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1. It is introduced a formal framework for processing rational numbers. 

2. A representation system based on positional notation system is 

described. 

3. A method for calculating the addition funcion is detailed. 

4. Experiments and application example have been made to validate the 

model. 
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Abstract.- 

Precision in computations is a considerable challenge to adequately addressing many 

current scientific or engineering problems. The way in which the numbers are represented 

constitutes the first step to compute them and determines the validity of the results. The 

aim of this research is to provide a formal framework and a set of computational 

primitives to address high precision problems of mathematical calculation in engineering 

and numerical simulation. The main contribution of this research is a mathematical model 

to build an exact arithmetical unit able to represent without error rational numbers in 

positional notation system. The functions under consideration are addition and 

multiplication because they form an algebraic commutative ring which contains a 

multiplicative inverse for every non-zero element. This paper reviews other specialized 

arithmetic units based on existing formats to show ways to make high precision 

computing. It is proposed a formal framework of the whole arithmetic architecture in 

which the operators are based. Then, the design of the addition operation is detailed and 

its hardware implementation is described. Finally, extensive evaluation of this operator is 

performed to prove its ability for exact processing. 

 

Keywords.- computer arithmetic, computational methods, exact computation, rational 

processing, mathematical model, computational efficiency 

 

1 Introduction 

1.1. Need for precision in calculations 

High precision computing is a very active research area due to the number of interesting 

applications that need it. For example, research about the nature of matter in the LHC or 

the search for extrasolar planets requires complex numerical calculations on the edge of 

the range of representation formats. Without going so far, other much more common 

everyday operations, such as financial calculations, also require a good precision to avoid 

inadmissible computing and rounding errors. The following table (Table 1) shows some 

examples of the representation error by floating point binary format codification and 

operations with simple decimal data. It shows how the same number can have multiple 

different binary representations and how the accumulative operations increase the error. 
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Table 1: Error representation of decimal numbers coded in simple precision binary 

floating point format 

 Decimal Number Binary floating point representation Error 

a 0.6 0.600000023841857 2.3E-8 

b 0.1 0.100000001490116 1.4E-9 

c 0.7 0.699999988079071 1.1E-8 

d 0.4 0.400000005960464 5.9E-9 

e 0.04 0.039999999105930 1.0E-10 

a + b 0.7 0.700000025331973 2.5E-8 

a + a 1.2 1.200000047683715 4.7E-8 

d + d + d 1.2 1.200000017881392 1.7E-8 

b + c + d 1.2 1.199999995529651 4.5E-9 

e + ... + e 

(10 times) 
0.4 0.399999991059300 8.9E-9 

The introduction of decimal representation formats has significantly improved the 

accuracy of applications for processing numerical data introduced by humans through a 

terminal [1]. The programming languages and database systems include among their 

types the new data money or decimal to represent 10-base numeric data [2-4]. New 

processors support these formats and offer a wide instruction set for native execution [5-

9]. Although the computational cost is superior to binary, for certain applications, most 

precision compensates this reduced performance. 

However, in other areas the problem of precision remains unresolved since their 

numeric range of the operands and results are found into the periodic rational or irrational 

real domain. In these cases, the numbers do not correspond with representable values in 

binary format nor decimal. For example, next table (Table 2) shows some rational 

numbers represented in binary and decimal floating point format. These cases make clear 

the codification and operation error by both standard formats. 

Table 2: Error representation of rational numbers coded in simple precision binary and 

decimal floating point format 

 
Rational 

Number 

Binary floating point 

representation 
Error 

Decimal floating 

point representation 
Error 

a 1/3 0.33333334326744 1.0E-8 0.3333333 3.3E-8 

b 1/7 0.14285714924335 6.4E-9 0.1428571 4.2E-8 

c 11/21 0.52380955219268 2.8E-8 0.5238095 2.3E-8 

d 1/6 0.16666667163372 4.9E-9 0.1666667 3.3E-8 

a+b+c 1 1.00000004470348 4.4E-8 0.9999999 1.0E-7 

d+d+d 1/2 0.50000001490116 1.5E-8 0.5000001 1.0E-7 

 

These systematic errors make it necessary to have a computation model able to represent 

these numbers and to operate with them without error. 

1.2. Challenges and Objectives of the work 

This work aims to propose a mathematical model to represent and compute rational 

numbers. This model constitutes the formal framework of an arithmetic architecture 

where computational techniques are defined to build the operators with rational numbers 

and perform exact processing. 



The key idea of this research is based on representing explicitly the non-zero periodic 

part of the rational numbers expressed by the positional number system. The challenges 

of this notation are in developing computational techniques to process the numbers, 

especially if they are also coded in floating point. So that, this work introduces the 

calculation method of the addition operator for the proposed rational representation 

scheme. Its specification for hardware implementation will be detailed in deep. The 

multiplication function can be designed based on the same principles. 

The novelty of this work lies in proposing calculation methods for rational numbers 

represented in positional number system where periodic numbers can be represented in a 

direct way without error. The experiments show that this approach is an alternative to the 

decimal formats for exact coding rational numbers. 

 

This paper is structured as follows: section 2 provides a review of the current state of 

knowledge on specialized arithmetic processing. The most relevant proposals and works 

of this issue are described and some findings about them are stated; section 3 describes 

the formal framework and rational functions on which the architectural model is 

constructed, section 4 explains the implementation of the rational processing. The overall 

architecture is introduced, and the representation format and the addition operator are 

detailed; section 5 shows an empirical evaluation of the results of processing the double 

mantissa numbers and an example of application on intensive calculus, finally, section 7 

summarizes the conclusions of this work. 

 

2 Related Work 

2.1. High precision computing proposals 

This section is not intended to contain an exhaustive and detailed review of state-of-the-

art, but only introducing the more representative proposals and results that show the 

progress in the issue of high precision computing. 

In first place, the last floating point standard [1] is the most used for number 

codification and arithmetic computing [10, 11]. There are research works which shows 

the limitations of these formats [39] and the error produced by the processing of the 

floating point arithmetic [12, 13]. 

On the way of search for improving precision in calculations, software solutions are 

the first stage. There are a great variety of math libraries for numerical calculation with 

greater precision than conventional standard formats [2-4]. However, these proposals are 

executed from the application level of the architecture and do not offer a right 

performance for processing-intensive applications. In addition, in some problems, they 

are not able to provide the required numerical accuracy. So that, with the aim of 

improving computer performance while maintaining high precision, several arithmetic 

units and specialized processor designs have been proposed. 

The method with greater capacity for expression is based on symbolic representing 

system. By means symbolic representation, it is possible to express any number exactly. 

For example: π, e, ⅓, etc. Based on these principles, a rational arithmetic unit has been 

proposed [14] in which the numbers are represented symbolically by means of fractions. 

The basic operations such as addition, subtraction, multiplication and division are 

implemented, operating on numerators and denominators of fractions with integer 

arithmetic. Nevertheless, processing with these symbolic expressions is costly in 

computational terms, particularly when there are no easy ways of simplification. In 

addition, in order to provide the final result in positional number system by means of a 



single numerical value, it is necessary to carry out a division operation which may cause 

approximation errors. 

Other methods aims to represent real computable numbers by means numerical 

sequences: linear fractional transformations, Cauchy sequences and continued fractional 

notations. Linear Fractional Transformation is a method for transforming the real number 

to a computable sequence of digits [15, 16]; Cauchy sequences consist on a sequence of 

rational numbers approximating the real number [17] and continued fractions is a 

representation based on an iterative process of fractional decomposition of the real 

number [18, 19]. There are hardware architecture designs for processing numbers coded 

in this last fashion [20, 21]. However, they reveal highly complex arithmetical operations 

and, as symbolic computation, when a positional numerical result is required, it is needed 

additional operations to transform the sequences and an approximation error arises. 

There are other alternatives for representing and computing rational numbers based 

on Stern-Brocot tree [33] and Möbius number systems [34, 35], but the algorithmic 

methods are also costly and the problem of transforming the results to positional 

number system persist. 
In order to delimit the representation error, mathematical models based on interval 

arithmetic have been proposed. This method consist on expressing the numbers within an 

interval. In that way, the resulting error can be limited to the width of the interval [22-

24]. This technique is a very popular way for estimate the numerical error of calculations. 

So that, there are several programming tools and software packages available for high-

precision calculation using interval arithmetic for many languages [25]. In addition, 

interval arithmetic units and specialized processors have been designed to improve the 

time performance of computations. The following are among the most representative 

examples: 

 The interval arithmetic VP processor [26] consists of a floating point representation 

structure in which the field which stores the mantissa can have a variable length. 

Although the accuracy of the representation of the intervals bounds is increased, the 

level of approximation is limited by the amount of significant digits to be represented. 

 Multimedia processor [27]: this proposal uses the multimedia extensions of Intel and 

Motorola processors to implement the interval arithmetic and allows a variety of 

rounding policies to minimize the error bounds. 

 CORDIC processor [28]: this design provide a set of functions computed by means 

the CORDIC algorithm. The proposal allow specify the precision to perform the 

operations. 

 Variable Precision Processor [29]: this work proposes a real-time system composed 

by several word-length operators. The unit uses interval arithmetic to determine the 

accuracy of the results. 

Nevertheless, this method has some drawbacks for exact computing: in first place, it does 

not represent the number exactly, but only with an interval; the arithmetic operations must 

be performed on two bounds of the interval; and finally, this interval can grow up 

according to the operations performed. 

Other processor designs provide a result consisting of a single number by means of 

using a lot of significant digits such as staggered and on-line arithmetic processors. The 

processor for staggered interval arithmetic [30] is able to use conventional floating point 

units for numbers coded in standard IEEE format. Its main disadvantage is the 

complicated and costly computation process. For example, the comparison between two 

numbers becomes a complex algorithm due to the fact that for the same number there are 

multiple different representations. Regarding on-line arithmetic, there are several 

hardware processors based on this method. For example: 



 The JANUS coprocessor [31] considers a maximum accuracy of 600 digits. This 

proposal implements only the multiplication/addition operation. 

 The VLP coprocessor [32] consists of an arithmetical coprocessor developed with 

FPGA platform with capacity for reconfiguration depending on the operations to be 

carried out. 

 Online Processor [36] is an arithmetic array processor for solving tridiagonal systems 

of linear equations. This architecture allows parallel operator designs and produces 

result of arbitrary length. 

 Decimal on-line arithmetic [40, 41] proposes on-line addition units for decimal 

number representation. 

Finally, with the same objective of increasing the amount of significant digits of the 

numbers there are hardware proposals able to work with data having a variable number 

of digits: 

 The CADAC processor [37] codifies the data by means of variable word length. Each 

word contains sign, exponent, mantissa, mantissa length fields and pointers to them. 

Disadvantages include the additional complexity of its arithmetic unit. 

 The VP coprocessor for FPGA [38] is an evolution with respect to the previous 

design. This design does not limit the amount of digits of the number’s significant 

mantissa. In this case it uses a structure based on a variable amount of 64-bit words. 

The representation format enables concatenation of various words until the 

codification of the number is complete. 

2.2. Findings 

This review finds that there are several alternatives to represent numbers in a computer 

and even some proposals allow to represent rational numbers without error. The standard 

representation formats are not among them. 

The main drawbacks of the more accurate ways of representing numbers are the 

complexity of their arithmetic methods and the lack of precision when the numbers are 

transformed into positional number system expressions. 
The most recent proposals based on the interval arithmetic and on-line methods offer 

alternatives of interest which improve the precision of the results. However, they are 

unable to provide an exact value but only an approximation for irrational or periodic 

rational numbers. 

The hardware support for computing them is a clever alternative to provide greater 

performance and avoid the software overhead due to specialized math libraries, especially 

when trying to build embedded devices or solving high performance computing 

applications. 

3 Formal Framework for High Precision Computing 

The exact computation problem can be defined by means the following definitions. 

Let f be a general mathematical function. Any computable function whose result 

approximates to f according to a particular implementation is defined implementation 

function  of f. In this way: 

codomain(f (𝑥⃗))  codomain(f(𝑥⃗))  (1) 

and then, 

 𝑥⃗  domain(f), |f (𝑥⃗) – f(𝑥⃗)|    (2) 



where, 

𝑥⃗: Function’s arguments. 

 :   ℝ+  {0}. Approximation of f by  . 

The general work of an arithmetic unit is to process mathematical functions. The 

calculation of these functions is its main purpose. 

An architecture  is characterised both by the set of functions that it provides and by 

the way in which they are implemented. Let the following set of functions be: 

 = {f1, f2, ..., fn}  (3) 

An architecture  that provides these functions will be made up of: 

 = {f1, f2, ..., fn}  (4) 

That is,  will contain the specific implementation of each function of the  set, where 

each fi produces an approximation to fi. In this way, fi is the objective of the arithmetic 

unit whereas fi corresponds to the function that is finally provided. The implementation 

of those functions does not have to be unique. Thus, several implementations of the same 

function that represent different approaches to f, with different values of  could exist. 

For example, the different arithmetic adder implementations for each operand size of 

different representation format. 

It is defined a function f as having an exact evaluation of f if the result provided by 

f is equal to the result of f, that is, in accordance with the expression (2),  = 0. 

 𝑥⃗ domain(f), f (𝑥⃗) = f(𝑥⃗)  (5) 

In this case, the  architecture implements that function effectively. An exact arithmetic 

architecture requires all its functions to be implemented in a totally effective way. 

The framework for high precision computing works into a rational domain. The set of 

functions provided is the following: 

ℚ = {identity, addition, multiplication} (6) 

The mathematical identity function is defined by the following expressions: 

 

identity: ℚ  ℚ 
∀ x  ℚ. identity(x) = x 

(7) 

 

The implementation of the identity function corresponds to the codification of the rational 

numbers in a floating point representation format based on the positional notation system. 

The main idea consist in representing the fractional part of the rational number by means 

a double mantissa codification where fixed and periodic mantissas are explicitly 

represented. The fixed mantissa is the fractional part of the non-periodic rational number, 

whereas the periodic mantissa represents the digits that form the repetitive part. In this 

way, the whole digit string of the number can be easily obtained by concatenating the 

fixed mantissa with the periodic mantissa for an indefinite number of times. 
Along with this method that provides exact representation of the numbers, the 

arithmetic functions of ℚ define a ‘commutative ring’ whose nonzero elements form an 

‘abelian group’ under multiplication and addition operations: 



(ℚ, +) and (ℚ, ·) are abelian groups. 
(ℚ, +, ·) is a commutative ring. 

The formal framework is characterized by the exact representation of the numbers and by 

these mathematical properties. Only with exact representation, the inverse functions can 

be achieved by the abelian groups and the commutative ring can be built. These properties 

let the formal correctness of the problem formulation and allow to the unit perform the 

calculations of scientific or engineering problems from a numerical point of view. 

However, the main challenges of this mathematical model are to conceive calculation 

methods to implement the arithmetic functions where the numbers are coded in the 

proposed method. The next section describes the implementation method of the identity 

and addition functions for rational processing. 

4 Arithmetic Unit Architecture 

In general terms, our proposal consists of developing an arithmetic architecture which 

contains a set of operators which achieve the exact result for rational operands. The 

arithmetic unit architecture provides the implementation function  of each of the 

functions of ℚ as it is defined in expression (8). 

ℚ = {identity, addition, multiplication}  (8) 

These operators produce the exact results of the functions. Figure 2 shows a diagram 

summarising the unit design. 

 

Fig. 1. General overview of the Rational Arithmetic Architecture 

4.1. Identity operator 

The first task is to implement the identity function able to express any element of the set 

of rational numbers. The proposed implementation, identity, is a bijective application with 

which any rational number can be represented in a finite representation space. 

identity: ℚ  ℚ (9) 

According to previous idea, the proposed implementation lets coding both fixed and 

periodic mantissa of the rational numbers. In addition, the number can be represented in 

floating point in order to provide higher expressive capacity. The next figure shows a 

scheme of the representation, where EWL, MfWL and MpWL are the field lengths. 

Identity

Adder

Flexible 

Memory
Unit

Multiplier

Operands
Results

(Operands)



 
Fig. 2. General scheme of the double mantissa representation 

The value of the number is built by means of the standard floating point expression: 

A  ℚ, A = (-1)s · M · BE (10) 

where B is the base of the representation, M is the complete mantissa of the number, and 

E is the exponent. 

The codification of the numbers in that format by the arithmetic unit is an 

implementation of the identity function identity. The Word Length (WL) of the fields of 

the representation format can be adjusted to the required precision of each problem. Thus, 

the operands, intermediate numbers and results can be stored in a ‘Flexible Memory Unit’ 

with indirect addressing of variable word lengths [42]. 

Nevertheless, the representation can also be made into conventional fixed registers 

with a Register Word Length (RWL) established for the architecture. In this way, the 

length of the fields of the exponent (EWL) and the mantissa (MWL) are fixed too. In this 

case, it is required a pointer which marks the separation between the fixed and periodic 

parts of the mantissa and which enables a separate processing. To complete all of the 

digits assigned to the mantissa field, the periodic mantissa is placed forming a cycle, and 

the lengths of fixed and periodic mantissas are stored with the previous pointer. This data 

joins the register that contains the number as can be seen in the structure illustrated in the 

following figure: 

 
Fig. 3. General scheme of the double mantissa representation in fixed register of RWL length. 

4.2. Addition operator 

The importance of the addition operation in numerical calculation has motivated the work 

of many researchers aiming to improve it [43-45]. Most of the methods are designed for 

operands represented according to IEEE-754 standard [1] (both binary and decimal base). 

They show how to perform the operation by manipulating the fields that make up the 

numbers: displacement, addition of mantissas, exponent’s treatment, normalization and 

rounding. 

The implementation of the addition function is named as addition. The next expression 

formalizes this implementation on rational operands: 

 

addition: ℚ x ℚ  ℚ 

 xA, xB  ℚ. addition(xA, xB) = xA + xB 
(11) 

 

The arithmetic algorithm of addition operator is based on the following design principles: 

the standard stages of floating-point operation formats are taken as a starting-point for the 

sgn. Exponent (E) Fixed Mantissa (mf) Periodic Mantissa (mp)

EWL MfWL MpWL

…
0RWL-1

1
EWL MWL

Exponent (E) mf mpmpMWL–MfWLMpWL sMfWL



new method; the use of iterative methods to process the data successively and; the 

computation of each significant mantissa separately to facilitate parallel designs. 

Hence, the calculation methods have the following characteristics: they can provide 

the exact result of the operation in a finite word size and then, the final rounding stage is 

avoided; the length of the exact result expressed in positional notation system is 

proportional to the initial size of the operands; the design of strategies to adjust the 

precision and the result’s length is feasible by acting on the iterative methods of 

calculation of the mantissas. Using iterative structures and pre-calculated data could be a 

way of achieving flexibility on the designs and can be used to adjust the result to the needs 

of each application [46,47]. 

In first place, we present the general algorithm for exact addition without taking 

account of any memory restrictions about the length of the fields. Those variable-length 

register set make up the flexible memory unit. Next, we will propose the architecture of 

the operator for low level hardware implementation (addition) based on the previous 

algorithm. Each stage of the addition is composed by elementary operators such as 

comparisons, n-bits adders, shifts and rotations. These primitives, are implemented 

according to well-known designs for them. In this approach, it is considering the required 

precision and the available size of the words into the arithmetic unit design. 

The algorithm introduced consists of an extension of the traditional floating-point 

addition method where operators and results are expressed according to the double 

mantissa representation (sign, exponent and fixed and periodic mantissa) depicted in 

figures 2 and 3. Therefore, the proposed method for the addition consists of the stages 

shown in figure 4: 

 
Fig. 4. Rational addition double mantissa stages. 

The next paragraphs describe each stage of the method. Along this exposition, it is 

considered two operands A and B represented into this format as inputs of the operation. 

 

1. Calculation of mantissa displacement: The digits of the same order of magnitude 

must be aligned to perform the addition of the mantissas. The displacement of digits must 

consider the different exponents and the difference of fixed mantissa’s digits of both 

numbers. The calculation procedure consists in subtracting from the exponents’ 

comparison, the fixed mantissa lengths’ comparison of both numbers as it is described in 

expression (12) and it illustrated in the following figure (Fig. 5). 
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Mantissa displacement = (ExponentA – ExponentB) – (MfWLA – MfWLB) (12) 

 

 
Fig. 5. Displacement of mantissas in a variable length scheme 

The next figure (Fig. 6) shows the flow design of that computing where the primitive 

operators (complement, mux and n-bit adders) take part. 

 

Fig. 6. Calculation of mantissa displacement stage implementation 

The computational cost of this stage comes from the calculation of three addition 

operations. Since the MfWL is a fixed field, the computational cost of this stage is lineal 

with the exponent lengths. So that: T1) ∈ O(EWL). 

2. Mantissa alignment: there are two types of transformation of the mantissas: fixed 

mantissa is shifted to the left whereas the periodic mantissa is rotated to the same 

direction. Periodic digits are taken when necessary to complete the fixed mantissa. With 

these alignment movements, the fixed mantissa length is increasing by the calculated 

displacement while the periodic mantissa length remains constant. The implementation 

of these two transformations consist only in updating the periodic-fixed separator pointer 

by the addition of the calculated displacement. The computational cost of this stage is 

lineal with the exponent size: T2) ∈ O(EWL). 
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3. Mantissa addition: At this stage, the result of the addition of fixed and periodic 

mantissas are the fixed and periodic mantissas of the result respectively. Both operations 

have different computational procedures which can be done in parallel with iterative 

addition methods. The negative numbers are processed in complement. These 

complement operations, if necessary, are implicit in Fig. 7 and 8. Each type of mantissa 

requires a different procedure: fixed mantissas can be added directly, while periodic 

mantissas need to be length-equalled by repetition before making the addition, as shown 

in figure 7. It is necessary control logic in order to not exceed registers limits, and in that 

case, to produce an approximate result. 

 
Fig. 7. Periodic Mantissa addition 

The carry bit of periodic addition must be added to the periodic result and propagated to 

the fixed addition. Figure 8 shows the relations between the addition of the mantissas and 

the double propagation of the carry to fixed and periodic operations. 

 
Fig 8. Carry propagated adder between periodic and fixed mantissa 

To perform these operations in parallel, three results are obtained: the addition, the 

addition complemented and the addition plus one. The right result is then selected 

according the numbers’ sign and the carry bits of both operations. The selection functions 

are implemented as shown in the next figure (Fig. 9). 

  
(a) (b) 

Fig. 9. (a) Fixed mantissa selection logic; (b) Periodic mantissa selection logic 

The sign of the result is a combinational function of the operands and the carry 

produced in fixed mantissa addition according to the standard procedure for complement 

addition. The next figure (Fig. 10) depicts this logic function. 
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Fig. 10. Sing of the result calculation 

The computational cost of this stage is produced mainly by the addition operations of the 

mantissas. The periodic mantissa additions have a variable length depending on the least 

common multiple of the periodic mantissas’ length, but in any case, the complexity is 

lineal with whole mantissa length MWL. T3) ∈ O(MWL). 

4. Normalization: The results are normalized as in the standard floating point format 

[1]. However, the addition operation can give other illegal configurations in the fixed and 

periodic mantissas under the proposed representation format. These cases are produced 

when the periodic mantissa is composed of a group of digits constituting a subperiod itself 

or when fixed mantissa ends with a set of digits contained in the periodic mantissa. In 

those cases, the result must be normalized to produce the simpler expression of each 

number. The method to check the existence of subperiods in the periodic mantissa consist 

in rotating & comparing on. If the method finds a match, the number of rotations indicates 

the final size of the period. This normalization stage needs control logic to manage the 

process and adjust the result to the registers’ length. 

The described normalization procedures need to go through the mantissas to check 

for illegal configurations. So that, this stage has a complexity lineal with mantissa lengths. 

T4) ∈ O(MWL). 

 

All the previous stages are computed sequentially. The temporal cost is obtained by 

the contribution of all of them. So that, the overall computational complexity is lineal 

with operand lengths: T ∈ O(RWL). This complexity is similar to standard floating point 

additions methods. 

5 Empirical evaluation & Application example 

This section analyses the representation scheme and the quality of the results of the 

addition method to validate the proposal for computing high precision problems. 

5.1. Empirical evaluation of the result 

In first place, it is analysed how the format works in representing the rational number of 

the result. The experiments are focused on studying when the normalization stage is 

needed and what is the growth of the resulting mantissas of massive chained addition 

operations. This research is aimed to estimate the frequency of the extra delay produced 

by the normalization step and the memory needs to store the results on complex 

calculations. 

The experimental set up is the following: 

 It has been made series of 106 addition operations of rational numbers represented 

in the proposed double mantissa format. The average of the results of each series 

has been obtained to draw the results shown in table 1. 

 The series corresponds with numbers generated in a growing range in order to 

deduce behaviors related with the range width. So that, for each addition, two 
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rational numbers have been built by means of a pair of fractions whose numerators 

and denominator have been randomly generated into a power of two range. 

That is, a/b where: a, b  [1..2i] and i  [4..8]. 
 
The next table (table 1) shows the results obtained: 

 series 

Normalization stage 16 32 64 128 256 

Simplifying the  
periodic mantissa 

2,6% 2,2% 1,6% 1,3% 1,1% 

Sub-mantissas in  
fixed mantissa 

6,6% 3,1% 1,2% 0,6% 0,1% 

Table 1: Normalization needs of the addition results 

The frequency where the normalization stage reduces the length of the result of the 

addition is small and it is reduced with increasing the generation range of the values to 

add. That is, the wider generation range, the lower effect has the normalization stage on 

the result. 

The proposed operation method can work with numbers denormalized. Therefore, in 

problems with large variable domains, the normalization stage can be avoided in order to 

improve the temporal cost. In addition, this stage can be performed at the end of a 

sequence of chained operations where the result of the operation is the input of the next 

operation. In this way, the normalization is computed only on the resulting number. 

In second place, it is studied the size of the results of the additions and how it grows 

with successive calculations. The experiments consist on compute series of chained 

operations where the rational numbers have been generated according the same criteria 

as the previous set up. The experiments show that the fixed mantissa has a logarithmic 

growth with the amount of additions and it’s independent from the generation range of 

the fractions, whereas the periodic mantissa has a growth related to the generation range. 

It is due to the process in which the periodic mantissa is built in the described addition 

method. The length before normalizing is equal to least common multiple (LCM) of the 

periodic mantissas’ size of the operands. However, this periodic part has an upper limit. 

There is a maximum length for each range given by the LCM of the lengths of the periods 

of all numbers of the range. Thus, the maximum size of the periodic part will be 

conditioned by the operator’s domain. For example, in the case of processing numbers 

with two decimal fractional digits, the maximum size of the periodic part will be 20 binary 

digits. That is, 

 
where: 

mf = 00 
mp = 00001010001111010111 

In this way, the result of any chained additions of operands with two decimal fractional 

digits has a periodic part of up to 20 bits length. Other ranges have different lengths which 

can be obtained experimentally. This finding is useful to design fixed registers to store 

the numbers and results. 

1/10010 =  00000010100011110101112



5.2. Application example 

This section shows a calculation example of rational numbers in a context of intensive 

addition/subtraction operations. The aims of this experiment is to test the accuracy and 

reliability of the proposed model in comparison with the representation and computation 

of the numbers with standard methods. 

The working scenario could be to a stock market which perform a lot of daily 

operations. Most of these operations typically consist of arithmetic addition/subtraction 

on the prices of the stocks processed very intensively. For example, the European Eurex 

is one of the major international derivatives markets which exceeded 11 million contracts 

daily [28]. The accuracy of these operations is essential to maintain the correctness of 

prices, ensure exact assessment of stocks and determine the evolution of the value of the 

assets. 

The application example consists in simulating a session day on the market and 

calculating the evolution in the price of a stock. The addition/subtraction operations are 

updating the prices of the stocks and accumulating the result. 

In this experiment, the operations have been performed using the proposed method for 

rational processing and the IEEE 754 standard floating point format for binary and 

decimal representation of the numbers. This decimal representation allows encoding 

monetary values correctly, however, many of the transactions of the stock market get their 

value as a result of previous division operations. It produces representation errors of 

numbers which contain periodic part (i.e. 1/3). This errors in the input data are then 

propagated [12]. 

Typically, the rational domain of the stocks is euro cents, that is, two decimal fractional 

digits. Thus, the stock prices are rational numbers on the form: α.β1β2 where a α ∈ ℕ and 

βi ∈ [0..9]. 
 

The experimental set up is the following: 

 Calculation of series of chained addition operations of rational numbers where the 

output of an addition is the input for the next. 

 Each rational number has been randomly generated by means a fraction a/b where: 

a  [1..100] and b = 10010 

 The numbers have been represented and computed in two ways: according the 

proposed method, and in standard binary IEEE 754. The final stock prices are 

compared after the calculations. 

 The exact value of each series has been obtained by means symbolic fractional 

calculation. That is, calculating the common denominator, updating the numerators and 

adding them. For this purpose, a software library has been developed. 

 

The experiments verify that the proposed method for high precision computing of 

rational numbers produces exact results regardless of the number of chained operations 

executed, whereas the standard binary IEEE 754 format representation causes an error 

which increases with the amount of operations. These errors can be magnified especially 

when involving a large volume of operations. What is normal in this type of scenarios. 

The error rate for each series of chained operations of the calculations made by standard 

binary IEEE 754 arithmetic is drawn in the graph below (Fig. 11). 



 
Fig. 11: Error evolution of binary IEEE 754 simple precision 

 

In terms of computational cost, in our example there is no performance problem, since 

the key aspect is the precision. In other compute-intensive scenarios where response time 

is critical may be necessary to consider what type of operation has the best cost/accuracy 

relationship. 

6 Conclusions 

The research presented in this paper describes a mathematical model for representing and 

processing rational numbers. The numbers are expressed in the positional notation system 

where the periodic part of the numbers is explicitly represented. The proposed operators 

of the model are the addition and multiplication. These functions are a ring algebra which 

allow building a set of computational primitive operators. 

The arithmetic addition is described in depth detailing the stages involved and the 

procedures for implementing them. The calculation method is based on the standard 

floating point addition method and uses iterative strategies which allow processing fields 

of variable length. The multiplication operator can be designed following the same 

principles. 

The experiments carried out analyse the representation and the addition method from 

two points of view: first, it is evaluated the behaviour of the double mantissa in the 

representation of the result and its evolution when multiple consecutive operations are 

computed; and secondly it is described a realistic application example where a lot of 

chained additions are needed. As a result, it was found that the addition operation provides 

exact results, whereas the standard representation produces increasing errors in the 

results, even using the decimal system. 

The proposed model, consisting of the representation format and the operators, is an 

alternative calculation model when the accuracy in storage and processing of rational 

numbers is a key aspect to be considered. 

We are currently working on developing the multiplication operator to complete the 

model. In addition, the methods will be implemented in reprogrammable logic in order to 

build a prototype of specialized processor on exact rational processing. 
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