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Abstract With the advent of low-cost 3D sensors and 3D printers, scene and object 3D sur-
face reconstruction has become an important research topic in the last years. In this work,
we propose an automatic (unsupervised) method for 3D surface reconstruction from raw
unorganized point clouds acquired using low-cost 3D sensors. We have modified the Grow-
ing Neural Gas (GNG) network, which is a suitable model because of its flexibility, rapid
adaptation and excellent quality of representation, to perform 3D surface reconstruction of
different real-world objects and scenes. Some improvements have been made on the orig-
inal algorithm considering colour and surface normal information of input data during the
learning stage and creating complete triangular meshes instead of basic wire-frame repre-
sentations. The proposed method is able to successfully create 3D faces online, whereas
existing 3D reconstruction methods based on Self-Organizing Maps (SOMs) required post-
processing steps to close gaps and holes produced during the 3D reconstruction process.
A set of quantitative and qualitative experiments were carried out to validate the proposed
method. The method has been implemented and tested on real data, and has been found to
be effective at reconstructing noisy point clouds obtained using low-cost 3D sensors.
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1 Introduction

Many well established techniques proposed solutions to the 3D representation and surface
reconstruction problem from a geometric point of view. However, these algorithms required
long times to process the input point cloud and do not scale properly with very large data
[1, 2]. Moreover, these traditional geometric approaches do not manage non-stationary dis-
tributions and do not deal with the lack of a priori information about the input space, e.g. the
presence of multiple shapes in the point cloud and noise induced by the sensors. Even more
recent methods that deal with point clouds fail to provide accurate solutions for some of the
aforementioned constraints [3].

Considering the 3D representation problem from a computational intelligence approach
and based on self-organizing maps, a different perspective to obtain 3D reconstructions is
proposed. These methods could be defined as flexible and growing models considering if
the structure of the selected map has a priori topology or otherwise it grows until a condi-
tion is fulfilled. Moreover, we can find some similarities or correspondences between the
neural network map and the 3D representation obtained. Nodes of the neural network map
correspond to vertices of a mesh and connection between nodes correspond to the edges.
Therefore, in this work the terms node and vertex, and connection and edge are used inter-
changeably. From this perspective, some methods were proposed based on self-organizing
maps.

In [4] it is proposed the use of Kohonen’s self-organizing maps for surface reconstruc-
tion using as an input data unorganized point clouds. Moreover, since Kohonen’s map does
not produce regular faces, an edge collapse operation was introduced eliminating dangling
faces. This approach presented some drawbacks as if the real object surface has concave
structures, applying Kohonen’s learning algorithm has some difficulties to correctly approx-
imate those parts. In addition, as the Kohonen’s algorithm has a high computational cost,
the single thread CPU implementation presented in this work took more than one hour to
represent the Stanford bunny model. This method was only tested with synthetic data and
the bunny model, which is comprised of 34, 834 points. Junior et al. [5], extended [4] intro-
ducing new mesh operators that allowed it to perform improvements on the surface geom-
etry: edge swap, edge collapse, vertex split and triangle subdivision. Moreover, the method
introduced a new step to remove unstable vertices using the mean distance and the stan-
dard deviation of the 3D representation regarding the sampled input space. Although this
new approach improved the surface geometry, the method does not deal with concave or
non-convex regions and the initial structure of the representation has to be pre-established
considering the topology of the input space. The fixed structure of the SOM does not learn
the spatial relationships between the vertices and therefore does not generate a model that
accurately represents the shape of the input space. To overcome this problem, some methods
based on Growing SOMs were proposed.

One of these SOM-based methods is the Growing Cell Structures (GCS) algorithm [6],
which is a model formed incrementally. However, it constraints the connections between the
nodes, so any model produced during the training stage is always topologically equivalent to
the initial topology. In [7] it is used the GCS algorithm to reconstruct objects surface. Meshes
operators are used to change the connectivity of the mesh and therefore final topology is
always equivalent to the initial mesh.

The Topology Representing Networks (TRN), proposed by [8], does not have a fixed
structure and also does not impose any constraint about the connection between the nodes.
In contrast, this network has a pre-established number of nodes, and therefore, it is not
able to generate models with different resolutions. The algorithm was also coined with the
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term Neural Gas (NG) due to the dynamics of the feature vectors during the adaptation
process, which distributes themselves like a gas within the data space. Barhak [9] proposed
a NG-based surface reconstruction algorithm since this network has the ability to accurately
represent the topology of a point cloud. However, as the NG has a fixed number of nodes,
it is necessary to have some a priori information about the input space to pre-establish the
size of the network. This model was extended by [10] proposing the Growing Neural Gas
(GNG) network, which combined the flexible structure of the NG with a growing strategy.
Moreover, the learning adaptation step was slightly modified. This extension enabled the
neural network to use the already detected topological information while training in order to
conform to the geometry. This approach has the capability to add neurons while preserving
the topology of the input space.

As the original GNG algorithm does not produce faces and the generated map is a wire-
frame representation model, some works extended the original algorithm to produce faces.
In [11], the GNG network is employed to model a point cloud and those regions that need
further sampling in order to obtain a more accurate model. Rescanning at higher resolution
is performed for each identified region of interest and a multi-resolution model is built. In
this work, only nodes of the generated map are used as the work is focused on sampling
capabilities of the GNG. MGNG [12] applied some postprocessing steps in order to per-
form surface reconstruction once the map is generated using the original GNG algorithm.
Most of these approaches were tested against CAD models or synthetic data and only few
experiments were performed on objects acquired with 3D sensors. In [13], the GNG algo-
rithm was modified in order to produce topological faces. The extended method was called
Growing Self-Reconstruction Maps (GSRM) and some learning steps as the Competitive
Hebbian Learning step (CHL) and the operations of vertex insertion and removal were also
modified. Most experiments of this work were performed on the Stanford dataset, which
had been previously filtered and therefore the surface reconstruction step does not have to
deal with noisy input spaces produced by common 3D sensors. In [13, 9] the Competitive
Hebbian Learning was extended considering the creation of 2-manifold meshes and face
reconstruction. However, it was also required to apply some post-processing steps to create
a complete model.

Although the use of the SOM-based techniques as NG, GCS or GNG for 3D input
space representation and surface reconstruction has already been studied and successful
results have been reported, there are some limitations that still persist. Most of these works
assumed noise-free point clouds. Therefore, applying these methods on challenging real-
world data obtained using noisy 3D sensors have not been object of study yet. Moreover,
with the advent of low cost RGB-D cameras as the Microsoft Kinect ' partial point clouds
have to be considered. Besides providing 3D information, these devices also provide colour
information, feature that was not considered in the revised works.

In this work, we extended the method presented in [14] for 3D object reconstruction us-
ing the GNG algorithm. This work extends the already proposed method considering surface
normal information during the learning process and performing an extensive evaluation on
noisy point clouds acquired using low-cost sensors. Moreover, a detailed study is carried out
analysing the quality of the 3D reconstructed model. We also compared the proposed method
against the state-of-the-art Poisson surface reconstruction method [15], showing quantitative
and qualitative results using different input data. Finally, more experiments were performed
considering the reconstruction of 3D scenarios.

I Kinect for XBox 360: http://www.xbox.com/kinect Microsoft
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The rest of the paper is organized as follows: first, a section describing briefly the GNG
algorithm is presented. In Section 3 and Section 4 the modification of the GNG algorithm,
considering colour and surface normal information during the learning process, is detailed.
Section 5 presents and depicts the proposed algorithm for face creation during the network
learning process. In Section 6 we present some experiments and discuss results obtained
using our novel approach compared to existing methods. Finally, in Section 7 we give our
conclusions and directions for future work.

2 GNG Algorithm

With Growing Neural Gas (GNG) [10] method a growth process takes place from minimal
network size and new neurons are inserted successively using a particular type of vector
quantization. To determine where to insert new neurons, local measures are gathered during
the adaptation process and each new neuron is inserted close to the neuron with highest
accumulated error. At each adaptation step a connection between the winner and the second-
nearest neuron is created as dictated by the CHL algorithm. This is continued until an ending
condition is fulfilled, as for example evaluation of the optimal network topology or a fixed
number of neurons is reached. The network is specified as:

— A set N of nodes (neurons). Each neuron ¢ € N has its associated reference vector
we € RY. The reference vectors can be regarded as positions in the input space of their
corresponding neurons.

— A set of edges (connections) between pairs of neurons. These connections are not weighted
and its purpose is to define the topological structure. An edge aging scheme is used to
remove connections that are invalid due to the continous update of neurons reference
vector during the adaptation process.

The GNG learning algorithm is presented in Algorithm1.

3 Colour interpolation

As modern 3D sensors provide colour information, the proposed method was modified re-
garding the original version considering also point cloud colour. Input space dimension is
increased from 3 to 6 adding red, green and blue colour components. Now the input dis-
tribution is defined in R% where d = 6. Most SOM-based approaches already presented
only considered spatial information as neuron’s weight vector w., so we modified the learn-
ing algorithm adding colour to the neuron’s weight vector w. and considering it during the
learning process, now the dimension of the neuron’s weight vector is 6 including spatial
and colour information. Colour values were normalized ranging from 0.0 and 1.0. Colour
information is considered during the weight adaptation process but it was not included in
the CHL (winning neurons) stage as we still are focused on preserving the topology of
the input space. Therefore, winning neuron stage only compute Euclidean distance using
x,y,z components. Figure 1 shows how the GNG method generated a down-sampled ver-
sion of captured coloured point clouds, interpolating the colour of original observations and
achieving a good topological fitting for different objects and scenes. We called this version
Colour-GNG.

In order to validate and compare the colour version of the GNG, we implemented a
different strategy to consider point cloud colour information. Instead of adding colour in-
formation to the learning process, a post-processing step to compute colour information is
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input : N-dimensional input data
output: N-dimensional map
1 Start with two neurons a and b at random positions w, and wy, in R4,
2 repeat
3 for patterns=0 to X\ do
4 Generate at random an input pattern £ according to the data distribution P (&) of each input
pattern.
5 Find the nearest neuron (winner neuron) s; and the second nearest s2.
6 Increase the age of all the edges emanating from s7.
7 Add the squared distance between the input signal and the winner neuron to a counter error
of s1 such as:
Nerror(s1) = |Jws, — &||2 (1)
8 Move the winner neuron s and its topological neighbors (neurons connected to s1)
towards & by a learning step €,, and €,,, respectively, of the total distance:
Awsl = €w (5 - wsl) 2)
9 forall the direct neighbors n of s1 do
10
Awsn = €n (g - an) (3)
11 end
12 if s1 and s are connected by an edge then
13 ‘ Set the age of this edge to 0.
14 else
15 \ Create the connection between s and sa.
16 end
17 Remove the edges larger than amax
18 if any neuron is isolated (without emanating edges) then
19 \ Remove those neurons as well.
20 end
21 end
22 Insert a new neuron as follows:
23 Determine the neuron ¢ with the maximum accumulated error.
24 Insert a new neuron r between g and its further neighbor f:
wr = 0.5(wq + wy) @)
25 Insert new edges connecting the neuron  with neurons ¢ and f, removing the old edge
between ¢ and f.
26 Decrease the error variables of neurons g and f multiplying them with a constant «. Initialize
the error variable of r with the new value of the error variable of ¢ and f.
27 Decrease all error variables by multiplying them with a constant ~y.
28 until number of neurons reached,

Algorithm 1: Pseudo-code of the GNG algorithm.

added to the process. Once the network has been adapted to the input space (original GNG)
and it has completed the learning process, each neuron of the network computes colour in-
formation from closest input patterns. Colour information of each neuron is calculated as the
average of weighted values of the K-nearest input patterns, obtaining an interpolated value
of the surrounding point. Colour values are weighted using Euclidean distance from input
pattern to its closest neuron reference vector. k-Nearest Neighbours (kNN) are obtained us-
ing a radius search process, using as a radius the resolution of the generated map by the
GNG algorithm. Therefore, RGB colour for each neuron is calculated using the following

equation:
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Fig. 1 Different objects and scenes are down-sampled using the Colour-GNG representation. (a),(b),(c) show
original point clouds. (d),(e),(f) show down-sampled point clouds using the proposed method. Original point
clouds: (a) 307,200 points; (b) 287,218 points; (c) 12,883 points. Down-sampled point clouds: (d) 25,000
points; (e) 50,000 points; (f) 5,000 points.

RGB; =¢ Y (RGB;-w(j —1i)) ®)
VjEN;

where N, represents the nearest input patterns of the neuron ¢, ¢ is the neuron being pro-
cessed and w(j — ) is the distance weighted function between the neighbouring pattern j
and the neuron itself. Using that distance weighted function, the weight of the colour of the
input pattern decays exponentially as the distance to the neuron increases. 1) is a normaliza-
tion factor that makes RGB components range between 0.0 and 1.0.

w(j —i) = e~ lli—ll (6)

Figure 2 visually shows this process. Although this search is accelerated using a Kd-tree
structure, it is considerably slower than the colour version of the GNG. Colour-GNG is able
to adapt its neurons’ weights in the same learning process, fitting accurately to the input
space.

Figures 3 and 4 show various observations that have been created using both approaches.
Colour-GNG produces a map that successfully interpolates input colour information produc-
ing a useful down-sampled map. Moreover, results were similar to those obtained with the
colour interpolation post-processing step.

Finally, some quantitative results are presented in Table 1 showing the mean error be-
tween estimated colours using the post-processing interpolation step and the proposed Colour-
GNG method. The mean error is computed over the three components of the RGB model
and it is truncated to the closest integer value. The maximum error obtained in a component
between estimated colours using the post-processing step and the Colour-GNG is less than
four units, considering that each component is represented using unsigned char format. In
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Fig. 2 Colour interpolation. Colour assigned to each neuron (large circles) is calculated as the averaged
weighted sum of input space samples (small circles) within a search radius (dotted circle).

(b) Filtered point cloud using (c) Filtered point cloud using
Color-GNG (4000 points) GNG + Color interpolation
(4000 points)

(a) Original point cloud
(12883 points)

Fig. 3 Mario figure is down-sampled using the Colour-GNG method. Results are similar to those obtained

with the colour interpolation post-processing step.
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(a) Original point cloud (d) Original point cloud
(287,218 points) (307,200 points)

(b) Filtered point cloud u'sing (e) Filtered point cloud using
GNG + Color ln!e.rpulatlon GNG + Color interpolation
(50,000 points) (25,000 points)

(¢) Filtered point cloud using (f) Filtered point cloud using
Color-GNG (50,000 points) Color-GNG (25,000 points)

Fig. 4 Two different scenes captured using the Kinect sensor are represented using the Colour-GNG method.
Results are similar to those obtained with the colour interpolation post-processing step.

this experiment we used values between 0 and 255 to facilitate understanding of the obtained
results.

With these results we can conclude that Colour-GNG method is able to obtain similar
results compared to complex post-processing steps and reducing the processing time.
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Mean error

Red Green | Blue
Scene 1 - 20, 000 50 1 1 2
Scene 1 - 50, 00072 100 1 1 1
Scene 2 - 20, 000 50\ 4 4 4
Scene 2 - 50,000 100 2 2 2
Object 1 - 3,000n 50\ 2 3 3
Object 1 - 5,000 100 1 2 2
Object 2 - 3,000m 50\ 3 3 3
Object 2 - 5,000 100 2 2 2

Table 1 Colour mean error between computed colours using a post-processing interpolation step and the
Colour-GNG.

4 Preserving surface normal information

In this work, we also modified the original GNG algorithm for considering surface normal
information which is also present in the input data. We considered adding surface normal
information to the reduced representation created by the GNG algorithm. Since common
processing steps in 3D computer vision problems as 3D keypoint detection and 3D feature
extraction algorithms use surface normal information [16, 17, 18]. As it was demonstrated
in [19], the reduced representation created by the GNG algorithm has benefits for removing
noise from data provided by low-cost sensors, improving the performance in some computer
vision problems as 3D scene recognition. Normal information is included during the learning
step of the GNG, and therefore, we are able to produce a reduced representation of the
surface normal information. This new representation improves the performance of common
3D keypoint detection and feature extraction algorithms, since less data has to be processed.

The input space dimensionality has been increased from 6 to 9 adding surface normal
information (normal,,normaly,normal). Finally the input distribution is defined in R
where d = 9. As we previously commented, most SOM-based approaches already pro-
posed only considered spatial information as neuron’s weight vector w., so we modified
the learning algorithm adding surface normal information to the neuron’s weight vector w.
and considering it during the learning process. Normal information is considered during the
weight adaptation process but it is not included in the CHL (winning neurons) stage as we
still are focused on preserving the topology of the input space.

Figure 5 shows how the GNG method generates down-sampled versions of different
point clouds with surface normal information, interpolating normals and achieving a good
topological fitting for different objects and scenes. In this figure we do not show colour
information to emphasize how the GNG is able to learn surface normal information from
the input data and create a reduced representation that contains both, the geometric structure
and consistent surface normal information.

Figure 6 shows an example of an indoor scene obtained using the Kinect sensor (left).
Normal information was computed on the original point cloud using Principal Component
Analysis (PCA) [20] (middle). Then, a reduced representation was generated using the ex-
tended GNG algorithm considering surface normal information (right). We can appreciate
on the right part of the figure that the reduced representation has consistent surface normal
information regard the original input source (middle).
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Fig. 5 Top: Normal information computed on the original point clouds using PCA. Bottom: reduced rep-
resentations created using the extended version of the GNG considering surface normal information. GNG
connections are not shown to emphasize surface normal information.

Fig. 6 Left: indoor scene obtained using the Kinect sensor. Middle: surface normal information computed on
the original point cloud. Right: Down-sampled surface normal information using the GNG algorithm

5 3D surface reconstruction

Three-dimensional surface reconstruction is not considered in the original GNG algorithm
as it only generates wire-frame models. As we presented in Section 1, some previous works
as [12, 13, 9] have already considered the creation of 3D triangular faces modifying the
original GNG algorithm. In these works, mesh operators as edge split, edge collapse, triangle
subdivision, etc, were implemented to achieve that purpose. Although most of these works
produced 3D meshes they have a common drawback or disadvantage, the need of post-
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processing steps to finally close holes and missing faces that were not created during the
learning stage.

Figure 7 shows the result of using an existing GNG-based method for surface recon-
struction [13] without applying post-processing steps. The reconstructed model has a lot of
gaps and holes that makes the model not suitable for computer vision applications.

In this section, we detail the proposed extension of the already described GNG method
to generate full coloured 3D meshes without applying post-processing steps.

Fig. 7 Different views of reconstructed models using an existing GNG-based method for surface reconstruc-
tion. Post-processing steps were avoided causing gaps and holes in the final 3D reconstructed models.

5.1 Extended CHL

Original CHL, presented in Section 2, only considered the creation of edges between neu-
rons producing wire-frame 3D representations. Therefore, it is necessary to modify this
process in order to create triangular faces during the learning process. Based on [13] and [9]
we extended the CHL rule developing a method able to produce full 3D meshes. In contrast
to existing methods mentioned above, our extension does not need post-processing steps.
The 3D mesh is created during the learning stage.

The edge creation stage, was also extended considering the creation of triangular faces
during this process. Algorithm 2 describes our extended CHL to produce triangular faces.

In order to avoid non-manifold and overlapping edges, the edge creation step was modi-
fied restricting the creation of edges if the winning neurons s1 and s2 have already more than
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input : A point cloud
output: 3D mesh

1 For each input pattern presented to the network, the two nearest neurons to the input pattern are
selected as winning neurons s1 and sa;

o XN R W

o
L]

—
(5]

13
14

15

16
17
18 else
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36 end

if s1 and s2 are already connected by an edge then

Set edge age to O in order to “reinforce” it;
Check edge removal mechanism based on the Tales Sphere;
if s1 and s2 have one or two common neighbours then
foreach common neighbour n; do
\ Create a face f using s1, s2 and n;;
end
end
if s1 and s2 have one or zero common neighbours then
if There exist two neighbours ny and na of s1 and s respectively that are connected
and are not common to s1 and s2 then
Triangulate rectangular hole (Figure 8d): Create two faces using s1, s2, n1 and sa,
ni, n2;

end

else if There exist two neighbours n1 and na of s1 and sa respectively that are not
connected between them and are not common to s1 and so and. nq and no have a
common neighbour n3 then

Triangulate pentagonal hole (Figure 8e): Create three faces using s1, s2, n2; s1,
ng2, ng and s, n1, n3;

end
end

if s1 and s2 have two common neighbours n1 and na then
if n1 and na are already connected (Figure 8c) then
Edge between n1 and ng is removed;

Create an edge between s1 and s2;

Faces coincident to n1 and ng are removed;
Create two faces using n1, s1, s2 and na, s1, s2;
else

Create an edge between s1 and s2;

Create two faces using n1, s1, s2 and na, s1, 52;
(Figure 8b);

end

else

Create edge between s1 and s2;

if s1 and s2 have one common neighbour n1 (Figure 8a) then
\ Create a face f using s1,s2 and ny;

end

end

Algorithm 2: Pseudo-code of the extended CHL stage.

two common neighbours. This constraint helps avoiding edges with more than two incident

triangles

. Then, for every sampled point, a face is created whenever the already existing

edges or the new ones form a triangle. Moreover, if the creation of faces would produce
edges with more than two incident faces, then the face is not created avoiding overlapped

triangles

and non manifold meshes. During the creation of triangular faces it is checked if

the face to be created already exist, in that case, the face is not created. Figure 8 shows com-
mon situations produced during the CHL and how our method create edges and triangular
faces in those cases.
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N, n,

n4 n,

(@) (b) ()

ny

(d) (e)

Fig. 8 Considered situations for edge and face creation during the extended CHL.

The age scheme presented in the original GNG algorithm was also considered to remove
those edges that have an age higher than a given threshold agemq.. This age scheme was
extended including the removal of faces that shared this edge. Furthermore, to obtain regular
triangular faces we included another constraint that was introduced in [21]. This constraint is
based on the Thales sphere concept. For every edge that already existed in the CHL process,
this mechanism computes the angle between the vectors formed by s1 — s2 and s1 — n;
where n; is a common neighbour of s1 and ss. If this angle 6 > 0,42 the edge between s1
and n; is removed. Faces incident to this edge are also removed. Different values for 0,4
were tested, obtaining regular triangles for 0,42 values between 2/37 and 3 /4. Figure 9
shows this process.

S1 é‘ SZ

N4

Fig. 9 Edge removal constraint based on the Tales sphere. Left: The triangle formed by these 3 neurons is
close to a right triangle, therefore it is not removed. Right: The edge connecting s1 and n; is removed as the
angle formed by vectors so — s1 and n; — s is larger than 3/47. Moreover, the triangle formed by these
edges is also removed.
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5.2 Inserting and deleting neurons

Fig. 10 Face creation process during the insertion of new neurons. Left: neuron insertion between the neuron
q with highest error and its neighbour f with highest error. Right: four new triangles and two edges are
created considering 7, ¢ and r.

The neuron insertion process was also modified. Every time a neuron is inserted in the
network, an edge between the neurons with highest error is removed and therefore, triangles
incident to this edge are also removed. If it is possible, new faces are created along with the
new neuron (Figure 10 ).

Finally, if the given number of neurons is reached, all the input patterns are presented to
the network in order to close possible gaps and holes that were generated during the learning
process.

6 Experiments

In this section, different experiments are shown validating the capabilities of our extended
GNG method to create 3D meshes. The proposed method is able to learn colour information
and therefore to create coloured 3D meshes. 3D models were rendered using colour infor-
mation stored in the neurons and a triangle smooth-shading technique. First, a quantitative
study is performed using synthetic models and adding different levels of noise to the ground
truth model (validation set). Using the ground truth models and the generated ones adding
noise, we are able to measure the error produced by our 3D reconstruction method. In ad-
dition, our method is compared against the state-of-the-art Poisson surface reconstruction
algorithm using the synthetic models with added noise. Second, data coming from different
3D sensors is reconstructed using the proposed method and it is visually compared against
results obtained using Poisson surface reconstruction. In particular, we focused on data ob-
tained from low-cost 3D sensors since these sensors provide us with noisy and unstable
data.

All methods have been developed and tested on a desktop machine with an Intel Core
i3 540 3.07Ghz. These methods have been implemented in C++. Moreover, Poisson surface
reconstruction method, some metrics like the Hausdorff distance [22] and the visualization
framework have been implemented using the PCL library [23] and the Meshlab tool.

6.1 Dataset

In order to compute the error produced by the proposed 3D surface reconstruction method,
we need to manage models that provide us error-free information (ground truth). Scanning
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real-objects do not allow us to have ground truth information about the real measure of these
objects/scenes, therefore we decided to use synthetic models (Figure 11) which were gener-
ated using 3D design tools, in order to have ground truth data. As most 3D scanners produce
noisy acquisitions, which is one of the concerns of this work, caused by the reflectance of the
surface and other implicit factors, we added some Gaussian noise to the synthetic models to
simulate this behaviour. The Stanford bunny from the Stanford 3D scanning repository [24]
is considered as a noise-free model since it has been obtained using a high resolution sensor
and some post-processing steps for removing noise and closing holes have been applied.

Fig. 11 Synthetic 3D models used in the experiments. From left to right: Torus (4,800 points), Stanford
Bunny (72,027 points) and Heptoroid (286,678 points).

Moreover, we used other models from different sources for testing the proposed algo-
rithm. We used some models from the Stanford 3D scanning repository [24], we also tested
the dataset used in [25] obtained using a Kinect sensor and some models from [26], which
were aquired using a Minolta 3D laser. Finally, we tested the proposed methods with data
obtained at the University of Alicante (indoors) using low-cost sensors like the Microsoft
Kinect and the Asus Xtion Pro.

We added different levels of Gaussian noise to the synthetic models to test our proposal
and to see how the different methods are able to deal with this kind of noise, which is
common in 3D sensors. The results of applying different levels of noise to the synthetic
models are shown in Figure 12.

6.2 Surface reconstruction quality

To demonstrate the validity of our proposal, several experiments have been carried out com-
paring GNG 3D reconstruction results with Poisson surface reconstruction method. Dif-
ferent configurations for the GNG algorithm have been tested and compared using quality
measures.

We first compared the proposed method against one of the state-of-the-art methods,
the Poisson surface reconstruction algorithm. We have used Poisson algorithm for creating
meshes from different noisy input clouds that were shown above (synthetic model). As in
Poisson method, it is possible to define the level of depth (accuracy) we want to obtain
in the final reconstruction we performed experiments with different levels of accuracy and
therefore number of points.
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Fig. 12 Synthetic models with different levels of Gaussian noise. From left to right: sigma = 0; sigma = 1;
sigma = 2.5; (millimetres).

Figure 13 shows a colour map of the computed Hausdorff distance. It ranges from red
to blue, using red for the areas with largest error and blue for the areas with lowest error.
This figure shows the results of applying both reconstruction methods to noisy synthetic
point clouds with different Gaussian error. In order to evaluate these reconstructions in a
quantitative way, we computed Hausdorff distance (using the Metro tool [22]) between the
synthetic mesh model and the reconstructed ones from the noisy data. In this way, we can
measure the quality of the reconstruction obtained with the different methods using noisy
data. Poisson algorithm performs surface reconstruction using surface normal information,
and since normal information is very sensitive to the presence of noise, it is not able to
correctly reconstruct some parts of the model.

In Figure 13 (bottom) we see a challenging high-genus model, the heptoroid. The genus”
of this heptoroid surface is 22, and it has many hyperbolic regions. Despite the topological
complexity of this surface, we are able to produce a well-shaped mesh whereas the Poisson
method produces a reconstructed model with some errors and inconsistent geometry (red
areas).

2 Genus: A topologically invariant property of a surface defined as the largest number of nonintersecting
simple closed curves that can be drawn on the surface without separating it. Roughly speaking, it is the
number of holes in a surface. [27]
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Fig. 13 Colour maps of the error distribution on the reconstructed models from Figure 12. Left: GNG. Right:
Poisson mesh. It ranges from red to blue, using red for the areas with largest error and blue for the areas with
lowest error.

Figure 14 shows the results of applying both reconstruction methods to noisy synthetic
point clouds with Gaussian error equals to 2.5 millimetres. It can be seen how the Poisson
algorithm (left) is not able to correctly reconstruct the ears of the bunny due to the amount
of error in that area, creating a deformed shape. The rest of the bunny has been success-
fully reconstructed, but as we will see later, this reconstruction is not an accurate one since
most generated surfaces are approximated, and therefore there exist error in terms of Eu-
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clidean distance to the original model (error-free). The Growing Neural Gas (right) is able
to generate a more accurate reconstruction of the original point cloud compared to Poisson.

Fig. 14 Visual comparison of reconstructed models using GNG and Poisson methods. Left: GNG. Right:
Poisson. Bunny (5, 000 points), heptoroid (10, 000 points). It is highlighted in red some areas of the bunny
ears that are incorrectly reconstructed.

Finally, Table 2 shows all computed Hausdorff distances for all the tests performed
using the synthetic models and different levels of noise and accuracy. It can be seen how the
GNG algorithm outperforms the Poisson surface reconstruction algorithm for models with
a certain amount of noise. In most cases, as we previously shown, the reconstructed models
obtained using Poisson-based method are not able to correctly represent the noisy input data,
and therefore in most of these cases the Hausdorff distance (error) is larger compared to the
ones obtained using the GNG algorithm. In addition, we observed that not only the mean
distance is larger, but also the final reconstructed model contains more outliers. This fact is
extracted from the maximum error computed using the Hausdorff distance, which is shown
in Table 2. Errors presented in Table 2 are in millimeters.
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Method Model Error | Points Max Mean RMS
Poisson Torus 1 1500 | 5.8978 | 1.8325 | 1.2733
GNG Torus 1 1500 | 4.4079 | 0.5151 | 0.9361
Poisson Torus 2.5 1500 | 6.8978 | 2.8829 | 3.2788
GNG Torus 2.5 1500 | 6.4079 | 0.9151 | 1.1871
Poisson Bunny 1 7000 8.544 0.917 0.897
GNG Bunny 1 7000 6.19 0.42 0.612
Poisson Bunny 2.5 7000 | 12.544 1.117 1.697
GNG Bunny 2.5 7000 3.19 0.67 0.814
Poisson | Heptoroid 1 10000 8.544 0.917 0.897
GNG | Heptoroid 1 | 10000 6.19 0.42 0.612
Poisson | Heptoroid 2.5 10000 | 12.544 1.117 1.697
GNG | Heptoroid 2.5 | 10000 3.19 0.67 0.814

Table 2 Hausdorff distances (millimeters) from the reconstructed models to the ground truth. The proposed
method for 3D surface reconstructiong using the GNG is compared against the Poisson surface reconstruction
algorithm.

The proposed method allows to define the number of neurons (points) that will form
the mesh, allowing to create meshes with different resolution. Since Poisson method does
not allow to define this mesh attribute, to carry out these experiments and to establish a fair
comparison between both methods we defined for the GNG method the same number of
points that Poisson algorithm created for different levels of depth. This is the parameter that
enable us to define the accuracy of the reconstructed model using Poisson method.

6.3 Real-world data experiments

In this section, we show the results of applying the proposed method to different real-world
objects and scenes that have been acquired using low-cost 3D sensors. Figure 15 and 16
show the ability of the proposed method to create colour meshes of different types of models.
It can be seen how most holes and gaps showed in Figure 7, generated by existing extensions
of the GNG method for 3D surface reconstruction, were not generated using the proposed
method.

The model of the person and the scene presented in Figure 16 and Figure 17 are not
complete models, they are partial 3D views. The proposed method can work with partial
views, creating coloured meshes of the input data. Additionally, as we can see on the bottom
part of the Figure 16, the method was tested using a model of a foot obtained using a 3D
foot digitizer.

Figure 17 shows the result of reconstructing two partial views of an office obtained using
the Kinect sensor. We can appreciate how the proposed method is able to create a coloured
mesh. However, the method is not able to manage the lack of information in some areas of
the scene caused by occluded areas from the sensor’s point of view.

The proposed extension is also able to generate 3D meshes with different resolutions
and therefore, detail level. Figure 18 shows the builder helmet and the dinosaur model re-
constructed using different number of neurons, creating meshes with different level of detail.

However, the proposed method still produces some small gaps in the generated 3D re-
constructions. Figure 19 shows small gaps and holes created in some of the experiments
carried out. These are caused by the randomness of the network learning stage. Moreover,
in some cases triangles removal is caused by the edge removal ageing scheme, which also
is responsible of the good level of adaptation and interconnection between neurons. Despite



20 Sergio Orts-Escolano et al.

5N

=
e

va)
\V
w’i%mg.:

ks

e
=

A
N
Nl

44'

\
| PR
PN
VA AN ‘ X
AR NN S
s (B ettt
RIS WAL AR ]
o 2 N vE
02 WA R he N

=
A
=

N
Al

yi

e

Fig. 15 Reconstructed models using our extended GNG method for face reconstruction and without applying
post-processing steps. Top: Stanford bunny. Bottom: builder helmet.

this fact, the proposed method is valid for many computer vision applications. 3D triangular
faces are used in many 3D descriptors which are often used in object and scene recognition

applications.

7 Conclusions and future work

In this paper we have presented a novel unsupervised learning method to create complete
meshes from unorganized raw noisy 3D data. Previous knowledge about the sensor is not
necessary. It has been demonstrated how Growing Self-Organizing Maps (GSOM) are ca-
pable to represent noisy 3D data distributions. Neurons’ codevector has also been modified
adding input data colour and surface normal information to their weights. Due to this mod-
ification, the algorithm is able to adapt its structure to the input space topology during the
learning step and also to learn and store colour from the observation. This eliminates the
necessity to add post-processing steps to add colour information to the final representation.
In addition, including surface normal information, the reduced representation can be used
to directly compute 3D descriptors and 3D keypoints over the GNG structure, improving
computing performance.

Furthermore, the GNG algorithm has been also extended considering the creation of
triangular faces during the learning stage. In contrast with existing methods, our extension
allows to create complete triangular meshes with colour information during the learning
stage, not requiring any post-processing steps to close gaps and holes. The method was
validated with several models ranging from scanned objects to body parts like a foot. We also
performed an extensive quantitative and qualitative study comparing the proposed method
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Fig. 16 Reconstruction of 3D human models with the proposed method. Top: 3D model of a person. Bottom:
digitized human foot.

against the state-of-the-art Poisson surface reconstruction method. Results showed that the
proposed method is able to deal with noisy information while the Poisson method fails
reconstructing some parts of the tested models. Finally, real-world scenes have been tested,
showing positive results in the reconstruction of indoor environments.

Future work includes the adaptation and integration of the proposed method for online
3D surface reconstruction in mobile robotics tasks.

Acknowledgements This work was partially funded by the Spanish Government DP12013-40534-R grant.

References

1. Hoppe H, DeRose T, Duchamp T, McDonald J, Stuetzle W (1992) Surface reconstruc-
tion from unorganized points. SIGGRAPH Comput Graph 26(2):71-78, ISSN 0097-
8930, doi:10.1145/142920.134011



22 Sergio Orts-Escolano et al.

NPTy
e s,
R
R
L A awat

{ LRSS
i RIS

A
et
e
Ay

R
SRRERA
UG

EROA
5 %‘A‘E&é‘
SR

Fig. 17 The proposed method for 3D reconstruction was also applied to partial 3D views of scenes. Left:
Noisy point clouds captured using the Kinect sensor. Right: 3D reconstruction using the proposed method.

VAN

AVAN-N
ASNAES
RS
Rk
W
\VN

Fig. 18 Different 3D reconstructions of a the builder helmet model using various network sizes. Left: 3D
reconstruction using 250 neurons and 200 input patterns. Middle: 3D reconstruction using 1000 neurons and
500 input patterns. Right: 3D reconstruction using 2500 neurons and 1000 input patterns.



3D

surface reconstruction of noisy point clouds using Growing Neural Gas 23

F

=

2

10.

11.

12.

14.

. 19 Small gaps produced by our extended GNG method for 3D surface reconstruction.

Amenta N, Choi S, Kolluri RK (2001) The power crust. In Proceedings of the sixth
ACM symposium on Solid modeling and applications, SMA *01, 249-266, ACM, New
York, NY, USA, ISBN 1-58113-366-9, doi:10.1145/376957.376986

Berger M, Tagliasacchi A, Seversky LM, Alliez P, Levine JA, Sharf A, Silva C (2014)
State of the Art in Surface Reconstruction from Point Clouds. Eurographics STAR (Proc
of EG’14)

Yu Y (1999) Surface Reconstruction from Unorganized Points Using Self-Organizing
Neural Networks Yizhou Yu. In In IEEE Visualization 99, Conference Proceedings,
61-64

Junior A, Neto ADD, de Melo J (2004) Surface reconstruction using neural net-
works and adaptive geometry meshes. In Neural Networks, 2004. Proceedings.
2004 IEEE International Joint Conference on, vol. 1, —807, ISSN 1098-7576, doi:
10.1109/1JCNN.2004.1380023

Fritzke B (1993) Growing Cell Structures - A Self-organizing Network for Unsuper-
vised and Supervised Learning. Neural Networks 7:1441-1460

Ivrissimtzis I, Jeong WK, Seidel HP (2003) Using growing cell structures for surface
reconstruction. In Shape Modeling International, 78 — 86

Martinetz T, Schulten K (1994) Topology Representing Networks. Neural Networks
7(3)

Barhak J (2002) Freeform objects with arbitrary topology from multirange images.
Ph.D. thesis, Israel Institute of Technology, Haifa, Israel

Fritzke B (1995) A Growing Neural Gas Network Learns Topologies, vol. 7, 625-632.
MIT Press

Cretu AM, Petriu EM, Payeur P (2008) Evaluation of growing neural gas networks
for selective 3D scanning. In Proc. Int. Workshop Robotic and Sensors Environments
ROSE 2008, 108-113

Holdstein Y, Fischer A (2008) Three-dimensional surface reconstruction using meshing
growing neural gas (MGNG). Vis Comput 24:295-302

. Do Rego RLME, Araujo AFR, De Lima Neto FB (2010) Growing Self-

reconstruction Maps. Trans Neur Netw 21(2):211-223, ISSN 1045-9227, doi:
10.1109/TNN.2009.2035312

Orts-Escolano S, Garcia-Rodriguez J, Morell V, Cazorla M, Garcia-Chamizo JM (2014)
3D colour object reconstruction based on Growing Neural Gas. In 2014 International



24

Sergio Orts-Escolano et al.

15.

16.

17.

18.

20.
21.

22.

23.

24.
25.

26.

27.

Joint Conference on Neural Networks, IJICNN 2014, Beijing, China, July 6-11, 2014,
1474-1481, doi:10.1109/IJCNN.2014.6889546

Kazhdan M, Bolitho M, Hoppe H (2006) Poisson surface reconstruction. In Proceed-
ings of the fourth Eurographics symposium on Geometry processing, SGP 06, 61-70,
Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, ISBN 3-905673-36-
3

Rusu RB, Blodow N, Beetz M (2009) Fast Point Feature Histograms (FPFH) for 3D
registration. In Robotics and Automation, 2009. ICRA ’09. IEEE International Confer-
ence on, 3212 -3217, ISSN 1050-4729, doi:10.1109/ROBOT.2009.5152473

Tombari F, Salti (2011) A combined texture-shape descriptor for enhanced 3D feature
matching. In Image Processing (ICIP), 2011 18th IEEE International Conference on,
809 —812, ISSN 1522-4880, doi:10.1109/ICIP.2011.6116679

Mian AS, Bennamoun M, Owens RA (2006) A Novel Representation and Feature
Matching Algorithm for Automatic Pairwise Registration of Range Images. Int J Com-
put Vision 66(1):19-40, ISSN 0920-5691, doi:10.1007/s11263-005-3221-0

. Orts-Escolano S, Morell V, Garcia-Rodriguez J, Cazorla M (2013) Point cloud data

filtering and downsampling using growing neural gas. In The 2013 International Joint
Conference on Neural Networks, [ICNN 2013, Dallas, TX, USA, August 4-9, 2013,
1-8, doi:10.1109/IJCNN.2013.6706719

Jolliffe I (1986) Principal Component Analysis. Springer Verlag

Mole VLD, Aratijo AFR (2010) Growing Self-organizing Surface Map: Learning a Sur-
face Topology from a Point Cloud. Neural Comput 22(3):689-729, ISSN 0899-7667,
doi:10.1162/nec0.2009.08-08-842

Cignoni P, Rocchini C, Scopigno R (1996) Metro: Measuring Error on Simplified Sur-
faces. Tech. rep., Paris, France, France

Rusu RB, Cousins S (2011) 3D is here: Point Cloud Library (PCL). In Proceedings
of the IEEE International Conference on Robotics and Automation (ICRA), Shanghai,
China

(2013), The Stanford 3D Scanning Repository

Tombari F, Salti S, Di Stefano L (2010) Unique Signatures of Histograms for Local
Surface Description. In Proceedings of the 11th European Conference on Computer
Vision Conference on Computer Vision: Part III, ECCV’10, 356-369, Springer-Verlag,
Berlin, Heidelberg, ISBN 3-642-15557-X, 978-3-642-15557-4

Mian AS, Bennamoun M, Owens R (2006) Three-Dimensional Model-Based Object
Recognition and Segmentation in Cluttered Scenes. IEEE Trans Pattern Anal Mach
Intell 28(10):1584-1601, ISSN 0162-8828, doi:10.1109/TPAMI.2006.213

Gray A (1996) Modern Differential Geometry of Curves and Surfaces with Mathemat-
ica. CRC Press, Inc., Boca Raton, FL, USA, 1st edn., ISBN 0849371643





