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Conspectus 

Density Functional Theory (DFT) emerged in the last two decades as the most reliable tool the 

description and prediction of properties of molecular systems and extended materials, coupling in 

an unprecedented way high accuracy and reasonable computational cost. This success rests also on 

the development of more and more performing Density Functional Approximations (DFAs). 

Indeed, the Achilles’ heel of DFT is represented by the exchange-correlation contribution to the 

total energy, which, being unknown, must be approximated. Since the beginning of the ‘90s, global 

hybrids (GH) functionals, where an explicit dependence of the exchange-correlation energy on 

occupied Kohn-Sham orbitals is 

introduced thanks to a fraction of 

Hartree-Fock like exchange, imposed 

themselves as the most reliable DFAs 

for chemical applications.  However, if 

these functionals normally provide 

results of sufficient accuracy for most 

of the cases analyzed, some properties, 

such as thermochemistry or dispersive 

interactions, can still be significantly improved.  A possible way out is represented by the inclusion, 

into the exchange-correlation functional, of an explicit dependence on virtual Kohn-Sham orbitals 

via Perturbation Theory. This leads to a new class of functionals, called double-hybrids (DHs).  In 

this Account, we describe our non-empirical approach to DHs, which, following the line traced by 

the Perdew-Burke-Erzerhoh approach, allows for the definition of a GH (PBE0) and a DH (QI-DH) 

model.  In such a way, a whole family of non-empirical functionals, spanning on the highest rungs 

of the Perdew’s quality scale, is now available and competitive with other -more empirical- DFAs.  
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Discussion of selected cases, ranging from thermochemistry and reactions to weak interactions and 

excitations energies, not only show the large range of applicability of non-empirical DFAs, but also 

underline how increasing the number of theoretical constrains parallel with an improvement of the 

DFA’s numerical performances. This fact further consolidates the strong theoretical framework of 

non-empirical DFAs.  

Finally, even if non-empirical DH approaches are still computationally expensive, relying on the 

fact that they can benefit of all technical enhancements developed for speeding-up post-Hartree-

Fock methods, there is a substantial hope for their near future routine application to the description 

and prediction of complex chemical systems and reactions. 
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1. Introduction 

Among electronic structure methods, Density Functional Theory (DFT) represents an invaluable 

tool for the description and prediction of properties of molecular and extended systems. Its success 

is mainly related to the development, in the framework of the Kohn-Sham (KS) approach, of several 

Density Functional Approximations (DFAs) of increasing accuracy and moderate computational 

cost. Indeed, if many new exchange-correlation density-functionals belonging to the highest rungs 

of the Perdew ladder1 have been developed, the quest of more accurate functionals for the 

description of a wider variety of properties still remains a major research challenge.  

Overall, global- and/or range-separated hybrid functionals, which are characterized by an explicit 

dependence of the exchange-correlation energy on occupied KS orbitals thanks to the inclusion of a 

fraction of Hartree-Fock (HF) like exchange (such as PBE0,2,3 B3LYP,4-6 CAM-B3LYP,7 or LC-

ωPBE8), present a very good performance to computational time ratio.  For this reason, these 

functionals were and are still intensively applied to model a number of ground- and excited-state 

properties and phenomena.  

If the use of hybrid functionals normally provides results of sufficient accuracy for most of the 

cases analyzed, other properties, including thermochemistry and weak interactions, could be still 

significantly improved.  In order to correctly describe a larger number of properties and, more 

generally, to better describe long-range electron correlation, density-functionals including an 

explicit dependence on virtual KS orbitals were more recently developed.9-11   

Actually, early attempts devoted to include self-consistently a dependence on virtual KS orbitals via 

Perturbation Theory (PT), firstly introduced by Levy and Görling,12 were computationally 

demanding while providing no substantial improvement with respect to standard approaches, at 

least in the case of benchmark cases.13 Nonetheless, pioneering works14,15 allowed to foresee more 

efficient ways of including the PT contribution, leading to a new class of functionals belonging to 

the fifth rung of the Perdew ladder:1  the so called double-hybrid (DH) density-functionals.   

From 2006, DHs were further and extensively developed by Grimme.16 Borrowing the statement of 

Bartlett and collaborators,17 these DFAs are somehow based on the “best of both worlds” strategy. 

The total exchange and correlation energy in a DH can be defined as: 
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where HF
xE  represents the HF-like exchange, DFA

xE  and DFA
cE  stand for the semilocal exchange and 

correlation energies and 2MP
cE  is a second-order Møller-Plesset (MP2) correlation energy term. The 

first three terms are computed in a self-consistent fashion following a standard KS approach, while 
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the latter term ( 2MP
cE ) is added a posteriori, and generally evaluated from the KS orbitals obtained 

self-consistently. Nonetheless, orbital-optimized (OO) approaches have been recently proposed in 

literature.18-19  

Several DHs were developed with the aim of enhancing both DFT and Wave Function Theory 

(WFT) based methods’ accuracy by their synergic combination. They differ either for the type of 

the semilocal functional used, or in the way the MP2 contribution is considered. For instance, the 

inclusion of a same spin or spin-opposite scaling of the MP2 contribution was recently proven to 

ameliorate the performance.20-23 Analogously the use of a perturbative term computed from B3LYP, 

PBE0 or purposely optimized KS orbitals yield excellent results.23,24 All these DHs share a common 

feature: the presence of at least two, empirically defined, parameters, i.e. ax and ac, fitted on 

specific training sets. 

More recently, several authors tried to rationally and non-empirically define the relationship 

existing between these two parameters. Toulouse et al., making use of the Adiabatic Connection 

(AC) formalism25, derived a series of one-parameter DHs, and pointed out the existence of a 

quadratic (ac=a2
x) or cubic (ac=a3

x) relationship between ax and ac.26,27 Fromager proposed a two 

parameters DH formalism relying on a ac ≤ a2
x relation.28 Nonetheless, the value of ax and ac is 

needed to define new, non-empirical DH. Working along this line, we have developed a number of 

non-empirical DHs based on the AC theorem, where the ax and ac
 value directly stems from purely 

theoretical considerations.27,29,30  Such functionals are competitive with their parametrized 

counterparts,31 and allow to define a whole family of non-empirical functionals which spans over 

the highest three rungs of the Perdew ladder.1   

The aim of this paper is to illustrate such a contribution to the field of non-empirical DHs through a 

critical discussion of their performance in the modeling of chemically relevant systems. In 

particular, the behavior of non-empirical DH density-functionals will be compared to that of a 

parameterized DH (B2-PLYP),16 and to that of standard functionals, nowadays in common use for 

chemical applications. Our aim is to show the real (qualitative and quantitative) advantages in using 

DHs and, more particularly non-empirical DH. 

 

2. Theory 

The generalized gradient approximation (GGA) density-functional developed by Perdew, Burke and 

Ernzerhof (PBE)32 is undoubtedly the best representative non-empirical functional, being based 

only on selected theoretical constraints that an ideal DFA should respect. This approach paved the 

way to the development of more complex approximations such as TPSS,33 a non-empirical meta-
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GGA, or the global-hybrid (GH) PBE02,3 rooted in the AC model.25 Starting by the definition of the 

exchange-correlation contribution, Exc, to the total KS energy defined as: 

[ ] [ ]∫=
1

0
, λρρ λ dEE xcxc ,      (2) 

where the coupling integrand Exc,λ, is defined such as: 

∫∫ −
−ΨΨ=

'
)'()('

2
1

, rr
rrdrdrVE eexc

rr
λλλ ,       (3) 

with λΨ , the wave-function minimizing:  

λλ λ Ψ+Ψ eeVT ,       (4) 

under the constraint of producing a given density ρ and Vee is the electron-electron interaction 

potential. In equation (2), λ=0 corresponds to the KS noninteracting system where the HF exchange 

(computed using the KS orbitals) is dominant: 
HF
xxc EE ==0,λ ,      (5) 

while the real interacting system is obtained for λ=1. This latter is at the best described by a given 

DFA: 
DFA
xcxc EE ==1,λ  .     (6) 

Different approaches were proposed to solve the integral in eq. (2), as, for instance, that leading to 

the Becke Half&Half functional.34  Perdew and co-workers proposed a polynomial of the coupling 

parameter λ  as integrand of equation (2), which leads to the following expression:35  
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where the integer n determines how fast the correction to DFA (second term of equation 7) vanishes 

for λ→1. Upon integration the exchange and correlation energy is thus defined as : 
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Starting from this expression the global-hybrid functional PBE0 can be obtained setting n=4 on the 

basis of perturbation theory:2,3,35,36 
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PBE0 is thus the first non-empirical GH.  Despite of the fully theoretical approach used to hybridize 

it, this functional is comparable in accuracy to B3LYP, when not better for specific properties.37-40. 

Figure 1 shows the impact of the exact-exchange fraction on the accuracy for the atomization 

energy of the G2-148 dataset.41 Indeed, the ¼ factor of PBE0, is very close to the minimum.  Very 
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recently, another dependence of the integrand on λ was proposed, leading to a different integer n 

(such as n=3).42  

The AC model provides also a formal framework for the development of DHs. Indeed, at the weak 

interaction limit (λ→0), the first-order derivative of the integrand of equation (2) is the second-

order Görling-Levy (GL2) correlation energy, that is : 

 2
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HF
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The HF
cE∆ contribution is usually though not always43 negligible, so that: 

22 MP
c

GL
c EE ≈ ,      (12) 

In other words, this class of DHs satisfies all theoretical constraints defined for their parent GGA 

(PBE) and global-hybrid (PBE0) functionals, plus the Görling-Levy limit. As it will be 

pragmatically illustrated in the following, the increase of theoretical constraints induces a 

significant improvement of the performance, and allows the definition of a complete family of non-

empirical DFAs.44  

In order to have an operational formula, the λ-dependency in equation (2) must be worked out. A 

simple way is to use an analytical expression of λ, the simplest consisting in a quadratic 

polynomial:45  
2

, ][][][ λρλρρλ cbaExc ++= ,       (13) 

where a and b are determined by equations 5 and 6, while c is determined by the behavior of the 

integrand (2) close to the upper integral limit. Named Quadratic Integrand double-hybrid (QIDH),30 

the general form for this model is: 
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The fraction of exact-exchange, modulated by the λx parameter, is determined according to the 

linear-scaled one-parameter DH expression:27 
DFA
c

MP
c
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x

DHLS
xc EEEEE )1()1( 323,1 ααααα −++−+= ,      (15) 

where the fraction of MP2 correlation (ac=α3) has a cubic dependence on the fraction of exact-

exchange (ax=α) so that in equation (14) : 

23 3/2 −=xλ .      (16) 
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Another way to obtain a parameter-free DH is to evaluate equation (15) with a two-point 

approximation (α=1/2), and to set PBE as density-functional approximation. This leads to the 

PBE0-DH functional:29 
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From Figure 1, which illustrates the influence of the relative amount of the exact-exchange and of 

the PT2 correlation contribution on the performances of the given DH on the G2 atomization 

dataset,41 it can be noticed how non-empirical functionals perform very well, all lying close to the 

belt defined by lowest deviations.  Subsequent works introduced system dependency (PBE-

ACDH)46 or fitting procedure (PBE-QACF-2)47 and provide similar errors on standard databases of 

reactions.  

 

3. Databases and Case Studies 

One of the most important steps in the development of new density-functionals is the validation, 

also called benchmarking. This procedure consists in measuring the accuracy of the newly 

developed DFAs in the prediction of selected properties gathered in dedicated datasets. Reference 

values are sometimes derived from experiment or, more often, computed using correlated WFT 

methods. 

In case of parameterized density-functionals, the databases are generally split into a training and a 

test set. Since the two sets have weak chemical diversity, the performances obtained on these 

datasets are often predictable.  

More challenging is the case of non-empirical DF, since the validation step reveals if the chosen 

physical model allows describing (qualitatively and quantitatively) different properties and 

chemical systems.  This step needs the set up of extensive databases.  

In this domain, the Gn datasets for atomization and general thermochemistry are the first 

examples41,48 while, more recently, Truhlar and co-workers further contributed with data concerning 

kinetics.49  Hobza and collaborators focused, instead, on non-covalent interactions.50,51 This list is 

far to be exhaustive but reflects the work of the main actors in the field. 

In this work we will make use of the GMTKN30 database52 which can be considered as the current 

state-of-the-art dataset, since it contains a large pool of reactions probing several properties, such as 

atomization and decomposition energies, self-interaction errors, kinetics, chemical reactions, 

noncovalent interactions and conformer stabilities.  
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Besides providing the errors computed on each of these datasets, giving a flavor of the average 

performances of a DFA, we will also analyze for the different class of reactions or interactions a 

case study of chemical relevance, directly extracted from GMTKN30.  

Finally, this set has been integrated with some examples concerning excited states, taken from a 

recently developed dataset for vertical excitations.53 

 
3.1 Main-Group Thermochemistry 

Figure 2 compares the performances of four DHs on main-group thermochemistry datasets with 

those of their respective GGA and GH parent functionals.  All the examined DHs (PBE0-DH,29 

PBE-QIDH,30 TPSS-QIDH30 and B2-PLYP16) possess between 50 and 70% of HF-like exchange, 

and between 10 and 30% of nonlocal PT2 correlation. Atomization and decomposition processes 

considered deal with covalent bond dissociation, and the electron-electron coulomb repulsion is 

strong and claims for a correct treatment of dynamic correlation.  

Except for PBE0-DH, adding the PT2 nonlocal correlation leads to a systematic improvement of 

accuracy with respect to the parent global-hybrid. This improvement is particularly relevant in 

going from B3LYP to B2-PLYP, but less marked when comparing PBE0 (TPSS0)33,35 to PBE-

QIDH (TPSS-QIDH). An explanation for this observation can found in their different protocol of 

construction. If all DHs deriving from BLYP54,55 are systematically trained to minimize errors on 

atomization datasets, the PBE derived functionals are not, so that the lower performances are not 

unexpected. 

Within main-group thermochemistry properties, adiabatic processes, illustrated here by ionization 

and electron affinity (Figure 2, right side), show indeed how non-empirical double-hybrids can 

actually behave as well as empirical ones.  

 

3.2. Self-Interaction Error 

The Self-Interaction Error (SIE) is a recurrent problem in DFT.56 This error originates from the only 

partial cancellation of the spurious electron(s) self-repulsion by the exchange energy. This error is 

generally, but only partially, overcome by introducing a fraction of exact-exchange in the 

functional. The simplest system to illustrate the effect of this error is the dissociation profile of the 

dihydrogen cation (Figure 3). Here, the electronic correlation vanishes due to the presence of a 

single electron, the HF values becoming thus the reference. Double-hybrid density-functionals 

which are incorporating between 50 and 70% of exact-exchange overshoot global-hybrids and 

semilocal DFA, but still do not entirely cancel the spurious SIE. 
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SIE also largely impact multielectronic compounds. The SIE11 subset collects eleven cases 

particularly prone to self-interaction error. On this dataset, non-empirical DHs outperform standard 

global-hybrids and GGAs, and practically well compare with the empirical B2-PLYP approach (see 

Figure 3). 

 

3.3. Kinetics 

Accuracy in predicting barrier heights is of high interest for chemists working on mechanistic 

investigations and/or kinetic studies. As an example, in Figure 4, the reaction barriers associated to 

two SN2 reactions are discussed. The best estimates are provided by global- and double-hybrids. 

Semilocal density-functionals give, on the other hand, much larger errors thus underlining the 

importance of the inclusion of the exact-exchange. 

More generally, on the whole barrier heights database, we observe a marked improvement when 

going from global- to double-hybrids. This improvement is particularly large in case of non-

empirical DHs which outperform B2-PLYP. 

 

3.4. Reactions Energies 

The performance of different functionals on the prediction of Diels-Alder, bond fragmentation, 

radical stabilization, isomerization or dimerization reactions (here labelled as ‘general chemical 

reactions’) are collectively assessed using a single database as reported in Figure 5. The PBE0-DH, 

PBE-QIDH and TPSS-QIDH DHs exhibit a mean absolute deviation less than 2 kcal mol-1 on the 

235 reactions considered, while their parent global-hybrids only provide a mean error of about 4 

kcal mol-1. This impressive improvement in performance can be easily illustrated by the alkane 

isomerization reaction of 2,2-dimethylpropane in pentane. Only DHs reach the reference energy 

with an error between 15 to 35% depending on the DH considered. Other approaches, such as 

BLYP, are completely unable to describe this simple reaction with errors reaching up to 90%. 

 

3.5. Noncovalent Interactions 

The description of noncovalent interactions represents a problem for standard semilocal or hybrid 

functionals, except for those purposely tailored.57 Semilocal approximations are built to locally 

model electronic processes and their correlation part, particularly important for noncovalent 

interactions, decreases too rapidly with the inter-electronic distance.  DHs could in principle 

succeed in modeling such systems due to the presence of a nonlocal correlation term.  

Figure 6 summarizes the performances of the selected density-functionals in simulating the weak 

interactions of the GMTKN30 database. Overall functionals belonging to the non-empirical PBE 
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family better behave than those of the BLYP family. This statement remains true for DHs which 

bring a further systematic improvement.  

For the subset dealing with hydrogen-bond interactions, semilocal functionals or global-hybrid are 

able to reproduce the binding character of the interaction as exemplified by the dissociation of the 

water dimer (Figure 7). All functionals tested succeeded in recovering the binding behavior with an 

error varying between 2 and 16%, and all of them tend to the correct dissociation limit. As 

expected, BLYP-based density-functionals tend to underestimate the interaction. Going from the 

semilocal BLYP to the double-hybrid B2-PLYP, the correlation energy part computed at PT2 level 

enhances the binding character. On the other hand, PBE-based approaches generally overestimate of 

the binding energy. More generally in this example, no net improvement is noted going from 

semilocal to double-hybrid schemes. 

As a second example, we selected a system of biological interest: the uracil dimer possessing two 

hydrogen-bonds (Figure 7). If all the considered density-functionals reproduce the binding 

behavior, here again non-empirical DHs provide the smallest errors (ranging between 1 and 3%) 

while B3LYP error is around 13%. 

To illustrate the performance of functionals on systems dominated by dispersion interactions, the 

results obtained on the benzene-ethene and the stacked pyrazine dimers, reported in Figure 8, will 

be discussed. Analyzing the benzene-ethene potential energy curve, one can notice that the binding 

region is not accurately modeled by all functionals. Only double-hybrids, and particularly PBE-

QIDH, are able to reproduce the binding character while all others provide a fully repulsive 

potential energy curve. The same repulsive character in the binding region is clearly evident for the 

pyrazine dimer. Here again, only DHs succeed in quantitatively reproduce the attractive dispersion 

interactions. Finally, when considering inorganic heavy-metal complexes, for a dimer of hydrogen 

telluride only two DHs display the correct binding behavior while all of them qualitatively describe 

the plumbane hydrogen chloride interaction (Figure 9).  

 

3.7. Conformer Stabilities 

The quantitative evaluation of conformational stability is of particular interest when aiming at 

modeling large biological systems as in the case of drug discovery applications. An illustration of 

DFA performance for these types of interactions is reported in Figure 10. If all the considered DFAs 

generally provide a good accuracy, DHs bring a systematic improvement. For the worked out 

example (i.e. the phenylalanyl-glycyl-glycine tripeptide) reported in Figure 10, we can see that 

semilocal and global-hybrids lead to an even qualitatively wrong estimation of relative stability of 

the conformers while DHs are able to recover the correct energy ordering. 
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3.8 Vertical electronic transitions 

The GMTKN30 database is representative of a large number of ground-state properties and 

reactions. For the sake of completeness, we extended the assessment of DHs on excited states using 

a recently developed dataset composed by 80 organic molecules.53  This set probes both absorption 

and emission excitations. It contains some problematic cases for TD-DFT, such as excitations of 

cyanines dyes or transition with charge transfer character. This variety justifies the relative high 

error obtained for the reference method, PBE0 (about 0.2 eV). The results obtained with DHs are 

reported in Figure 11.  It clearly appears that PBE-QIDH performs as well as PBE0, while PBE0-

DH is slightly better. The two DHs provide, however, significantly lower errors than PBE or even 

LC-ωPBE.  The physics underpinning this behavior is difficult to rationalize, since the calculation 

of excited states for DHs is based on the replacement of the nonlocal correlation contribution by a 

CIS(D)  correction,58 keeping the same weights as in the original functional.59 

Nevertheless, these results clearly indicate that DHs perform at least as well as one of the most 

representative functional routinely used for the excited states. 

 

4. Fine tuning  

The absence of a fitting procedure confers an “all purposes” character to the non-empirical DHs, 

which we could define as a kind of aura mediocritas in DFA. Following the logic of “the best of 

two worlds”, further improvements of numerical accuracy could come from recent developments of 

WF methods. For instance, the orbital optimization scheme, i.e. the self-consistent minimization of 

the total energy with respect to changes in orbitals, has been recently applied to the PBE0-DH and 

QI-DH schemes18,19.  In both cases, the modest impact found on the accuracy is counterbalanced by 

a significant increase of the computation times, making these methods unaffordable for larger 

systems, though interesting for difficult open-shell cases. Another possibility of improving the 

performance of the MP2 approach recently explored is the so-called spin-component scaling, where 

Same-Spin (SS) and Opposite-Spin (OS) contribution to the MP2 energy are scaled by an empirical 

factor.  We have recently introduced the OS variant of the QIDH functional (SOS1-QIDH)60, where 

the SS contribution is fixed a priori and the OS is embedded in the GGA part. This approach is a 

computationally convenient alternative to reach the accuracy of the parent QIDH functional, 

without losing theoretical ground, as for the mentioned OO scheme.  

Further works showed that improvement can be reached by relaxing some theoretical constraints. In 

particular, xDH-PBE0 approach, where all the parameters are optimized and PBE0 orbitals are used 

for the evaluation of the OS-MP2 contribution, is one of the best performing DHs.22,61 
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5. Conclusion and Remarks 

The quest for better DFAs has undoubtedly leaded to the development of robust and reliable 

approaches contributing to the success of DFT. Among them, non-empirical functionals are 

particularly attracting for their well-defined physical background. Following the lines traced by the 

PBE approach, a GH (PBE0) and DH (QI-DH) have been proposed so that a whole family of non-

empirical functionals, spanning on the highest rungs of the Perdew’s quality scale, is now available. 

These functionals are not only competitive with parametrized approaches, but they also show how 

the increasing of the number of theoretical constrains leads to an improvement of their numerical 

performance. This fact further strengths the relevance of non-empirical functionals in the broader 

context of DFAs and, hopefully, will further encourage their development and routine application.   

Looking into the physics underpinning their performance, it could be argued that all the ingredients 

necessary to cope with short and long-range electronic effects are present in DHs. Indeed, the 

(relatively) high HF exchange contribution plays a major role in giving correct reaction barriers, in 

reducing SIE and in providing accurate vertical transitions energies. Thermodynamics is mainly 

dominated by the chosen GGA approach, while the MP2 contribution finely tunes it and gives a 

substantial contribution to successfully deal with weak interactions. Of course, all these ingredients 

are also present in parametrized DHs, but the theoretical foundation of non-empirical functionals 

provides a solid physical and chemical ground releasing them from all problems related to any 

parametrized approach (domain of application, over-parametrization, single vs. multi set of 

parameters etc.).  

Still one question may be asked: are we adding up DFT and WF problems? From the results 

obtained the answer is no, since there is a beneficial synergic effect of DF and WF contributions, as 

exemplified by the results obtained on the thermochemistry dataset (Figure 1). Here, the error on 

atomization energies of the PBE0-DH model are reported as function of the coefficients ax and ac 

in eqn(1). It is thus clear that DHs represent a substantial enhancement upon both the two limiting 

approaches (PBE and MP2).  

Finally, if DHs are still computationally expensive, it is worthwhile to stress that they can benefit of 

all technical enhancements developed for speeding-up post-HF approaches, providing substantial 

hope for their routine application in a competitive way with respect to traditional GGA and GH 

approaches.   
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Figure captions 

Figure 1. Mean absolute deviations for the G2-148 dataset as function of the fraction of HF- 
exchange (ax, left), and of the fractions of HF-exchange and PT2 correlation (ax, ac, right). PBE0 
corresponds to ax=0.25, ac=0.0; PBE0-DH to ax=0.50, ac=0.15, PBE-QIDH to ax=0.70, ac=0.0 and 
MP2 to ax=1.0, ac=1.0. The 6-311+G(3df, 2pd) basis set was used. 
 
Figure 2. Mean absolute deviations for the atomization and decomposition (left) and the adiabatic 
processes (right) databases (see reference 45 for details). The def2-QZVP basis set was used. 
 
Figure 3. Mean absolute deviations for the self-interaction error database (SIE11, right), evaluated 
with the def2-QZVP basis set (see reference 45 for details). The H2

+
 dissociation (left) was 

computed with the aug-cc-pVQZ basis set. 
 
Figure 4. Mean absolute deviations for the barrier height database (right) from the GMTKN30 
dataset (see reference 45 for details). Energy differences between transition state and reactants 
computed on two SN2 reactions (left), fluoride attack on 1-chloromethane and chloride attack on 1-
fluoromethane. The def2-QZVP basis set was used . 
 
Figure 5. Mean absolute deviations for the reaction database (left) built from the GMTKN30 
dataset (see reference 45 for details). Example of reaction energy (right) computed for the 
isomerization of 2,2-dimethylpropane into pentane. The def2-QZVP basis set was used. 
 
Figure 6. Mean absolute deviations computed for the weak interaction database from the 
GMTKN30 dataset (see reference 45 for details). The  def2-QZVP basis set was used. 
 
Figure 7. Water dimer dissociation (left) computed with theaug-cc-pVTZ basis set. Reference 
CCSD(T)/CBS energies are taken from the S66×8 repository54. Example of hydrogen binding 
energies (right) computed at the def2-QZVP level on an uracil dimer. 
 
Figure 8. Benzene-ethene dissociation (left) computed with the aug-cc-pVTZ basis set. Reference 
CCSD(T)/CBS energies are taken from S66×8 repository54.  Example of π-stacking energies (right) 
computed at def2- QZVP level on a pyrazine dimer. 
 
Figure 9. Examples of weak interaction energy computed on two inorganic transition metal 
complexes: dimer of hydrogen telluride (left) and plumbane - hydrogen chloride interaction (right). 
The def2-QZVP basis set was used. 
 
Figure 10. Mean absolute deviations for the conformer database (left) built from the GMTKN30 
dataset (see reference 45 for details). Example of conformer stability (right) computed for the 
phenylalanyl-glycyl-glycine tripeptide case of study. The def2-QZVP basis set was used. 
 
Figure 11.  Mean absolute deviations for the excitation dataset (structures and reference values 
from reference 46). The 6-31+G(d) basis set was used for PBE, PBE0 and LC-ωPBE calculations, 
and the def2-TZVP basis set for PBE0-DH and PBE-QIDH.  
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