
Accepted Manuscript

Mathematical model and implementation of rational processing

H. Mora, J. Mora-Pascual, J.M. Garcı́a-Chamizo, M.T. Signes-Pont

PII: S0377-0427(16)30218-7
DOI: http://dx.doi.org/10.1016/j.cam.2016.05.001
Reference: CAM 10631

To appear in: Journal of Computational and Applied
Mathematics

Received date: 10 November 2015
Revised date: 27 April 2016

Please cite this article as: H. Mora, J. Mora-Pascual, J.M. Garcı́a-Chamizo, M.T. Signes-Pont,
Mathematical model and implementation of rational processing, Journal of Computational and
Applied Mathematics (2016), http://dx.doi.org/10.1016/j.cam.2016.05.001

This is a PDF file of an unedited manuscript that has been accepted for publication. As a
service to our customers we are providing this early version of the manuscript. The manuscript
will undergo copyediting, typesetting, and review of the resulting proof before it is published in
its final form. Please note that during the production process errors may be discovered which
could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.cam.2016.05.001

1. It is introduced a formal framework for processing rational numbers.

2. A representation system based on positional notation system is

described.

3. A method for calculating the addition funcion is detailed.

4. Experiments and application example have been made to validate the

model.

Highlights (for review)

Mathematical Model and Implementation of

Rational Processing

H. Moraь,*, J. Mora-Pascualь, J.M. García-Chamizoь, M.T. Signes-Pontь

(ь) Specialized Processor Architectures Laboratory, Department of Computer Technology, University of

Alicante, San Vicente del Raspeig, Alicante (E-03080). Spain

Abstract.-

Precision in computations is a considerable challenge to adequately addressing many

current scientific or engineering problems. The way in which the numbers are represented

constitutes the first step to compute them and determines the validity of the results. The

aim of this research is to provide a formal framework and a set of computational

primitives to address high precision problems of mathematical calculation in engineering

and numerical simulation. The main contribution of this research is a mathematical model

to build an exact arithmetical unit able to represent without error rational numbers in

positional notation system. The functions under consideration are addition and

multiplication because they form an algebraic commutative ring which contains a

multiplicative inverse for every non-zero element. This paper reviews other specialized

arithmetic units based on existing formats to show ways to make high precision

computing. It is proposed a formal framework of the whole arithmetic architecture in

which the operators are based. Then, the design of the addition operation is detailed and

its hardware implementation is described. Finally, extensive evaluation of this operator is

performed to prove its ability for exact processing.

Keywords.- computer arithmetic, computational methods, exact computation, rational

processing, mathematical model, computational efficiency

1 Introduction

1.1. Need for precision in calculations

High precision computing is a very active research area due to the number of interesting

applications that need it. For example, research about the nature of matter in the LHC or

the search for extrasolar planets requires complex numerical calculations on the edge of

the range of representation formats. Without going so far, other much more common

everyday operations, such as financial calculations, also require a good precision to avoid

inadmissible computing and rounding errors. The following table (Table 1) shows some

examples of the representation error by floating point binary format codification and

operations with simple decimal data. It shows how the same number can have multiple

different binary representations and how the accumulative operations increase the error.

* Corresponding autor

Email addresses: hmora@ua.es (H. Mora*), jeronimo@ua.es (J. Mora Pascual), juanma@ua.es (J.M.

García Chamizo), teresa@ua.es (M.T. Signes Pont)

Manuscript
Click here to view linked References

Table 1: Error representation of decimal numbers coded in simple precision binary

floating point format

 Decimal Number Binary floating point representation Error

a 0.6 0.600000023841857 2.3E-8

b 0.1 0.100000001490116 1.4E-9

c 0.7 0.699999988079071 1.1E-8

d 0.4 0.400000005960464 5.9E-9

e 0.04 0.039999999105930 1.0E-10

a + b 0.7 0.700000025331973 2.5E-8

a + a 1.2 1.200000047683715 4.7E-8

d + d + d 1.2 1.200000017881392 1.7E-8

b + c + d 1.2 1.199999995529651 4.5E-9

e + ... + e

(10 times)
0.4 0.399999991059300 8.9E-9

The introduction of decimal representation formats has significantly improved the

accuracy of applications for processing numerical data introduced by humans through a

terminal [1]. The programming languages and database systems include among their

types the new data money or decimal to represent 10-base numeric data [2-4]. New

processors support these formats and offer a wide instruction set for native execution [5-

9]. Although the computational cost is superior to binary, for certain applications, most

precision compensates this reduced performance.

However, in other areas the problem of precision remains unresolved since their

numeric range of the operands and results are found into the periodic rational or irrational

real domain. In these cases, the numbers do not correspond with representable values in

binary format nor decimal. For example, next table (Table 2) shows some rational

numbers represented in binary and decimal floating point format. These cases make clear

the codification and operation error by both standard formats.

Table 2: Error representation of rational numbers coded in simple precision binary and

decimal floating point format

Rational

Number

Binary floating point

representation
Error

Decimal floating

point representation
Error

a 1/3 0.33333334326744 1.0E-8 0.3333333 3.3E-8

b 1/7 0.14285714924335 6.4E-9 0.1428571 4.2E-8

c 11/21 0.52380955219268 2.8E-8 0.5238095 2.3E-8

d 1/6 0.16666667163372 4.9E-9 0.1666667 3.3E-8

a+b+c 1 1.00000004470348 4.4E-8 0.9999999 1.0E-7

d+d+d 1/2 0.50000001490116 1.5E-8 0.5000001 1.0E-7

These systematic errors make it necessary to have a computation model able to represent

these numbers and to operate with them without error.

1.2. Challenges and Objectives of the work

This work aims to propose a mathematical model to represent and compute rational

numbers. This model constitutes the formal framework of an arithmetic architecture

where computational techniques are defined to build the operators with rational numbers

and perform exact processing.

The key idea of this research is based on representing explicitly the non-zero periodic

part of the rational numbers expressed by the positional number system. The challenges

of this notation are in developing computational techniques to process the numbers,

especially if they are also coded in floating point. So that, this work introduces the

calculation method of the addition operator for the proposed rational representation

scheme. Its specification for hardware implementation will be detailed in deep. The

multiplication function can be designed based on the same principles.

The novelty of this work lies in proposing calculation methods for rational numbers

represented in positional number system where periodic numbers can be represented in a

direct way without error. The experiments show that this approach is an alternative to the

decimal formats for exact coding rational numbers.

This paper is structured as follows: section 2 provides a review of the current state of

knowledge on specialized arithmetic processing. The most relevant proposals and works

of this issue are described and some findings about them are stated; section 3 describes

the formal framework and rational functions on which the architectural model is

constructed, section 4 explains the implementation of the rational processing. The overall

architecture is introduced, and the representation format and the addition operator are

detailed; section 5 shows an empirical evaluation of the results of processing the double

mantissa numbers and an example of application on intensive calculus, finally, section 7

summarizes the conclusions of this work.

2 Related Work

2.1. High precision computing proposals

This section is not intended to contain an exhaustive and detailed review of state-of-the-

art, but only introducing the more representative proposals and results that show the

progress in the issue of high precision computing.

In first place, the last floating point standard [1] is the most used for number

codification and arithmetic computing [10, 11]. There are research works which shows

the limitations of these formats [39] and the error produced by the processing of the

floating point arithmetic [12, 13].

On the way of search for improving precision in calculations, software solutions are

the first stage. There are a great variety of math libraries for numerical calculation with

greater precision than conventional standard formats [2-4]. However, these proposals are

executed from the application level of the architecture and do not offer a right

performance for processing-intensive applications. In addition, in some problems, they

are not able to provide the required numerical accuracy. So that, with the aim of

improving computer performance while maintaining high precision, several arithmetic

units and specialized processor designs have been proposed.

The method with greater capacity for expression is based on symbolic representing

system. By means symbolic representation, it is possible to express any number exactly.

For example: π, e, ⅓, etc. Based on these principles, a rational arithmetic unit has been

proposed [14] in which the numbers are represented symbolically by means of fractions.

The basic operations such as addition, subtraction, multiplication and division are

implemented, operating on numerators and denominators of fractions with integer

arithmetic. Nevertheless, processing with these symbolic expressions is costly in

computational terms, particularly when there are no easy ways of simplification. In

addition, in order to provide the final result in positional number system by means of a

single numerical value, it is necessary to carry out a division operation which may cause

approximation errors.

Other methods aims to represent real computable numbers by means numerical

sequences: linear fractional transformations, Cauchy sequences and continued fractional

notations. Linear Fractional Transformation is a method for transforming the real number

to a computable sequence of digits [15, 16]; Cauchy sequences consist on a sequence of

rational numbers approximating the real number [17] and continued fractions is a

representation based on an iterative process of fractional decomposition of the real

number [18, 19]. There are hardware architecture designs for processing numbers coded

in this last fashion [20, 21]. However, they reveal highly complex arithmetical operations

and, as symbolic computation, when a positional numerical result is required, it is needed

additional operations to transform the sequences and an approximation error arises.

There are other alternatives for representing and computing rational numbers based

on Stern-Brocot tree [33] and Möbius number systems [34, 35], but the algorithmic

methods are also costly and the problem of transforming the results to positional

number system persist.
In order to delimit the representation error, mathematical models based on interval

arithmetic have been proposed. This method consist on expressing the numbers within an

interval. In that way, the resulting error can be limited to the width of the interval [22-

24]. This technique is a very popular way for estimate the numerical error of calculations.

So that, there are several programming tools and software packages available for high-

precision calculation using interval arithmetic for many languages [25]. In addition,

interval arithmetic units and specialized processors have been designed to improve the

time performance of computations. The following are among the most representative

examples:

 The interval arithmetic VP processor [26] consists of a floating point representation

structure in which the field which stores the mantissa can have a variable length.

Although the accuracy of the representation of the intervals bounds is increased, the

level of approximation is limited by the amount of significant digits to be represented.

 Multimedia processor [27]: this proposal uses the multimedia extensions of Intel and

Motorola processors to implement the interval arithmetic and allows a variety of

rounding policies to minimize the error bounds.

 CORDIC processor [28]: this design provide a set of functions computed by means

the CORDIC algorithm. The proposal allow specify the precision to perform the

operations.

 Variable Precision Processor [29]: this work proposes a real-time system composed

by several word-length operators. The unit uses interval arithmetic to determine the

accuracy of the results.

Nevertheless, this method has some drawbacks for exact computing: in first place, it does

not represent the number exactly, but only with an interval; the arithmetic operations must

be performed on two bounds of the interval; and finally, this interval can grow up

according to the operations performed.

Other processor designs provide a result consisting of a single number by means of

using a lot of significant digits such as staggered and on-line arithmetic processors. The

processor for staggered interval arithmetic [30] is able to use conventional floating point

units for numbers coded in standard IEEE format. Its main disadvantage is the

complicated and costly computation process. For example, the comparison between two

numbers becomes a complex algorithm due to the fact that for the same number there are

multiple different representations. Regarding on-line arithmetic, there are several

hardware processors based on this method. For example:

 The JANUS coprocessor [31] considers a maximum accuracy of 600 digits. This

proposal implements only the multiplication/addition operation.

 The VLP coprocessor [32] consists of an arithmetical coprocessor developed with

FPGA platform with capacity for reconfiguration depending on the operations to be

carried out.

 Online Processor [36] is an arithmetic array processor for solving tridiagonal systems

of linear equations. This architecture allows parallel operator designs and produces

result of arbitrary length.

 Decimal on-line arithmetic [40, 41] proposes on-line addition units for decimal

number representation.

Finally, with the same objective of increasing the amount of significant digits of the

numbers there are hardware proposals able to work with data having a variable number

of digits:

 The CADAC processor [37] codifies the data by means of variable word length. Each

word contains sign, exponent, mantissa, mantissa length fields and pointers to them.

Disadvantages include the additional complexity of its arithmetic unit.

 The VP coprocessor for FPGA [38] is an evolution with respect to the previous

design. This design does not limit the amount of digits of the number’s significant

mantissa. In this case it uses a structure based on a variable amount of 64-bit words.

The representation format enables concatenation of various words until the

codification of the number is complete.

2.2. Findings

This review finds that there are several alternatives to represent numbers in a computer

and even some proposals allow to represent rational numbers without error. The standard

representation formats are not among them.

The main drawbacks of the more accurate ways of representing numbers are the

complexity of their arithmetic methods and the lack of precision when the numbers are

transformed into positional number system expressions.
The most recent proposals based on the interval arithmetic and on-line methods offer

alternatives of interest which improve the precision of the results. However, they are

unable to provide an exact value but only an approximation for irrational or periodic

rational numbers.

The hardware support for computing them is a clever alternative to provide greater

performance and avoid the software overhead due to specialized math libraries, especially

when trying to build embedded devices or solving high performance computing

applications.

3 Formal Framework for High Precision Computing

The exact computation problem can be defined by means the following definitions.

Let f be a general mathematical function. Any computable function whose result

approximates to f according to a particular implementation is defined implementation

function  of f. In this way:

codomain(f (𝑥⃗))  codomain(f(𝑥⃗)) (1)

and then,

 𝑥⃗  domain(f), |f (𝑥⃗) – f(𝑥⃗)|   (2)

where,

𝑥⃗: Function’s arguments.

 :   ℝ+  {0}. Approximation of f by  .

The general work of an arithmetic unit is to process mathematical functions. The

calculation of these functions is its main purpose.

An architecture  is characterised both by the set of functions that it provides and by

the way in which they are implemented. Let the following set of functions be:

 = {f1, f2, ..., fn} (3)

An architecture  that provides these functions will be made up of:

 = {f1, f2, ..., fn} (4)

That is,  will contain the specific implementation of each function of the  set, where

each fi produces an approximation to fi. In this way, fi is the objective of the arithmetic

unit whereas fi corresponds to the function that is finally provided. The implementation

of those functions does not have to be unique. Thus, several implementations of the same

function that represent different approaches to f, with different values of  could exist.

For example, the different arithmetic adder implementations for each operand size of

different representation format.

It is defined a function f as having an exact evaluation of f if the result provided by

f is equal to the result of f, that is, in accordance with the expression (2),  = 0.

 𝑥⃗ domain(f), f (𝑥⃗) = f(𝑥⃗) (5)

In this case, the  architecture implements that function effectively. An exact arithmetic

architecture requires all its functions to be implemented in a totally effective way.

The framework for high precision computing works into a rational domain. The set of

functions provided is the following:

ℚ = {identity, addition, multiplication} (6)

The mathematical identity function is defined by the following expressions:

identity: ℚ  ℚ
∀ x  ℚ. identity(x) = x

(7)

The implementation of the identity function corresponds to the codification of the rational

numbers in a floating point representation format based on the positional notation system.

The main idea consist in representing the fractional part of the rational number by means

a double mantissa codification where fixed and periodic mantissas are explicitly

represented. The fixed mantissa is the fractional part of the non-periodic rational number,

whereas the periodic mantissa represents the digits that form the repetitive part. In this

way, the whole digit string of the number can be easily obtained by concatenating the

fixed mantissa with the periodic mantissa for an indefinite number of times.
Along with this method that provides exact representation of the numbers, the

arithmetic functions of ℚ define a ‘commutative ring’ whose nonzero elements form an

‘abelian group’ under multiplication and addition operations:

(ℚ, +) and (ℚ, ·) are abelian groups.
(ℚ, +, ·) is a commutative ring.

The formal framework is characterized by the exact representation of the numbers and by

these mathematical properties. Only with exact representation, the inverse functions can

be achieved by the abelian groups and the commutative ring can be built. These properties

let the formal correctness of the problem formulation and allow to the unit perform the

calculations of scientific or engineering problems from a numerical point of view.

However, the main challenges of this mathematical model are to conceive calculation

methods to implement the arithmetic functions where the numbers are coded in the

proposed method. The next section describes the implementation method of the identity

and addition functions for rational processing.

4 Arithmetic Unit Architecture

In general terms, our proposal consists of developing an arithmetic architecture which

contains a set of operators which achieve the exact result for rational operands. The

arithmetic unit architecture provides the implementation function  of each of the

functions of ℚ as it is defined in expression (8).

ℚ = {identity, addition, multiplication} (8)

These operators produce the exact results of the functions. Figure 2 shows a diagram

summarising the unit design.

Fig. 1. General overview of the Rational Arithmetic Architecture

4.1. Identity operator

The first task is to implement the identity function able to express any element of the set

of rational numbers. The proposed implementation, identity, is a bijective application with

which any rational number can be represented in a finite representation space.

identity: ℚ  ℚ (9)

According to previous idea, the proposed implementation lets coding both fixed and

periodic mantissa of the rational numbers. In addition, the number can be represented in

floating point in order to provide higher expressive capacity. The next figure shows a

scheme of the representation, where EWL, MfWL and MpWL are the field lengths.

Identity

Adder

Flexible

Memory
Unit

Multiplier

Operands
Results

(Operands)

Fig. 2. General scheme of the double mantissa representation

The value of the number is built by means of the standard floating point expression:

A  ℚ, A = (-1)s · M · BE (10)

where B is the base of the representation, M is the complete mantissa of the number, and

E is the exponent.

The codification of the numbers in that format by the arithmetic unit is an

implementation of the identity function identity. The Word Length (WL) of the fields of

the representation format can be adjusted to the required precision of each problem. Thus,

the operands, intermediate numbers and results can be stored in a ‘Flexible Memory Unit’

with indirect addressing of variable word lengths [42].

Nevertheless, the representation can also be made into conventional fixed registers

with a Register Word Length (RWL) established for the architecture. In this way, the

length of the fields of the exponent (EWL) and the mantissa (MWL) are fixed too. In this

case, it is required a pointer which marks the separation between the fixed and periodic

parts of the mantissa and which enables a separate processing. To complete all of the

digits assigned to the mantissa field, the periodic mantissa is placed forming a cycle, and

the lengths of fixed and periodic mantissas are stored with the previous pointer. This data

joins the register that contains the number as can be seen in the structure illustrated in the

following figure:

Fig. 3. General scheme of the double mantissa representation in fixed register of RWL length.

4.2. Addition operator

The importance of the addition operation in numerical calculation has motivated the work

of many researchers aiming to improve it [43-45]. Most of the methods are designed for

operands represented according to IEEE-754 standard [1] (both binary and decimal base).

They show how to perform the operation by manipulating the fields that make up the

numbers: displacement, addition of mantissas, exponent’s treatment, normalization and

rounding.

The implementation of the addition function is named as addition. The next expression

formalizes this implementation on rational operands:

addition: ℚ x ℚ  ℚ

 xA, xB  ℚ. addition(xA, xB) = xA + xB
(11)

The arithmetic algorithm of addition operator is based on the following design principles:

the standard stages of floating-point operation formats are taken as a starting-point for the

sgn. Exponent (E) Fixed Mantissa (mf) Periodic Mantissa (mp)

EWL MfWL MpWL

…
0RWL-1

1
EWL MWL

Exponent (E) mf mpmpMWL–MfWLMpWL sMfWL

new method; the use of iterative methods to process the data successively and; the

computation of each significant mantissa separately to facilitate parallel designs.

Hence, the calculation methods have the following characteristics: they can provide

the exact result of the operation in a finite word size and then, the final rounding stage is

avoided; the length of the exact result expressed in positional notation system is

proportional to the initial size of the operands; the design of strategies to adjust the

precision and the result’s length is feasible by acting on the iterative methods of

calculation of the mantissas. Using iterative structures and pre-calculated data could be a

way of achieving flexibility on the designs and can be used to adjust the result to the needs

of each application [46,47].

In first place, we present the general algorithm for exact addition without taking

account of any memory restrictions about the length of the fields. Those variable-length

register set make up the flexible memory unit. Next, we will propose the architecture of

the operator for low level hardware implementation (addition) based on the previous

algorithm. Each stage of the addition is composed by elementary operators such as

comparisons, n-bits adders, shifts and rotations. These primitives, are implemented

according to well-known designs for them. In this approach, it is considering the required

precision and the available size of the words into the arithmetic unit design.

The algorithm introduced consists of an extension of the traditional floating-point

addition method where operators and results are expressed according to the double

mantissa representation (sign, exponent and fixed and periodic mantissa) depicted in

figures 2 and 3. Therefore, the proposed method for the addition consists of the stages

shown in figure 4:

Fig. 4. Rational addition double mantissa stages.

The next paragraphs describe each stage of the method. Along this exposition, it is

considered two operands A and B represented into this format as inputs of the operation.

1. Calculation of mantissa displacement: The digits of the same order of magnitude

must be aligned to perform the addition of the mantissas. The displacement of digits must

consider the different exponents and the difference of fixed mantissa’s digits of both

numbers. The calculation procedure consists in subtracting from the exponents’

comparison, the fixed mantissa lengths’ comparison of both numbers as it is described in

expression (12) and it illustrated in the following figure (Fig. 5).

Calculation of mantissa
displacement

exponent
subtraction

mantissa length
subtraction

Mantissa alignment

Mantissa addition

Normalization

Shift

fixed
mantissa
addition

sign calc.
periodic
mantissa
addition

1 detect.
and mant.

displac.

period.
detection

update
exponent

1)

2)

3)

4)

Mantissa displacement = (ExponentA – ExponentB) – (MfWLA – MfWLB) (12)

Fig. 5. Displacement of mantissas in a variable length scheme

The next figure (Fig. 6) shows the flow design of that computing where the primitive

operators (complement, mux and n-bit adders) take part.

Fig. 6. Calculation of mantissa displacement stage implementation

The computational cost of this stage comes from the calculation of three addition

operations. Since the MfWL is a fixed field, the computational cost of this stage is lineal

with the exponent lengths. So that: T1) ∈ O(EWL).

2. Mantissa alignment: there are two types of transformation of the mantissas: fixed

mantissa is shifted to the left whereas the periodic mantissa is rotated to the same

direction. Periodic digits are taken when necessary to complete the fixed mantissa. With

these alignment movements, the fixed mantissa length is increasing by the calculated

displacement while the periodic mantissa length remains constant. The implementation

of these two transformations consist only in updating the periodic-fixed separator pointer

by the addition of the calculated displacement. The computational cost of this stage is

lineal with the exponent size: T2) ∈ O(EWL).

displacement

(ExponentA – ExponentB) – (MfWLA – MfWLB)

Fixed mantissa operand A

Fixed mantissa operand B

Fixed mantissa Result

ExponentA mfA mpAmpA …
0RWL-1

sAA ≡

ExponentB mfB mpBmpB …
0RWL-1

sBB ≡

Complement Complement

n-bit Σ n-bit Σ

MfWLB

muxmux

EA - EB EA – EB + 1 MfWLA - MfWLB MfWLA - MfWLB + 1

Complement

Sign exten.

n-bit Σ Complement

mux mux

Sign Displacement

MfWLA

3. Mantissa addition: At this stage, the result of the addition of fixed and periodic

mantissas are the fixed and periodic mantissas of the result respectively. Both operations

have different computational procedures which can be done in parallel with iterative

addition methods. The negative numbers are processed in complement. These

complement operations, if necessary, are implicit in Fig. 7 and 8. Each type of mantissa

requires a different procedure: fixed mantissas can be added directly, while periodic

mantissas need to be length-equalled by repetition before making the addition, as shown

in figure 7. It is necessary control logic in order to not exceed registers limits, and in that

case, to produce an approximate result.

Fig. 7. Periodic Mantissa addition

The carry bit of periodic addition must be added to the periodic result and propagated to

the fixed addition. Figure 8 shows the relations between the addition of the mantissas and

the double propagation of the carry to fixed and periodic operations.

Fig 8. Carry propagated adder between periodic and fixed mantissa

To perform these operations in parallel, three results are obtained: the addition, the

addition complemented and the addition plus one. The right result is then selected

according the numbers’ sign and the carry bits of both operations. The selection functions

are implemented as shown in the next figure (Fig. 9).

(a) (b)

Fig. 9. (a) Fixed mantissa selection logic; (b) Periodic mantissa selection logic

The sign of the result is a combinational function of the operands and the carry

produced in fixed mantissa addition according to the standard procedure for complement

addition. The next figure (Fig. 10) depicts this logic function.

PeriodicMantissaA PeriodicMantissaA···

PeriodicMantissaB PeriodicMantissaB···

PeriodicMantissaResult

PeriodicMantissaA

OpPeriodic1 OpPeriodic2OpFixed1 OpFixed2

 

Result Fixed Result Periodic

Carry

Carry
11

mfA + mfB mfA + mfB mfA + mfB + 1

SignA

SignB

CarryFixed-Add

xor

not

and

CarryPeriodic-Add

mux
0 1

mux
0 1

Fixed Mantissa Result

mpA + mpB mpA + mpB

SignA

SignB

CarryFixed-Add

xor

or

and

CarryPeriodic-Add

mux
0 1

mux
0 1

Periodic Mantissa Result

mpA + mpB + 1

Fig. 10. Sing of the result calculation

The computational cost of this stage is produced mainly by the addition operations of the

mantissas. The periodic mantissa additions have a variable length depending on the least

common multiple of the periodic mantissas’ length, but in any case, the complexity is

lineal with whole mantissa length MWL. T3) ∈ O(MWL).

4. Normalization: The results are normalized as in the standard floating point format

[1]. However, the addition operation can give other illegal configurations in the fixed and

periodic mantissas under the proposed representation format. These cases are produced

when the periodic mantissa is composed of a group of digits constituting a subperiod itself

or when fixed mantissa ends with a set of digits contained in the periodic mantissa. In

those cases, the result must be normalized to produce the simpler expression of each

number. The method to check the existence of subperiods in the periodic mantissa consist

in rotating & comparing on. If the method finds a match, the number of rotations indicates

the final size of the period. This normalization stage needs control logic to manage the

process and adjust the result to the registers’ length.

The described normalization procedures need to go through the mantissas to check

for illegal configurations. So that, this stage has a complexity lineal with mantissa lengths.

T4) ∈ O(MWL).

All the previous stages are computed sequentially. The temporal cost is obtained by

the contribution of all of them. So that, the overall computational complexity is lineal

with operand lengths: T ∈ O(RWL). This complexity is similar to standard floating point

additions methods.

5 Empirical evaluation & Application example

This section analyses the representation scheme and the quality of the results of the

addition method to validate the proposal for computing high precision problems.

5.1. Empirical evaluation of the result

In first place, it is analysed how the format works in representing the rational number of

the result. The experiments are focused on studying when the normalization stage is

needed and what is the growth of the resulting mantissas of massive chained addition

operations. This research is aimed to estimate the frequency of the extra delay produced

by the normalization step and the memory needs to store the results on complex

calculations.

The experimental set up is the following:

 It has been made series of 106 addition operations of rational numbers represented

in the proposed double mantissa format. The average of the results of each series

has been obtained to draw the results shown in table 1.

 The series corresponds with numbers generated in a growing range in order to

deduce behaviors related with the range width. So that, for each addition, two

SignA

SignB

CarryFixed-Add

xor

not

and

or

or SignResult

rational numbers have been built by means of a pair of fractions whose numerators

and denominator have been randomly generated into a power of two range.

That is, a/b where: a, b  [1..2i] and i  [4..8].

The next table (table 1) shows the results obtained:

 series

Normalization stage 16 32 64 128 256

Simplifying the
periodic mantissa

2,6% 2,2% 1,6% 1,3% 1,1%

Sub-mantissas in
fixed mantissa

6,6% 3,1% 1,2% 0,6% 0,1%

Table 1: Normalization needs of the addition results

The frequency where the normalization stage reduces the length of the result of the

addition is small and it is reduced with increasing the generation range of the values to

add. That is, the wider generation range, the lower effect has the normalization stage on

the result.

The proposed operation method can work with numbers denormalized. Therefore, in

problems with large variable domains, the normalization stage can be avoided in order to

improve the temporal cost. In addition, this stage can be performed at the end of a

sequence of chained operations where the result of the operation is the input of the next

operation. In this way, the normalization is computed only on the resulting number.

In second place, it is studied the size of the results of the additions and how it grows

with successive calculations. The experiments consist on compute series of chained

operations where the rational numbers have been generated according the same criteria

as the previous set up. The experiments show that the fixed mantissa has a logarithmic

growth with the amount of additions and it’s independent from the generation range of

the fractions, whereas the periodic mantissa has a growth related to the generation range.

It is due to the process in which the periodic mantissa is built in the described addition

method. The length before normalizing is equal to least common multiple (LCM) of the

periodic mantissas’ size of the operands. However, this periodic part has an upper limit.

There is a maximum length for each range given by the LCM of the lengths of the periods

of all numbers of the range. Thus, the maximum size of the periodic part will be

conditioned by the operator’s domain. For example, in the case of processing numbers

with two decimal fractional digits, the maximum size of the periodic part will be 20 binary

digits. That is,

where:

mf = 00
mp = 00001010001111010111

In this way, the result of any chained additions of operands with two decimal fractional

digits has a periodic part of up to 20 bits length. Other ranges have different lengths which

can be obtained experimentally. This finding is useful to design fixed registers to store

the numbers and results.

1/10010 = 00000010100011110101112

5.2. Application example

This section shows a calculation example of rational numbers in a context of intensive

addition/subtraction operations. The aims of this experiment is to test the accuracy and

reliability of the proposed model in comparison with the representation and computation

of the numbers with standard methods.

The working scenario could be to a stock market which perform a lot of daily

operations. Most of these operations typically consist of arithmetic addition/subtraction

on the prices of the stocks processed very intensively. For example, the European Eurex

is one of the major international derivatives markets which exceeded 11 million contracts

daily [28]. The accuracy of these operations is essential to maintain the correctness of

prices, ensure exact assessment of stocks and determine the evolution of the value of the

assets.

The application example consists in simulating a session day on the market and

calculating the evolution in the price of a stock. The addition/subtraction operations are

updating the prices of the stocks and accumulating the result.

In this experiment, the operations have been performed using the proposed method for

rational processing and the IEEE 754 standard floating point format for binary and

decimal representation of the numbers. This decimal representation allows encoding

monetary values correctly, however, many of the transactions of the stock market get their

value as a result of previous division operations. It produces representation errors of

numbers which contain periodic part (i.e. 1/3). This errors in the input data are then

propagated [12].

Typically, the rational domain of the stocks is euro cents, that is, two decimal fractional

digits. Thus, the stock prices are rational numbers on the form: α.β1β2 where a α ∈ ℕ and

βi ∈ [0..9].

The experimental set up is the following:

 Calculation of series of chained addition operations of rational numbers where the

output of an addition is the input for the next.

 Each rational number has been randomly generated by means a fraction a/b where:

a  [1..100] and b = 10010

 The numbers have been represented and computed in two ways: according the

proposed method, and in standard binary IEEE 754. The final stock prices are

compared after the calculations.

 The exact value of each series has been obtained by means symbolic fractional

calculation. That is, calculating the common denominator, updating the numerators and

adding them. For this purpose, a software library has been developed.

The experiments verify that the proposed method for high precision computing of

rational numbers produces exact results regardless of the number of chained operations

executed, whereas the standard binary IEEE 754 format representation causes an error

which increases with the amount of operations. These errors can be magnified especially

when involving a large volume of operations. What is normal in this type of scenarios.

The error rate for each series of chained operations of the calculations made by standard

binary IEEE 754 arithmetic is drawn in the graph below (Fig. 11).

Fig. 11: Error evolution of binary IEEE 754 simple precision

In terms of computational cost, in our example there is no performance problem, since

the key aspect is the precision. In other compute-intensive scenarios where response time

is critical may be necessary to consider what type of operation has the best cost/accuracy

relationship.

6 Conclusions

The research presented in this paper describes a mathematical model for representing and

processing rational numbers. The numbers are expressed in the positional notation system

where the periodic part of the numbers is explicitly represented. The proposed operators

of the model are the addition and multiplication. These functions are a ring algebra which

allow building a set of computational primitive operators.

The arithmetic addition is described in depth detailing the stages involved and the

procedures for implementing them. The calculation method is based on the standard

floating point addition method and uses iterative strategies which allow processing fields

of variable length. The multiplication operator can be designed following the same

principles.

The experiments carried out analyse the representation and the addition method from

two points of view: first, it is evaluated the behaviour of the double mantissa in the

representation of the result and its evolution when multiple consecutive operations are

computed; and secondly it is described a realistic application example where a lot of

chained additions are needed. As a result, it was found that the addition operation provides

exact results, whereas the standard representation produces increasing errors in the

results, even using the decimal system.

The proposed model, consisting of the representation format and the operators, is an

alternative calculation model when the accuracy in storage and processing of rational

numbers is a key aspect to be considered.

We are currently working on developing the multiplication operator to complete the

model. In addition, the methods will be implemented in reprogrammable logic in order to

build a prototype of specialized processor on exact rational processing.

References

[1] American National Standards Institute and Institute of Electrical and Electronic Engineers, IEEE

Standard for Binary Floating-Point Arithmetic. ANSI/IEEE Standard 754-2008, 2008.

[2] M. Cowlishaw, The decNumber C library, IBM Corporation Report. 2010.

[3] M. Cowlishaw, J. Bloch and J. D. Darcy, Fixed, Floating, and Exact Computation with Java's

BigDecimal, Dr. Dobb's Journal, The Word of software development, 2004, Available online:

http://collaboration.cmc.ec.gc.ca/science/rpn/biblio/ddj/Website/articles/DDJ/2004/0407/0407b/040

7b.html#rs1, (Accessed on 24 september 2015).

[4] Intel® Decimal Floating-Point Math Library, 2011, Available online: https://software.intel.com/en-

us/articles/intel-decimal-floating-point-math-library, (Accessed on 24 september 2015).

[5] H.A.H. Fahmi et al., Decimal Floating Point for future processors, International Conference on

Microelectronics (ICM), pp. 443 – 446, 2010.

[6] E. M. Schwarz, J. S. Kapernick, and M. F. Cowlishaw, Decimal floating-point support on the IBM

System z10 processor, IBM Journal of Research and Development. Vol. 53 (1), pp. 1-10, 2009.

[7] Fujitsu, Fujitsu’s new generation SPARC64 processor unveiled at Hot Chips 24, 2013, Available

online: http://www.fujitsu.com/global/services/computing/server/sparcenterprise/key-

reports/featurestory/sparce-feature1209.html. (Accessed on 24 september 2015).

[8] P. Bergner et al., Performance Optimization and Tuning Techniques for IBM Power Systems

Processors Including IBM POWER8, IBM RedBooks, 2nd ed, ISBN: 0738440922, 2015.

[9] JL. Sanchez et al., An iterative method for improving decimal calculations on computers,

Mathematical and Computer Modelling, Vol. 50 (5), pp. 869-878, 2009.

[10] David H. Bailey, High-precision floating-point arithmetic in scientific computation, Computing in

Science and Engineering, 2005, Vol. 7 (3), pp. 54-61, 2005.

[11] Yuanwu Lei , Yong Dou , Lei Guo , Jinbo Xu , Jie Zhou , Yazhuo Dong , Hongjian Li, VLIW

coprocessor for IEEE-754 quadruple-precision elementary functions, ACM Transactions on

Architecture and Code Optimization (TACO), v.10 n.3, p.1-22, 2013.

[12] T. Lang, J. D Bruguera, A hardware error estimate for floating-point computations, Proc. SPIE

Conference. Advanced Signal Processing Algorithms, Architectures and Implementations, 2008.

[13] D. Piso and J.D. Bruguera, Obtaining Accurate Error Expressions and Bounds for Floating-Point

Multiplicative Algorithms, The Computer Journal, vol. 2, no. 57, pp. 319-331, 2014.

[14] D. Matula, P. Kornerup, Finite Precision Rational Arithmetic: An Arithmetic Unit, IEEE Transactions

on Computers, Vol. C-32 pp. 378-387, 1983.

[15] A. Edalat, R. Heckmann, Computing with real numbers: (i) LFT approach to real computation, (ii)

Domain-theoretic model of computational geometry, Lecture Notes in Computer Science,

vol.2395,193-267, 2002.

[16] V. Ménissier-Morain, Arbitrary precision real arithmetic: design and algorithms, The Journal of Logic

and Algebraic Programming, Vol. 64, pp. 13–39, 2005.

[17] H.J. Boehm, Constructive real interpretation of numerical programs, ACM Conference on Interpreters

and Interpretives Techniques, ACM, 1987.

[18] D. Lester, Effective Continued Fractions, IEEE Symposium on Computer Arithmetic, pp. 163-170,

2001.

[19] J. Vuillemin, Exact real computer arithmetic with continued fractions, IEEE Transactions on

Computers, Vol. 39 (8), pp. 1087-1105, 1990.

[20] T. Brabec, R.Lórencz. Arithmetic Unit Based on Continued Fractions. International Scientific

Conference on Electronic Computers and Informatics, pp. 225-230, 2006.

[21] O. Mencer. Rational Arithmetic Units in Computer Systems, PhD Thesis, Stanford University, 2000.

[22] H. Dawood, Theories of Interval Arithmetic: Mathematical Foundations and Applications.

Saarbrücken: LAP LAMBERT Academic Publishing. ISBN 978-3-8465-0154-2, 2011.

[23] P. Krka, Exact real arithmetic for interval number systems, Theoretical Computer Science, Vol. 542,

p.32-43, 2014

[24] J. D. Bruguera, Optimizing the representation of intervals, Science of Computer Programming, Vol.

90 (A), pp. 21–33, 2014.

[25] J. Žilinskas, Comparison of Packages for Interval Arithmetic, Informatica, Vol. 16 (1), pp. 145–154,

2005.

[26] M.J. Schulte, A Family of Variable-Precision Interval Arithmetic Processors, IEEE Transactions on

Computers, Vol. 49, no. 5, pp. 1-11, 2000.

[27] J.W. Von Gudenberg, Interval Arithmetic on Multimedia Architectures, Reliable Computing, Vol. 8

(4), pp 307-312, 2002.

[28] J. Hormigo, J. Villalba, E. L. Zapata, CORDIC Processor for Variable-Precision Interval Arithmetic,

Journal of VLSI Signal Processing, Vol. 37, pp. 21–39, 2004.

[29] Sukemi, A G.P. RatnaAgung Putri; H. Sudibyo, A.P. Anak; H. Sudibyo, Incorporating Different

Bitspaces to Create a Variable Precision Processor, Advanced Science Letters, Vol. 21 (1), pp. 78-82,

2015.

[30] M.J. Schulte, E.E. Swartzlander, Jr., A Processor for Staggered Interval Arithmetic, International

Conference on Application Specific Array Processors, pp. 104-112, 1995.

[31] A. Guyot, Y. Herreros, J.M. Muller, JANUS, an On-line Multiplier/divider for manipulating large

numbers, IEEE Symposium on Computer Arithmetic, pp. 106-111, 1989.

[32] A.F. Tenca, M.D. Ercegovac, A variable long-precision arithmetic unit design for reconfigurable

coprocessor architectures, IEEE Symposium on FPGAs for Custom Computing Machines, pp. 216 –

225, 1998.

[33] M. Niqui. Exact real arithmetic on the Stern-Brocot tree. J. Discrete Algorithms, Vol. 5(2), pp.356-

379, 2007.

[34] A. Kazda, P. Kůrka. Representing real numbers in Möbius number systems. Actes des rencontres du

CIRM, 1 no. 1, p. 35-39, 2009.

[35] P. Kůrka. Stern-Brocot graph in Möbius number systems, Nonlinearity, Vol. 25, pp. 57-72, 2012.

[36] M.D. Ercegovac, J.M. Muller, Arithmetic Processor for Solving Tridiagonal Systems of Linear

Equations, Asilomar Conference on Signals, Systems and Computers, pp. 337 – 340, 2006.

[37] M.S. Cohen, T.E. Hull, V.C. Hamacher, CADAC: A Controlled-Precision Decimal Aritmetic Unit,

IEEE Transactions on Computers, Vol C-32, pp 370-377, 1983.

[38] C.-Y. Hsu, Variable Precision Arithmetic Processor in FPGAs, Master’s Thesis, University of

Toronto, 1996.

[39] P. Kornerup, D. W. Matula, Finite Precision Number Systems and Arithmetic, Cambridge University

Press, ISBN: 9781139643559, 2010.

[40] C. García, S. Gonzalez, J. Villalba, E.L. Zapata, On-line Decimal Adder with RBCD Representation,

IEEE International Conference on Application-Specific Systems, Architectures and Processors, pp.

53 – 60, 2012.

[41] C. Garcia, S. Gonzalez, J. Villalba, E.L. Zapata, Decimal online multioperand addition, Asilomar

Conference on Signals, Systems and Computers, pp. 350 – 354, 2012.

[42] F.L. Steven et al., Addressing Mechanisms for VLIW and Superscalar Processors, Microprocessing

and Microprogramming, Vol. 39. pp. 75-78, 1993.

[43] J. D. Bruguera, T. Lang, Floating-Point Fused Multiply-Add: Reduced Latency for Floating-Point

Addition. IEEE Symposium on Computer Arithmetic, pp. 42-51, 2005.

[44] A. Vázquez, E. Antelo, A High-Performance Significand BCD Adder with IEEE 754-2008 Decimal

Rounding, IEEE Symposium on Computer Arithmetic, (ARITH 2009), pp. 135 – 144, 2009.

[45] K. Yehia, H.A.H. Fahmy, M. Hassan, A redundant decimal floating-point adder, Asilomar Conference

on Signals, Systems and Computers (ASILOMAR), pp. 1144 – 1147, 2010.

[46] J. M. García-Chamizo, J. Mora-Pascual, H. Mora-Mora, M. T. Signes-Pont, Calculation methodology

for flexible arithmetic processing, IFIP International Conference on Very Large Scale Integration

(VLSI-SOC), 2003.

[47] H Mora-Mora, J Mora-Pascual, MT Signes-Pont, JL. Sánchez-Romero, Mathematical model of stored

logic based computation, Mathematical and Computer Modelling Vol. 52 (7), pp. 1243-1250, 2010.

[48] Eurex Group, Press releases, 2012, Available online: http://www.eurexgroup.com/group-

en/newsroom/press-releases/186248/, (accessed on November 2015)

