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Abstract

In this letter we report the error analysis of 59 exchange-correlation functionals in

evaluating the structural parameters of small- and medium-sized organic molecules.

From this analysis, recently developed double-hybrids, such as xDH-PBE0, emerge as

the most reliable methods, while global-hybrids confirm their robustness in reproduc-

ing molecular structures. Notably the M06-L density-functional is the only semilocal

method reaching an accuracy comparable to hybrids’. A comparison with errors ob-

tained on energetic databases (including thermochemistry, reaction barriers and inter-

action energies) indicate that most of the functionals have a coherent behavior, showing

low (or high) deviations on both energy and structure datasets. Only a few of them are

more prone toward one of these two properties.
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The quality of any method rooted in density functional theory (DFT) is (strongly) affected

by the choice of the exchange-correlation functional (ECF), which gives the unknown term

of the Kohn-Sham energy. If from one side the spreading of DFT in chemistry and physics

has encouraged the research of new and better-performing density-functionals,1 from the

other side their validation has become a due step before any routine application. Such a

benchmark passes through a careful evaluation (and consequent statistical analysis) of the

errors on defined properties and systems sets.

Starting from the nineties, a large effort has been made in order to define standard

benchmark sets allowing for a meaningful and fair comparison between different ECFs.2–8

Among the properties firstly targeted, atomization energies, ionization potentials and elec-

tron affinities2–4 as well as bond lengths and angles of (mostly) small organic systems received

a particular attention.5,6 Later, several other key properties were added to these, such as

different spectroscopic observables,9–13 gaps in solids,8,14 lattice constants,8,15,16 and reaction

energies,17 just to mention some.

Since performances on properties and structural parameters are generally believed to be

disconnected, it is a commonly-accepted practice to carry out such benchmarks at given

molecular structures. However some exceptions can be found in the literature,18–20 mainly

concerning specific cases, like transition state structures,21–23 weakly bound interacting com-

plexes,24,25 conjugated polymers26 or H-bonds.27 Most of these latter studies showed that

ECFs performing well on a given non-structural property are not necessarily the best can-

didates for an accurate determination of molecular geometries. Nevertheless, properties and

structures are often evaluated using the same ECF, which prompts for more systematic

studies.

One of the main reasons concerning the recent deficiency of benchmarks on molecular

structures is the lack of accurate reference values to perform these systematic investiga-

tions. Within this framework, Barone and coworkers have recently developed two reference

databases of semiexperimental equilibrium structures of semirigid organic molecules named
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here CCse21 and B3se47.28–30 Whereas the former gathers a collection of 21 small organic

molecules ranging from tri- to octo-atomic systems, the latter is the subsequent extension

including 26 additional medium-sized organic systems dealing with various types of covalent

bonds and different molecular skeletons (see Figure S1 and S2 in the Supporting Informa-

tion). Both databases are an excellent diagnostic test to discriminate density-functionals in

modeling structural parameters of organic systems.

In this Letter, we use these two datasets to thoroughly benchmark the accuracy of 59

ECFs (reported in Table 1), and 3 post-Hartree-Fock (post-HF) approaches derived from the

second-order Møller-Plesset theory in its canonical (MP2) or spin-scaled versions (SCS- and

SOS-MP2). For the sake of completeness, the Hartree-Fock (HF) values are also reported.

The references and further details of all the considered computational methods involved in

this Letter are given in Table S1 of the Supporting Information.

In order to discriminate the accuracy of the selected approaches, we define a criterion

based on the matrix containing all the interatomic distances. For each system, we compute

the mean absolute deviation (MAD) over the distance matrix of the probed and the reference

geometries, and calculate the averaged deviation over the set. Figure 1 reports these statistics

for the 63 computational approaches considered in this Letter (see Table S2 and S3 in the

Supporting Information for more details).

For the CCse21 dataset, the deviations span from 0.002 to 0.016 Å for xDH-PBE0

and HF methods, respectively. Within this interval, a smooth transition from high to low

accuracy is observed. Apart from the worst performing ECFs like BLYP, B97D, B97D3 or

TPSS, most of the methods give a slight increase of the distance matrix deviation (⇠ 1 ·10�3

Å) going from the CCse21 to the B3se47 database. In other words, most of the methods

show a coherent behavior for both small- and medium-sized semirigid organic compounds.

Going through the details, the top rank performing density-functionals is ruled by double-

hybrids, and more specially by the xDH-PBE0 double-hybrid and some reparameterization

variants of the B2-PLYP density-functional with deviations lower than 0.003 Å on the dis-
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tance matrix criterion. These ECFs (containing a fraction of nonlocal correlation) out-

perform the other considered methods for the description of minimum energy structures.

They are followed by modern and highly parameterized range-separated hybrids belonging

to the !B97 family of ECFs, which are often underlined in the literature as promising ap-

proaches to model several other chemical properties,11,27,31 and by the large panel of global-

hybrids chosen to perform this investigation. Among these global-hybrids, SOGGA11-X, an

exchange-hybridized variant of the semilocal SOGGA11 already highlighted for its accuracy

in modeling bond lengths,18–20 and the parameter-free PBE0 density-functionals, are part of

the best performing approaches with an error of 0.004 Å for both the CCse21 and B3se47

datasets. The popular B3LYP global-hybrid is on the line with an error of 0.005 Å on the

CCse21 dataset, and of 0.007 Å on the B3se47 database. Distance matrix deviations are

larger than 0.007 Å for semilocal ECFs (CCse21 database), noting that mGGAs are gener-

ally more accurate than GGAs. At this point, two remarkable results should be underlined.

From one side GGA density-functionals casting empirical dispersion corrections such as B97D

and B97D3 are worse performing than their parent approaches, thus suggesting problems in

their parameterization procedure. On the other side M06-L is the only semilocal ECF giving

results comparable to those obtained with the best performing (and more computationally

expensive) hybrid density-functionals.

Another interesting issue arising from Figure 1 concerns the performance of the Minnesota

density-functionals8 excluding the already mentioned SOGGA11-X. First generation density-

functionals (e.g., M05, M06) are more accurate than those belonging to the second one (e.g,

M11, N12-SX, MN12-SX). This effect could be related to the transition from global- to

range-separated hybridization scheme. Note that the behavior of semilocal approaches is

more difficult to rationalize even if some of the most recent ones are mainly parameterized

for thermochemistry (M11-L).

Figure 2 gives some insights on the accuracy of the computational approaches to model

the length of selected CH, CC and CO bonds extracted from the CCse21 database (see Table
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S4 in the Supporting Information for more details). As a general trend, CC and CO bond

lengths are underestimated (negative mean deviations) while CH ones are often overestimated

(positive mean deviations). Semilocal density-functionals such as BLYP, PBE, B97D, B97D3,

and TPSS, or post-HF methods infringe this last assertion and show a general overestimation

of all the analyzed bonds. Here again Figure 2 illustrates the excellent performances of the

top rank double-hybrids, which remarks the effect of a nonlocal correlation correction to

accurately model these three types of covalent bond lengths. Hybrids such as SOGGA11-X

and !B97 are close to double-hybrids, performing well for CH and CC bond types, but are

inferior to double-hybrids in the case of CO. However the results on the CO bond type are

less statistically meaningful due to the small number of cases.

To summarize our results, Figure 3 reports a diagram ranking the computational ap-

proaches according to their normalized distance matrix deviations obtained on the CCse21

database. Within this diagram, the scores of the best and least performing methods (xDH-

PBE0 and HF, respectively) are set to 100 and 0%, respectively. Each column gathers the

methods by a 10% decrease of the score of xDH-PBE0, thus indicating an increase of the

error with respect to the most accurate functional. In particular, the first left column con-

tains 8 methods having scores ranging between 100 and 90% of the xDH-PBE0 error, and

the second left column contains 18 methods scoring between 90 and 80%.

Among the 53 computational approaches investigated in this Letter, double-hybrids ap-

pear to be the best candidates. Seven of them are part of the first left column, or in other

words are part of the computational methods having a normalized error smaller than 10%

with respect to the xDH-PBE0 double-hybrid. Double-hybrids are still computationally too

demanding to easily afford investigations on larger systems but, fortunately, non-hybrid and

singly-hybridized ECFs can afford them, of course taking into account the trade-off between

accuracy and computational cost. The 26 methods clustered in the two first left columns

(more than 40% of the computational methods investigated in this Letter) perform worse

than 20% of the xDH-PBE0 score. Other 19 methods (ranging from X3LYP to M11, third
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left column) have scores between 80 and 70% of it, while the remaining part (18 methods)

perform worse than 70% of the score of the best candidate. The first two left columns include

the best density-functionals of each class of hybrids defined in Table 1. Only one, out of 26

(M06-L), is non-hybrid, thus underlining the role of nonlocal exchange to obtain accurate

geometrical values. Nevertheless, this contribution does not have to excess 40% in order

to get the best improvement. The best performing hybrid ECFs are PBE0 (among those

casting less than 40% of exact-like exchange), and SOGGA11-X (among those casting more

than 40% of exact-like exchange), and !B97X (for range-separated hybrids).

In order to verify the existence of a relationship between the performances obtained

for structural parameters and energetic properties, we plot in Figure 4 the errors for the

GMTKN307 and CE3458 databases with respect to the errors for molecular structures for a

selection of ECFs. Energetic data are taken from the literature.7,8,32,33 The GMTKN30 and

CE345 databases are two extended sets containing 841 and 345 reference relative energies,

respectively, specifically built to analyze the performance of computational methods for main

group thermochemistry, kinetics and weak-interactions. In both cases, most of the selected

density-functionals cluster on the left down corner of the correlation graphs, and present

a deviation of 1.5 to 6.0 kcal mol�1 for energetic, and of 0.003 to 0.008 Å for structural

properties. Qualitatively speaking, density-functionals close to the diagonal, i.e. small or

large deviations with respect to both energetic and structural criteria, provide coherent

performances on the two properties. In contrast, ECFs far from it are more specialized for

one property. This is the case for M11-L which is known to give small errors on energy

and B3LYP which performs better for structures than for energies. We have also to notice

the significantly different behaviors on the two energetic sets observed for a few density-

functionals such as BLYP and B3LYP. Their differences on predicted errors are as larger as

3 kcal mol�1 (BLYP), and could be related to the reduced number and different types of

reactions considered in the CE345 database.

In summary, in this Letter we report a careful investigation of the performances of 59
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density-functionals in computing structural parameters of small- to medium-sized semirigid

organic compounds belonging to the CCse21 and B3se47 databases. Our results indi-

cate that the xDH-PBE0 double-hybrid provides the lowest deviations, while PBE0 and

SOGGA11-X are the best global-hybrids. The performances of the M06-L semilocal density-

functional are also remarkable, while !B97X is the most reliable range-separated hybrid.

Nevertheless 23 density-functionals are particularly accurate on structural parameters, pro-

viding deviations not larger than 20% from that given by xDH-PBE0. A comparison with

errors obtained for two energy databases (i.e. GMTKN30 and CE345) shows a global coher-

ence of most of the considered functionals, while few of them (i.e. BLYP and M11-L) appear

to be more prone toward one of the considered properties (structure or energy). More gen-

erally, our results indicate that structural databases should be considered in the validation

step of any exchange-correlation density-functional, or even better, should be included into

the training set of parameterized approaches.

Computational Methods Except when mentioned, all the computations were performed

with a development version of the Gaussian suite of programs34 using an ultrafine grid and

a tight criterion for energy and geometry optimization convergence. Double-hybrid density-

functionals such as B2GP-PLYP, B2T-PLYP, B2K-PLYP, B2⇡-PLYP, PBE0-DH, PBE0-

2, PBE-QIDH and TPSS-QIDH, and post-HF methods such as SCS- and SOS-MP2 were

fully implemented within the computational Gaussian code. XYG3 and xDH-PBE0 double-

hybrids were implemented in the NorthWest computational Chemistry (NWChem) software

package,35 and computations with these two density-functionals were performed with similar

convergence criteria. We direct the reader to Table S1 in the Supporting Information to get

the original references and descriptions of the builtin and implemented density-functionals

included into the softwares. The aug-cc-pVTZ Dunning-augmented triple-⇣ basis set was set

for all the computations.
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Table 1: List of the exchange-correlation density-functionals considered in this Letter or-
dered according to their hybridization scheme.

non-hybrid global-hybrid global-hybrid range-separated double-hybrid
(< 40% of EXXb) (> 40% of EXXb) hybrid

SVWN APF BH&HLYP !B97 B2-PLYP
BLYP APFD BMKa !B97X B2⇡-PLYP
PBE B3LYP M05-2Xa !B97XD B2GP-PLYP
B97D B3PW91 M06-2Xa CAM-B3LYP B2K-PLYP
B97D3 B97-1 M06-HFa HISSb B2T-PLYP

SOGGA11 B97-2 SOGGA11-X HSE06 PBE-QIDH
N12 B98 LC-!PBE PBE0-2

HTCH407 M05a LC-BLYP PBE0-DH
TPSSa M06a LC-PBE TPSS-QIDHa

M06-La O3LYP M11a XYG3
M11-La PBE0 MN12-SXa mPW2-PLYP

MN12-La TPSSha N12-SX xDH-PBE0
X3LYP

mPW1LYP
mPW1PBE
mPW1PW91
mPW3PBE

a
These density-functionals also depend on kinetic energy density (⌧).

b
EXX denotes the fraction of exact-like exchange.
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Figure 1: Mean absolute deviations (in Å) of the distance matrices for the CCse21 (red,
21 items) and B3se47 (blue, 47 items) test sets. All the computational approaches are
ranked according to their performance on the CCse21 dataset. All the geometries are fully
optimized with the aug-cc-pVTZ basis set.
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optimized with the aug-cc-pVTZ basis set.
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(Å
)

GMTKN30
CE345

2 2.5 3 3.5 4 4.5 5 5.5
3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8
·10�3

+1
0%

of
er
ro
r

XYG3

M06-2X

M05-2X

!B97XD

M06

B2-PLYP

PBE-QIDH

TPSS-QIDH

BMK

PBE0-DH

M05
PBE0

M06-HF

CAM-B3LYP
LC-!PBE

M06-L

B3PW91

TPSSh

MN12-SX

M06

M06-2X

MN12-L

!B97X

!B97XD

!B97
M05

SOGGA11-X

B98

M06-L

M05-2X

N12-SX

M11BMK

B3PW91

CAM-B3LYP
O3LYP

mPW1PW91

SOGGA11

TPSSh
B3LYP

LC-!PBE

M06-HF

HTCH407

PBE0

energetic — Mean Absolute Deviation (kcal mol�1)

st
ru
ct
u
ra
l
—

M
ea
n
A
b
so
lu
te

D
ev
ia
ti
on

(Å
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Figure 4: Structural (in Å) versus energetic (in kcal mol�1) properties mean absolute devi-
ations. Structure parameter deviations are computed on the CCse21 test set, while ener-
getic weighted total mean absolute deviations for the GMTKN30 (blue) and CE345 (green)
databases are taken from references 7 and 8. The diagonal line connects the lowest and the
highest errors on the CCse21 and GMTKN30 sets, and the red area delimits the 10% error
zone around this diagonal. Right graph is a zoom of the back-dashed area drawn on the left
graph.
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Supporting Information Available

References and descriptions of the computational approaches involved in this Letter are

reported in Table S1. Representations of the molecules included into the CCse21 and

B3se47 dataset are given in Figure S1 and S2, respectively. Individual distance matrix

deviations on the CCse21 and B3se47 are reported in Table S2 and S3, respectively. Table

S4 reports the error on the bond length for a selection of bonds derived from the CCse21

database. This material is available free of charge via the Internet at http://pubs.acs.

org/.
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