which is around 10 times smaller than the Pois1 and the Pois2 ap-

proximations (230 and 235, respectively).

Table 6.5 explores the situation for unequal pi and fixed M,N . When consid-

ering large M and N , the results are different from small M and N in Table

6.3. The MB and Pólya distribution dominate others when using the Zipf and

log-normal model; however, the MB distribution is a little bit worse than the

Pólya distribution. When M,N → ∞, the CMPB distribution using pi from

the Zipf model gives the same performance as the MB and Pólya distribution

(e.g. fixed N = 1000 and M/N ≥ 4).

Additionally, the MB distribution outperform others when using pi from the

broken-stick model. The CMPB distribution is the best approximation when

considering the Zipf2 and expo-decay model for pi. For example with the Zipf2,

when M = 250 and N = 1000, d2 = 57 for the CMPB distribution while the

normal, the MB, AB and Pólya distribution give 153, 109, 865 and 175 re-

spectively. When using the Pólya distribution with the expo-decay model, it

is found the problem about choosing parameter as well. For the MB and AB

distributions, they do not work well with the expo-decay model. Particularly,

the parameter of the AB distribution does not follow the constraint for choos-

ing parameter.
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Table 6.5: Distance measures (×105), d2 =
1

2

∑ |p(x) − p∗(x)| and

d3 = max |p(x) − p∗(x)|, for Poisson(Ne−M/N)), Poisson(N(1 − 1/N)M),
Poisson(Var(K)), Normal, CMPB, Altham’s (MB and AB) and Pólya based
on large N and M (fixed M and N) with various unequal pi.

d2 d3

Model N M
M

N
Norm CMPB MB AB Pólya Norm CMPB MB AB Pólya

Zipf1 (pi = c/i0.5)

200 500 2.50 26 42 34 259 30 7 11 9 37 8

160 500 3.12 46 48 33 196 32 11 14 11 30 10

150 500 3.33 47 45 27 175 24 12 12 8 27 7

140 500 3.57 62 42 27 163 25 16 13 9 28 7

350 1000 2.86 32 32 30 235 29 4 6 5 25 5

300 1000 3.33 33 58 47 185 43 6 10 8 26 8

280 1000 3.57 43 41 35 179 33 9 9 8 24 7

250 1000 4.00 50 37 28 157 27 10 9 7 23 6

500 1500 3.00 38 40 38 231 38 9 8 8 25 8

500 1700 3.40 36 48 44 184 42 5 7 6 16 5

500 1800 3.60 40 41 36 188 35 6 9 8 21 8

500 1875 3.75 46 40 39 165 39 9 6 6 18 7

1000 3800 3.80 37 43 40 176 39 4 6 5 14 5

1000 3900 3.90 46 48 47 173 46 5 7 6 14 6

1000 4000 4.00 50 46 46 175 46 6 6 6 15 6

1000 4300 4.30 44 40 40 154 40 5 4 4 12 4

Zipf2 (pi = c/i2)

200 500 2.50 179 64 128 888 211 37 14 27 187 45

160 500 3.12 166 57 115 861 191 45 19 33 173 49

150 500 3.33 160 57 111 837 184 41 16 28 177 44

140 500 3.57 182 75 132 822 202 41 18 28 179 44

350 1000 2.86 146 45 100 900 177 29 11 19 150 33

300 1000 3.33 147 45 102 881 175 29 13 22 154 33

280 1000 3.57 137 42 95 875 163 23 9 15 148 27

250 1000 4.00 153 57 109 865 175 33 14 24 150 37

500 1500 3.00 140 52 100 916 169 32 15 24 133 36

500 1700 3.40 132 45 91 914 160 23 12 17 134 28

500 1800 3.60 121 37 82 907 147 23 8 16 134 26

500 1875 3.75 130 46 92 905 155 21 9 15 126 24

1000 3800 3.80 110 34 5000 932 136 18 10 698 109 20

1000 3900 3.90 116 44 5000 941 141 19 11 693 110 22

1000 4000 4.00 108 36 5000 929 132 15 6 689 109 18

1000 4300 4.30 112 40 5000 925 136 17 8 682 110 21

Log-Normal

200 500 2.50 34 53 30 402 26 8 15 11 59 9

160 500 3.12 46 62 36 351 28 18 12 10 66 13

150 500 3.33 65 70 30 335 29 16 19 13 71 10

140 500 3.57 75 77 29 357 27 19 20 8 69 8

350 1000 2.86 49 44 35 350 36 10 9 7 42 7

300 1000 3.33 38 54 34 350 32 10 10 7 47 6

280 1000 3.57 66 42 31 291 35 12 10 5 45 7

250 1000 4.00 81 41 21 271 31 15 8 4 40 6

500 1500 3.00 41 36 29 342 30 7 6 4 36 5

500 1700 3.40 52 46 38 302 38 10 9 7 35 7

500 1800 3.60 51 55 41 338 39 9 13 11 39 10

500 1875 3.75 41 42 27 319 25 7 7 4 35 4

1000 3800 3.80 51 41 39 297 41 8 6 5 24 6

1000 3900 3.90 45 51 40 261 39 7 7 6 24 5

1000 4000 4.00 44 41 37 291 37 6 6 5 23 5

1000 4300 4.30 46 38 35 328 38 8 6 5 29 6
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d2 d3

Model N M
M

N
Norm CMPB MB AB Pólya Norm CMPB MB AB Pólya

Broken-stick

200 500 2.50 36 51 32 622 33 8 13 9 96 7

160 500 3.12 45 48 30 629 44 14 18 12 115 13

150 500 3.33 29 62 26 705 31 8 13 7 132 9

140 500 3.57 72 46 32 713 80 26 17 12 149 26

350 1000 2.86 42 38 28 613 39 9 9 6 76 9

300 1000 3.33 37 36 26 686 39 8 8 5 95 8

280 1000 3.57 36 41 23 691 38 10 12 8 101 9

250 1000 4.00 34 58 35 695 35 11 12 7 102 11

500 1500 3.00 43 42 38 618 42 9 10 7 62 8

500 1700 3.40 46 39 38 725 49 10 6 7 77 10

500 1800 3.60 52 41 38 586 48 12 8 10 63 11

500 1875 3.75 48 33 28 536 41 9 6 6 62 8

1000 3800 3.80 49 47 45 572 47 7 7 5 47 7

1000 3900 3.90 46 39 38 627 45 6 7 7 50 6

1000 4000 4.00 43 45 40 616 42 5 7 6 49 5

1000 4300 4.30 39 50 40 536 37 5 5 4 43 5

500 1500 3.00 389 222 5000 5659 * 389 177 4441 2581 *

500 1700 3.40 390 252 5000 5609 * 338 207 4787 2921 *

500 1800 3.60 390 249 5000 5559 * 297 204 4939 3071 *

500 1875 3.75 391 244 5000 5514 * 265 197 5043 3175 *

1000 3800 3.80 487 115 5000 5560 * 487 94 5499 3665 *

1000 3900 3.90 503 134 5000 5607 * 503 115 5477 3645 *

1000 4000 4.00 511 138 5000 5659 * 511 121 5445 3616 *

1000 4300 4.30 498 144 5000 5769 * 498 129 5307 3485 *

Expo-decay

200 500 2.50 365 147 5000 3926 * 239 123 4569 2361 *

160 500 3.12 355 153 279 3901 * 245 130 229 2335 *

150 500 3.33 349 138 263 3890 * 231 116 215 2340 *

140 500 3.57 358 147 272 3892 * 241 127 225 2335 *

350 1000 2.86 346 134 5000 4399 * 344 112 4129 2053 *

300 1000 3.33 352 137 5000 4397 * 351 116 4137 2057 *

280 1000 3.57 349 137 5000 4393 * 349 116 4134 2053 *

250 1000 4.00 348 130 5000 4392 * 346 109 4131 2047 *

500 1500 3.00 353 160 5000 4261 * 187 133 4671 2617 *

500 1700 3.40 354 140 5000 4286 * 247 111 4758 2713 *

500 1800 3.60 361 138 5000 4280 * 282 107 4765 2726 *

500 1875 3.75 344 131 5000 4264 * 293 96 4745 2711 *

1000 3800 3.80 357 167 5000 4512 * 222 142 4597 2657 *

1000 3900 3.90 360 172 5000 4529 * 211 144 4630 2691 *

1000 4000 4.00 366 166 5000 4539 * 188 133 4673 2734 *

1000 4300 4.30 361 172 5000 4565 * 198 141 4717 2781 *

Note : * is huge value.

Table 6.6 shows the results of approximations for very small and very large

value of M/N , it is indicated that the MB and Pólya distribution still domi-

nate others and give similar performance. When addressing very large values

ofM/N for equal pi, in Table 6.6, the distance measuring give the same results

for all approximations (e.g. M/N = 20, d2 = d3 = 0) except the Pois3 distri-

bution which can work when M/N → 0. On the other hand, for very small
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Table 6.6: Distance measures (×105), d2 =
1

2

∑ |p(x) − p∗(x)| and

d3 = max |p(x) − p∗(x)|, for Poisson(Ne−M/N)), Poisson(N(1 − 1/N)M),
Poisson(Var(K)), Normal, CMPB, Altham’s (MB and AB) and Pólya based

on very small and very large
M

N
with pi =

1

N
.

d2

N M
M

N
Pois1 Pois2 Pois3 Norm CMPB MB AB Pólya

50 1500 30.00 0 0 0 0 0 246663
50 1000 20.00 0 0 5000 0 0 0 0 0
50 500 10.00 3 0 5000 20 0 0 0 0
50 400 8.00 12 1 5000 154 1 1 1 1
50 300 6.00 59 11 5000 412 6 5 5 5
400 50 0.12 6140 6135 1250 505 73 20 18 15
1000 50 0.05 6600 6599 363 897 24 10 15 12
2000 50 0.02 6483 6483 159 1476 14 8 7 8
5000 50 0.01 6121 6121 40 1349 3 2 2 2
1000 100 0.10 6418 6415 1216 467 43 13 15 12
2000 100 0.05 6826 6825 454 637 33 10 8 9
5000 100 0.02 6825 6825 146 1048 9 4 5 4
10000 100 0.01 6542 6542 60 1563 7 5 5 5

d3

N M
M

N
Pois1 Pois2 Pois3 Norm CMPB MB AB Pólya

50 1500 30.00 0 0 0 0 0 117762
50 1000 20.00 0 0 10000 0 0 0 0 0
50 500 10.00 3 0 9980 20 0 0 0 0
50 400 8.00 12 1 9846 154 1 1 1 1
50 300 6.00 59 11 8894 526 5 5 5 5
400 50 0.12 2217 2217 626 256 39 9 7 6
1000 50 0.05 3581 3581 359 881 19 7 8 7
2000 50 0.02 5310 5310 153 1701 11 8 7 8
5000 50 0.01 7763 7763 40 1480 3 2 2 2
1000 100 0.10 1780 1780 448 186 19 5 6 4
2000 100 0.05 2569 2569 235 419 15 5 5 5
5000 100 0.02 3674 3674 144 1235 6 3 3 3
10000 100 0.01 6050 6050 55 1825 5 5 5 5

M/N , it is clear that the Pois1 and Pois2 are not appropriate to approximate

the exact probability. They give the same results (e.g. when N = 10000 and

M = 100, d2 = 6542) while the MB and Pólya distribution are very accurate

(e.g. when N = 10000 and M = 100, d2 = 5).

For unequal pi in Table 6.7, the MB and Pólya distributions outperform others

and their performance is quite similar. For example with the Zipf model, when

N = 2000 andM = 50, the MB and Pólya distribution give the best value with
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Table 6.7: Distance measures (×105), d2 =
1

2

∑ |p(x) − p∗(x)| and

d3 = max |p(x) − p∗(x)|, for Poisson(Ne−M/N)), Poisson(N(1 − 1/N)M),
Poisson(Var(K)), Normal, CMPB, Altham’s (MB and AB) and Pólya based

on very small and very large
M

N
with various unequal pi.

d2 d3

Model N M
M

N
Norm CMPB MB AB Pólya Norm CMPB MB AB Pólya

Zipf1 (pi = c/i0.5)
50 1500 30.00 79 1 1 1 1 79 1 1 1 1
50 1000 20.00 238 3 3 3 3 335 3 3 3 3
50 500 10.00 861 43 8 11 7 593 40 6 8 4
50 400 8.00 540 64 13 14 10 333 31 9 6 8
50 300 6.00 371 80 19 51 12 160 32 8 26 8
400 50 0.12 41 72 57 72 54 18 21 18 20 17
1000 50 0.05 106 70 62 59 61 30 20 18 18 18
2000 50 0.02 141 71 68 68 68 36 23 23 23 23
5000 50 0.01 203 61 67 67 67 51 19 21 21 21
1000 100 0.10 36 56 48 59 46 8 13 13 19 12
2000 100 0.05 48 52 45 47 44 14 11 10 11 10
5000 100 0.02 89 36 32 33 32 19 8 8 8 8
10000 100 0.01 105 43 42 42 42 20 14 14 14 14

Zipf2 (pi = c/i2)
50 1500 30.00 52 102 59 221 40 20 29 21 60 16
50 1000 20.00 36 110 81 336 62 14 31 23 95 18
50 500 10.00 106 102 104 503 105 34 31 33 128 32
50 400 8.00 137 109 120 554 131 42 34 38 145 40
50 300 6.00 148 99 125 609 147 50 31 39 163 46
400 50 0.12 287 96 196 799 318 119 39 74 294 122
1000 50 0.05 301 102 203 780 329 125 40 80 286 128
2000 50 0.02 295 97 198 784 323 123 39 79 287 126
5000 50 0.01 303 104 206 790 330 124 39 80 291 126
1000 100 0.10 273 87 187 868 315 87 32 62 260 93
2000 100 0.05 272 91 186 856 312 94 33 63 247 102
5000 100 0.02 257 71 171 836 297 81 24 53 251 91
10000 100 0.01 273 90 187 843 313 90 28 58 255 98

Log-Normal
50 1500 30.00 1310 9 5 5 4 1444 8 5 5 3
50 1000 20.00 812 34 49 193 117 946 31 43 170 103
50 500 10.00 753 93 10 49 15 628 82 8 21 12
50 400 8.00 395 124 27 74 15 228 61 19 38 8
50 300 6.00 251 135 36 146 10 109 54 14 57 3
400 50 0.12 350 47 22 22 21 128 19 10 8 9
1000 50 0.05 555 39 22 23 21 298 29 18 18 18
2000 50 0.02 909 12 12 12 12 561 6 7 7 7
5000 50 0.01 1504 15 16 16 16 1704 14 16 16 16
1000 100 0.10 291 32 19 20 18 73 13 8 8 7
2000 100 0.05 431 17 17 17 17 129 7 7 7 7
5000 100 0.02 662 21 22 22 22 397 15 15 15 15
10000 100 0.01 1012 9 11 11 11 863 9 8 8 8

Broken-stick
50 1500 30.00 381 190 241 989 602 264 112 158 423 360
50 1000 20.00 415 131 108 374 286 318 118 59 311 137
50 500 10.00 183 182 24 684 189 98 116 13 344 85
50 400 8.00 309 151 14 311 121 200 104 8 176 59
50 300 6.00 170 43 79 963 255 86 22 42 353 109
400 50 0.12 369 53 19 35 19 135 25 6 13 8
1000 50 0.05 606 47 18 17 16 438 21 10 10 9
2000 50 0.02 932 10 15 16 16 951 9 12 14 13
5000 50 0.01 1568 6 4 5 4 1806 6 4 4 4
1000 100 0.10 314 49 26 28 26 95 17 10 12 10
2000 100 0.05 488 30 14 11 14 197 12 5 4 5
5000 100 0.02 768 20 7 6 7 510 12 5 4 5
10000 100 0.01 1061 10 11 11 11 1245 7 9 9 9
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d2 d3

Model N M
M

N
Norm CMPB MB AB Pólya Norm CMPB MB AB Pólya

Expo-decay

50 1500 30.00 354 173 258 3846 2192 178 140 203 2458 966

50 1000 20.00 365 163 262 4153 3283 363 138 216 1935 880

50 500 10.00 361 160 269 3709 3249 238 136 222 2232 885

50 400 8.00 329 136 250 3902 4093 327 115 214 1786 854

50 300 6.00 355 123 241 3694 2980 351 92 188 2180 977

400 50 0.12 365 88 251 3228 4748 364 74 205 1490 899

1000 50 0.05 364 83 247 3230 4748 362 70 204 1489 897

2000 50 0.02 363 91 249 3220 4746 360 78 205 1487 896

5000 50 0.01 356 86 243 3220 4739 355 73 200 1482 891

1000 100 0.10 327 88 231 3326 * 323 64 168 2190 *

5000 100 0.02 325 89 225 3326 * 316 67 161 2183 *

10000 100 0.01 329 96 235 3318 * 318 71 171 2185 *

Note : * is huge value.

d2 = 68 which is about half the value from the normal distribution, d2 = 141.

Additionally, the MB and Pólya distribution seem to perform very well with

the log-normal and broken-stick model and very small M/N . For the CMPB

distribution, it still works very well with Zipf2 the same as Table 6.3 and Table

6.5, in particular, when M/N < 0.12 and 6 ≤ M/N ≤ 10. It dominates for

both very small and very large M/N with the expo-decay model. It gives the

best results when compared with the MB distribution by a factor of about two

and the normal distribution around four (e.g. when N = 1000 and M = 50).

The AB and Pólya distributions are not appropriate to approximate when

using pi from the expo-decay model for this situation either.

6.7 Conclusion

Considering the classical problem, the performance of the Poisson and the nor-

mal approximations in this study agree with the results of Williamson (2012).

Poisson(Ne−M/N) and Poisson(N(1− 1/N)M) work well for large M/N while

Poisson(Var(K)) is appropriate for M/N → 0. For the normal distribution, it

can approximate well for small M/N not greater than 2. The value of M/N

is the key factor which affects to the performance of approximations.
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For the new approximations, they can approximate well and are suitable for

different models of pi. Most of them outperform the Poisson and the normal

approximations. The Pólya and Altham’s multiplicative distribution give a

good approximation when selecting pi from the Zipf1, log-normal and broken-

stick model. They can approximate similarly, in particular, using large M,N

and pi from the Zipf1 and broken-stick model.

For the COM-Poisson-Binomial distribution, it can work well with the Zipf2

and expo-decay model for both small and large M/N . For the Altham’s addi-

tive distribution, it cannot approximate as well as the Altham’s multiplicative

and the Pólya distribution because the parameters do not follow the condition

in equation (6.20).

There is a potential computational problem for the COM-Poisson-binomial

and the Altham’s multiplicative distribution, but it can be resolved using log-

arithmic transformation. The Pólya distribution is quite easy for selecting the

parameters because there is the formulae for estimating parameters. How-

ever, the parameter θ might be smaller than the lower limit given by equation

(6.23) in some situations. Particularly, for the expo-decay model, Altham’s

multiplicative and additive and Pólya distribution are not appropriate for ap-

proximation to the occupancy distribution.



Chapter 7

Estimating the number of

unseen species using

approximations to the

distribution of seen species

7.1 Introduction

In this Chapter, species richness is estimated using an approximation to the

distribution of K, based on the work of the previous chapter Hidaka (2014),

developed a method of estimating species richness based on an approximation

to the distribution of K, and used this method to estimate the number of

distinct words in the novel “Alice’s Adventures in Wonderland”. The distribu-

tion of occupied urns is considered as the exact distribution of the number of

distinct words. As a result of intractable computation for the exact distribu-

tion, the asymptotic distribution, which is shown to be the Poisson binomial

(PB) distribution, is proposed for approximation. For inference, a maximum

pseudo-likelihood estimation (MPLE) method is developed to estimate the un-

known population size. Data are separated into many subsets which are used
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to construct the pseudo-likelihood function.

Hidaka’s parametric method, including the pseudo-likelihood function and

evaluation of the distribution of seen species, is presented in Section 7.1. Al-

tham’s multiplicative binomial (MB) distribution is considered as an alterna-

tive to approximate the distribution of K in Section 7.2. Section 7.3 presents

a least squares method for estimating the number of species.Subsets of the

data can be constructed using many schemes, some of which are described

in Section 7.4. Measuring the accuracy of the maximum likelihood approach

is presented in Section 7.5. In a simulation study, the performance of max-

imum likelihood (MLE), maximum pseudo-likelihood (MPLE), least squares

(LS) and some nonparametric estimators are compared in Section 7.6. Finally,

the results are summarised in Section 7.7.

7.2 Hidaka’s parametric method

Let N denote the total number of species in the population and K denote

the number of distinct species in a sample of M individuals. Hidaka (2014)

proposed the MPLE approach to estimating N in his study. The pseudo-

likelihood was developed originally by Besag (1975). In Hidaka’s method,

the pseudo likelihood function is constructed using m data sets D1, . . . , Dm

which are generated from the original data. Each data set Dr contains Mr

individuals from Kr distinct species. The product of the probability function

of the random variables Ki used to construct the pseudo-likelihood function

L(N |θ) =
m∏

r=1

P(Kr|Mr, N,θ). (7.1)

where θ is a vector of parameters describing the distribution of relative abun-

dances, m is the number of data sets and m ≤M . This is a pseudo-likelihood
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rather than a true likelihood because the data sets D1, . . . , Dm are typically

not independent even though they are treated as if they were independent.

In this Chapter, we focus on the case where all species have the same relative

abundance (the classical occupancy model) because in this case the results can

be compared with maximum likelihood estimation.

Then, the pseudo log-likelihood function is given by

ℓ(N,θ) =
m∑

r=1

log P(Kr|Mr, N,θ), (7.2)

Finally, the unknown parameters N and θ can be estimated by maximizing

equation (7.2).

An additional complication in evaluating the pseudo-likelihood is that the ex-

act probabilities P(Kr|Mr, N,θ) are generally intractable and are replaced

instead by an approximation. Hidaka (2014) uses a Poisson binomial approxi-

mation for the exact distribution, but there are other possibilities, as discussed

later.

7.2.1 Evaluation of P(Kr|Mr, N,θ)

Poisson-binomial approximation

This is the approximation used by Hidaka (2014). Assume that there are m

independent Bernoulli trials with probability of successes p1, p2, . . . , pm and

0 ≤ pr ≤ 1 (r = 1, . . . ,m). For independent but not identical Bernoulli trials,

where pr for each trial is non equivalent, the Poisson-binomial distribution is

the distribution of the number of successes in m trials (Wang, 1993). When

the sample size M tends to infinity, the exact probability distribution of the
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number of observed species, K, tends to the Poisson-binomial distribution

which is given by (Hidaka, 2014)

Q(K|M,N) =
∑

s⊆N̄ :|s|=K

∏

r∈s

qM,r

∏

j∈N̄\s

(1− qM,j) (7.3)

where sr = {1, . . . , N} \ {r}, the set of all species apart from species r and

qM,r = 1− (1− pr)
M . The approximate pseudo-likelihood function based on

the Poisson-binomial distribution is

LPB(N |θ) =
m∏

r=1

Q(Kr|Mr, N,θ), (7.4)

and the corresponding approximate log pseudo-likelihood function is

ℓPB(N,θ) =
m∑

r=1

log {Q(Kr|Mr, N,θ)} . (7.5)

The parameters θ andN are estimated by maximizing the pseudo log-likelihood

function.

Direct computation of the Poisson-binomial probabilities form equation (7.3) is

not simple. However, Hong (2014) has developed a package in R called poibin

which provides the probability function for the Poisson-binomial distribution.

Altham’s multiplicative binomial approximation

As discussed in the previous Chapter, Altham’s multiplicative binomial dis-

tribution (Altham, 1978) is a two-parameter generalization of the binomial

distribution with probability mass function

Pr∗MB(K = x|M,N) =

(
n

x

)
px(1− p)n−x φx(n−x)

n∑
x=0

(
n

x

)
px(1− p)n−x φx(n−x)

, x = 0, 1, . . . , n

(7.6)
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where n = min(M,N), p ∈ (0, 1) and φ > 0.

To use this distribution as an approximation to the distribution of K, we

choose the parameters of the Altham’s multiplicative-binomial distribution, p

and φ, so that the mean and variance of the Altham’s multiplicative-binomial

distribution equal the exact mean and variance of K. Then, the approximate

pseudo-likelihood function is given by

LMB(N |θ) =
m∏

r=1

PrMB(Kr|Mr, N,θ). (7.7)

and the pseudo log-likelihood is

ℓMB(N |θ) =
m∑

r=1

log {PrMB(Kr|Mr, N,θ)} . (7.8)

where Kr and Mr are the number of distinct species and the number of indi-

viduals in data set Dr.

7.2.2 Construction of the data sets D1, . . . , Dm

There are many possible schemes for constructing the data setsDr (r = 1, 2, . . . ,m)

including overlapping and non-overlapping. For non-overlapping, each data set

is separate and independent as follows:

• Non-overlapping 1 (Non1): The data are separated into m data sets

with equal number of individuals following a sequence of sampling, for

example with m = 10 for M = 100 and m = 20 for M = 1000.

• Non-overlapping 2 (Non2):The data are separated into 4 data sets with

sizes in the proportion 1:2:3:4. For example with sample size M = 100,

the data sets consist of the sample S1:10, S11:30, S31:60 and S61:100.

• Non-overlapping 3 (Non3): The data are separated into 5 data sets with
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sizes in the proportion 1:1:2:3:3. For example with sample M = 100, the

data sets consist the sample S1:10, S11:20, S21:40, S41:70 and S71:100.

• Overlapping : Hidaka (2014) created the data sets Dr that overlap by

selecting the first [M/m]×r individuals in sample, where m ≤M and m

is the number of data sets. For example, m = 10 andM = 100, there are

10 data sets, D1, . . . , D10 constructed using Hidaka (2014) scheme. The

data sets are constructed by adding 10 new samples in sequence. Then,

the data sets consists the sample S1:10, S1:20, . . . , and S1:100.

7.3 Least squares estimator (LS)

Least squares (LS) estimation is used to estimate unknown parameters by

minimizing a sum of squares between observation and expectation. The LS is

a common method for fitting the models to data. It is usually a simpler method

computationally than the MLE method. While the MLE method requires the

probability function for the likelihood function, the LS method requires only

the mean for estimating the unknown parameter θ by minimizing the residual

sum of squares (Morgan, 2008, p.130)

RSS =
m∑

r=1

(Kr − E(Kr|M,N, θ))2 ,

whereKr is the number of distinct species with the expected value E(Kr|M,N, θ)

andMr is the number of individuals in data set Dr ( r = 1, . . . ,m). To simplify

notation, we replace E(Kr|M,N, θ) by E(Kr), so that the LS criterion is given

by

min

[
m∑

r=1

(Kr − E(Kr))
2

]
(7.9)

where E(Kr) =
m∑
r=1

(
1− (1− pr)

Mr
)
, pr is the relative abundance describing

the probability of species r being collected (e.g. pr follows the Zipf distribution
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with parameters α and N , pr ∝ r−α).

When the data sets Dr are an increasing sequence of subsets, an alternative

approach is to consider the number of new distinct species observed for each

data set Dr which is denoted as K
′

r with the expectation E(K
′

r), then the

minimum residual sum of squares is given by

min

[
m∑

r=1

(
K

′

r − E(K
′

r)
)2
]

(7.10)

where K
′

r = Kr −Kr−1 and

E(K
′

r) =
∑m

r=1

(
1− (1− pr)

Mr
)
−∑m

r=1

(
1− (1− pr)

Mr−Mr−1

)
.

7.4 Measuring the accuracy of the MLE

Although the MLE method is more a complicated approach to estimate the

unknown parameter, it is a preferred method that gives an efficient estimator.

The performance of the estimator of MLE depends on the Fisher information

which measures the amount information of observed data used to estimate the

unknown parameter θ.

7.4.1 Likelihood function of species sampling

Consider an infinite population consisting of a finite number of species, N , and

where a randomly chosen individual is equally likely to belong to any of the N

species. The likelihood function for estimating the number of different species

from a random sample of M individuals is given by




M !
K∏
i=1

ci!
M∏
j=1

fj!




[
N !

(N −K)!

(
1

N

)M
]
, (7.11)
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where K is the number of distinct species in the sample, ci is the number

of individuals in species i and fj is the number of species appearing j times

(Lewontin and Prout, 1956). The likelihood function is therefore

L(N) ∝ N !

(N −K)!

(
1

N

)M

=
K−1∏
i=0

(N − i)×
(

1

N

)M

.

and, ignoring a constant term that does not depend on N , the log-likelihood

function is

ℓ(N) = −M log(N) +
K−1∑

i=0

log(N − i) (7.12)

Differentiating with respect to N gives

∂ℓ

∂N
=

−M
N

+
K−1∑

i=0

1

N − i

and therefore the maximum likelihood estimator of N satisfies

M

N̂
=

K−1∑

i=0

1

N̂ − i
,

(Lewontin and Prout, 1956).

Letting j = N̂ − i, this expression can equivalently be written as

M

N̂
=

N̂∑

j=N̂−K+1

1

j
. (7.13)

7.4.2 Fisher information

The Fisher information is given by

−E

[
∂2ℓ

∂N2

]
= E

[
−M

N2
+

N∑

j=N−K+1

1

j2

]
. (7.14)



7. Estimating the number of unseen species using approximations to
the distribution of seen species 165

which can be simplified using the approximation
N∑

j=N−K+1

1

j2
∼= K

N(N −K + 1)
.

Assume that U is the number of unseen species, U = N −K. If M,N → ∞

and Ne−M/N → λ, the distribution of the number of unseen species converges

to the Poisson (Johnson and Kotz, 1977), so that

P (U = u) ≃ e−λλu

u!
(7.15)

Based on this approximation

E(U) = λ = Ne−M/N (7.16)

and

E(K) = N − E(u) = N(1− e−M/N). (7.17)

Assuming that at least one species is collected, the probability distribution of

U is given by

f(u) =
P (u)

1− P (u = N)

Then, the Fisher information becomes

−E

[
∂2ℓ

∂N2

]
∼= −M

N2
+ E

[
N − u

N(u+ 1)

]

= −M

N2
+

N−1∑
u=0

[
N − u

N(u+ 1)

]
× f(u)

= −M

N2
+

N−1∑
u=0

[
N − u

N(u+ 1)

]
× e−λλu

u!
×
[

1

1− P (u = N)

]
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Letting x = u+ 1, then

−E

[
∂2ℓ

∂N2

]
= −M

N2
+

N∑
x=1

[
N − x+ 1

Nx

]
× e−λλx−1

(x− 1)!
×
[

1

1− P (x− 1 = N)

]

= −M

N2
+

1

λN

N∑
x=1

(N − x+ 1)× e−λλx

(x)!
×
[

1

1− P (x = N + 1)

]

= −M

N2
+

1

λN
E(N − x+ 1)

From equation (7.17), when letting K = N − x+ 1, then

−E

[
∂2ℓ

∂N2

]
= −M

N2
+

1

λN
(N −Ne−M/N)

= −M

N2
+

1− e−M/N

Ne−M/N

=
1

N

[
eM/N −

(
1 +

M

N

)]

which is the information for all observed data depending on the unknown pa-

rameter N .

When considering the observed data from data set Dr, the pseudo-likelihood

function is used to approximate the exact one. The product of the probability

functions for all Kr from data set Dr is used to construct the pseudo-likelihood

function. There are many possible schemes both non-overlapping and overlap-

ping for generating the data sets Dr. When comparing the information for all

observed data and the data sets Dr, the split data contain less information.
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To illustrate this, suppose that the observed data is divided into two non-

overlapping sets with the same number of individuals, Mr = M/2. Let y =

eM/2N . Then, since y > 1

(y − 1)2 > 0

y2 − 2y + 1 > 0

2(y − 1) < y2 − 1

2(eM/2N − 1) < eM/N − 1

2

N

[
eM/2N −

(
1 +

M

2N

)]
<

1

N

[
eM/N −

(
1 +

M

N

)]

2∑
i=1

IMr
< IM

Therefore, for the homogeneous abundance model, the likelihood based on the

full data set gives more information for estimating the number of species, N ,

than splitting the data into two non-overlapping subsets.

It is concluded that, the performance of the MLE estimator based on the

full likelihood function is better than the pseudo-likelihood function. The

exact probability function of K in equation (6.1) is intractable to compute in

general, but the likelihood function for the homogeneous model is not difficult

to construct as shown in Section 7.5. The pseudo-likelihood function is an

alternative way. Although the homogeneous case is not used in practice, we

investigate it for comparing the performance of the MLE and MPLE methods.

For heterogeneous models, the likelihood cannot be computed and only the

MPLE method is available. However, heterogeneous models are not explored

in the thesis.
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7.5 Simulation study

In this section, the performance of different approaches to estimate N is ex-

plored. The simulated data for small and large N are generated using N = 100

andN = 1000. The accuracy of the estimators is measured using the root mean

square error (RMSE) and bias. The conditions in the simulation study are as

follows:

1. M individuals are collected with replacement randomly with pr = 1/N

from the population for N = 100 with M = 100, 200, N = 250 with

M = 250, 500 and N = 500 with M = 500, 1000. All situations are

repeated for 100 simulations.

2. From the sample size M , the data sets D1, . . . , Dn are generated us-

ing nonoverlapping and overlapping schemes as described in Section 7.4.

This gives n pairs of (Kr,Mr), the number of distinct species and the

number of individuals for data set Dr, which are used for the MLE and

the MLPE approach.

3. From data setD1, . . . , Dn, we consider another pattern for (Kr,Mr). The

number of new distinct species for each data set are counted,Knew1, . . . , Knewn
,

and are resampled themselves 1000 times. This gives 1000 new values of

Knewi
and used for the LS approach.

4. Nonparametric estimators are used to estimateN including Chao1, iChao1,

Good-Turing (GT), Horvitz-Thompson (HT) estimators, as shown in

Chapter 2. Parametric estimators including the MLE and MPLE are

used based on the Poisson-Binomial (MLEpb and MPLEpb) and Altham’s

multiplicative (MLEal) distribution. The least squares estimator (LS) is

another parametric approach used for estimating N .

5. The performance of all estimators are compared using the RMSE=

√
E(N̂ −N)2

and the bias =E(N̂)−N .
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We have generated the data to represent the profile likelihood of overlap-

ping and non-overlapping compared with the exact one. Data sets Dr (r =

1, . . . , 100) are generated using N = 100,M = 100 to represent a small sample

and N = 1000,M = 1000 to represent large sample, based on the homogeneous

model.

Figure 7.1 shows the log-likelihood of various probability distributions for

N = 100 and M = 100. The results indicate that the full log-likelihood

using the Altham’s multiplicative-binomial approximation (AT) provides the

results similar to the true log-likelihood. For PB, the full log-likelihood is a

little worse when compared with the true likelihood. When using the pseudo

log-likelihood, the AT-pseudo and PB-pseudo have less accuracy than the AT

with a narrow confidence interval compared to the true log-likelihood. When

comparing log-likelihood using the Poisson-binomial approximation with over-

lapping (PB-Hidaka) and non-overlapping (PB-Non1, PB-Non2 and PB-Non3)

scheme, the nonoverlapping schemes give a flat likelihood function.

When considering large N and M , the log-likelihood curves show the similar

results to small N and M (Figure 7.2). The Altham’s multiplicative-binomial

distribution has the log-likelihood very close to the true likelihood and out-

performs other approaches. For the Poisson-binomial approximation, the log-

likelihood curve is not smooth for some values of N for both the full and pseudo

log-likelihoods.

We found the local optimization problem in some simulations. The SANN

method is considered for handling the local optimization, but there are a few

simulations that do not converge.

Table 7.1 shows the number of times that convergence was achieved in opti-
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Figure 7.1: Plot of log-likelihood for N = 100,M = 100 using the Exact,
Altham’s, PB, PB with overlapping (PB-Hidaka) and PB with nonoverlapping
data (PB-Non1,PB-Non2 and PB-Non3) distribution based on abundance data
following the homogeneous model.



7. Estimating the number of unseen species using approximations to
the distribution of seen species 171

800 1000 1200 1400 1600

−
80

0
−

60
0

−
40

0
−

20
0

0

N = 1000  , M= 1000

N

lo
g−

lik
el

ih
oo

d

True
AT
AT−pseudo
PB
PB−pseudo
PB−pseudo−Non1
PB−pseudo−Non2
PB−pseudo−Non3

(a) Plot of log-likelihood

800 1000 1200 1400 1600

−
5

−
4

−
3

−
2

−
1

0

N = 1000  , M= 1000

N

lo
g−

lik
el

ih
oo

d

(b) Close ups of the Figure 7.2(a)

Figure 7.2: Plot of log-likelihood for N = 1000,M = 1000 using the Exact,
Altham’s, PB, PB with overlapping (PB-Hidaka) and PB with nonoverlapping
data (PB-Non1,PB-Non2 and PB-Non3) distribution based on abundance data
following the homogeneous model.
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Table 7.1: Number of times that convergence was achieved of optimization us-
ing various estimators based on the abundance data following the homogeneous
model with repeated 100 times.

N M a MLEpb MPLEpb MLEal LS

100 100 0.0 100 100 100 99

100 150 0.0 100 100 100 100

100 200 0.0 100 100 100 100

250 250 0.0 100 100 100 100

250 500 0.0 100 100 100 100

500 500 0.0 100 100 100 99

500 1000 0.0 100 99 100 100

mization for 100 simulations. The MLE approach with the MPEpb and MLEal

estimator achieved convergence for all situations. There is one case of non-

convergence for the MPLEpb (N = 500,M = 1000) and two cases for the LS

approach (N = 100,M = 100 and N = 500,M = 500).

The performance of various estimators are compared in Table 7.2. The re-

sults indicate that the GT estimator performs well for N = M with small-

est RMSE. The performance of the MLEpb and MLEal are similar and per-

form well for M/N = 2 (i.g. N = 100,M = 200, N = 250,M = 500 and

N = 500,M = 1000). Both estimators are slightly better than the MLPEpb.

However, The MLPEpb does not work well for large N (i.e. N = 500). The

Chao1 estimator cannot outperform the MLEpb and MLEal estimator. The

iChao1 and LS estimator approximate poorly when compared with other esti-

mators especially when N = M . For example with N = 500 and M = 1000,

the MLEpb and MLEal estimators perform the best and yield similar RMSE as

9.10, While Chao1 estimator has RMSE as 17.80.

When looking at the bias, the HT, MLEpb and MLEal estimators give a negative

bias in some situations as shown in Table 7.2. The bias of the LS estimator is

large for all situation (Figure 7.3-7.8).
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Table 7.2: BIAS and RMSE of N̂ using the Chao1, iChao1, Good-Turing(GT),
Horviz-Tompson(HT), MLE with the PB and Altham distribution (MLEpb and
MLEal, MPLE with the PB (MLPEpb) and LS estimator with 100 simulations
for N = 100, 250 and 500.

N M Chao1 iChao1 GT HT MLEpb MLPEpb MLEal LS

BIAS(N̂)

100 100 2.62 6.49 -0.61 -12.91 -3.64 -4.33 -1.46 9.38

100 200 1.06 2.43 13.81 7.70 -0.94 -0.48 -0.36 2.91

250 250 6.73 18.07 2.06 -29.19 0.16 0.61 2.69 31.69

250 500 0.45 2.90 33.81 18.92 -1.02 0.38 -0.60 4.54

500 500 7.59 24.04 1.70 -59.98 -0.75 5.31 1.53 37.89

500 1000 3.66 9.14 70.12 39.66 0.41 6.27 1.18 9.58

RMSE(N̂)

100 100 18.00 22.00 7.80 14.10 12.50 12.90 12.40 31.90

100 200 6.90 8.40 15.00 8.80 4.50 4.70 4.20 10.00

250 250 27.00 37.70 12.30 30.50 18.40 20.50 19.20 91.10

250 500 9.20 11.30 35.00 20.30 7.80 8.90 8.00 12.10

500 500 38.00 54.00 18.80 61.50 28.30 39.40 28.40 89.50

500 1000 17.80 24.40 71.40 40.70 9.10 23.30 9.10 19.30

7.6 Conclusion

The exact distribution of the number of seen species is complicated. Altham’s

multiplicative-binomial distribution is an alternative approximation to the dis-

tribution of number of seen species. Particularly, when N < M , MLE estima-

tor with Altham’s multiplicative-binomial distribution can approximate well.

The homogeneous abundance model is used in our study.

The simplest case of a homogeneous population is not of much practical interest

in ecology, but a manageable expression for the exact distribution of the num-

ber of distinct species is available in this case. The heterogeneous abundance

models could be applied in the next study including the Zipf, broken-stick,



7. Estimating the number of unseen species using approximations to
the distribution of seen species 174

Dirichlet and so on.

When using the MLE estimator with Altham’s multiplicative-binomial dis-

tribution, it required a long time in computation as a result of complicated

formula. Additionally, there is the local optimization problem for the MLPE

and LS estimator in some situations. Although, the SANN method can handle

this problem, this method used a long time for optimization and might not

converge at all.

When splitting data, it provides less information than the full data. The

pseudo-likelihood approach provides misleadingly narrow confidence interval

compared to the true likelihood. This is likely to be because overlapping

samples give to much weight to the initial observations. Further work is needed

to investigate methods of correcting for this effect. For the Poisson-binomial

approximation, it shows a nonsmooth result for the log-likelihood curve. For

homogeneous abundance data, it is clear that the MLE approach performs

better than the MPLE.
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Figure 7.3: Bias of N̂ using various estimators, N = 100,M = 100 with
homogeneous model.
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Figure 7.4: Bias of N̂ using various estimators, N = 100,M = 200 with
homogeneous model.
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Figure 7.5: Bias of N̂ using various estimators, N = 250,M = 250 with
homogeneous model.
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Figure 7.6: Bias of N̂ using various estimators, N = 250,M = 500 with
homogeneous model.
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Figure 7.7: Bias of N̂ using various estimators, N = 500,M = 500 with
homogeneous model.
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Figure 7.8: Bias of N̂ using various estimators, N = 500,M = 1000 with
homogeneous model.



Chapter 8

Conclusion and Future work

8.1 Conclusion

In this thesis, we have examined the statistical methods for estimating the

number of species in a closed population. Nonparametric and parametric es-

timators are investigated based on various species abundance models. Due to

anthropogenic and environmental changes, these lead to unequal species de-

tection probability. Therefore, the heterogeneity models are more appropriate

in practice.

In species sampling, the numbers of species seen i times (i = 1, 2, . . . , k) in the

sample are used to estimated the number of unseen species is using various

approaches. The Chao1 estimator is a nonparametric estimator used widely

for estimating the total number of species as the lower bound and performs

well for the homogeneous population.

Chiu et al. (2014) improves on the Chao1 estimator. It approximates well

and outperforms the Chao1 estimator in term of bias and the mean square

error especially for a highly heterogeneous population. The iChao estimator is

constructed using N̂Chao1+ |bias(N̂Chao1)|. A modified Good-Turing frequency
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formula is used in the second term. In this case, the number of species seen

exactly once, twice, three and four times are used to estimate the number of

species.

In Chapter 2, two new alternative improvements to the Chao1 estimators are

developed using the same idea as the iChao1 estimator. New estimators, new1

and new2, are constructed using the Good-Turing coverage formula to approxi-

mate |bias(N̂Chao1)|. These estimators require only the number of species seen

exactly once and twice which is very similarly to the Chao1 estimator. We

found that the performance of the new1 estimator is similar to the iChao1 es-

timator under heterogeneous models. The new1 estimator works well with the

negative binomial, the power-decay, the Zipf-Mandelbrot and log-series model.

New2 performs better than new1 estimator for the broken-stick and exponen-

tial models.

We also considered using a parametric approach such as the MLE estimator

based on the mixed-Poisson model to fit the model for estimating species rich-

ness. For the PT model, the MLE has problems due to the flat likelihood or

the boundary problem in optimization. In Chapter 4, we addressed this prob-

lem using the WLR estimator. We showed that the WLR estimator works well

with the PT distribution for large N . The WLR estimator does not work well

for small sample size because frequencies are estimated poorly.

When applying nonparametric estimators to the PT distribution, the perfor-

mance of the estimators depends on the dispersion parameter. From a simula-

tion study, the new2 estimator is a good approximation for the PT distribution

with dispersionD > 1.5. For the lower dispersion, the new2 estimator performs

similarly or a little worse when compared with the new1 estimator. Addition-

ally, nonparametric estimators perform better than the WLR estimator under
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the PT distribution.

The performance of the WLR estimator is improved by using the smooth-

ing method in Chapter 5. Therefore, the problem about the zero and small

frequencies are handled. The simulation study focuses on the uniform, the

geometric and the Li and Racine (2010) kernel functions. It is clear that the

performance of the WLR estimator is best improved under the Li and Racine

(2010) kernel function. However, the computation requires very long time for

bandwidth selection. The results show only small improvement in performance

of the WLR estimator when applying smoothing. Therefore, it might be not

necessary to apply smoothing method for improving the WLR estimator.

In Chapter 6, we investigated species sampling using the urn models. The oc-

cupancy distribution can explain the distribution of the number of seen species.

Some approximations to the occupancy distribution are explored. Under the

classical occupancy problem, each individual is drawn randomly from a popu-

lation with equal probability. The simulation study shows that the Altham’s

multiplicative binomial and the Pólya distribution performs very well and pro-

vide similar results. The performance was particularly good for data generated

from the Zipf-Mandelbrot distribution. The COM-Poisson-binomial distribu-

tion performs well when abundance data are generated from the Poisson, expo-

decay and power-decay models (when M/N ≤ 10). However, numerical issues

occur for the Pólya distribution in some situations especially for the Poisson

and expo-decay model.

Finally, we focussed on the pseudo-likelihood estimator under the classical

occupancy problem. Hidaka (2014) proposed the pseudo-likelihood estima-

tor based on the Poisson-binomial distribution for estimating the number of

species. Multiple data sets are generated form the original data (i.e. non-
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overlapping and overlapping data sets) in order to construct the pseudo-likelihood

function. The MLE approach works well based on the Poisson-binomial and Al-

tham’s multiplicative distribution. The MPLE approach give less information.

Therefore, the MLE estimates the number of species more accurately than the

MPLE. When looking at the likelihood function the overlapping scheme for

subset data provides better results than nonoverlapping.

When applying the MPLE method for estimating the number of species to

data generated from the homogeneous model, we might only find local op-

tima. Although the SANN method can handle this issue very well, it does

not always work. The MLE estimator based on the Poisson-binomial and Al-

tham’s multiplicative binomial distribution are used for estimating the number

of species very well when N < M . The MPLE works well when N is small.

The Good-Turing estimator performs the best when N = M . The LS and

iChao1 estimator approximate poorly in our study.

8.2 Future work

1. To improve the WLR estimator using the kernel estimation, we would

like to examine other kernel discrete functions such as the Poisson, the

binomial and the negative binomial kernel. For boundary problem in

kernel estimation, the modified discrete triangular kernel in study of

Kokonendji and Zocchi (2010) is probably useful guidance.

2. In Chapter 4, the ratio plot shows a nonlinear relation in the PT dis-

tribution (e.g. a = 0.75, 0.9). The WLR approach is not appropriate

for use. Böhning et al. (2016) proposed using the fractional polynomials

for the nonlinear regression model which could be applied with the PT

distribution.
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3. To explore other approximations to the distribution of number of seen

species such as COM-Poisson-binomial distribution and so on for the

MPLE and MLE estimators.

4. Only the homogeneous abundance model is investigated in Chapter 7.

We would like to focus on heterogeneous abundance models such as the

Zipf, log-normal, broken-stick model for the MPLE and MLE and LS

estimators.
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