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Abstract

We review the problem of spin decoherence of magnetic atoms deposited on a surface. Re-
cent breakthroughs in scanning tunnelling microscopy (STM) make it possible to probe the spin
dynamics of individual atoms, either isolated or integrated in nanoengineered spin structures.
Transport pump and probe techniques with spin polarized tips permit measuring the spin relax-
ation time T1, while novel demonstration of electrically driven STM single spin resonance has
provided a direct measurement of the spin coherence time T2 of an individual magnetic adatom.
Here we address the problem of spin decoherence from the theoretical point of view. First we
provide a short general overview of decoherence in open quantum systems and we discuss with
some detail ambiguities that arise in the case of degenerate spectra, relevant for magnetic atoms.
Second, we address the physical mechanisms that allows probing the spin coherence of mag-
netic atoms on surfaces. Third, we discuss the main spin decoherence mechanisms at work on
a surface, most notably, Kondo interaction, but also spin-phonon coupling and dephasing by
Johnson noise. Finally, we briefly discuss the implications in the broader context of quantum
technologies.
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1. Introduction

Major technological revolutions have occurred when the humankind has been able to harness
natural resources, such as fire, electricity or nuclear energy. We are now in the verge of the so
called second quantum revolution, that aims to harness two of the weirdest natural resources,
coherence and entanglement. This is a tall order that calls for a great dose of ingenuity, because
keeping quantum states in coherent superpositions that could be used towards our advantage
requires to defeat a rather powerful enemy, the infamous decoherence. Here, we review the
phenomenon of spin decoherence in the the context of magnetic atoms deposited on surfaces.

1.1. The relevance of decoherence

The interaction of quantum spins with their environment introduces relaxation and decoher-
ence in the otherwise fully coherent evolution of ideal closed quantum systems [1]. Spin relax-
ation and decoherence play a central role in many branches of physics. In the case of nuclear
spins, the time scales associated to energy relaxation and decoherence, T1 and T2 respectively,
provide a very meaningful information of the environment that forms the basis of magnetic res-
onance imaging techniques [2]. The spin relaxation and decoherence time scales set the limit of
sensitivity in several existing magnetometry techniques, such as optically detected magnetic res-
onance (ODMR) [3–5] and spin-exchange relaxation-free (SERF) atomic magnetometry [6], and
are also one of the major constraints in the implementation of spin-based quantum computers,
such as donors in silicon [7], electrons in quantum dots [8] and even molecular magnets [9, 10].

Decoherence plays a prominent role in the modern interpretation of the foundations of quan-
tum mechanics, the quantum measurement problem [11–15] and the quantum to classical tran-
sition [16]. In the more specific context of magnetism, decoherence accounts for the emergence
of the classical behavior [17]. For instance, in the quantum realm, the ground state of an integer
spin S nanomagnet with uniaxial anisotropy can display quantum spin tunnelling [18, 19], so that
the ground state is non-degenerate, and it is separated from the first excited state by an energy
gap known as quantum spin tunnelling splitting ∆QST. The wave functions of both the ground
state and the first excited states are then linear superposition states [17]

|φ〉 ∝ |C1〉 + eiθ|C2〉 (1)
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where |C1〉 and |C2〉 describe states with a well defined and mutually orthogonal magnetic mo-
ments, and θ is a (real) phase. These states have null expectation value of the magnetic moment,
which highlights how different they are from our experience in the classical realm. By contrast, a
half-integer spin uniaxial magnet has two equivalent ground states, whose quantum states would
be |C1〉 and |C2〉 respectively. As we discuss below, the coupling to the environment favors clas-
sical states and makes states like (1) fragile [17], unless ∆QST is larger than all the relevant energy
scales in the problem, which only happens for small S at cryogenic temperatures.

The emergence of states with a non-zero atomic magnetization is even more intriguing in
the case of insulating antiferromagnets [20–22], such as MnO, that display the so called Néel
states, with a finite staggered magnetization, demonstrated in a seminal neutron diffraction ex-
periment [23]. A good starting point to describe insulating antiferromagnets is the Heisenberg
model, which commutes with the total spin operator Ŝ 2

TOT. As a result, the ground state is an
eigenstate of Ŝ 2

TOT. For antiferromagnets this would be a state with S TOT = 0, which has a null
expectation value for every atom in the lattice [20] and it is thus very different from the bro-
ken symmetry Néel states [24] that are actually observed. Therefore, other minor interactions
such as magnetic anisotropy, together with the coupling to the environment, must account for the
emergence of symmetry breaking Néel states, as we discuss with some detail below.

1.2. Magnetic adatoms

The extraordinary series of experimental breakthroughs [25–69] in the manipulation (see
Fig. 1) and probe of magnetic atoms, mostly using scanning tunnelling microscopes (STM) and
in some instances X ray magnetic circular dichroism (XMCD), have allowed the study of the
crossover from quantum to classical regime [48] in nanoengineered spin structures as well the
exploration of coherent dynamics of individual magnetic atoms of surfaces [59]. An early de-
velopment that permitted probing magnetism with STM was the so called spin polarized STM
(SP-STM). Based on the same physical principles that tunnel magnetoresistance [26], SP-STM
yields the average magnetization of individual magnetic atoms on surfaces [32, 36]. These exper-
iments could be analyzed in terms non-quantized magnetic moments, typical of itinerant mag-
netic systems, a picture in line with the results of density functional calculations for magnetic
metals [70].

One of the first experimental spectroscopic fingerprints of spin-related phenomena was the
observation of in-gap Yu-Shiba-Rusinov (YSR) states [71–73] for Mn and Gd magnetic atoms on
a superconducting Nb(110) surface [27]. Soon after this observation, a characteristic Kondo dip
at the Fermi energy in the dI/dV for Cobalt on Au(111) was observed [28], which implied the
screening of the atomic magnetic moment and the formation of a correlated singlet state. Both
the Kondo peak and the YSR states are a expected consequences of the Kondo exchange inter-
action between the magnetic adatom and the conduction electrons of the substrate. These Kondo
interactions are known to produce a finite spin lifetime for local spins [74–76], and thereby a
broadening in their spin spectral functions.

The development of single spin inelastic electron tunnelling spectroscopy (IETS) gave a
direct access to the atomic spin excitations of both individual magnetic atoms [29, 31] and
atomic spin chains fabricated adding atoms one by one [30]. In most instances these obser-
vations [29–31, 33, 52, 55, 56, 59, 63, 77] were reported for magnetic atoms deposited on
top of an atomically thin insulating decoupling layer, such as Cu2N/Cu(100) [31, 33, 52, 78],
MgO/Ag(001) [55, 59, 77], or h-BN/Rh(111) [63], or on top of doped semiconductors sub-
strate [42], although they have also been observed in Fe/Pt(111) [50, 79]. The decoupling layer
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Figure 1: STM topography images of small arrays of magnetic adatoms or molecules deposited on substrates. (a) From
S. Loth et al., Science 335, 196 (2012). Reprinted with permission from AAAS. (2 × 6) and (2 × 4) Fe arrays on a
Cu2N/Cu(100) substrate. (b) From A.A. Khajetoorians et al., Science 332, 1062 (2011). Reprinted with permission from
AAAS. Spin-resolved topography image of the dI/dV of 4, 5 and 6 Fe chains of on a Cu(111) surface. (c) From A.A.
Khajetoorians et al., Nature Physics 8, 497 (2012), reprinted by permission of Macmillan Publishers Ltd: Nature Physics
copyright (2012). Hexagonal array of seven antiferromagnetically coupled Fe atoms on Cu(111). (d) Reprinted with
permission from Bryant et al. 111, 127203 (2013). Copyright 2013 by the American Physical Society. Weakly coupled
antiferromagnetic Fe dimer on Cu2N/Cu(100). (e) Reprinted with permission from B.W. Heinrich et al., Nanoletters 13,
4840 (2013). Copyright 2013 American Chemical Society. Fe porphyrin on Au(111) (e) From Xi Chen et al., Phys. Rev.
Lett. 111, 197208 (2008). Copyright 2008 by the American Physical Society. Stacking of two Co-Phthalocyanine layers
on a Pb(111) surface.

decreases the strength of the Kondo coupling with the underlying surface, preserving the local-
ized atomic-like nature of the spin excitations in the magnetic adatoms. This localized nature is
in line with the fact that, in most cases [31, 33, 38, 52, 55, 59, 63, 77], the experiments could be
accurately modelled using quantized spin model Hamiltonians [80], such as single spin models,
very often used in the context of transition metal ions in insulators [81] and molecular mag-
nets [19], and the Heisenberg model commonly used to study magnetic insulators [82], which
describes spin exchange interactions between localized moments.

Broadening of the inelastic spin transitions, beyond the thermal 5.4kBT factor [83], has been
measured for Fe on top of Cu(111) [45], in line with the predictions of theory for spin relaxation
due to Kondo coupling [84] and also with more sophisticated theoretical treatments [85, 86]. This
broadening is the spectral counterpart of a finite spin relaxation time T1 in the time domain. The
development of electrical pump-probe technique with STM [43] has made it possible to measure
the rather fast (ns) spin relaxation time T1 of individual atoms [43, 59] and other atomically
engineered structures, such as antiferromagnetic chains and ladders [48, 66] or ferromagnetic
chains [56] and clusters [49].

Compared to single dopants systems [87, 88], such as nitrogen-vacancy (NV) centers in di-
amond or single donor in silicon [89], the study of spin coherence of magnetic adatoms is in its
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infancy. At the time of writing this review, there is only one experimental paper [59] that reports
the measurement of the decoherence time T2 of an individual Fe atom on MgO/Ag(001) inferred
from a continuous wave resonance experiment, rather than the more sophisticated spin echo
techniques used to probe the T2 of individual P dopants [90, 91] or shallow NV centers [92–94].
On the theory side, only a few papers address the problem of decoherence in this specific con-
text [17, 76, 95–97]. Yet, the potential of magnetic adatoms to explore quantum spin dynamics
is enormous for several reasons. First, STM makes feasible to fabricate atom-by-atom magnetic
nanostructures [30, 46, 48, 56, 62, 78], controlling at will the number of atoms, the spin S of
the atoms, and their interatomic distance. In turn, this permits researchers to determine both the
strength and the sign of the exchange interaction between magnetic adatoms [53, 64]. The vast
space for combinations of spin S , exchange interactions, magnetic anisotropies and number of
atoms results in very different types of magnetic behaviors, including both systems with broken-
symmetry Néel states [48] or quantum disordered spin chains [30]. Strong spin-correlation can
lead, in some cases, to the emergence of non-trivial S = 1/2 objects at the edges [98] as in chains
of antiferromagnetically coupled S = 1 atoms, objects that might be more robust with respect to
decoherence than conventional S = 1/2 spins.

Another important resource to explore quantum coherent phenomena in magnetic atoms on
surfaces is the very large potential to engineer their coupling to the substrate by means of the ad-
equate choice of materials, including both substrate and coating layer. Most of the experiments
mentioned in this review are done using 4 types of metal (Cu, Ag, Pt, Rh), in some instances with
a coating layer, [Cu2N/Cu(100), MgO/Ag(001) or h-BN/Rh(111)]. Using different materials will
bring many opportunities. Take the example of superconductors. The standard BCS [99] theory
of superconductor predicts that spin relaxation lifetimes of a localized spin in a superconduc-
tor, such as nuclei, can be significantly enhanced [100]. This has been already experimentally
demonstrated by means of STM spectroscopy for electronic spins in magnetic molecules on top
of superconducting lead [51]. The discovery of zero-energy edge states in ferromagnetic chains
deposited on superconductors [54], which might be a physical realization of the Majorana modes,
provides additional motivation to place magnetic nanostructures on top of electronically interest-
ing substrates. In this regard, the exploration of adatom spin dynamics in the case of substrates
with peculiar transport properties, such as topological insulators, graphene, or the edge states of
Quantum Hall and Quantum Spin Hall systems has barely been explored.

Molecules are another extremely powerful resource to build on surfaces nanostructures with
non-trivial magnetic properties. IETS has been used to probe, with atomic resolution, the spin ex-
citations of individual magnetic molecules, such as Fe phthalocyanine (FePC) [37], with S = 1,
Cobalt PC, with S = 1/2 [34], and molecular magnets, such as Mn12 [44] and Fe4 [60]. In the
case of CoPC, the self-assembly of molecular stacks also allowed exploring the spin properties of
vertically spin chains, a physical realization of the Hubbard model [34, 101]. Transport experi-
ments both on open-shell and single-molecule magnets have also been reported using mechanical
break junction techniques that, in some instances, permits one to add a gate and study different
charge states of the molecule [102–106]. Molecular magnets with build-in spin chains [10] have
been shown to posses very long T1 and T2 times in diluted phases. Therefore, it would be very
interesting to probe them individually, using STM, and see how their coupling to a conducting
electrode changes T1 and T2.

Whereas atomically engineered magnetic nanostructures are definitely interesting by their
own, they can also be used to probe the spin dynamics of nearby structures [69]. This concept
can be downscaled to the atomic limit: probing the spin of a single magnetic atom can provide
information of a chemically different neighboring atom [38, 68, 107] as well as the dynamics
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Table 1: Typical orders of magnitude of the relaxation times T1 and decoherence times T2 in a variety of spin systems at
T ≈ 1 K in different environments.

System Shallow Donors in Si NV-Centers QD’s Magnetic adatom
T1(s) 10−2 − 103 [109–111]1 1 − 10 [112] 10−4 [113, 114] 10−13 − 104 [45, 107, 115] 2

T2(s) 10−4 − 0.6 [109–111] 10−3 − 10−4 [112] 10−7 − 10−5 2.10−7 [55]

of magnetic nanostructure [67]. In addition, the combination of different magnetic atoms in
the same structure, such a spin chain, may result in unexpected new properties that show the
enormous potential of spin doping in correlated systems [62]. Limits for upscale remain to be
explored: non-magnetic atomically engineered structure where more than eight thousand atoms
were nanostructured has been presented recently [108].

With this background, the main goal of this review paper is to serve as a guide for future
exploration of spin coherence at the atomic scale. To do so, we shall try to promote cross fertil-
ization between the traditional STM/atomic scale magnetism community on one side, with other
fields where coherent single/few spin physics has been successfully explored using different in-
strumental techniques, most notably, optically detected magnetometry using NV centers, and
silicon qubits. The rest of this review is divided in four main blocks. The first one is devoted
to provide a general theory background that yields a proper definition of coherence/decoherence
and how to compute it. Particular attention will be given to two level systems (TLS), given
that in many instances one will deal with systems with either a doubly degenerate ground state,
such as half-integer spin magnetic atoms, or systems where the two lowest energy states are
well separated from the higher energy excited states, such as spin chains with strong uniaxial
anisotropy [17, 48, 56]. Then, in the second block we illustrate the analysis of decoherence
due to the main source in magnetic adatoms, the Kondo exchange coupling with the substrate
electrons. In the third block we discuss other decoherence mechanism for magnetic adatoms,
including spin-phonon coupling and Zeeman coupling to the random environmental magnetic
field created by Johnson-Nyquist noise and shot noise. In the fourth block, we briefly review the
state of the art experimental status to measure spin dynamics with STM and we comment on the
main challenges to observe Rabi oscillations at the single-atom spin level. Finally, we finish with
a discussion and main results of our work.

2. Decoherence, a general overview

2.1. Quantum dissipative dynamics in open quantum systems: decoherence and relaxation
In principle, the study of the dynamics of a quantum state can be tackled in deceptively

simple terms, solving the time dependent Schrödinger equation

i~
∂|ψ(t)〉
∂t

= H|ψ(t)〉 (2)

1The T1 grows exponentially with 1/T . T2 is bounded by T1 at high temperatures but then saturates at low tempera-
tures at a value dependent on the dopant concentration. The values in the table corresponds to T ≈ 1.8 K.

2It has been claimed that Ho adatoms on a Pt(111) surface leads to relaxation times exceeding the second time
scale [116]. However, this claim is in clear contrast with XMCD measurements revealing no evidence of magnetic
stability and a different ground state configuration for Ho/Pt(111) [117], which violates the theoretical criterion proposed
by Miyamachi et al. [116]. Moreover, more recent SP-STM and IETS-STM measurements have found no evidences of
magnetic moment of Ho on this substrate [68].
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that describes the unitary evolution of the state |ψ(t)〉. This gives us the most complete informa-
tion about the quantum system. In particular, the expectation value of any observable Â can be
then computed as 〈Â(t)〉 = 〈ψ(t)|Â|ψ(t)〉. However, strictly speaking, H should be the Hamilto-
nian of the entire universe, in which case the Schrödinger equation can not be solved, and even
if it could, it would give us a bunch of unusable information.

Instead of giving up, one always restricts H to the system of interest, which we label as
HS, and we focus on the dynamics of the restricted set of degrees of freedom of the system S
described byHS, see Fig. 2. To do so, we split the the Hamiltonian in 3 terms:

H = HS +HR +V, (3)

whereHR is the Hamiltonian of the environment, i.e., the degrees of freedom explicitly excluded
from HS, and V describes the coupling between environment and the system. The next step is
to derive a dynamical equation to describe S, including both the action of HS and the influence
of the environment, which will be described in an statistical coarse grained manner.

Now we need to find a dynamical equation to describe the S, including both the action of
HS and V. This is precisely the central theme in the study of the so called open quantum
systems [118]. For the dynamical equation, we adopt the density matrix language to account
for the quantum dynamics of a small subsystem while tracing out the degrees of freedom of
the rest, which are less interesting or irrelevant for the observer, leading in general to a non-
unitary evolution. Importantly, as in most cases the environment consist on a system with a
macroscopically large number of degrees of freedom, it can be modelled as a reservoir or bath
that remains in thermal equilibrium, neglecting the back-action of HS on the density matrix of
the reservoir. In contrast, the bath influences the dynamics of S, and more specifically, it is the
ultimate responsible of the decay of the quantum coherence of the otherwise isolated quantum
system.

For any global (system plus reservoir) quantum state |ψ(t)〉 we can define the total density
operator ρ̂Tot(t) = |ψ(t)〉〈ψ(t)|. In the spirit of the open quantum system approach, we introduce
the reduced density operator [118]

ρ̂(t) = TrR
[
ρ̂Tot(t)

]
, (4)

where TrR [. . . ] corresponds to the trace over the bath degrees of freedom. When represented
in the basis of eigenstates of HS, labeled by |n〉, the reduced density matrix (DM) has a clear
statistical interpretation. The diagonal entries of that matrix, ρnn ≡ Pn, give us the probability of
finding the system S in a given eigenstate |n〉. These occupations Pn satisfy the normalization
condition

∑
n Pn = 1 together with Pn ≥ 0. The off-diagonal entries ρnn′ (n , n′) are known as

coherences. They quantify the capability of the quantum system to be in a superposition state
that combines two different eigenstates |n〉 and |n′〉.

In general, the dynamical equation for the reduced DM can be written down as:

∂tρ̂(t) = −
i
~

[
HS , ρ̂(t)

]
+ R

[
ρ̂(t); t

]
. (5)

The first term on the right hand side would describe the coherent dynamics if we neglect the
coupling of the system to the reservoir. The DM of a pure quantum state ρ̂ = |ψ〉〈ψ| satisfies
the identity ρ̂2 = ρ̂, a condition preserved by the first term. The second term accounts for the
influence of the reservoir and it induces the non-unitary dynamics of interest here. This term is
responsible of both, relaxation and decoherence. In fact, in the language of DM, relaxation is
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Figure 2: Scheme of an open quantum system. The central idea is to split the whole system into three: a small (and
analytically or numerical treatable) quantum spin system with Hamiltonian HS , which can be studied when isolated
from the rest of the universe, the environment HR, which comprises all other degrees of freedom not included in the
system, and the interactionV between them (yellow region in the scheme).

associated to the decay of any departure of the diagonal elements (populations) on a time scale
T1, while the decoherence corresponds to the decay of the off-diagonal terms on a time scale T2.

2.1.1. Coherence as a basis dependent quantity
At this point, we must point out that the notion of coherences is basis-set dependent. In the

context of spins, there are two natural basis sets. First, the basis defined by the eigenstates of the
quantum system HS , where the thermal equilibrium density matrix acquires a simple diagonal
form. Therefore, coherence between eigenstates is a transient phenomena, and is bound to fade
away. This is the phenomenon of decoherence. However, there is a second natural choice of basis
set to express the density matrix, the basis of eigenstates of a spin observable, say Ŝ z, convenient
due to the existence of specific probes to measure this observable. Whereas in some cases HS

commutes with Ŝ z, so that it is possible to choose a basis set that diagonalizes both, in other
instances this is not the case, and we can have a density matrix that is diagonal in one basis, but
not in the other. Thus, coherence and decoherence, as defined above, depend on the choice of
basis set, or at a more pragmatic level, on the type of experiment used to probe the system. For
this reason, whenever we have such an ambiguity, hereafter we will use a subindex in the density
matrix to label the basis set in which the matrix is represented.

The fact that coherence depends on the basis set becomes particularly tricky when there is a
degenerate spectra. In that case, there are infinite possible choices of basis sets. Interestingly, the
coupling to the environment is not neutral regarding this choice, which leads to the definition of
the so called pointer states. We shall discuss this below.

It must be pointed out that coherent superpositions can be found in rather trivial situa-
tions, even at the macroscopic scale. For instance, the quantum description of the classical
motion of a harmonic oscillator, given by the Glauber quantum states, entails coherent super-
positions of the so called Fock states |ν〉, eigenstates of the harmonic oscillator Hamiltonian
HHO = ~ω

(
n̂ + 1

2

)
[119]. In contrast, having a coherent superposition of macroscopically differ-

ent classical states, is a much harder task.

2.1.2. Coherence in a two level system (TLS)
The simplest case in which we can illustrate the concepts of decoherence is a two level

system (TLS). In addition, the TLS approximation can be often used to describe magnetic atoms
9



and nanostructures. Let us consider a S = 1/2 spin in the presence of a magnetic field along the
z axis, with eigenstates S z = ± 1

2 . The representation of the DM in the basis set of eigenstates ↑
and ↓ reads as:

ρ̂(t) =

(
P↑(t) C↑↓(t)
C↓↑(t) P↓(t)

)
(6)

or, writing it in terms of the Pauli matrices ~τ =
(
τ̂x, τ̂y, τ̂z

)
and the identity I [120]:

ρ̂ =
1
2

(
I + ~P · ~τ

)
(7)

where
~P =

(
2Re(C↑↓), 2Im(C↑↓), P↑ − P↓

)
. (8)

We can now easily compute the expectation value of any operator 〈Â(t)〉 = Tr[Âρ̂(t)] using the
well known result for Tr [τ̂aτ̂b] = 2δab, where a and b denote the cartesian components. We thus
see that 〈Ŝ a〉 = Pa/2, i.e., 〈Ŝ z〉 = (P↑ − P↓)/2 and 〈Ŝ x(t)〉 = 2Re

[
C↑↓(t)

]
. Thus, the longitudinal

magnetization is governed by the occupations, whereas the transverse magnetization is governed
by the coherences.

In a free induction decay experiment, typical of NMR experiments, spins are driven out of
their equilibrium magnetization along the direction of a static field (the z direction), by means
of a pulse of ac transverse magnetic field. The re-establishment of the equilibrium situation is
described by the equations:

〈S z〉(t) − 〈S z〉|eq ∝ e−t/T1 (9)

〈S x ± iS y〉(t) ∝ e−t/T2 e±iω0t (10)

where ~ω0 is the Zeeman splitting. These equations serve also to define T1 and T2, as the spin
relaxation and spin decoherence time, respectively. In addition to these two timescales, in the
case of ensembles it is often convenient to introduce the dephasing time T ∗2 associated to the
purely coherent dynamics of an ensemble of spins (or two level systems in general), whose
energy splitting ∆ is not exactly the same for all of them. In an ensemble measurement, both T2
and T ∗2 result in a decay of the transverse spin signal. However, using spin-echo techniques, the
effect of T ∗2 can be reverted [13], which permits to measure T2.

Of course, Eqs. (7-8) are only meaningful if the basis set used to represent the DM is spec-
ified, i.e., a change of basis will lead to a different matrix, yet the physical state would be the
same. The DM can describe either a pure state |ψ〉, in which case ρ̂ = |ψ〉〈ψ|, or mixed states in
which our knowledge about the state of the system is partial. For a pure state it is trivial to verify
that ρ̂2 = ρ̂, which leads to P = |~P| = 1. In the opposite limit we have the DM with P = 0, with a
50 percent occupation for each state and no coherences. In order to quantify the purity of a given
DM we can use the so called Von Neumann entropy

S = −Tr
[
ρ̂ ln ρ̂

]
= −

∑
s=±1

1 + sP
2

log2

(
1 + sP

2

)
. (11)

For a pure state, P = 1 and the entropy vanishes S = 0, while for P = 0 the entropy is maximized,
with S = 1.

An important result is that the property P = 0 is preserved under any unitary change of basis.
In other words, the expression of the fully decohered density matrix is basis independent. When
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coupled to a reservoir for a sufficiently long time, the DM is expected to evolve towards the equi-
librium DM regardless of the initial state, given by ρ̂ = e−βHS/Z, with Z the canonical partition
function and β = 1/kBT . The only exception for this rule arises if there is some symmetry that
prevents the system to change the occupations of some energy levels, as discuss below.

2.1.3. Decoherence as entanglemenet with the bath
We now provide a very simple example of how decoherence can arise in a TLS due to its

coupling to a dissipative bath in the simplest case of pure dephasing, i.e., when transitions be-
tween the eigenstates of the TLS are strictly forbidden, so that the diagonal terms in the density
matrix stay constant. Here we reproduce an argument given by Stern, Aharonov and Imry [121]
to show the relation between decoherence and the effect of the system on the wave function of
the environment, |η(t)〉.

Let us assume that the system and the environment remains decoupled from each other for
t ≤ 0. The wave function for the system plus environment can be then written as:

|Ψ(t = 0)〉 =

(
cos

φ

2
|C1〉 + sin

φ

2
eiξ |C2〉

)
⊗ |η(0)〉, (12)

where ξ and φ are real numbers characterizing completely the state of the system, modulo a
phase. At t = 0 the interactions between them are turned on and we assume that the only effect
of this interaction is to change the wave function of the reservoir, which acts as a witness of
which path, either C1 or C2, is being taken by the system. Let ~ω21 be the energy difference
between states |C1〉 and |C2〉. Then, the wave function at t ≥ 0 satisfies:

|Ψ(t)〉 = cos
φ

2
|C1〉 ⊗ |η1(t)〉 +

+ sin
φ

2
eiξeiω21t |C2〉 ⊗ |η2(t)〉. (13)

We see that as long as |η1〉 , |η2〉, state (13) is no longer a product state, and it is thus said
that the reservoir and the system are now entangled. The DM operator associated to this state is
ρ̂Ψ(t) ≡ |Ψ(t)〉〈Ψ(t)|. If we define the reduced DM ρ(t) = TrR

[
ρ̂Ψ(t)

]
, we get that

ρ̂(t) =

(
cos2 φ

2 c0(t)S12(t)
c∗0(t)S21(t) sin2 φ

2

)
, (14)

where we have introduced the bare coherence c0(t) = cos φ
2 sin φ

2 eiξeiω21t and the time dependent
overlap

Si j = TrR

[
|ηi(t)〉〈η j(t)|

]
= 〈ηi(t)|η j(t)〉. (15)

Of course, we have S11 = S22 = 1 and S1,2 ≤ 1. In terms of the polarization vector defined in
Eq. (8), we get that

P =

√
cos2 φ + sin2 φ |S12(t)|2. (16)

Therefore, the effect of the environment mimics a which-path detector and it leads to a depletion
of the coherence between the |C1〉 and |C2〉 states that is given exactly by the overlap between
the alternative reservoir wave functions: the more sensitive the reservoir is to the state of the
system, the smaller the overlapS12 and the larger the decoherence. Complete decoherence occurs
when the alternative reservoir wave functions become orthogonal. This can also be seen from

11



an information perspective. Given that the wave function of any given system encodes the most
complete knowledge that we can afford, decoherence increases the Von Neumann entropy (11)
at a rate controlled by the amount of which-path information is stored in the environment. This
complies with the rule of thumb that quantum systems are able to stick to a linear superposition
state as long as nobody is watching.

2.1.4. Decoherence as phase uncertainty induced by a stochastic field
We now discuss a second simple picture for decoherence, also analyzed by Stern and cowork-

ers [121]. Following the notation of Slichter [1], we consider a model Hamiltonian for a spin
S = 1/2 interacting with a static field Bz and a random stochastic field ~b(t):

H = gµBBzS z + gµB~b(t) · ~S . (17)

The stochastic field is characterized by a null average ba(t) = 0 (a = x, y, z) and a steady noise:

ba(t)bb(t + τ) = b2
aδa,be−t/τΘ(t), (18)

where Θ(t) is the Heaviside function. Here the ba symbol represents an average over realizations
of the stochastic classical field ~b, b2 represents the amplitude of the noise associated to the
magnetic field and τ is the so called correlation time, that characterizes the pace at which the
random field fluctuates. In the IS system, this noise has units of T2/Hz. This model applies to
the spin relaxation caused by the stochastic magnetic field coming from the thermal fluctuations
of the current in a conductor [122], as we discuss below.

Using the Bloch-Redfield theory discussed below, the relaxation time T1 and the decoherence
time T2 can be written down as [1] :

1
T1

=

(gµB

~

)2 [
kxx(ω0) + kyy(ω0)

]
(19)

1
T2

=
1

2T1
+

(gµB

~

)2
kzz(0), (20)

where ~ω0 = gµBB and

kab(ω) =
1
2

∫ ∞

−∞

ba(t)bb(t + τ)e−iωtdt (21)

is the Fourier transform of the correlation function. Expression (20) helps us to introduce several
related concepts frequently used in fields like quantum optics or electron/nuclear spin resonance
(ESR/NMR). The single spin decoherence time T2, also called dephasing time or transversal
relaxation time in the context of ESR/NMR, involves two types of processes, as revealed by
Eq. (20). First, scattering processes that implies a population transfer between the the two
states, which accounts for the 2T1 contribution in Eq. (20), its maximum value (T2 ≥ 2T1).
In the context of quantum systems coupled to a reservoir, this is the so called nonadiabatic
contribution [123]. Second, scattering processes that do not involve population transfer between
the system states, which for our stochastic field, are proportional to kzz(0). They constitute the
adiabatic contribution to decoherence.

Equations (19-20) imply that there is a generic linear relation between the dissipative rates
and the spectral function of the stochastic field. This result still holds when we consider spins
coupled to quantum operators of a reservoir, in which case the spin relaxation times are propor-
tional to the dynamic response functions of the reservoir. Thus, T1 and T2 provide a local probe
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for the properties of the reservoir, a central notion in magnetic resonance imaging [2] and in the
field of quantum sensors [124–126].

Equations (19-20) also show how the stochastic field can produce population transfer between
the two states only when the transverse components b̄2

x or b̄2
y are finite (otherwise S z is a constant

of motion), whose efficiency is proportional to the weight of the noise spectral function at the
transition energy, which relates to the conservation of the total energy. Decoherence occurs
when there are population scattering events and, in addition, it can also occur even if b̄2

x =

b̄2
y = 0. This last case is the pure dephasing case, seen above, but from a different perspective:

stochastic fluctuations of the energy splitting are straightforwardly equivalent to a loss of the
phase coherence. Finally, Eqs. (19-20) illustrate that population scattering invariably entails
decoherence, with a pure dephasing contribution proportional to kzz(0).

Using expressions (18) and (21), we get that kaa(ω) = b2
aτ0/(1 + ω2τ2

0), which leads to

1
T2

=

(gµB

~

)2
 τ0

1 + ω2τ2
0

[
b2

x + b2
y

]
+ b2

zτ0

 . (22)

In the pure dephasing limit, where b2
x = b2

y = 0, we have T2 ∝ τ−1
0 , which is the so called

motional narrowing. This result can be understood within the following picture. Let us consider
a stochastic field that can assume only 2 values b± = ±(b2

z )1/2. The phase acquired during the
time interval τ0 in which the field stays active is δφ = ±τ0gµBb+/~. After n such intervals, the
spread of the phase, governed by a binomial distribution, equals ∆φ2 = n(δφ)2 = n (τ0gµBb+/~)2.
Now, the number of such intervals in a time t is n = t/τ0. We estimate T2 as the time it takes for
the phase spread to be equal to 1 radian:

1
T2

=

(gµB

~

)2
τ0b2

z . (23)

This result could of course be obtained from Eq. (22) in the pure dephasing limit (b2
x = b2

y = 0),
where spin-flip transitions are forbidden.

2.2. Bloch-Redfield perturbative approach to the dissipative dynamics

In this section we briefly review the Bloch-Redfield (BR) master equation theory to deal
with the dissipative dynamics of quantum systems weakly coupled to a reservoir. The biggest
advantage of this approach is that it can be applied to a great variety of systems, not restricted
to individual magnetic atoms, and permits dealing with situations where both pure dephasing
and population scattering are present. On the down side, the Bloch-Redfield treats the system-
reservoir coupling to second order in perturbation theory, and it can only provide a description of
the dynamics on a coarse-grained time scale larger than the correlation time of the reservoir τc,
the surface conduction electrons or lattice vibrations in our case. These limitations are not severe,
and this technique have been successfully used to study the spin dynamics of a single or a few
magnetic atoms adsorbed on top of a monolayer of insulating material grown on a conducting
substrate [17, 41, 52, 56, 127], and also for few-atom clusters on metals [49]. An excellent
introduction to the formalism can be found in Ref. [119], in the context of quantum optics, and
also in Ref. [118].

The starting point of the BR formalism is the Hamiltonian of Eq. (3), H = HS +HR +V.
In the case of magnetic adatoms, HS describes the atomic spins and usually accounts for the
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local magnetic anisotropy, inter-spin interactions, and Zeeman interactions. If required, one can
also include the nuclear spins in the system degrees of freedom [128, 129], in which case HS
should include the hyperfine interactions as well. In the basis of eigenstates ofHS, we can write
HS =

∑
n En|n〉〈n|.

The HR term describes the environment Hamiltonian, which could corresponds to the elec-
tronic bath of conduction electrons in the metallic substrate, a phonon bath, photons, or the bath
of surrounding nuclear spins. Finally, the V term represents the interaction between the system
of quantum spins and the degrees of freedom of the bath. For most systems, this interaction can
be written in the form

V =
∑
α

Rα ⊗ Sα, (24)

where Rα are reservoir operators and Sα spin operators, to be determined depending on the nature
of the interaction. The composite index α will contain information about all the bath quantum
numbers and, if the system is coupled to more than one bath, also the bath label. We remark here
that the BR tensor contains only second order in V corrections to the dynamics of the quantum
system due this coupling. In addition to condition (24), the BR also assumes a zero-average of
the system-bath coupling, i.e., TrR

[
ρ̂RV

]
= 0, where ρ̂R is the thermal equilibrium density matrix

of the reservoir and the trace is over the reservoir degrees of freedom. Notice that in cases where
this last condition is not satisfied, one can always reinsert this trace into a renormalized system
Hamiltonian and interaction such that the new problem has a zero average interaction.3

If we introduce the basis of eigenstates of the system Hamiltonian, |n〉, the markovian evolu-
tion of the reduced DM to second order inV can be written as:

∂tρnm(t) = −iωnmρnm(t) +
∑′

nn′
Rnm,n′m′ρn′m′ (t), (25)

where ωnm = (En − Em)/~ and Rnm,n′m′ is the Redfield tensor. From the hermiticity of the density
matrix, one gets R∗mn,m′n′ = Rnm,n′m′ . The prime over the sum in Eq. (25) implies that only
the terms whose energies satisfy |ωnm − ωn′m′ | � 1/δt are included, where δt = ~/(kBT ) is the
coarse-grain time scale mentioned above. This is called the secular approximation [123].

Thus, the BR tensor depends both on the matrix elements of the system operators, S mn
α ≡

〈m|S α|n〉, as well as on the reservoir operator correlator, gαβ(t) ≡ 〈Rα(t)Rβ(0)〉|eq where the
brackets stand for statistical average over the reservoir equilibrium density matrix and Rα(t) =

eiHRt/~Rα(0)e−iHRt/~. We provide here general expressions, decomposing the tensor entries in a
sum of two terms, Rnn′mm′ = R+

nn′mm′ + R−nn′mm′ , where [130] ,

R+
nn′mm′ =

∑
α,β

1
~2

gαβ(ωnm)S m′n′
α S nm

β − δm′n′
∑
n′′

gαβ(ωn′′m)S nn′′
α S n′m

β

 (26)

and

R−nn′mm′ =
∑
α,β

1
~2

g∗βα(ωn′m′ )S m′n′
α S nm

β − δnm

∑
n′′

g∗βα(ωn′′m′ )S m′n′′
α S n′′n′

β

 (27)

where gαβ(ω) ≡
∫ ∞

0 dte−iωtgαβ(t).

3In the case of magnetic systems coupled to an electronic bath, this zero-average condition implies that, whenever the
bath is spin polarized, one should proceed to remove the average TrR

[
ρ̂RV

]
[123].
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The BR equation (25) describes the evolution of both the occupations ρnn and coherences
ρnn′ (n , n′). Although in general their dynamics are coupled, in some instances it is possible
to write down an equation for the occupations, Pn ≡ ρnn and the coherences separately. The
resulting equation for the occupations is the so called Pauli master equation:

dPn

dt
=

∑
n′

Γn′nPn′ −

∑
n′

Γnn′

 Pn, (28)

where Γnn′ stands for the the scattering rates from state n to n′. This equation has a transparent
physical interpretation: coupling to the reservoir results in scattering events that transfer weight
from some states to others. When the reservoir is at thermal equilibrium, the steady occupations
Pn are given by the Boltzmann distribution.

The scattering rates Γnm ≡ 1/T1 can be written down in terms of the Redfield coefficients [118]

Γnm =
2
~2

∑
α,β

Re
(
gα,β(ωmn)

)
S nm
α S mn

β . (29)

This general formula accounts for instance, for the T1 obtained for a spin S = 1/2 system
coupled to a stochastic magnetic field, Eq. (19), when we identify the indexes α, β with the
cartesian coordinates and the reservoir correlator gα,β with the magnetic field noise function kα,β.

In the case of the Kondo interactions discussed in this review, the quantum operator S α is
an atomic spin operator while the reservoir operator Rα ≡ ~s(~rl) is the fermionic spin density,
and their coupling is the isotropic spin interaction

∑
l,a JlS a(l)sa(~rl). In this case, the reservoir

correlator gα,β is related to the spin susceptibility of the bath, due to the fluctuation dissipation
theorem.

Equation (25) also describes the evolution of coherences in the basis of eigenstates of the
system Hamiltonian. In the simplest case when the transition energy between a given pair of
states is different from that of every other pair of eigenstates, which automatically occurs for a
two level system, the equation of motion for the coherence is independent from the rest:

∂tρnm(t) = −i (ωnm + δ∆nm) ρnm(t) − γnmρnm(t), (30)

where we have split the RB tensor into its real and imaginary parts Rnm,nm = −γnm − iδ∆nm.
Equation (30) has clear physical interpretation. The coupling to the reservoir produces two effects
on the dynamics of the coherence. First, it renormalizes the energy difference between the energy
levels. Second, and central for the purpose of this review, the coupling to the reservoir results in
a damping term, that results in a decay rate of the coherence given by

1
T2

= γnm. (31)

Importantly, the decoherence rate has two types of contributions, the adiabatic and nonadia-
batic [123]. The later involve transitions between the levels n and m governed by the same type
of rates and microscopic processes than T1:

γnonad.
nm =

1
2

∑
n′,n

Γn,n′ +
∑
n′,m

Γm,n′

 . (32)

Their interpretation is transparent: phase coherence is lost when population scattering occurs.
The adiabatic contribution to decoherence is more subtle, as it can happen even in the absence of
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population scattering, and it connects directly with the ideas discussed in Secs. 2.1.3 and 2.1.4.
The adiabatic decoherence takes the form:

γad
nm =

1
~2

∑
α,β

Re(gαβ(0))
(
S mm
β − S nn

β

) (
S mm
α − S nn

α

)
. (33)

The physical interpretation of Eq. (33) is the following. If we have two states, n and m, such that
the expectation value of a given operator is different, and the environment is sensitive to which
of the two states the system stays at, even if it is not able to induce scattering between them,
decoherence will occur. To be more specific, let say n = +S and m = −S for a quantum spin. A
magnetic coupling to the environment will create decoherence between n and m even if there is
no population transfer. The adiabatic rate of such process would be: γad

S z,−S z
' 4S 2Re(gzz(0))/~2,

which again connects with the result (22).
As illustrated by Eq. (30), the coupling to the bath also produces a frequency shift δ∆nm

of the original energy levels that can be decomposed as δ∆nm = (ωn − ωm). Using the general
expressions ( 26) and (27), this frequency shift can be written as

ωm =
1
~2

∑
α,β

∑
n′

Im
(
gα,β(ωn′m

)
Sαmn′S

β
n′m. (34)

A well known example of this renormalization is the Lamb shift of the Hydrogen spectrum. In
the case of magnetic adatoms, the associated variation of the magnetic anisotropy due to the
Kondo exchange coupling with the substrate itinerant electrons has been recently reported [52].
Here we should remark that result (34) is completely general, i.e., the only BR tensor elements
contributing to the energy shifts are those of the form Rnm,nm [118].

In summary, the BR theory accounts for the dissipative dynamics of the reduced density
matrix of a quantum system weakly coupled to a reservoir. The influence of the reservoir is
included up to second order in the system-reservoir interaction, and the correlation functions of
the reservoir are assumed to have a very short memory, or in a more technical jargon, we adopt
the Markovian approximation. The BR theory accounts for 3 types of effects:

1. The occupations of the quantum states (diagonal part of the density matrix) evolve in
time, experiencing transitions between the originally decoupled eigenstates of the isolated
system.

2. Decoherence. When the reservoir is in thermal equilibrium, the steady state solution of the
BR is the equilibrium density matrix, which is diagonal in the basis of eigenstates of the
isolated systemHS . Therefore, coherences in this basis are fragile and decay in time.4

3. Renormalization of the energy levels. In the case of nanomagnets, the shift of the energy
levels translates into renormalized magnetic anisotropies and they can play an important
role. For instance, the quantum spin tunneling splitting of an isolated spin, which protects
quantum coherence, can be quenched due to coupling to the environment.

4The reduced density matrix can deviate from the thermal equilibrium distribution when there are some symmetries
that prevents transitions between eigenstates ofHS . Moreover, in the case of a degenerate spectrum it is always possible
to choose a basis in which coherences does not decay with time.
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2.3. Bloch equation for a 2-level system

Most of the experiments measurements of the coherence time of a system involve driving
the system with an ac signal. Therefore, it is important to have a dissipative theory for the
density matrix where the dynamical driving term is included. Here we review the Bloch approach
following Cohen-Tannoudji et al. [123]. The right hand side of the BR equation (25) contains
two terms. The first is the commutator of the reduced density matrix with the Hamiltonian HS

of the system, whereas the second accounts for the dissipative coupling to the environment. This
derivation was done assuming thatHS is time-independent.

The derivation of Bloch equation for the dissipative dynamics of a driven two-level system
consists, basically, in replacing HS by HS +V1(t) in the first term of the right hand side of Eq.
(25), where V1(t) is the driving term. This approach is definitely justified in two limits. In the
absence of dissipation, the equation of motion of the density matrix is given by the commutator
with the time-dependent Hamiltonian. Second, in the absence of the driving term, we recover
the BR theory. Basically, this approximation amounts to assume that the coherent and incoherent
dynamics are additive.

For an energy-split TLS, with energies Ea and Eb, the resulting equation of motion for the
density matrix reads as:

ρ̇aa(t) = −ρ̇bb(t) =
1

2T1

(
ρbb(t) − ρaa(t) − (ρeq

bb − ρ
eq
aa)

)
+

i
~

(
ρabV

ba
1 (t) − ρbaV

ab
1 (t)

)
(35)

and
ρ̇ab(t) = ρ̇∗ba(t) = −

ρab(t)
T2

+
i
~

∆ρab(t) −
i
~

(ρaa(t) − ρbb(t))Vab
1 (t), (36)

where Vba
1 (t) = 〈b|V1(t)|a〉 and ∆ = Eb − Ea ≥ 0. Equations (35) and (36) are the so called

Bloch equations. Here we assume that the time-dependent driving field has the periodic form
Vba

1 (t) = ~Ω cosωt, where Ω is the Rabi frequency.
The Bloch equations in the context of electron/nuclear spin resonance are usually written in

a slightly different way. In order to transform these equations into the most common form, we
first introduce the effective average spin operators

〈S+(t)〉 = e−iωtρba(t)
〈S−(t)〉 = eiωtρab(t)

〈Sz(t)〉 =
1
2

(ρaa(t) − ρbb(t)) , (37)

and, as for the usual angular momentum operators, the x and y-components 〈Sx〉 = (〈S+〉 + 〈S−〉) /2
and 〈Sy〉 = (〈S+〉 − 〈S−〉) /(2i). With the definition (37), one gets that the transversal terms 〈Sx,y〉

will contain two types of oscillations, provided |~ω−∆|/∆ � 1: fast oscillating terms, of the form
e±i(ω+∆/~)t, and slow oscillations of the form e±i(ω−∆/~)t. Under the rotating-wave approximation
described in Ref. [123], the fast rotating terms are neglected. This is equivalent to describe
the evolution of this effective magnetic moment in a rotating frame such that the magnetization
vector ~M(t) ≡ (〈Sx(t)〉, 〈Sy(t)〉, 〈Sz(t)〉) precesses at the effective Larmor frequency ∆/~:

〈Ṡx〉 = δ〈Sy〉 −
1

T2
〈Sx〉,

〈Ṡy〉 = −δ〈Sx〉 + Ω〈Sz〉 −
1

T2
〈Sy〉,

〈Ṡz〉 = −Ω〈Sy〉 −
1

T1
(〈Sz〉 − 〈Sz〉0)

(38)
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where δ = ∆/~−ω is the detuning between the TLS splitting and the driving frequency and 〈Sz〉0
is defined as in Eq. (37) with the initial occupations. Notice that to avoid unnecessary complica-
tions in the notation, we have just dropped the argument (t) to indicates that these quantities are
given in the rotating frame.

Equations (38) are formally identical to the phenomenological Bloch Equations describing
the dynamics of a macroscopic magnetic moment ~M(t). Thus, these equations can be used to
describe the dynamics of a localized quantum spin (or an array of localized spins behaving as a
TLS) driven by a classical radiofrequency field of frequency ω and Rabi frequency Ω coupled to
a bath, which induces relaxation on a time scale T1 and decoherence on T2.

The system of differential equations (38) admits a steady state solution of the form (see
Appendix D for the details):

〈Sz〉 − 〈Sz〉0

〈Sz〉0
= −

T1T2Ω2

1 + T 2
2δ

2 + T1T2Ω2
(39)

〈Sx〉

〈Sz〉0
= −T2δ

〈Sy〉

〈Sz〉0
=

T 2
2δΩ

1 + T 2
2δ

2 + T1T2Ω2
. (40)

2.4. Decoherence as a limit for spectral resolution in magnetic resonance

Equation (39) provides the basis for magnetic resonance experiments. The deviation from the
equilibrium of the longitudinal magnetization can be controlled changing the detuning δ between
the precession frequency ∆/~ and the frequency ω of the driving field. When sweeping over δ,
Eq. (39) describes a resonance curve whose maximum is given by(

T1T2Ω2

1 + T1T2Ω2

)
. (41)

Notice that the maximal deviation scales linearly with Ω2 when the dimensionless parameter
x = T1T2Ω2 is small. The full width at half maximum is then given by:

δ2
FWHM =

1
T 2

2

(
1 + T1T2Ω2

)
. (42)

In the limit when the driving amplitude Ω is small enough, or more precisely, when x � 1,
the width of the resonance is 1/T2. In the opposite limit, the full width at half maximum is
given by Ω

√
T1/T2. Thus, in both cases increasing T2 results in a reduction of the FWHM of

the resonance curve. As we discuss in Sec. 6, experiments of spin resonance on an individual
magnetic atom using STM have been recently reported [59, 107], demonstrating the possibilities
of single spin as a magnetometer. The accuracy of this quantum sensor is determined by the
FWMH and thereby, is ultimately limited by the decoherence rate.

2.5. The quantum to classical transition and the spin-boson model

The BR theory shows how a quantum state that is a linear superposition of two eigenstates
with different energies decays with a characteristic time scale T2 due to the interaction with the
environment. We now discuss another important aspect of decoherence. Take a quantum system
whose ground state is a linear combination of two eigenstates of an operator Â. For instance, Â
could be a projection of the spin operator, Ŝ z, or a pseudospin operator τ̂z in a two level system,
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such a diatomic molecule or a double quantum well. Quantum mechanically, the eigenstates of
the Hamiltonian can perfectly be linear superpositions of states with different eigenstates of the
operator Â. To be more specific, let us examine a relevant and simple example provided by an
anisotropic integer spin system, governed by the Hamiltonian

H = DS 2
z + E(S 2

x − S 2
y), (43)

with a strong easy axis anisotropy (−D � E > 0). We discuss the simplest non-trivial case,
S = 1, which describes, for instance, iron phthalocyanine deposited on an oxidized copper
surface [37]. Thus, the ground state doublet (for E = 0) is formed by the eigenstates of Ŝ z with
S z = ±1. As the in-plane anisotropy term is turned on, the degeneracy of the doublet is lifted,
resulting in the so called quantum spin tunneling splitting [19] ∆QST = E2 − E1. Importantly, the
resulting eigenvectors are linear combinations of the states with S z = ±1:

|Q1〉 =
1
√

2
(| + 1〉 + | − 1〉)

|Q2〉 =
1
√

2
(| + 1〉 − | − 1〉) . (44)

Hence, the eigenstates of the Hamiltonian have a built-in coherence between the states with well
defined S z. In the weak-coupling BR theory, when dissipation is included, the steady state density
matrix for this system would be given by ρ̂ =

∑
n PEq.

n |Qn〉〈Qn|, where PEq.
n are the Boltzmann

factors. When kBT � |D|, the energy gap that separates the S z = ±1 doublet from the S z = 0
state, this equilibrium density matrix can be expressed in the {| + 1〉, | − 1〉} basis as

ρS z =
1
2

1 +
1
2

Tanh
(
∆QST

2kBT

) (
0 1
1 0

)
. (45)

Thus, in thermal equilibrium the DM conserves a finite coherence of order Tanh(∆QST/2kBT )
when expressed in the basis set of eigenstates of Ŝ z. Interestingly, the density matrix (45) also
describes integer spins characterized by Hamiltonian (43) with arbitrarily large S . This im-
plies having coherence between states with opposite (and arbitrarily large) magnetic moment,
definitely at odds with classical systems. Of course, the QST splitting rapidly decreases as S
increases, reducing the temperature range for which quantum coherence is predicted. In partic-
ular, for the Hamiltonian (43), it is basically given by ∆QST ∝ E (E/D)S−1. Thus, if we take
for instance the Fe8 molecular magnet, where S = 10, D = −0.295 K and E/|D| ≈ 0.19, a
∆QS T ∼ 7 nK has been predicted [131], a temperature very difficult to reach experimentally.
Hence, in the weak coupling approach, the coupling to the reservoir seems to be ineffective to
destroy coherence in the S z basis, as long as ∆QST/2kBT is not too small.

Given the perturbative nature of the result (45), it seems pertinent to ask ourself what happens
when the strength of the coupling to the environment increases and, in particular, if there another
mechanism quenching the coherences not accounted for in (45). For that matter, we consider
the coupling of a TLS, described by H =

∆0
2 τ̂x in the S z-basis, to a bosonic environment that is

sensitive to the value of S z:

HSB =
∆0

2
τ̂x + τ̂z

√
α

∑
0<k<kc

gk

(
b†k + bk

)
+

∑
0<k<kc

~vFkb†kbk, (46)

where vF is the Fermi velocity and gk = ~vF (πk/L)1/2 (L is a quantization box length). This
is the well known spin-boson model, proposed to study the competition between the quantum
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tunnelling, driven by the ∆0
2 τ̂x term, and the coupling to the reservoir, that is sensitive which state

τ̂z the system is at. For ∆0 = 0 the model can be solved exactly [11], and it predicts a vanishing
coherence even at T = 0, in full agreement with the argument of Sec. 2.1.3. For a finite value of
∆0, the spin-boson model can be solved exactly in some specific limits. A central result of this
model is that, due to the coupling to the environment, the QST splitting becomes renormalized,
according to the following equation [11]:

∆

∆0
≈ (1 − Θ(α))

(
∆0

~ωc

) α
1−α

, (47)

where Θ is the step function, and ωc is a cut-off frequency. For α > 1 the QST splitting vanishes
strictly, which removes the protection of coherence discussed above. For α < 1 the QST is
severely renormalized except for very small α. Interestingly, at weak coupling (α � 1) the
renormalization of the QST can also be captured by the BR theory [76].

The results of the spin-boson model acquires special relevance in the context of nanomagnets
coupled to the itinerant electrons through a Kondo exchange interaction, a system that in many
instances can be mapped to the spin-boson model described above [17, 132]. In any event, the
coupling to the environment destroys the spin coherence between states with opposite S z by
renormalizing the QST splitting.

2.6. Other approaches to the relaxation and decoherence of spins
In this section we have presented a general overview of the decoherence problem from both

a formal point of view, where decoherence and relaxation is seen basically as the effect of the
coupling to the environment, an a practical point of view, with two methodologies to analyze it. In
addition, in Sec. 4 we shall further particularized to the problem of Kondo induced decoherence
in spin systems. However, there are many other possible approaches to treat the problem of spin
decoherence. Within the linear response theory, one can study the dynamical effects by looking
at the behavior of the dynamical susceptibility. By using the Kubo formula [133], one obtains
the (complex) frequency dependent magnetic susceptibility, which can be related to the retarded
correlation function. The first derivative of its imaginary part with respect to the frequency
is related to dissipation (relaxation and decoherence), while a first derivative of the real part
corresponds to the shifts of the energy levels, the effects already derived from the Bloch-Redfield
theory 2.2. First frequency derivative of the dynamic susceptibility has a frequency-dependence
similar to the susceptibility and can be written as the product of two Green functions, making a
separation of the shifts/dissipation possible for small couplings.

In addition to the particular treatment of the dissipative dynamics, there is a second implicit
assumption in our whole treatment: the quantum system can be treated as a spin system, i.e,
fluctuations of other degrees of freedom, such as charge, can be neglected. This does not need
to be the case in the strong fluctuation regime where the local moments are fully suppressed
or in the intermediate Hund’s impurity regime [134], where charge fluctuations occurs as a re-
sult of the strong hybridization, but the local magnetic moment still survives. Furthermore,
when the structural changes of the spin array modifies the local magnetic anisotropy of each
spin due to the surface rearrangements [135], a more complete description including the orbital
degrees of freedom may be required, as it happens in the case of Co chains on Cu2N/Cu(100)
surface [61]. Another examples where the spin description may fail are magnetic molecules on
surfaces where conformational changes may occur either induced by charging effects or by the
field of the tip [136, 137]. This is likely to occur when transport takes place close to a resonance,
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i.e, the addition (or removal) energy of an electron of the molecule is close to the chemical
potential of the electrodes [34, 39, 101].

In these cases, a more complete description of the electronic transport is required, taking into
account not only the spin degrees of freedom but also the charge. One possible treatment of this
problem is through a generalized multiorbital Anderson model. Under this description, the cor-
relation between electrons in the magnetic impurities are fully taken into account. For instance,
in the case of transition metal adatoms, the electrons in the d-levels of the adatoms are treated
as a many body system, with the effects of the surroundings already accounted for in the crystal
and ligand fields [138, 139]. Itinerant electrons can thus hop in and out of these orbitals, and
their dynamical effects may be treated within the Green function formalism [140]. Within this
formalism, the effect of the electronic reservoirs is summarized in two central quantities, the on-
site energy levels of the d-electrons, and the hybridization function. In fact, these two quantities
can be estimated from ab-initio calculations [141, 142]. Of course, depending on the regime of
parameters, one can analyze the properties of this multiorbital Anderson problem using different
approaches: from the perturbation method in Ref. [101] to more refined numerical techniques
like the non-crossing [141] and one-crossing approximations [52], or numerical renormalization
group analysis [143] among others.

3. Spin Hamiltonian for magnetic adatoms

In this section we review the Hamiltonian describing magnetic atoms on a surface, including
both the part that, within the open quantum system picture, we consider the “system”, as well as
its coupling to other degrees of freedom, the “baths”. This includes single spin Hamiltonian and
the spin-spin interactions, relevant for engineered nanostructures such as spin chains.

3.1. Single spin Hamiltonian

The low energy physics of individual quantum spins, such as magnetic atoms and molecules,
can be very often described with an effective single spin Hamiltonian that describes the magnetic
anisotropy and the Zeeman coupling within the subspace of the ground state spin S . The ground
state multiplet of open-shell isolated atoms has, ignoring spin-orbit coupling (in the range of
50 meV for 3d transition metals), (2L + 1)(2S + 1) states. When the coupling to the surface
is included, most often the orbital momentum is quenched, so that the low energy manifold
has only 2S + 1 levels. In that case, the single ion Hamiltonian can be written as an even
function of the spin operators Ŝ a that describes the magnetic anisotropy preserving time-reversal
symmetry, plus the Zeeman interaction with the external applied field. Quite often, this effective
spin Hamiltonian is written in terms of a complete set of high-order spin operators

HS =
∑

k=2,4,6

k∑
q=−k

Bq
kÔq

k (S ) , (48)

where Ôq
k (S ) are the (tesseral tensor) Stevens operators [81] and Bq

k are real coefficients. The
Hamiltonian coefficients Bq

k are determined by the symmetry of the the spin system, the crystal
field, hybridization and, importantly, the spin-orbit interaction. Several groups have tried to de-
termine the anisotropy parameters from first principles calculations, although in general this is a
hard problem. This technique has been applied to transition metal atoms adatoms [139, 143–145]
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or even rare earth like Ho on Pt(111) [116]. Multiplet calculations with rescaled Coulomb inte-
grals where the atomic spin-orbit interaction is used [146, 147] have also been used to compute
Bq

k . This method requires to calculate spatial averages 〈rn〉 over the atomic wavefunctions, but
most frequently they are taken as fitting parameters [59, 77, 115].

A second approach to determine the single spin anisotropy coefficients consist on fitting the
IETS spectra [31, 33, 52, 53, 65] For this matter, it is important to account for the adatom crystal
field symmetry. For instance, for magnetic adatoms, the dominant (quadratic) uniaxial term is
usually written as DŜ 2

z (D = 3B0
2), while the quadratic in-plain anisotropy, typical of adsorption

sites with symmetry C2v, is written as E
(
Ŝ 2

x − Ŝ 2
y

)
, as in Eq. (43), where E = B2

2. This is the
case of the transition metal atoms studied on Cu2N/Cu(100) [78], MgO/Ag(100) [55, 59, 77], or
h-BN/Rh(111) [63]. Whereas in some cases the z-axis is the off-plane direction, in others the z-
axis may lie in the surface plane [31]. Another example of interest in the field of magnetic atoms
on surfaces is the adsorption on sites with C3v symmetry, such as the Pt(111) surface [68, 116],
where the lowest order transversal term takes the form B3

4Ô3
4 = B3

4/2
{
S z, S 3

+ + S 3
−

}
, i.e., it mixes

states with spin projection S z differing in three units [116]. Higher order term may also appear
in molecular magnets due to their high intrinsic spins [148].

In some high symmetry instances orbital momentum is not fully quenched. This is the case
of Fe on top of MgO. In this unquenched case, the low energy levels are described by [59, 77]:

HS = DL̂2
z + F0(L̂4

x + L̂4
y) + λ~L · ~S + µB~B ·

(
~L + g~S

)
(49)

where L = 2 and S = 2. The most important consequence of this finite orbital momentum is
that the spin-orbit coupling induces a splitting of the energy levels linear in λ, resulting in an
enhanced magnetic anisotropy. Thus, for the Fe/MgO, the low energy spectrum of this effective
Hamiltonian is a two level system with approximate quantum numbers S z ≈ 2Lz ≈ ±2. This
doublet lies 14 meV below the next excited state, so that for many practical purposes, the system
behaves like a two level system.

3.1.1. Integer vs half integer spins
The behavior of integer and half-integer spins, described with the same Hamiltonian, can

be radically different. According to Kramers’ theorem, half-integer spins have at least doubly
degenerate spectrum, on account of time reversal symmetry, whereas integer spins can be non-
degenerate at B = 0. In the case of strong uniaxial anisotropy, where the dominant term in
the Hamiltonian is HS = DŜ 2

z , with D < 0, the ground state doublet is made of the two states
with S z = ±S , see Fig. 3. The effect of the the remaining terms in the Hamiltonian depends
dramatically on the parity of 2S + 1. To be specific we discuss here the case of Hamiltonian (43),
but the discussion applies to general spin Hamiltonians as well [149].

In the case of half-integer spins, as well as some integer-spins where there are symmetry
protected degeneracies [115, 149, 150], there is a strict degeneracy of the ground state doublet at
zero magnetic field [151], and we can always choose the eigenvectors ofHS such as the uniaxial
term DŜ 2

z is diagonal in the E = 0 limit:

|C1〉 ∝ | − S 〉 + O
(
εS−1

)
|δφ1〉

|C2〉 ∝ | + S 〉 + O
(
εS−1

)
|δφ2〉, (50)

where O
(
εS−1

)
|δφ〉 is the contribution to the wave function coming from states with smaller |S z|

and it is controlled by ε, a small number that in the case of the Hamiltonian (43), is given by
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Figure 3: Effects of the magnetic anisotropy on quantum magnets. (a) Energy levels scheme of a nanomagnet with an
uniaxial, easy axis (D < 0 ) anisotropy. The two degenerate ground states correspond to the classically oriented states
along the easy axis. (b) Effect of the transversal E terms (∝ (S 2

x − S 2
y ) ) on an exemplifying S = 5/2 half-integer spin,

involving mixing between states represented with the same color. (c) Idem to (b) but for an integer spin (S = 1 in the
example displayed). The new mixed states are bonding and antibonding linear combinations of the classical states, split
in energy by ∆QS T .

ε = E/|D|.5 Since this type of situation is compatible with the conventional classical picture
of a magnet with two equivalent ground states with a finite and opposite average magnetization
Mz ' 〈C1|S z|C1〉 = −〈C2|S z|C2〉, we refer to these spins as type C or classical type of spins. We
stress, however, that since these two wave functions correspond to degenerate states, any linear
combination of |C1〉 and |C2〉 will also be a valid choice to describe the ground state doublet.
However, the coupling to the environment will select the |C1〉 and |C2〉 states as the most stable,
a process discussed in Sec. 4.3.4.

By contrast, the zero-field spectrum of integer spins with finite transversal anisotropy E is
non-degenerate due to quantum spin tunneling, so that E2 = E1 +∆, where ∆ ∝ EεS−1 in the case
of Hamiltonian (43). It is then apparent that, as S increases, ∆ decreases. As long as ∆ , 0, the
wave functions of the doublet are uniquely defined, modulus a global phase, and approximately
given by [19]:

|Q1〉 ∝ |S 〉 + (−1)S−1| − S 〉 + O
(
εS−1

)
|δφ〉

|Q2〉 ∝ |S 〉 + (−1)S | − S 〉 + O
(
εS−1

)
|δφ〉, (51)

where the last term is a small contribution coming from states with |S z| < S . Thus, the wave
functions are approximately given by the bonding and antibonding combination of the states with
S z = ±S , while the bonding-antibonding nature of the ground state wave function alternates as S
increases. We refer to these states as type Q or quantum type of states because they are quantum
superpositions of the two classical ground states, and have thereby very different properties, such
as the vanishing expectation values of the magnetic moment [17].

5If 3E > D we relabel the Hamiltonian, so that the new easy axis is again z.
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3.2. Pseudo-spin 1/2 approximation
In those instances where there is a gap between the ground state doublet and the rest of the

energy levels, one can truncate the Hilbert space and treat the anisotropic spins as two level
systems. This occurs for the Hamiltonian (43) when −D � E, kBT . This condition holds, for
instance, in the case of Fe or Co on Cu2N [31, 33].6 When projected over this subspace, the spin
rotational invariance inherent to the Heisenberg coupling between magnetic adatoms, ~S (l) · ~S (l′),
or the Kondo interaction with the surface electron spin density, ~S (l) · ~s(~rl), is broken on account
of the single ion magnetic anisotropy. To see this, we represent the spin operators Ŝ a(l) in the
subspace of dimension 2 of the ground state doublet. The resulting matrices of dimension 2 can
be written down as linear combinations of Pauli matrices τ̂a acting on the space of the TLS:

Ŝ a(l) =
∑

b=x,y,z

κab(l)τ̂b. (52)

Specifically, we write this up for the cases of a single spin described by Hamiltonian (43). The
expressions are then quite different for the half-integer and integer spin. In the case of half-
integer, using the wave functions (50), we have κab ∝ δab, with

κzz ≈ S + O(ε2S−1)
κxx, κyy ∼ S ε2S−1. (53)

Thus, in the limit of pure uniaxial anisotropy with S > 1/2, the only operator with non-zero
matrix elements in the ground state manifold is the Ŝ z operator, and the Heisenberg coupling
~S ·~s(0) takes the form of an Ising interaction Ŝ zsz(0) ' S τ̂zsz(0). Another interesting case occurs
for half-integer spins where D > 0, such that the ground state doublet has S z = ±1/2. This is
relevant for instance for Cobalt on Cu2N (S = 3/2) [152]. In this case the operators Ŝ x and Ŝ y

have non-vanishing matrix elements within the S z = ±1/2 doublet, but their strength is larger
than in the Ŝ z term. For S = 3/2, the representation of the Ŝ x matrix in the subspace of the
S z = ±1/2 doublet give matrix elements twice as large as those obtained for a real S = 1/2 spin.
In contrast, the representation of the Ŝ z operator gives the same matrix elements in both cases.
The resulting exchange interactions in the S = 3/2 case are thereby anisotropic.

We now consider the representation of the spin operator in the 2× 2 space within the Q-basis
(51), where [17]

~S ≡ ẑ〈Q1|Ŝ z|Q2〉

(
0 1
1 0

)
. (54)

In other words, the atomic spin-flip operators Ŝ x and Ŝ y have no effect in the sub-space of states
|Q1〉 and |Q2〉, and only the Ŝ z operator has a non-vanishing contribution whose effect is to induce
transitions among these states. It is important to note that for systems with a degenerate ground
state, it is a matter of choice whether we use the Q or the C basis.

The important take home message here is that the conventional spin-isotropic interactions,
working in the subspace of low energy selected by the large magnetic anisotropy, result in
anisotropic effective spin Hamiltonians. This is of course a resource that might be used to do
quantum simulations [152].

6The 2-level approximation will be valid to describe the spin dynamics as long as excitation of higher energy states,
either by thermal fluctuations or by scattering with transport electrons under a finite bias voltage, are negligible.
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3.3. Hamiltonian for multi-spin systems
One of the most appealing features of surface magnetism is the possibility to assemble mag-

netic structures, adding atoms one by one. In addition to the single spin anisotropy, these atoms
interact with each other through different kind of sin-spin interactions. A broad class of magnetic
atoms on surfaces can be described with the spin Hamiltonian

HS =
∑
l≤N

H0(l) +

N∑
l,l′

∑
a,b=x,y,z

Ja,b(l, l′)S a(l)S b(l′) (55)

where the first term describes the single ion magnetic anisotropy, given by Eq (48), while the
second one represents a spin-spin exchange interaction. Several atomically engineered nanos-
tructures, such as spin chains of Fe and Mn on Cu2N [30, 38, 48, 53, 56, 67, 69, 152], can
be modelled assuming that spin-spin interaction is rotational invariant (Heisenberg type, Ja,b =

JHδa,b) and neighbor isotropic, either antiferromagnetic (AF) [30, 48, 152] or ferromagnetic
(FM) [53, 56], while the second neighbor interaction is either negligible, or much smaller [80,
153]. Dzyaloshinskii-Moriya (DM) interaction coupling, where the inter-spin interaction takes
the form

∑
ab JabS a(l)S b(l′) ≡ ~Dll′ ·

(
~S (l) × ~S (l′)

)
, with ~Dll′ a vector whose orientation is given

by some high-symmetry direction of the surface, is known to be relevant for magnetic atoms on
top of heavy metal surfaces, such as Pt [154] and Ir [155], resulting in non-collinear broken sym-
metry states, such as spin spirals for Fe chains on Ir [155] or Mn on W [40, 156], and skyrmions
for monolayers of Fe on Ir [157, 158]. Both indirect coupling mediated by the surface elec-
trons and super-exchange mediated by non-magnetic surface atoms are believed to contribute to
these interactions [159]. In the following we only consider first neighbor Heisenberg interactions
~S (l) · ~S (l ± 1), the dominant coupling between magnetic atoms adsorbed on a decoupling layer
such as Cu2N, MgO or AlO.

Depending on the competition between the single ion anisotropy and the Heisenberg interac-
tion, the geometry of the structure (chain, ladder, cluster), and the spin parity, the ground state
of the system can have very different nature. From the experimental information, obtained using
both IETS and time resolved magnetization switching using spin polarized STM, together with
the information from the model Hamiltonian, one can infer the different types of ground states.
Even if we limit the discussion to chains and ladders formed with transition metals on Cu2N, the
following ground states have been reported:

1. Antiferromagnetically correlated spin ground state, without broken symmetries, for Mn
chains (S = 5/2) with up to N = 10 atoms [30]. In the case of even (odd) the spin of the
ground state is S G = 0 (S G = 5/2). The exchange interaction for the Mn dimer is JH ' 6
meV, much larger than the single ion anisotropy D ≈ −0.04 meV.

2. Broken symmetry AF ground states (Ising type classical Néel states), for Fe chains along
the N rich direction, and N ≥ 3 [48]. For N = 2 no signal of broken symmetry is observed
[41].

3. Broken symmetry FM ground states (Ising type), for Fe chains along the Cu rich direction,
and N ≥ 3 [56].

4. Distributed Kondo effect in hybrid spin Fe-MnN spin chain [62]. The Fe-Mn dimer (N = 1)
have a strong AF interaction that leads to a ground state spin S G = 1/2, that results in a
zero bias Kondo peak. As N increases, staying odd, the Kondo effect is preserved, but it is
more prominent in the side of the structure opposite to the Fe-Mn, reflecting the non-local
and rather counterintuitive nature of the ground state of the chain.
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5. Correlated pseudo-spin 1/2 XXZ model [152]. A chain of Cobalt atoms with S = 3/2 and
strong uniaxial anisotropy that favors the S z = ±1/2 doublet realizes the XXZ model.

This list illustrates that the competition between uniaxial anisotropy, exchange interaction
and Kondo coupling can result in a large variety of possible ground states. This can be un-
derstood, in part, when the anisotropy is large enough to permit a truncation of the single spin
Hamiltonian, keeping only two levels. This approximation leads then to anisotropic pseudo-spin
1/2 interactions. For instance, for an integer spin chain governed by the single ion anisotropy
Hamiltonian (43) and Heisenberg exchange JH , and provided D < 0 with |D| � E, JH , we can
retain the doublet with maximal S z at each atomic spin. The resulting effective Hamiltonian
reads [17]:

HS ≈
∑

n

∆

2
τ̂z(n) + j

∑
n

τ̂z(n)τ̂z(n + 1) (56)

where ∆ is the quantum spin tunneling splitting of an individual adatom and j ≡ JH |〈G1|Ŝ z(l)|G2〉|
2.

Of course, Hamiltonian (56) is nothing but the quantum Ising model in a transverse field (QIMTF).
This is approximately the case of the FM [56] and AFM [48] Fe chains on Cu2N/Cu(100). In
contrast, in the case of D � E, kBT0, the two level truncation that keeps only the S z = ±1/2
doublet leads to the XXZ model [152]. We thus see that atomically engineered magnetic struc-
tures with atomic spins with S > 1/2 can be used to realize effective spin 1/2 models and might
be used for quantum simulation [152].

4. Decoherence due to Kondo exchange

In this section we treat the problem of decoherence of magnetic atoms on a surface due to the
Kondo exchange interaction with the itinerant electrons of the underlying conductor. We treat in
detail the case of an individual magnetic atom and, later on, we briefly address the problem of
spin decoherence of finite size chains of exchanged-coupled magnetic atoms.

We assume that at t = 0 some quantum demon has been able to prepare the system in a
linear superposition of two states that have very different magnetic properties. In the case of an
individual quantum spin, the wave function would be:

|ψ(t = 0)〉 =
1
√

2
(|S z = +S 〉 + |S z = −S 〉) . (57)

Our goal is to determine for how long this coherent superposition can be maintained, taking into
account that the spin is exchange coupled to the electron gas of the surface. This characteristic
decoherence time will be denoted as T2.

4.1. Kondo exchange interaction
The Kondo exchange interaction with the surface electrons can be written down as:

VK =

N∑
l

Jl~S l · ~s(~rl), (58)

where ~S l is the spin of the l-magnetic adatom and ~s(~rl) is the surface spin density evaluated at
the position ~rl of the l magnetic atom,

~s(~rl) =
∑
~k~k′σσ′

ei
(
~k−~k′

)
·~rl
~τσσ′

2
c†
~k,σ

c~k′σ′ , (59)
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where c†
~k,σ

indicates the creation operator of a conduction electron with momentum ~k, and spin
projection σ along the quantization axis z. In the case of a single magnetic atom, we always
choose its location at the origin, so that the phase factor in the Hamiltonian goes away. For many
atoms the phase factor can not be gauged away and it can play an important role. We assume that
the conduction electrons can be described within the independent particle picture:

Hsurface =
∑
~k,σ

εkc†
~k,σ

c~kσ (60)

For simplicity, in this work we limit the discussion to the case of a non-polarized electrodes. A
similar discussion could be carried out for the coupling to a spin-polarized bath [84]. Most often,
the exchange constant Jl ≡ J is the same for all the spins, which is a quite reasonable assumption
for magnetic adatoms adsorbed on equivalent lattice sites on the surface.

4.1.1. Kondo Hamiltonian in the two-level approximation
As we discussed in Sec. 3.2, in many instances we can restrict the (2S + 1) Hilbert space of

magnetic adatoms down to just two levels. Using equations (52) and (58), we can write down
the Kondo exchange Hamiltonian, projected into the subspace of the ground state doublet, as:

VK = J
∑
l≤N

∑
a,b

κab(l)τ̂bsa(~rl). (61)

where
∑

b κab(l)τ̂b is the representation of the atomic spin operator Ŝ a(l) in the basis set of the
two levels. In the case of degenerate two levels, this representation is not unique. If we choose
the basis set as to diagonalize the Ŝ z operator, for a single spin that we place at the origin of
coordinates (~r1 = 0), the representation of the Kondo coupling in the truncated basis takes the
form

VC
K = jzτ̂zsz(0) + jxτ̂xsx(0) + jyτ̂ysy(0), (62)

where jz ' JS � jx, jy. Thus, the single ion anisotropy results in an effective anisotropic
exchange. In the case where the eigenstates of the TLS are also eigenstates of Ŝ z, with |S z| > 1/2,
we have jx = jy = 0 and the coupling anisotropy is maximal as the truncated Kondo Hamiltonian
takes the form of an Ising-Kondo model [160], VC

K = jzτ̂zsz(0). As a consequence, population
scattering is strictly forbidden between the states with different atomic S z, yet the coupling to the
environment is able to induce decoherence, as we describe in Sec. 2.1.3.

Another interesting case is provided by a TLS whose wave functions are given by states as
those in Eq. (51). This situation arises naturally for integer spins described with the single ion
Hamiltonian (43), with −D � |E| > 0. In that case we have ~S = 〈Q1|S z|Q2〉(0, 0, τ̂x) [17], which
leads to the single impurity Kondo Hamiltonian

V
Q
K = jzτ̂xsz(0) (63)

where jz = J〈Q1|S z|Q2〉. In other words, the atomic spin-flip operators Ŝ x and Ŝ y have no effect
in the sub-space of states |Q1〉 and |Q2〉, and only the Ŝ z operator has a non-vanishing contribution
whose effect is to induce transitions among these states [17].
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4.2. General expressions for T1 and T2 due to Kondo exchange

The general expression for a T1 like transition rate between two eigenstates of a spin chain
due to Kondo coupling to the reservoir is given by [97]:

ΓMM′ =
πJ2

2~2

∑
~k,~k′

f (εk) (1 − f (εk′ )) × χM,M′ (~k − ~k′)δ (εk + EM − εk′ − EM′ ) , (64)

where

χM,M′ (~k − ~k′) ≡ 2
N∑

l,l′=1

ei(~k−~k′)·(~rl−~rl′ )
∑

a

S a
MM′ (l)S

a
M′M(l′) =

∑
a

∣∣∣∣Sa
M,M′ (~k − ~k

′)
∣∣∣∣2 (65)

where Sa
M,M′ (~k − ~k

′) =
∑

l ei(~k−~k′)·~rl S a
MM′ (l) and S a

MM′ (l) ≡ 〈M|Ŝ
a(l)|M′〉 with a = x, y, z. The

interpretation of Eq. (65) is quite transparent. The rate contains the f (1− f ) factor that weights the
occupation of the initial quasiparticle state and the availability of the final quasiparticle state. The
δ function ensures the overall conservation of energy, while energy exchange between system
and reservoir is allowed. The spin structure function, χM,M′ (~k − ~k′) accounts both for the spin
conservation and for the non-local couplings that naturally arise when the sum over all the atoms
in the structure is squared in order to obtain a scattering rate.

For the decoherence rates, we obtain two contributions, very much like in the single spin
case. The first comes from T1-like population scattering processes [123]:

γnonad.
M,M′ =

1
2

∑
N,M

ΓM,N +
∑

N,M′
ΓM′,N

 , (66)

where ΓM,M′ are the scattering rates defined in Eq. (64). The adiabatic contribution corresponds
to processes that occur even in the absence of changes in populations of the |M〉 states. It is
driven by elastic scattering processes with the reservoir and it is often known as pure dephasing.
In our case, the adiabatic decoherence rate is given by:

γad.
M,M′ =

πJ2

2~

∑
~k,~k′

f (εk) (1 − f (εk′ )) χad.
M,M′ (~k − ~k

′)δ (εk − εk′ ) . (67)

The matrix elements χad.
M,M′ (~q) are given by (see Appendix A.2 for details):

χad.
M,M′ (~q) =

∑
a

∣∣∣∣∣∣∣∑l

(
ei~q·~rl S a

MM(l) − e−i~q·~rl S a
M′M′ (l)

)∣∣∣∣∣∣∣
2

=
∑

a

∣∣∣Sa
M,M(~q) − Sa

M′,M′ (−~q)
∣∣∣2 . (68)

4.3. Decoherence of a single degenerate spin

4.3.1. Decoherence of a single spin with degenerate spectrum: perturbative results
We now consider the simplest case of an individual magnetic atom with spin S and uniaxial

anisotropy,HS = −|D|Ŝ 2
z , which leads to a degenerate ground state. We choose as a basis set the

eigenstates of Ŝ z, dubbed as classical, see Eq. (50).
Within the perturbative BR theory, the decoherence rate has two types of contributions, adi-

abatic and nonadiabatic. The latter are due to T1-like process that change the population of the
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two states |+ S 〉 and | − S 〉, see Eq. (66). The Kondo interaction can only induce transitions with
∆S z = ±1. Therefore, for S > 1

2 , the nonadiabatic channel implies inelastic transitions from the
states of the ground state doublet to an excited state, separated in energy by ∆ = |D|(2S − 1).
Energy conservation implies that a thermally excited electron-hole pair across the Fermi energy
has to be annihilated. The scattering rate for these T1-like processes excitation of the spin is:

1
T1

=
π

2~
(ρJ)2 S

∆

eβ∆ − 1
(69)

where ρ is the density of states at the Fermi level of the surface electrons. As the temperature goes
to zero, the density of thermally excited electron-hole pairs vanish exponentially, and excitation
rate 1/T1 ∝ e−β∆ vanishes altogether.

The relaxation rate of the S z = S − 1 excited state (or S z= − S + 1) to the ground state by
spontaneous emission of an electron-hole pair across the Fermi energy can be obtained from Eq.
(69) by reversing the sign of ∆. In the low temperature limit (β∆ � 1), this relaxation rate scales
like

1
T1

∣∣∣∣
relax
≡ γad. '

π

2~
(ρJ)2 S ∆ (70)

The linear relation between the transition energy ∆ and the relaxation of excited states has been
observed experimentally for Fe adatoms on Cu(111) surface [45] and also for an antiferromag-
netically coupled chain of N = 3 Fe atoms on Cu2N [69]

For the nonadiabatic decoherence of the ground states, the relevant rate is given by Eq. (69).
Thus, at sufficiently low temperatures this contribution is suppressed exponentially, and we are
left with the adiabatic contribution, whose rate is given by [95, 161]:

1
T ad

2

≡ γad. =
π

2~
(ρJ)2 S 2kBT. (71)

This result shows that the bigger S , the faster the decay of the coherent superposition of the
states +S and −S . It also shows that even without inelastic scattering, the phase coherence of the
superposition state is fragile. The temperature dependence in this case comes from a phase space
argument. Elastic scattering requires the presence of an electron and a hole at the same energy.
The density of electron hole pairs scales linearly with kBT . Perturbative results work well when
ρJ � 1. For instance, taking ρJ = 0.1, and S = 2, and kBT = 100 mK, the decoherence time
is T2 ' 1.2 ns. Therefore, even in the most favorable case of a system where both spin flip
and inelastic scattering are suppressed, elastic spin-preserving Kondo interactions are extremely
detrimental for atomic spin coherence. Baumann et al. have reported T2 ' 120 ns for kBT = 0.6
K for Fe on MgO. If the decoherence rate in that system was governed exclusively by Eq. (71),
and assuming S = 2 for that system, we would infer ρJ ' 3 × 10−3. Thus, this is a good upper
limit for this quantity in that system.

The perturbative results seems to indicate that, in the limit of T = 0, the coupling to the
environment would not be able to decohere the linear superposition. Actually, we show below
that this conclusion is wrong, and elastic spin-conserving Kondo process would result in a finite
decoherence rate even at T = 0. The failure of the BR theory relates, in this case, to the fact that
the the theory only describes processes that are slow compared to the correlation time of the bath
τc. In the case of the Fermi sea, τc ≈

~
kBT . Thus, as the temperature goes to zero, the theory can

only describe processes that are very slow, and eventually this prevents the proper description of
T2.
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4.3.2. Decoherence of a single spin with degenerate spectrum: non-perturbative results
We now compute the adiabatic decoherence without using perturbation theory and without

invoking the Markovian limit, both essential ingredients of the BR theory. This is possible in this
specific case, because we can use two well established methods. First, we perform the partial
wave expansion of the itinerant electron states of the surface. For a single Kondo impurity, only
the s wave contributes [162]. This turns the original problem in a one-dimensional one, for which
we can apply the bosonization description of the spin density operator as described in Appendix
C. Second, and as described in Sec 4.1.1, we restrict the spin Hilbert space to the ground state
doublet. We end up with the following Hamiltonian for the TLS coupled to the electron-hole
pairs of the Fermi sea, described with bosonic operators:

HSBC = ~vF

∑
0≤k≤kc

kb†kbk,+
√
ατ̂z

∑
0<k<kc

gk(b†k + bk). (72)

Notice that this model is a particular version of the spin boson model when the tunneling term
vanishes, see Eq. (C.6). Hamiltonian (72) is diagonalized by the following unitary transforma-
tion [163]:

UHSBCU−1 = h0 +
∆

2
τ̂z (73)

where U = exp(−iτ̂zΦ/2) and

Φ ≡ i
k=kc∑
k>0

(
k
πL

)1/2 (
b†k − bk

)
. (74)

This permits us to calculate the evolution of the wave function of the bosonic operators that
describe the electron-hole pair excitations of the bath. Using the argument of Sec. 2.1.3, we can
compute the decay of the coherence, given by Eq. (15). With the help of transformation (73),
one arrives to S12(t) = eK(t) [163], where

K(t) =
4
π~

∫ ωc

0
dω

J(ω)
ω2 F (ω,T, t), (75)

with

F (ω,T, t) = coth
(
~ω

2kBT

)
(cosωt − 1) − i sin(ωt), (76)

and J(ω) the spectral density. For a Ohmic bath, the case relevant for a Fermi gas, we have
J(ω) ∝ ω, and we can obtain two very interesting limiting results. For finite temperature, and
not too short times, t > ~

kBT , we have:

S12(t) ≈ e−Γte−iIm[K(t)] (77)

with
Γ = 2παkBT/~. (78)

This results is the same that can be obtained using the Bloch-Redfield approach, outlined in
the previous subsection. It basically means that, even in the absence of spin-flip interactions,
the electron gas is able to decohere a “Schrödinger-cat ”-like state, Eq. (15), where the spin is
prepared in a superposition of the two states with opposite magnetization along the easy axis. In
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the opposite limit, 1/ωc < t < ~/kBT , which becomes specially relevant as T goes to zero, we
have K(t) ≈ −2α ln(ωct), which yields

S12(t) ≈ (ωct)−2α. (79)

This result is interesting on two counts. First, it shows that even at T = 0 the bath is able to
decohere the spin. Second, it permits covering a limit that can not be addressed by the Bloch-
Redfield approach, as we discussed in Sec. 2.2.

Equations (77) and( 79) can be reinterpreted as follows. Since they clearly show a transition
from an exponential decay law in Eq. (77) to a power law in Eq. (79), one can define a transition
temperature T ∗ = ~ωc/kB exp(−1/2α) below which the power-law decay dominates over the later
exponential one [163]. Thus, we can distinguish between a low temperature regime (T < T ∗)
where the dephasing rate is temperature independent and approximately given by kbT ∗/~, and a
high temperature one (T > T ∗) with the dephasing rate Γ given by Eq. (78).

4.3.3. Quasiparticle phase shift as the origin of the pure dephasing
Both the perturbative BR approach and the non-perturbative method based on the exact solu-

tion of the bosonized Hamiltonian show that the Kondo interaction of an anisotropic spin with a
Fermi gas is able to decohere the linear superposition state of Eq. (57). This occurs with scatter-
ing events that preserve both the energy and the angular momentum of the two particles involved
in the scattering, the quasiparticles and the magnetic atom, and although linear momentum is
transferred, this information is averaged out. Thus, and obvious question arises: how does the
the interaction modify the environment wave function, which is the ultimate responsible of the
decoherence in the absence of scattering?

For the spin-conserving interaction considered here, the environment actually is formed by
two independent reservoirs, the Fermi gas for ↑ electrons and the Fermi gas for ↓ electrons. If
we focus on the ↑ reservoir, it is apparent that the interaction with the atomic spin in the +S state
results in a phase shift different from the one when the atomic spin is in the −S state. This is
trivially seen in the case of one dimensional Fermions interacting with a delta function V0δ(x),
for which the phase shift transmission coefficient is given by t(ε) = 1

1+iV0ρ(ε) . For the Kondo-Ising
problem, we can write down V0 = JSσ, where S and σ = ±1/2 are the atomic and quasiparticle
spins respectively. In the weak coupling limit, the phase shift is:

δσ(S ) ' ρJSσ (80)

where ρ = m
~2k(ε) is the density of states at the energy of the quasiparticle, that we omit from the

arguments for simplicity. Importantly, for a fixed quasiparticle spin, the phase shift depends on
whether the atomic spin is in the +S or −S state. Using this result, the pure dephasing (71) can
be written down as:

1
T ad

2

= π
kBT
2~

∑
σ

(δσ(S ) − δσ(−S ))2 . (81)

So, it is natural to think that the environment reads the information about the system via the
spin dependent phase shifts. This is in line with the standard results of the quantum impurity
phenomena, such as the Fermi edge singularity [164] and the Kondo effect [165], where some
important results can be expressed in terms of the quasiparticle scattering phase shift [164, 166].

The connection between spin decoherence and the quasiparticle phase shift opens up an in-
teresting venue of research: in the case of spin structures, the scattering with multiple point
scatterers can results in dramatic reductions of the phase shifts, that would lead to enhanced
coherent lifetimes for the atomic spins.
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4.3.4. Decoherence for the degenerate doublet: the choice of basis set
The discussion above has considered decoherence for spins with uniaxial anisotropy, such

that S z is a good quantum number. Thus, the Kondo interaction with the surface electrons was
not capable of inducing transitions from S z to −S z, on account of the conservation of angular
momentum (provided that 2S > 1). Hence, in that situation, the choice of the eigenstates of
Ŝ z as basis set is quite natural, although not unique. However this situation where scattering is
forbidden is exceptional and, in general, for two level systems both decoherence and population
scattering can occur leading to coupled dynamical equations. In this case, typical of half-integer
spin at zero field, the distinction between T1 and T2 becomes ill defined, or at least it has to be
referred to a specific choice of the basis set.

Interestingly, sometimes the coupling to the environment is fully responsible of selecting
the final states among the infinite possible choices of the isolated system. The states with this
property receives the name of pointer states [12]. This is known as einselection process [12] and
it bears obvious resemblance with the quantum measurement problem.

In the context of half-integer anisotropic spins, Kramers’ theorem ensures at least a dou-
ble degeneracy of the energy spectrum at zero magnetic field. Thus, the transverse anisotropy
Hamiltonian E(S 2

x − S 2
y) can not lift the degeneracy of the S z = ±S doublet when S is half-

integer. However, it does modify the wave functions. The dimensionless parameter that controls
the mixing is ε = E/|D|, that in the following is assumed to be small. We illustrate the process of
eigenselection taking the case of a S = 3/2 spin, but the discussion could be easily generalized.
The wave functions of the ground state doublet can be written as:{

|C1〉 = cos θ
2 | + 3/2〉 + sin θ

2 | − 1/2〉
|C2〉 = cos θ

2 | − 3/2〉 − sin θ
2 | + 1/2〉 , (82)

where θ ≈
√

3ε + O(ε2). Thus, the mixing angle θ is imposed by the magnetic anisotropy.
Given that Kondo interactions can only connect states that differ in at most one unit of angular
momentum (∆S z = ±1, 0), having ε = 0 makes the scattering rate between states |C1〉 and |C2〉

impossible.
States (82), which hereafter we call classical states and thus the notation |C1〉 and |C2〉, have

a well defined magnetization along the easy axis of the system [17]. However, any other pair of
states linear combination of |C1〉 and |C2〉, such as(

|Ω̂1〉

|Ω̂2〉

)
=

(
cos φ

2 sin φ
2 eiξ

− sin φ
2 e−iξ cos φ

2

) (
|C1〉

|C2〉

)
, (83)

where (φ, ξ) are spherical coordinates in the unit sphere, is an equally valid choice of quantum
states for the doublet. Notice that the angles φ and ξ are a matter of choice, in contrast with the
angle θ, that is given by the Hamiltonian. We now study how the decoherence induced by the
Kondo coupling to a metallic substrate depends on φ. Since the only role of the angle ξ is to
interchange the real and imaginary part of the coherences, in the following we just take ξ = 0.

As noticed in Sec. 2.1.2, the density matrix for a TLS has only 3 independent real quantities
that can be encoded in the vector ~P, see Eq. (8). The BR master equation of a degenerate TLS
can be then written as

∂~P(t)
∂t

= M · ~P(t), (84)
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where the matrix M is a functional of the Redfield coefficients, as shown in the Appendix B.2.
For the matrix M it is convenient to introduce the notation

M =

 −γ/2 Mr,i Mr,p

Mi,r −γ′/2 Mi,p

Mp,r Mp,i −Γ

 , (85)

where p, r and i stand for populations, real and imaginary part of the coherences, respectively.7

Thus, in this notation Γ stands for the transition rate between the eigenstates of HS while γ, γ′

denote decoherence rates. From Eqs. (84) and (85), it is clear that the evolution of the occupa-
tions imbalance and real and imaginary parts of the coherences are fully decoupled from each
other whenever Mk, j = 0. In the case of the dissipative dynamics of the anisotropic S = 3/2 spin
that we are considering here, we obtain the following closed expressions for the entries of (85):

Γ(φ) ≈
9πkBT

4~
(ρJ)2

[
(1 − cos(2φ)) + ε2 (1 + 3 cos(2φ))

]
(86)

γ(φ) ≈
9πkBT

2~
(ρJ)2

[
(1 + cos(2φ)) + ε2 (1 − 3 cos(2φ))

]
(87)

γ′(φ) ≈
9πkBT

~
(ρJ)2

(
1 + ε2

)
(88)

Mp,r = 4Mr,p ≈ −
9πkBT

2~
(ρJ)2

(
1 − 3ε2

)
sin(2φ). (89)

The rest of the Mi j entries are zero for this system. From these equations, we see that the classical
basis (φ = 0) is special on three counts:

1. It minimizes the elastic population scattering (86).
2. It decouples the evolution of coherences and occupations
3. It maximizes the decoherence rate. In other words, the environment is particularly efficient

destroying coherent superpositions established between the states |C1〉 and |C2〉.

For these reasons, the choice of states |C1〉 and |C2〉 as a basis set to study this class of
systems is very convenient. Of course, other choices of basis set are also legitimate, but make
the description of the dynamics more complicated.

4.4. Non-degenerate two level systems

Now we turn our attention to the type-Q systems, for which the spectrum is non-degenerate
and the ground state is a linear combination of two states with opposite magnetic moment. The
representation of the density matrix in the basis of eigenstates of the spin Hamiltonian is thus
unique. Within the BR picture, the coupling to the reservoir will lead to a steady state density
matrix that is diagonal in the eigenstate basis, and thereby it will have build-in coherences when
represented in the C basis, as long as kBT is not much larger than the energy splitting ∆QST.
It naı̈vely looks like, within the BR theory, the coupling to the reservoir is not able to prevent
the coherence, i.e., the linear superposition of two states with opposite magnetization. In the
following we see how this is not really true, even within the BR picture.

7As we are interested in the relaxation and decoherence rates, here we neglect the induced energy shift (imaginary
part of R12,12). This could be incorporated as a renormalized energy difference ∆̃.
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4.4.1. Renormalization of the QST splitting
So far we have considered in some detail how the coupling to the reservoir changes the

dynamical evolution of the reduced density matrix. There is another aspect of this coupling that
plays an important role in the case of type-Q ground state, namely, the renormalization of the
energy differences in the spectrum. This type of effect was first observed in the context of atomic
physics: the coupling of the hydrogen atom to the vacuum photon field results in the so called
Lamb shift, a renormalization of the 1s − 2p transition whose treatment requires to take care of
the singularities and played a major role in the development of quantum field theory.

In the context of magnetic adatoms, the notion of renormalization of the energy levels was
used to explain the correlation between the changes in the transition energy between the S z =

±1/2 ground state doublet and the S z = ±3/2 excited states, on one hand, and the intensity of
the zero bias Kondo peak on the other. It was argued that [52, 76], given that the height of the
Kondo peak depends on ρJ and it was correlated to the inelastic transition energy, this energy
shift had also to depend on ρJ. The perturbative BR theory would naturally account for this
energy shifts. The same theory can also be applied to integer spins with quantum spin tunneling.
For instance, for a spin S = 1 described with Hamiltonian (43) with D < 0 and E , 0, the
splitting is renormalized according to [76]:

∆0,1 = ∆0

(
1 −

3
2

(ρJ)2 ln
(

2W
πkBT

))
(90)

where W is the bandwidth of the itinerant electrons that appears as an ultraviolet cut-off in the
theory [52].

An obvious consequence of Eq. (90) is that there is a critical value of ρJ at which the
splitting vanishes. However, the BR perturbative approach used to get this results may break
down before this critical value, which together with the presence of the logarithmic term calls for
a critical questioning of the validity of the perturbative approach. Non-perturbative numerical
calculations based on the One Crossing approximation for a multi-orbital Anderson model that
includes magnetic anisotropy confirmed the validity of the perturbative calculation both for half-
integer [52] and integer [86]. In the last case, the QST splitting goes to zero as ρJ increases
above a threshold value.

A more elegant nonperturbative description of this phenomenon can be obtained from the
bosonization procedure described in Appendix C. This permits us to map the problem of an
individual quantum spin exchanged coupled to an electron gas into the spin-boson model [17].
The mapping between the two models then leads to the following identity between the coupling
of the TLS and the baths [17]:

α ≡ |〈Q1|S z|Q2〉|
2 (ρJ)2. (91)

Making use of the well known results for the spin boson model, Eq. (47), one can see that the
QST vanishes as α goes beyond one [17]. In the limit of small α, we can expand Eq. (47) in a
Taylor series to yield

∆ = ∆0

(
1 − α ln

~ωc

∆0

)
. (92)

The result (92) basically reproduces the perturbative result (90), with the main difference that
kBT within the Log function has now been replaced by ∆0, the bare zero-field-splitting. The
main and completely general result is that the coupling to the environment reduces the quantum
spin tunneling splitting and, if sufficiently strong, it completely cancels it.
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4.4.2. Perturbative Dynamics of the non-degenerate TLS
In Sec. 4.3.2 we have already studied the dynamics of the reduced density matrix describing

an effective two-level degenerate spin interacting with an electron gas via a Kondo interaction.
Now we tackle this question in the case of a non-degenerate TLS, with an energy splitting ∆ , 0.
In particular, by using the BR theory, we will analyze in detail the situation when the relaxation
rate Γ is comparable to the splitting ∆.

We focus in the case when ∆ arises from quantum spin tunnelling. Without loss of generality,
we assume here that it corresponds to an anisotropic spin described by Hamiltonian (48). The
dissipative dynamics is generated by the Kondo coupling, given by Eq. (63), where τ̂x induces
transitions between the two eigenstates of the TLS. Importantly, in the |C〉 basis Kondo scattering
does not produce scattering. In the limit when ∆ is very small, it is convenient to keep in mind
these two complementary points of view, as we discuss below.

Since we are considering a non-degenerate system, coherences and occupations evolves in a
fully independent way. For the specific decoherence mechanism considered here, the whole DM
dynamics is determined uniquely by two parameters, the splitting ∆ and the relaxation rate Γ.

We first derived the evolution of the occupation. Simple analytical expressions for the dy-
namics of ρ̂(t) can be obtained for this particular case. If the initial occupation imbalance is δρ0,
the population difference δρ = P↑ − P↓ satisfy

δρ(t) = e−tΓ
(
δρ0 +

δΓ

Γ

)
−
δΓ

Γ
, (93)

where δΓ = R22,11 − R11,22. This simple time evolution is depicted in Fig. 4a). As expected, the
steady state occupations is only determined by the ratio between Boltzmann factors,R22,11/R11,22.
Notice that the evolution tends to the one of a degenerate TLS in the classical basis as ∆→ 0.

We now consider the solution of Eq. (84) for the coherences, which can behave in a quite
different way depending on the relation between ∆ and Γ. This gives rise two different regimes:
an underdamped oscillatory regime for ~2Γ2 − 4∆2 < 0 and an overdamped oscillatory regime
for ~2Γ2 − 4∆2 > 0.

Underdamped regime: ~2Γ2 < 4∆2

In this regime the splitting ∆ is the largest energy scale. Coherences C↑↓ are given by

C↑↓(t)
C0

=
e−tΓ/2

ϑ

[
sin

ϑt
2

(Γe−iβ − 2i
∆

~
eiβ) + ϑeiβ cos

ϑt
2

]
, (94)

where we have defined C↑↓(0) = C0eiβ with C0 > 0 and we have introduced the rate ϑ2 =

|Γ2 − 4∆2/~2|. We thus see that the coherence oscillates with an amplitude that decays with a
characteristic time

1
T2

=
Γ

2
=

1
2T1

. (95)

The oscillation period T = 4π/ϑ is different from ~
∆

, a renormalization that also happens in
an underdamped classical harmonic oscillator. This situation is illustrated o Fig. 4b) where, in
addition to the real and imaginary part of C↑↓(t), we plot the envelope |c(t)|.

Overdamped regime: ~2Γ2 > 4∆2 > 0
We now consider the case where Γ is the dominant energy scale. For t � 2/ϑ, we can write

C↑↓(t)
C0

≈ ϑ−1e−t/T2
[
Γe−iβ + eiβ (ϑ − 2∆/~)

]
, (96)
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with
1
T2
≡

(
Γ − ϑ

2

)
(97)

The coherence no longer oscillates and, importantly, the timescale for the decoherence depends
both on Γ and on ∆. In the limit of small ∆, ~Γ � ∆ we can write down

1
T2
≈

∆

~

(
∆

Γ~

)
� Γ. (98)

Therefore, a strong suppression of decoherence rate 1/T2 occurs in this regime, as depicted in
Fig. 4c). This rather counterintuitive results can be better understood if we reinterpret the results
in the classical basis as explained in the next section.

4.4.3. Density matrix in the classical basis for the split TLS
Equations (93-94,96) describe the diagonal (δρ) and off-diagonal (C↑,↓) parts of the density

matrix for the split TLS expressed in the basis of eigenstates (i.e., the basis (83) with φ = π
2 ). We

can write down the same density matrix in the basis set of the classical states:

ρ̂C(t) =

[ 1
2 + Re[C↑,↓(t)]

δρ(t)
2 + iIm[C↑,↓(t)]

δρ(t)
2 − iIm[C↑,↓(t)] 1

2 − Re[C↑,↓(t)]

]
C

, (99)

where the subindex “C” denotes that ρ̂ is written in the classical basis of states |C1,2〉. This equa-
tion shows how population scattering in the Q-basis (φ = π

2 ), which leads to the decay of δρ,
results in a decay of the off-diagonal terms of the DM expressed in the classical basis. Analo-
gously, decoherence in the Q-basis can be interpreted in terms population transfer in the C basis.
This result permits us to re-interpret the Eqs. (93-96) of the dynamics of the split TLS obtained.
For the system considered here, angular momentum conservation prohibits direct Kondo scatter-
ing between the classical states. On the other hand, the coherent evolution of the system permits,
via quantum spin tunneling ∆, connecting the classical states, giving rise to Rabi oscillations in
the diagonal of the density matrix (99). In the overdamped regime these oscillations are sup-
pressed, and result in an incoherent population transfer governed by a exponential decay with T2
given by Eq. (98). This mechanism for population transfer combines thus the coherent quantum
spin tunneling and the dissipative coupling to the environment, and has been proposed by Gauy-
acq and Lorente [96] to explain the switching between Néel states observed for AF chains of Fe
atoms on Cu2N [48]. Following Ref. [96], we refer to this mechanism as the decoherence as-
sisted switching , although perhaps it would be more accurate to refer to it as quantum tunneling
assisted switching.

4.4.4. Non-perturbative derivation of the decoherence assisted switching
We now provide an independent derivation for the decoherence assisted switching mecha-

nism. For that matter, we use again the mapping of the Kondo model for the split TLS to the
spin boson model of Eq. (C.6). Within this model, the time-dependent spin autocorrelation of
the system is given by P(t) = 〈σ̂z(t)〉, where σz = ±1 labels the two classical states. We assume
that at t = 0 the system is prepared in the σz = +1 state. Using the noninteracting-blip approx-
imation [11], one gets P(t) = g(t)e−t/τ where g(t) is an oscillating function (constant) of order
unity for α < 1/2 (α ≥ 1/2), and

τ−1 = (∆2/~2ωc)
√
π

2
Γ̃(α)

Γ̃(α + 1/2)

(
πkBT
~ωc

)2α−1

, (100)
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Figure 4: Time evolution of the density matrix of an effective two level system corresponding to an integer spin. (a)
Occupations difference for Γ1,2 = 0.1Γ and Γ2,1 = 0.9Γ. (b) and (c) Real (blue) and imaginary (red) parts of the
coherence c(t) in the underdamped (∆ = 10~Γ) and overdamped (∆ = 0.1~Γ) regimes respectively. Notice that in panel
(c) the time axis has been scaled by T2 ≈ 100/Γ. In all cases, δρ0 = 1, c(0) = 1/2.

where Γ̃(x) is the Gamma function. Expression (100) is valid whenever α ≥ 1, for which ∆ is
renormalized to zero [see Eq. (47)], or, for α < 1, if

αkBT � ∆

(
∆

~ωc

)α/(1−α)

. (101)

In both cases, Γ � ∆, so that we are in the overdamped limit discussed above. Equation (100)
already shows that the switching time τ is proportional to ∆2. This result is in line with the
perturbative result in Sec. 4.5. In fact, when the coupling constant α goes to zero, we get that
Eq. (100) takes the simple form

τ−1 ≈
∆2

2~παkbT
, (102)

which taking into account that Γ = 2παkbT/~, reproduces the perturbative result (98) to lowest
order in the coupling α.

4.5. Relaxation and decoherence in spin chains and ladders

We now address the problem of spin relaxation and decoherence of finite size spin chains due
to their Kondo coupling to a nearby electron gas. Many of the results obtained in the previous
sections will be useful. An important concept to keep in mind is that decoherence affects quantum
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states, rather than the spins. Whereas in the single spin case this distinction if less important, in
the case of multi-spin chain it does play a key role. For instance, a single scattering event between
two states might flip the spin of all the atoms in the chain. The problem of spin relaxation of a
Heisenberg-coupled spin array due to Kondo exchange is formally connected with the so called
Kondo lattice model, where otherwise independent itinerant fermions are exchanged coupled
to a lattice of quantum spins [167–169]. Even if direct exchange between the local spins is
sometimes not explicitly written down in the the Kondo lattice Hamiltonian, indirect exchange
interactions emerge, which can compete with the Kondo correlations [169]. The Kondo lattice
model is a rich many-body problem, with several different types of electronic order [167]. Here
we treat the Kondo coupling as a perturbation within the BR theory. In addition, the systems of
interest have a rather small number of spins. These two simplifications make the problem easier
than the Kondo lattice model and tractable by means of numerical diagonalization. On the other
hand, in order to model magnetic adatoms we have to include the effect of magnetic anisotropy,
sometimes overlooked in the Kondo lattice model. As we discussed above, spin chains and
ladders do behave very differently depending on the interplay between magnetic anisotropy of
individual spins, exchange interactions, the number N of spins in the system, and the parity of
N, as discussed in Sec. 3.3. This affects both T1 and T2.

We now discuss two different problems. First, we discuss how the spin decoherence times T2
of an Ising spin chain depends on the properties of the spin chain, such as the number of atoms N,
and the atom-atom distance d. Second we discuss the role played by Kondo induced decoherence
in the emergence of classical behavior in spin chains made of atoms that, when isolated, have
finite quantum spin tunneling splitting.

4.5.1. T2 for broken symmetry states in spin chains
In the context of magnetic adatoms, the BR theory has been applied to study the spin re-

laxation T1, and to a lesser extend T2, of a variety of finite size spin chains and ladders due to
Kondo exchange [17, 84, 96, 170]. We discuss here the decoherence time of Ising chains without
spin-flip terms in the Hamiltonian, so that S z is a good quantum number, and the ground state is
doubly degenerate. We consider the case of AF coupling, so that the lowest two states, which we
label as 1 and 2, correspond to the two classical Néel state. Hence, we can write the matrix ele-
ments of the local spins operators as S a

11(l) = −S a
22(l) = S (−1)l. Following our recent work [97],

and using Eq. (67), the relevant form factor from Eq. (68) for a chain of atoms lying along the x
axis is given by:

χad.
1,2(~q) = S 2

∣∣∣∣∣∣∣∑n

(−1)n
(
eiqxna + e−iqxna

)∣∣∣∣∣∣∣
2

. (103)

The resulting pure decoherence rate is given by [97]:

1
T ∗2
≈
π (ρJ)2

8~
kBTΛAFM(kFd,N). (104)

where J = J|S z
1,2|

2 and ΛAFM(kFd,N) is a dimensionless function that represents the average
of the structure factor (103) over the Fermi surface, and it is therefore different for fermions in
D = 1, 2, 3 dimensions. For D > 1 and kFd > 1, i.e., in the limit where the interatomic distance
is larger than the Fermi wavelength, relevant for metals, the function ΛAFM(kFd,N) ' N with
some small oscillations as a function of kFd [97]. Thus, the decoherence rate of an Ising spin
chain with N spins is N times quicker than the single spin, Eq (71).
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The origin of the oscillations of the decoherence time as a function of kFd is interesting
in itself [97]. Within the BR theory, it is apparent that both decoherence and energy shifts in
an open quantum system are two sides of the same coin: the reactive and dissipative response
of the system to the coupling with a reservoir. The reactive coupling results in a shift of the
energy levels. In the case of a spin chain coupled to an electron gas, this shift of the energy
levels is nothing but the RKKY interactions [97], which is known to oscillate as a function of
kFd. Therefore, the oscillations in T2 are expected, being mathematically related to the RKKY
interaction. They can also be understood in terms of phase shifts of the quasiparticles. As we
discussed in Sec. 4.3.3, the pure dephasing rate is proportional to the variation in the quasiparticle
scattering phase shift for the two states of the spin(s). Elastic scattering between waves with
wavenumber kF and a structure with period d is expected to depend in an oscillatory manner on
kFd, on account of multiple scattering interference.

This type of effect depends crucially on the phase factor ei
(
~k−~k′

)
·~rl that appears in the Kondo

Hamiltonian, overlooked by some previous work in the context of magnetic adatoms. It’s omis-
sion is equivalent to ignore the local nature of Kondo coupling,

∑
n
~S n · ~s(~rn) and replace it by

a coupling with the total spin ~s(0) ·
∑

n
~S n. This coupling commutes with the total atomic spin

operator, ~S T ≡
∑

n
~S n, and it is thereby not capable of producing transitions between eigenstates

with different S . As a result, the Kondo interaction without the phase factors can not induce spin
transitions between chain states with different total spin S T .

4.5.2. The quantum to classical transitions in spin chains
In the seminal work of Loth et al. [48], by using spin-polarized STM experiments, it was

shown how chains of N > 6 Fe atoms at T ∼ 1 K deposited on Cu2N would acquire spontaneous
local, forming the Néel state, expected on account of the AF interaction of Fe atoms along the
nitrogen rich direction. This AF character was further confirmed by an accurate exploration of
the Fe dimer [53]. In addition, a time-resolved tracking of the magnetization made it possible
to observe random telegraph noise with two states, revealing switching between the two Néel
states. As noted by Loth and coworkers, the system provided a unique opportunity to study the
transition between the classical behavior, observed for chains, and the quantum behavior of the
single Fe atom in the same surface [17] inferred from the IETS spectroscopy [31].

In this system, both the local magnetic anisotropy [31] as well as the Fe-Fe exchange [53]
are well determined from IETS. This provides an accurate description in terms of the Hamilto-
nian [17]

H =
∑

l

DŜ z(l)2 + E
(
Ŝ x(l)2 − Ŝ y(l)2

)
+ J

∑
l=1,N1

~S (l) · ~S (l + 1). (105)

In the J = 0 limit, this interaction describes an ensemble of independent anisotropic spins.
For S = 2, the case relevant for Fe on Cu2N, the ground state is unique, and the expectation value
of the atomic spin operators, ~M(l) ≡ 〈~S (l)〉 is strictly zero. In the opposite limit of very large J,
we can ignore the anisotropy, and we have again a unique ground state, with S = 0, and null ~M(l)
for all atoms in the chain. In order to reproduce the phenomenology observed experimentally,
with two equally likely Néel states, with finite ~M(l), we would need a doubly degenerate ground
state. Mathematically, this situation appears for instance in the limit E = 0 and |D| � J. For
the values of D, E and J obtained from IETS, we can compute the energy difference ∆0 between
the ground state and first excited state, and we can study their wave functions. Interestingly, we
obtain that ∆0 decreases exponentially as a function of N, as shown in the Fig. 5. Moreover, the
wave functions of the ground and first excited states are bonding and anti-bonding combinations
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of Néel states. Thus, the combination of single-ion anisotropy and exchange interactions shrink
∆0. From the numerical diagonalization with the best fitting parameters we obtain that ∆0(N) ≈
∆Fee−N/0.74 [17], where ∆Fe ≈ 0.15 meV is the zero field splitting of the single Fe.

Thus, the energy scale that protects the quantum behavior of finite size spin chains decreases
exponentially as the number of atoms in the chain increases, but it does not cancel. This can be
seen in the case of the quantum Ising model in a transverse field. Even when the AF interaction
dominates, leading to the doubly degenerate ground state in the thermodynamic limit, for finite
size chains there is a small splitting [17]. However, when the splitting is small enough, we can
argue that the classical behavior for the spin chain takes over, on account of the dissipative Kondo
coupling with the surface electrons. This switching can be better understood in the Néel basis
as we discussed in Sec. 4.4.4. There we showed that the decoherence (of the Néel states) in
this limit is N times faster the one of an individual atom. For instance, T2(N = 8) is in the 100
ps range, whereas the Rabi time ~/∆(8) is well above microseconds. Thus, we are in the limit
~T−1

2 � ∆(N). This accounts for the observed random telegraph noise with switching times
slower than milliseconds [96].

5. Other spin relaxation mechanisms: photons, phonons and nuclear spins

We now consider additional sources of spin relaxation and decoherence affecting spins in-
trinsic to magnetic atoms surfaces. In the previous section we have considered a mechanism
that is characteristic from metals, namely, Kondo interactions. Given that in many instances the
underlying metal and the magnetic atom are separated by an atomically thin insulating material,
we briefly discuss the dominant spin relaxation mechanisms for magnetic atoms in insulating
hosts: spin-phonon coupling and hyperfine interactions with nearby nuclear spins. In addition
to these, there is another mechanism that is known to result in spin decoherence: a conductor
creates a stochastic magnetic field due to the unavoidable thermal fluctuations of the current
around its zero average (Johnson noise). These mechanisms could be particularly relevant when
the Kondo interaction is suppressed, something that might be achieved using superconducting
substrates [51, 54], or decoupling layers with less transparent tunnel barrier, achieved either with
a thicker spacer or a wider band-gap material, such as MgO [55, 59, 107, 115] or h-BN [63].

5.1. Spin-phonon coupling

Spin-phonon interaction Vs−ph is an important source of spin relaxation for paramagnetic
centers in insulating materials where the density of itinerant carriers is negligible, blocking
Kondo exchange. It can be the dominant mechanism when the density of spin centers is small,
so that dipolar coupling is negligible. The spin-phonon (SP) interaction also affects the parame-
ters in the static spin Hamiltonian, giving rise to shifts in the g-value, the fine structure splitting,
and the hyperfine interaction [81]. In addition, phonons may also induce a spin-spin interaction
between ions. Such effects arise even at zero temperature from the zero-point vibrations of the
lattice, and though they increase at finite temperatures, they are often rather small.

Relaxation processes mediated by phonons involve the emission or absorption of a quan-
tum by the spin system, which should be absorbed or emitted by the lattice vibrations. Thus,
a transition between two spin levels will be driven efficiently if the lattice can produce such an
oscillatory electromagnetic field. One possible mechanism is the one proposed by Waller [171]:
the local dipolar magnetic field created by neighboring ions, which depends on the ions dis-
tance, fluctuates due to the lattice vibration. A second process, more relevant in diluted magnetic
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a 

Figure 5: Reprinted with permission from F. Delgado et al., Europhysics Letters 109, 57001 (2015) (a) QST splitting
of the Ising chain vs. g = 2| jH |/∆0 for a N = 20 chain (black line) and the infinite chain (red line). gc = 1 marks
the quantum phase transition. Inset: QST splitting of the S = 2 Heisenberg spin chain together with higher-energy
excitations (orange lines) vs. g for the Fe chains with D = −1.5 meV and E = 0.3 meV (the diamond marks the
experimental condition [48, 53] with g ≈ 27 ). (b) Chain size dependence of ∆ in the QIMTF for g = 0.5 < gc (weak
size dependence), and g = 1, 2 (exponential dependence that leads to a type-C ground state for large N). Inset: size
dependence of ∆ for the experimental parameters, both for the AF [48, 53] and FM chains [56], showing an exponential
dependence.

centers, consists of modulation of the crystal electric field or ligand field through motion of the
electrically charged ions under the action of the lattice vibrations [81], essentially a dynamic
orbit-lattice interaction, which influences the spin levels through the spin-orbit coupling.

Spin relaxation due to one-phonon emission scales with the density of states of phonons at
the spin transition energy ∆:8

1/T1 ∝ ρph(∆) = ∆nB(∆)Σ(∆), (106)

where Σ(∆) is the number of phonon modes per unit volume in a frequency range ∆/~, (∆+dε)/~
and nB(∆) the Bose-occupation factor. For the phonon radiation bath one has, taking into account

8Being a small perturbation, one can apply the Bloch-Redfield approach of Sec. 2.2 to study the relaxation and
decoherence processes induced byVs−ph.
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that there are two transverse polarizations an one longitudinal wave motion:

Σ∆ =
3∆2

~2π2

 2
v3

t
+

1
v3

l

 , (107)

where vt and vl are the transverse and longitudinal wave velocities.
The SP induced relaxation rates involves matrix elements of the crystal and ligand electric

field perturbations. Thus, the specific form ofVs−ph depends in general on the particular phonon
mode and the symmetry of the environment of the magnetic atoms [81]. It always contains an
even power of atomic spin operators, like the zero field single ion Hamiltonian, on account of
time reversal symmetry, and it is linear in the atomic displacement operator. Chudnovsky and
coworkers [172] made a particularly elegant derivation of a universal spin-phonon coupling for
the transverse phonons. As very often the matrix elements also scale with the energy, a T−1

1 ∝

∆3/v5 is commonly found [81, 172], with v the wave velocity. As typically the ratio between
the transversal and longitudinal wave velocities satisfies vt/vl . 0.7 [81], the contribution from
longitudinal modes can be usually neglected. A particularly simple an beautiful result found by
Chudnovsky and coworkers [172] is that the SP relaxation rate at zero applied field is given by

1

T ph
1

=
|Ξ|2

12π~4

∆5

ρmv5
t
, (108)

where ρm is the mass density and Ξ is a dimensionless matrix element of the spin operator.9

The application of the BR theory for spin relaxation of a spin center due to spin-phonon cou-
pling has been implemented by Leuenberger et al. [173], which considered the case of uniaxial
molecular magnet crystals. The same analysis could be applied for individual magnetic atoms
with the single ion Hamiltonian (43). The quadratic spin operators that enters into the general
form (24) can be written in that case as:

Sα ≡ q1(α)S 2
+ + q2(α)S 2

− + q3(α)S +S z + q4(α)S −S z + h.c., (109)

where qi(α) are numerical coefficients that depends on the single ion parameters D and E. By
using a Bloch-Redfield master equation to study the spin dynamics, they obtained an excellent
agreement with experimental data in a Mn12-acetate crystal [173]. Ganzhorn et al. [174] also
study the effects of the SP coupling of a TbPc2 molecular spin with a longitudinal phonon mode
in a carbon nanotube and suggested that it could induce the suppression of quantum tunnelling of
magnetization, similar to the quenching of the QST by Kondo exchange explained in Sec. 4.4.1.

It is particularly interesting to consider the effect of the spin-phonon coupling on the low
energy doublet for the dominant uniaxial term DS 2

z . In that case, given the form (109), one
gets that after the projection in the subspace spanned by |Q1〉 and |Q2〉, Vs−ph = 0, i.e., the
spin phonon coupling can not induce relaxation or decoherence between the low energy states
|Qi〉. Similarly, in the case of a half-integer spins with Hamiltonian (43), the pure decoherence
between the classical states |C1〉 and |C2〉 also cancels. In other words, the spin-phonon coupling
does not provide an efficient pure-decoherence mechanism for these spins. Of course, spin-
phonon coupling can still produce decoherence via inelastic events, but these can be thermally
suppressed.

9Here we have defined the matrix elements Ξ as dimensionless parameters, contrary to Ref. [172]
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5.2. Hyperfine interactions
Hyperfine interactions account for the spin coupling between electronic and nuclear degrees

of freedom. It has two main components: the so called Fermi contact interaction term, that is
only non-zero whenever the electronic spin density is non-vanishing at the nuclear site, i.e., for
electrons with a finite s-wave component. In addition, there is the dipole-dipole coupling, that
can give a contribution for the hyperfine interaction of p, d and f electrons with the nuclear spin
in the same atom.

Spin decoherence due to nuclear spins is known to play a major role in the case of electrons
confined in semiconductor quantum dots [175]. In that case, a single electron visits thousands
of nuclei. For the atomic spins considered here, contact interaction is not particularly relevant
because the magnetic moment lies mostly on d electrons, for which the contact term vanishes,
and also because the local moment is localized in just one atom. Hyperfine interaction with the
same-atom nuclear spin will result in a small splitting of the energy levels, the so called hyperfine
structure. For instance, for the d electrons of 51Mn, one has A ≈ 0.3 − 1 µeV [176], while for
the I = 9/2 nuclear spin of the 209Bi embedded in Si A ≈ 6.1 µeV [111]. These splittings might
be resolved with IETS at extremely low temperature [128] and are definitely within reach with
the spectral resolution achieved with STM-ESR [59]. In the case of Fe, only 57Fe has a nuclear
spin I = 1/2, and a natural abundance of 2 percent. The hyperfine coupling for 57Fe3+ in bulk
MgO [81] is A ≈ 0.1 µeV.

The dipolar coupling of a single electronic spin with an ensemble of surrounding spins could
lead to decoherence. For an electronic spin ~S located at the origin, the dipolar interaction with
the nuclear spins ~Ii, located at ~ri, takes the form reads:

Hdip = −
gIµNgsµB

4π

∑
i

1
r3

i

(
3
(
~S · r̂i

) (
~Ii · r̂i

)
− ~S · ~Ii

)
. (110)

If we treat the nuclear spins as classical moments, we could write down the dipolar coupling
Hamiltonian for the electronic spin asHdip = gµB

∑
a S aHa, where Ha would be the a component

of the nuclear spin field. If we assume this field takes random values, associated to the statistical
thermal fluctuations of the nuclear spins, it is possible to estimate the electronic spin decoherence
time, using Eq. (20). The magnetic field created by a proton at 3Å is 40 µT. Thus, we can
estimate a lower limit for gµB

~ ' 6 kHz. If we assume that the inverse nuclear spin correlation
time τ0 is also in that range, this will give decoherence times in the milliseconds time scale. Of
course, this is a very rough estimate of the order of magnitude.

5.3. Spin relaxation and decoherence due to Johnson noise
We have just seen that nuclear spins, as sources of random magnetic fields, can induce deco-

herence of remote spins. Conductors are known to be sources of random magnetic fields, so that
is not surprising that they have been identified as possible sources of relaxation and decoherence
for cold atom spins [177], electronic spin qubits [178], spins in quantum dots [179], Phosphorus
donors in Si [91], and for S = 1 NV centers on surfaces [180].

The random magnetic fields close to a conductor are created by the thermally induced statis-
tical fluctuations of the current, the so called Johnson noise [181, 182]. In a quantum language,
the electronic currents in the conductor emit photons that interact with the remote spins. Mod-
ulations of the transverse (longitudinal) component of the magnetic field result in relaxation
(decoherence), as inferred from the general equations (19) and (20). The spin relaxation and de-
coherence rates are thus directly proportional to the amplitude of the transverse and longitudinal
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components of the magnetic noise, at the spin-transition frequency ∆/~ in the case of T1, and at
zero frequency for T2. When the motion of the electrons in the conductor is diffusive (kBT � ∆),
and when the conductor is relatively far from the spin, so that the far field approximation is
valid,10 an expression for the magnetic noise spectral density S z

B can be easily computed [180]:

S z
B =

(
µ0

4π

)2 kBTσe

d
, (111)

where σe is the electric conductivity. Applying Fermi’s golden rule one can arrive to a rather
simple analytical result for the T1 relaxation due to Johnson magnetic noise [179, 180]:

1
T1

=
3g2µ2

B

2~
S z

B. (112)

A controlled experiment with a wedge shape conductor has been carried out, where the T1
of NV centers could be measured as a function of their distance to the conductor, finding spin
relaxation rates in the range of 1/T1 ' 1/3 ms−1 for d = 50 nm, results in good agreement
with this theory . A naive scaling of this result to distances of d ≈ 0.5 nm, would lead to
T1 ∼ 3 µs at the same temperature. However, at that point the far field expression no longer
applies and a more sophisticated treatment of the evanescent components of the field becomes
necessary [177, 179]. Qualitatively, the correlation time of the magnetic noise in this regime
is determined by the ballistic time of flight of electrons through the relevant interaction region,
resulting in a saturation of the noise spectral density (and the spin relaxation rate) as either the
NV approaches the surface or the mean free path becomes longer at lower temperatures, with its
limiting value given by [180]:

S z
B =

2µ2
0kBT
π

ne2

mevF
(113)

where me is the electron effective mass and vF is their Fermi velocity. Again, good agreement
with the experiments was found in this limit when NV centers are at d ≈ 4 nm, with T1 in the
range of 0.5 ms at T = 27 Kelvin. Whereas a more detailed analysis is probably necessary
to assess how this mechanism affects magnetic adatoms, perhaps including the quantum effects
in the Johnson noise, these experimental results provide a good starting point for the order of
magnitude. In addition, the shot noise associated to current flow across the STM-surface junction
will also contribute to the magnetic noise mechanism.

6. Experimental methods

In this section we briefly overview the different methods that are used to probe atomic spins
on surfaces with STM, with emphasis in spin dynamics.

6.1. Single spin Inelastic Electron Tunnelling Spectroscopy
The technique of inelastic electron tunnelling spectroscopy was first applied in tunnel junc-

tions back in the sixties [83, 183]. Three decades later it was implemented with an STM, first

10This condition holds when the skin depth of the metal δe is much larger than the distance d between the metal and
the magnetic impurity. For instance, for the Ag surface used in Ref. [180], this corresponds to d � 1 µm, an easily
achievable condition.
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for single molecule vibrational excitations [184], and a few years later, for the spin excitations
of individual magnetic atoms [29–31]. In all cases the working principle is the following: when
the excess bias voltage energy, eV , of a transport electron is larger than the transition energy ∆

of some other localized degree of freedom in the barrier, an inelastic transport channel opens in
which the electron tunnelling is accompanied by the inelastic excitation of the local degree of
freedom. The experimental fingerprint is a step ∆G in the dI/dV at the bias voltages V = ±∆/e.
Quite frequently, the second derivative d2I/dV2 is plotted, which offers an increased contrast.
The inelastic transitions are then identified as characteristic peaks (dips) at eV = ∆ (eV = −∆).

A shift of the excitation energies as a function of an applied magnetic field provides a clear
fingerprint of the magnetic nature of a given excitation [29–31]. Interestingly, in many of these
magnetic excitations, the magnitude of ∆G is of the same order of magnitude than the zero bias
conductance. This can be accounted for by the fact that both elastic and spin-flip inelastic events
occur via cotunelling [101]. By contrast, the vibrational steps are frequently quite small, spe-
cially for large molecules. Very often the evolution of the dI/dV spectra for various magnetic
fields permits one to infer the effective spin Hamiltonian of a given structure [30, 31, 42] provid-
ing a starting point for subsequent modelling.

The spectral resolution provided by this method is limited by the unavoidable thermal smear-
ing of the Fermi distributions of the quasiparticles in the electrodes, given by 5.4kBT [83, 183].
In addition, the amplitude of the lock-in potential provides an additional broadening, although is
normally smaller than the thermal smearing.

In a first seminal experimental work by S. Hirjibehedin et al. [31], it was shown that height
of the inelastic step in the dI/dV was proportional to

∑
a=x,y,z |〈i|S a| f 〉|2, where i and f are the

initial and final states of the spin Hamiltonian. This proportionality establishes a spin selection
rule ∆S z = 0,±1. Later it was demonstrated that this spin selection rule is a consequence of the
Kondo exchange interaction that dominates the inelastic scattering [80].

In the case of structures with several magnetic atoms, the dI/dV spectra at different atoms
have the steps at the same bias voltage, reflecting the collective nature of the spin excitations, but
the height of the steps ∆G at atom n is expected to be proportional to

∑
a=x,y,z |〈i|S a(n)| f 〉|2 [80],

which can be strongly spatially modulated [56]. This provides a tool to image the spin excitations
in these structures, that has been used to image the spin waves in ferromagnetically coupled Fe
spin chains [56], and in Cobalt spin chains on Cu2N [61]. Dramatic variations of the intensity of
the Kondo peak have also been reported in Mn-FeN spin chains [62].

6.2. Spin polarized STM
The technique of spin polarized STM (SP-STM), pioneered by R. Wiesendanger [26, 36],

was the first spin-sensitive STM based probe. A spin-polarized tip and a magnetic surface form
an atomic-scale magnetic tunnel junction. When the relative orientation of the magnetic moments
of tip and sample can be controlled independently, by application of an external magnetic field
in most instances, the conductance of the system can present changes, providing thereby a spin-
dependent signal. The technique has been used to explore a variety of surfaces with different
types of magnetic order [36] and, more relevant to this review, the magnetization of individual
magnetic atoms deposited on non-magnetic surfaces [32, 45, 47, 50, 79, 185, 186].

The early approach to achieve spin polarizaton in SP-STM was the use of tips of magnetic
materials. More recently, the use of non-magnetic tips with just a few magnetic atoms in the apex
of the tip, picked from the surface, has been demonstrated as a viable alternative [41, 43, 48, 56,
59] to obtain magnetic contrast, although this approach requires the application of a magnetic
field to freeze paramagnetic fluctuations of the small magnetic cluster in the tip.
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6.3. Methods to determine T1

Several different techniques have been applied to measure, or to infer, the spin relaxation
time of individual magnetic atoms using a STM. In the case when the intrinsic broadening ~T−1

1
associated to the finite spin lifetime is larger than the thermal splitting, it can be extracted from
the full width at half maximum of the d2I/dV2 spectra. Using this approach, the lifetime of
Fe atoms on Cu(111) was measured to be T1 ≈ ~/(2∆E) ≈ 200 fs at 0.3 K [45]. In addition,
Khajetoorians et al., observed a linear scaling of the spin relaxation rate 1/T1 with the excitation
energy, tuned with the magnetic field, in agreement with Eq. (70).

A second way to infer T1 from the IETS spectra is based on the experimental results by
Loth and coworkers [41], that observed how some inelastic steps appear when the current was
increased by reducing the tip-surface distance. The connection with T1 is the following: when
the pace at which the current excites the spin, given by Iinelastic/e, is faster than the pace at
which the atomic spin relaxes, T−1

1 , a non-equilibrium occupation of the excited atomic spin
state |X1〉 builds. This makes it possible to observe new inelastic steps corresponding to transi-
tions from |X1〉 to higher energy excited states |X2〉. The inelastic current can be then estimated
as Iinelastic/e ' ∆GV , where ∆G is the height of the inelastic step associated to the primary inelas-
tic transition, from ground state to |X1〉. This method works better when the excitation energy
E|X2〉 − E|X1〉 is larger than the primary excitation E|X1〉 − E|G〉. In the case of a Mn dimer on a
Cu2N/Cu(100) surface, T1 can be estimated around 30 and 5 ps for the first and second excited
states [41].

The pioneering implementation, in 2010, of electrical pump and probe measurements [43]
with a spin polarized STM provided a direct measurement of T1 for an individual magnetic entity,
a dimer of Fe and Cu on top of Cu2N. The working principle is the following: an electrical bias
pulse capable of driving the atomic spin out of equilibrium is applied on the tip-surface junction.
A second smaller probe is send, after a time lapse τ, and the conductance is measured. As long as
τ < T1, the atomic spin is still excited, and the magnetoresistive component of the conductance is
different from the one prior to the pump pulse. This permitted a direct access to spin-transitions
occurring on a time scale of a few tens of ns [43]. This technique has been applied for instance to
study the relaxation time of a single Fe and Co atom on MgO/Ag(100) [55, 59]. or small arrays
of magnetic adatoms on Cu2N [48, 56, 69].

Yet another method to determine T1 is possible for magnetic structures with two magnetic
states that are stable enough to resolve their random telegraph noise using a spin polarized tip [36,
48, 56]. This requires that the switching time is slower than the time it takes to record the
conductance, typically 1 ms. This is the case of long Fe spin chains on Cu2N, coupled either
AF [48] or ferromagnetically [56]. The histogram of the switching times τs can be fit to an
exponential function that allows one to fit the switching rate, T−1

1 . In the case of Fe chains
on Cu2N, the switching rates of antiferromagnetic chains decreases dramatically for smaller
chains, making it impossible to resolve the switching dynamics of individual Fe atoms with
conventional measurements. Remarkably, the spin dynamics of individual Ho atoms on MgO
has been recently probed using this method [107], thanks to the extremely long switching time
of Ho on this surface. Independent XMCD experiments for Ho adatoms on MgO demonstrate
the appearance of magnetic remanence for a single atom up to 30 Kelvin, with relaxation times
exceeding 1500 seconds at 10 K [115]. A similar claim had been done for Ho on top of Pt [116].
However, later XMCD measurements revealed no evidence of magnetic stability and a different
ground state [117], while more recent SP-STM and IETS-STM measurements have not found
any evidence of magnetic moment of Ho on Pt(111) [68].
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Figure 6: Spin relaxation times of an Fe-Cu dimer on a Cu2N/Cu(100) substrate measured by pump-probe scanning
tunnelling microscopy. From S. Loth et al., Science 329, 1628 (2010). Reprinted with permission from AAAS. (A)
Pump-probe measurements for different magnetic fields on an Fe-Cu dimer. (B) T1 as a function of magnetic field for
the two Fe-Cu dimers shown in the accompanying 5-nm by 5-nm STM topographs.

6.4. Determination of T2 via EPR-STM
The implementation of electron paramagnetic resonance of an individual magnetic atom us-

ing an STM [59] has been one of the most recent dramatic developments in the field of scanning
probes. In a conventional EPR experiment, a static field B0 splits the spin levels of the target
atoms, and the microwave ac magnetic field drives spin transitions. When the applied field B0
is tuned to set a spin transition in resonance with the driving field frequency ω0, the absorption
is maximal. In c.w. experiments, the absorption of microwaves is probed as a function of B0,
resulting in spectra with narrow resonance lines that provide valuable information about the lo-
cal spins. Fitting this curve with the steady state solution of Bloch equation permits one to infer
T2 [81]. EPR is extensively used in a variety of fields, including biology, chemistry or physics.
The spectral resolution of EPR is limited by both instrumentation and by the intrinsic line width
of the target spins. Spectral resolutions in the range of a few MHz permit probing the hyperfine
structure [187, 188], vastly superior to the spectral resolution of STM. The down side of conven-
tional EPR is spatial resolution, or sensitivity: state-of-the-art EPR setups handle volumes larger
than 1 µm3, and the minimal number of spins that can be detected is in the range of 107 [189].

In order to carry out a single spin resonance experiment with an STM it is necessary both to
drive the spins with an ac signal and to be able to probe their response. These are two challenging
requirements for a charge sensitive instrument. In order to drive the spin, Baumann et al. applied
an ac. voltage in the 20-30 GHz range superimposed to the dc bias with an STM. They applied
this signal on top of an individual Fe atom on a MgO(100) layer grown on top of Ag [59]. The
coupling to the spin is believed to occur [59, 190, 191] via a combination of several effects: the
tip electric field slightly distorts the position of the Fe atom, that in turn changes the crystal field
of the atom; in combination with the spin-orbit coupling, transitions are induced between the two
lowest energy states of the system.

The detection relies on the spin sensitivity of the tip that hosts one magnetic atom whose
orientation is fixed by the large external magnetic field. For a fixed value of the dc bias, the
current of the STM-tip-surface junction is scanned as a function of the RF frequency f , giving
a I( f ) curve. A very narrow peak, with a full width at half maximum δ f ' 21 MHz, was found
when f is in resonance with the lowest energy excitation f0 = ∆/h. Application of a small off-
plane magnetic field tunes f0, resulting in a shift of the peak. Importantly, as the frequency of
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the RF is changed, Baumann et al. [59] varied the power of the external RF source in order to
maintain a constant RF amplitude VRF at the STM tunnel junction.

Spin contrast is verified by pump-probe experiments that are used to determine T1, in the
range of 100 µs, much longer than the 0.2 ps of Fe on Cu(100) [45], and also Mn dimers on
Cu2N (5-30 ps). This highlights how the decoupling layer can increase dramatically the spin
relaxation time.

The determination of T2, together with the driving Rabi frequency Ω, is done through fitting
of the I( f ) curves for various amplitudes VRF to the steady state solution of the Bloch equation
for a driven two level system [Eq. (39)]. Values of T2 ' 210 ± 50 ns were found, and Ω '

2.6±0.3rad/µs [59]. The energy resolution of this experiment is 10 nanovolts, outperforming by
3-4 orders of magnitude the one obtained with IETS. This setup can be used as magnetometer,
as we discuss in the next subsection, thanks to its remarkable sensitivity to tiny variations of
magnetic field.

6.5. Quantum technologies: quantum sensors with magnetic adatoms
The combination of all these single spin probing and manipulation techniques is opening now

the possibility to devise various sensing strategies. In the case of the STM-EPR experiment, the
resonance curve of the Fe atom can be used as a probe for the magnetic moment of atoms nearby.
Taking advantage of the atomic manipulation capabilities of STM, it is possible to change the
distance between the detection Fe atom under the tip, and the atoms nearby. When both the probe
and target atoms are Fe on MgO, the shift in the resonance of the probe atom is expected to be
given by µ0m2

Fe/(4πd3), where mFe is the magnetic moment of the Fe atom and d is their distance,
that can be determined with pm resolution [67]. This permits an absolute measurement of the
magnetic moment of Fe on this surface. Once the probe magnetic moment is calibrated, it can be
used to measure the magnetic moments of different atoms and structures. This has been used to
probe the magnetic moment of Ho atoms on MgO [107]. In this case, the spectral resolution is
limited by the intrinsic T2 of Fe on MgO.

A second example is the magnetometer designed by Yan and coworkers [69], a nanoengi-
neered Fe spin chain on Cu2N that acts as a probe, using the linear scaling between the spin
relaxation rate T−1

1 and its transition energy ∆. The magnetic field created by a second nano-
engineered structure, at a approximately 3 nm, results in a modification of the transition energy
of the probe δ∆, that in turn, modifies the T1 time of the probe, measured with the pump-probe
technique. This setup can be used to detect the random telegraph switching of the source nanos-
tructure, provided it is much longer than the T1 of the probe structure. The working principle of
this setup benefits from a rapid spin relaxation of the probe.

7. Outlook and conclusions

A conclusion of this review is that the exploration of the spin coherence of surface spins by
means of STM is just starting but has a promising future ahead. The development of the field will
depend crucially on the capability to increase the relaxation and coherence times of the surface
spins. Given that Kondo interactions are the dominant source of spin relaxation, this translates
into a reduction of ρJ, the product of the density of electronic states at the Fermi level and the
Kondo exchange constant. The reduction of J can be achieved using thicker decoupling layers
with a wider gap. MgO and BN seem very promising materials in this regard.

Another route to reduce the effect of Kondo interactions is to use superconducting substrates,
for which the density of states at the Fermi energy vanishes. In fact, it has been shown that the
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spin dynamics of individual magnetic adatoms slows down on superconducting substrates [51].
The modification of the the nuclear spin relaxation follows a non-monotonic curve, well under-
stood within BCS theory. Future theory work should address this problem in the limit when the
spin excitation energy is larger than the superconducting gap, in contrast with the nuclear spin
case, as well as the theory for T2 due to the coupling with the superconductor.

The use of graphene as a conducting substrate might be helpful to reduce ρ and increase T1
thereby [192], on account of the vanishing density of states at the Dirac points, together with the
small density of nuclear spins. In addition, graphene has is own very interesting spinful point
defects, such as chemisorbed hydrogen [193] and zigzag edges [194].

In addition to the reduction of ρJ, there are other more subtle ways to reduce the effect of
Kondo exchange. The spin relaxation rate of the Kondo exchange is controlled by the symmetry
of the atomic spin wave functions, that in turn depends on the symmetry of the substrate. A
proper choice of the adsorbate magnetic moment, the adsorption site and the surface can provide
an almost full quench of the Kondo induced relaxation [115, 116, 195]. Multi-spin structures
have been predicted to provide additional opportunities to tune the spin relaxation [130].

Finding other magnetic atoms and surfaces that permit STM-EPR experiments, beyond Fe on
MgO, will be be another milestone for the development of this field. From the theory side it will
be important to understand in detail the mechanisms that make it possible to couple ac electric
fields to the spin of the surface atoms [196, 197]. Another challenge for theory is to have a
realistic description of the system on two counts. First, to have a proper quantum spin model for
a given system, inferred from experiments or derived from first principles [139], or a combination
of both [77]. Second, addressing the problem of the dissipative coupling of the surface spins to
their environment. This problem can become particularly challenging in the case of strong Kondo
coupling that lead to the Kondo effect. On the other hand, in that limit we expect a very strong
decoherence, and from this perspective, it is a less interesting limit. Finally, a theory for the STM
current as a full functional of the atomic spin density matrix across, including coherences, might
be necessary to describe transport in the presence of the RF field.

The roadmap for the experimental development of the field of coherent manipulation of sur-
face spins with STM will be inspired by the accomplishments with NV centers and P donors in
silicon. For that matter, it would be convenient to extend the pump-probe techniques [43] to the
coherent domain, to be able to perform coherent control experiments with pulsed RF perturba-
tions. Time will tell how far can we make it in the development of quantum computers based
on atomic surface spins or if the remarkable feats afforded by the exquisite quantum control of
individual spins can be combined with the amazing potential of STM to engineer spin structures.
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A. Bloch-Redfield tensor Rmm′,nn′

In this Appendix we provide the general expressions for the population scattering ratesRnn,mm

(n , m), decoherence rates Re
[
Rnn′,mm′

]
(n , n′ and m , m′), and energy shifts Im

[
Rnn′,mm′

]
. For

that matter, it is particularly convenient to introduce the reservoir correlation function gαβ(t) =

〈Rα(t)Rβ(0)〉 |eq, which can be recast as

gαβ(t) ≡
∑

r

Pr

∑
r′

Rrr′
α Rr′r

β ei(εr−εr′ )t/~, (A.1)

where Rrr′
α = 〈r|Rα|r′〉. Here we introduced the reservoir eigenvectors |r〉 associated to the eigen-

values εr, together with the thermal occupations Pr. The different transition amplitudes and
energy shifts appearing in the Bloch-Redfield tensor can be written in terms of the Fourier trans-
form

gαβ(ω) =

∫ ∞

0
dt e−iωtgαβ(t) (A.2)

Thus, using Eq. (A.1) together with the Sokhotsky’s formula, one can write

gα,β(ω) =
∑

r

Pr

∑
r′

Rrr′
α Rr′r

β

(
πδ (ω − ωrr′ ) − iP

1
ω − ωrr′

)
, (A.3)

where P stands for the Cauchy principal part.

A.1. Population scattering 1/T1 ≡ Γn,m

For n , m, one gets after the substitution in Eqs. (26-27) that the scattering rate Γn,m = Rmm,nn

can be written in the form

Γnm =
2π
~2

∑
α,β

∑
r

Pr

∑
r′

Rrr′
α Rr′r

β S nm
α S mn

β δ (ωmn − ωrr′ ) ,

(A.4)

or, in terms of the correlation function gαβ(ωnm),

Γnm =
2
~2

∑
α,β

Re
[
gαβ(ωnm)

]
S nm
α S mn

β . (A.5)

Notice that this tensor elements are real and positive, as corresponds to transition rates between
the eigenstates of the isolated systemHS. They reproduce the result of the Fermi Golden Rule.

A.2. Decoherence rates 1/T2

The evolution of the coherences ρnm are dominated by the BR tensor componentsRnm,nm. This
situation may change when there are other coherences ρn′m′ with degenerate Bohr frequencies,
i.e., |ωn′m′ − ωnm| � 1/δt, in which case one can use the general expressions of Rnm,n′m′ . For
the components Rnm,nm, one can generally write Rnm,nm = −γnm − iδ∆nm, with γnm (δ∆) the real
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(imaginary parts). We can split the decoherence rate γnm into a non-adiabatic component γnonad.
nm ,

which involves scattering between different quantum system states, and a adiabatic one, where
the system does not actually changes its state. For the non-adiabatic one gets

γnonad.
nm =

1
2

∑
n′,n

Γn,n′ +
∑
n′,m

Γm,n′

 . (A.6)

The genuine decoherence mechanism, responsible of the pure decoherence, is given by the adia-
batic component

γad
nm =

π

~2

∑
r

Pr

∑
r′

∣∣∣∣∣∣∣∑α Rrr′
α

(
S nn
α − S mm

β

)∣∣∣∣∣∣∣
2

δ(ωrr′ ), (A.7)

which after introducing the correlator gαβ(ω) can be written in the form (33).
Similarly, one can also evaluate the decoherence rate due to the coupling with other co-

herences. Using the general expressions (26) and (27), one gets for n , n′ and m , m′ the
decoherence rates

Re
[
Rnm,n′m′

]
=

∑
αβ

2
~2 Re

[
S m′m
α S nn′

β

(
gαβ(ωnn′ ) + g∗αβ(ωmm′ )

)]
. (A.8)

A.3. Energy shifts

The imaginary part of the BRF tensor leads to a modification of the bare Hamiltonian which
can be accounted for as a new renormalized Hamiltonian. The energy shifts δ∆nm ≡ δωn − δωm

associated to Rnm,nm can be written in a similar way to the decoherence rates. Then, the general
expression is given by

δωm =
1
~2

∑
α,β

∑
n′

Im
[
gα,β(ωn′m)

]
S mn′
α S n′m

β . (A.9)

In addition to this energy shifts induced by the rates Rnm,nm, there can be additional terms coming
from coupling with other coherences. By writing the Liouville operator as

L(ρ̂) = −
i
~

[
Heff , ρ̂

]
+ RRe(ρ̂), (A.10)

where RRe stands for the real part of the BR tensor, one can arrive to the following result [118]:

〈n|Heff |m〉 = Enδnm +
∑
αβ

∑
n′

Im
[
gαβ(ωn,n′ )

]
S nn′
α S n′m

β . (A.11)

Importantly, this effective Hamiltonian satisfies
[
HS ,Heff

]
= 0 [118].

B. Bloch-Redfield tensor for the Kondo coupling

In this appendix we give explicit expressions for the Bloch-Redfield tensor in terms of the
bath correlators.
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In the case of the Kondo coupling with the conduction electrons of an electronic bath, which
could be the metallic substrate or an STM tip in the case of magnetic adatoms, the bath operators
Rα takes the form

Rα ≡
∑
σ,σ′

∑
~k,~k′

ei(~k−~k′)·~rl
τa
σ,σ′

2
c†
~kσ

c~k′σ′ , (B.1)

where α ≡ (l, a), with a = x, y, z and l labelling the atoms while S α ≡ J(l)S a(l).11

Considering fermionic bath states resulting from the creation of a single electron-hole pair,
one can obtain after some algebra that

gα,β(ω) ≡
δa,b

2

∑
~k~k′

f (ε~k)
(
1 − f (ε~k′ )

)
ei

(
~k−~k′

)
.·(~rl−~rl′ )eiω~k~k′ t (B.2)

where β ≡ (l′, b) and f (x) is the Fermi-Dirac occupation distribution. Here we have assumed for
simplicity that the only reservoir quantum number are the spin σ and the wavevector ~k. Notice
that the assumption of null expectation value of the interaction is equivalent in this case to assume
a spin-unpolarized electronic reservoir. Then, assuming a constant density of states ρ at the Fermi
level and using Eqs. (B.1-B.2), which leads to a analytical expression of the energy integrals,
together with Eqs. (26-27), the real part of the BRF tensor can be then written as

Rnn′,mm′ =
π

~
ρ2

[
− δn′,m′

∑
n′′

Λn,n′′,n′′,mG (∆mn′′ )

+Λn,m,m′,n′G (∆mn) − δn,m

∑
n′′

Λm′,n′′,n′′,n′G (−∆n′′m′ )

+Λn,m,m′,n′G (−∆n′m′ )
]
, (B.3)

with G(∆) = ∆/(1 − e−β∆) and β = 1/kbT . The spin-dependent matrix elements are defined as

Λnn′,mm′ =
1
4

∑
l,l′;a

J(l)J(l′)λll′ (kF)S a
nn′ (l)S

a
mm′ (l

′) (B.4)

where S a
nm(l) ≡ 〈En|S a

l |Em〉. In addition, we have introduced the factors λll′ (kF) that depends
on the geometrical distribution of the spins together with the dimensionality of the electron gas
and Fermi wavenumber. Assuming that in the small neighborhood of the Fermi level, where the
product of the Fermi functions in Eq. (B.2) are non-zero, we can approximate |~k| ≈ kF , we have
that

λl,l′ (kF) =
1

Ω2

∫
dk̂dk̂′ exp

[
±ikF

(
k̂ − k̂′

)
·
(
~rl − ~rl′

)]
, (B.5)

with k̂ = ~k/|~k| and Ω =
∫

dk̂. The phase integral λl,l′ (kF) is a function of the Fermi wavenumber
kF and the dimensionality of the electron gas. For a linear chain of equidistant spins one can find
explicit analytical expressions of λll′ (kF) [130].

11When the system is coupled to more than one electronic bath at different chemical potentials, as it would be the case
for adatoms subjected to a tunnel current as when studied by STM, the indexes α, β should also include an electrode index
that must be summed up inV. This will give place to intra-electrodes and also inter-electrode scattering events [84].
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B.1. Bloch-Redfield tensor of a pseudo-spin 1/2
In this section we provide the explicit expressions for all the Bloch-Redfield tensor elements

Rnn′,mm′ in the case of a 2-level spin system. For convenience, we define ∆ = E2 − E1 ≥ 0. From
the hermiticity of the density matrix operator ρ̂ one has that R∗nn′,mm′ = Rn′n,m′m. Using Eq. (B.3),
we get the pure population rates

R22,11 = −R11,11 =
πρ2

~
Λ1,2,2,1G(−∆),

R11,22 = −R22,22 =
πρ2

~
Λ1,2,2,1G(∆),

(B.6)

and the scattering rates between populations and coherences

R11,21 = R∗11,12 =
πρ2

~
[
− Λ1,2,2,2G[0] − Λ1,1,1,2G[∆]

+Λ1,2,1,1(G[0] + G[∆])
]
,

R22,21 = R∗22,12 =
πρ2

~
[
− Λ2,1,11G[0]

−Λ2,2,12G[−∆] + Λ2,1,2,2(G[0] + G[−∆])
]
,

R12,11 = R∗21,11 =
πρ2

~
[
Λ1,1,1,2 − Λ1,2,2,2

]
G[−∆]

R12,22 = R∗21,22 =
πρ2

~
[
− Λ1,1,1,2 + Λ1,2,2,2

]
G[∆].

(B.7)

In addition, there are two different transition rates between the coherences

R12,12 = R∗21,21 = −
πρ2

~
Λ1,2,2,1 (G[−∆] + G[∆])

R12,21 = R∗21,12 =
πρ2

~
Λ1,2,1,2 (G[−∆] + G[∆]) . (B.8)

B.2. Relation between the M-matrix and the Bloch-Redfield tensor

When the time evolution of the linearly independent components of the density matrix of a
degenerate 2-level system, encoded in the vector ~P of Eq. (84), are written in terms of the BR
tensor components Rnm,n′m′ , the different matrix elements in Eq. (85) are given by

Γ = R11,22 + R22,11,
γ = −2Re

[
R12,12 + R21,12

]
,

γ′ = −2Im
[
R12,12 + R21,21

]
,

Mp,r = −2Re
[
R11,12 − R22,12

]
,

Mp,i = 2Im
[
R11,12 − R22,12

]
,

Mr,p = −Re
[
R12,11 − R12,22

]
/2,

Mr,i = −Im
[
R12,12 − R12,21

]
,

Mi,p = −Im
[
R12,11 − R12,22

]
/2,

Mi,r = Im
[
R12,11 + R12,21

]
/2. (B.9)
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C. Bosonic representation of the excitations of the Fermi gas and the spin-boson model

The mapping to the spin-boson model makes use of the so called bosonization technique [198]
that permits mapping the excitations of a one dimensional interacting Fermi system into a theory
of bosons that, in some instances, reduces to a free boson theory. For 2D and 3D baths, it is still
possible to use the bosonization technique when it comes to describe non-interacting fermions
coupled to a local impurity with rotational symmetry, such as the single impurity Kondo Hamilto-
nian. Thus, one can use the partial the wave decomposition of the scattering states and keep only
the s-wave states, which basically leads to a set of decoupled one dimensional channels [162].
Notice that, in general, the rotation invariance condition is not satisfied by the spin-phonon cou-
pling.

Introducing the linear dispersion εk = ~vF |k|, valid in a small region around the Fermi energy,
the free electron Hamiltonian can be rewritten as

h0 = ~vF

∑
kσ

|k|c†k,σckσ. (C.1)

Next, we define the following bosonic operators

bk =

(
π

kL

)1/2 ∑
qσ

σc†q−k,σcqσ, (C.2)

where L is the length of a normalization box such that the wave vectors are quantized as kn =

2πn/L and the limit L → ∞ is finally taken. Hence, b†k basically creates a spin-flip electron hole
pair. Then,HR can be written as

h0 = ~vF

∑
k≤kc

|k|b†kbk, (C.3)

where kc is a momentum cut-off of the order of the bandwidth introduced to remove wavevectors
beyond the scale of the Fermi wavenumber kF .

The bosonization technique is particularly suitable for the Ising coupling. In fact, when the
Kondo exchange coupling projected into the low energy doublet takes the form

VK ≈ jzτ̂zsz(0), (C.4)

the bosonized version of the Kondo Hamiltonian involves only the spin density operator [11]. As
explained in Sec. 3.2, this is the case of the quantum type of nanomagnets, such as integer spins
described by Hamiltonian (43). The Ising part of the fermion spin density can be then written
down in terms of the bosonic operators as:

sz(0) =
∑

0<k<kc

(
k
πL

)1/2

(b†k + bk). (C.5)

In the following we introduce two important quantities, the density of conduction electrons
states at the Fermi energy, given by ρ = (2π~vF)−1 and the dimensionless coupling constant
α = (ρ jz)2. Using Eqs. (C.3) and (C.5), we can can write the Hamiltonian of the truncated
TLS interacting with the electrons gas in the bosonized form. This can be easily done in the two
limiting cases in which the Kondo interaction is reduced to the Ising form. First, for the integer
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spin, described by the coupling Hamiltonian (63) in the basis (51). By making a π/2 rotation
around the y axis, we can write the resulting Hamiltonian in the bosonized form as

HSBQ = h0 −
∆

2
τ̂x + τ̂z

√
α

∑
0≤k≤kc

gk

(
b†k + bk

)
, (C.6)

with gk = ~v f (πk/L)1/2. This corresponds to the spin-boson model for an Ohmic spectral den-
sity [11], a model introduced to study the dissipative dynamics of a TLS. Although exact an-
alytical results are not available, it admits nonperturbative solutions for some phase space pa-
rameters [11]. Furthermore, these approximate solutions are in good agreement with numerical
analysis based on numerical renormalization group [199].

The second case of interest corresponds to half-integer anisotropic spin with uniaxial anisotropy,
described by Hamiltonian (62) in the basis of classical states (50) for E = 0:

HSBC = h0 + τ̂z
√
α

∑
0≤k≤kc

gk(b†k + bk). (C.7)

The spin-boson model is mathematically equivalent to a set of displaced harmonic oscillators [11].
The sign of the displacement is provided by τ̂z, which in the case of half-integer spins is the ori-
entation of the magnetic moment along the easy axis.

It is worth mentioning that, in general, even a single spin Kondo-coupled to the electron
gas leads to a more complex result, since it may involve sx,y(0) operators that requires a more
complex treatment [11]. In addition, in the case spin arrays, the coupling constant is no longer
momentum independent, which results in deviations from the Ohmic behavior [130, 132].

D. Steady-state solution of the Bloch equation for the TLS

In this appendix derive the steady state solution of the Bloch equations equations (35) and
(36). We assumeVba

1 (t) = Vba cosωt and we look for their steady state solution. For that matter,
we assume that the diagonal entries of ρ̂(t) are time independent whereas the off-diagonal part
oscillates in phase with the perturbation, i. e.

ρaa(t) ≡ Pa, ρbb(t) ≡ Pb, ρab(t) = ceiωt (D.1)

where c is complex and Pa and Pb are real constants. The ansatz (D.1) is compatible with
the rotating wave approximation, where the fast rotating terms e±i(ωab+ω)t are removed from the
equation of motion of ρ̂(t). In terms of a classical magnetization field dynamics, this amounts to
describe the evolution of the magnetization in a frame rotating at the Larmor frequency. Then,
the steady state version of Eqs. (35-36) reduces to

0 =
1

2T1

(
(Pb − Pa) − (Peq

b − Peq
a )

)
+

i
2

Ω (c − c∗) (D.2)

iωc = −
c

T2
+ i

∆

~
c −

i
2

Ω (Pb − Pa) , (D.3)

where for simplicity we have assumed a real Rabi frequency Ω = Vba/~. We can write these
equations down as: 1/T2 − iδ 0 −iΩ/2

0 1/T2 + iδ iΩ/2
iΩ/2 −iΩ/2 1/(2T1)


 c

c∗

Pb − Pa

 =

 0
0

(Peq
b − Peq

a )/(2T1)

 , (D.4)
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where we have introduced the detuning δ = ∆/~ − ω. If we define δP = Pb − Pa (and δPeq =

Peq
b − Peq

a ), the steady state occupation imbalance is given by:(
δP − δPeq

δPeq

)
= −

Ω2T1T2

1 + T 2
2δ

2 + T1T2Ω2
. (D.5)

Notice that, by definition, −1 6 δP 6 1, while |c| 6 1/2. We also notice that the micro-
scopic Bloch equations (35) and (36) slightly differ from the macroscopic dynamical evolution
of the magnetization components after making the identification (37). Basically, the role of the
relaxation time T1 of the occupations is substituted by 2τ1, with τ1 the relaxation time of the
z-component of the magnetization.
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[49] A. A. Khajetoorians, B. Baxevanis, C. Hübner, T. Schlenk, S. Krause, T. O. Wehling, S. Lounis, A. Lichtenstein,
D. Pfannkuche, J. Wiebe, et al., Current-driven spin dynamics of artificially constructed quantum magnets, Science
339 (6115) (2013) 55–59.

57



[50] A. A. Khajetoorians, T. Schlenk, B. Schweflinghaus, M. dos Santos Dias, M. Steinbrecher, M. Bouhas-
soune, S. Lounis, J. Wiebe, R. Wiesendanger, Spin excitations of individual Fe atoms on Pt(111):
Impact of the site-dependent giant substrate polarization, Phys. Rev. Lett. 111 (2013) 157204.
doi:10.1103/PhysRevLett.111.157204.

[51] B. Heinrich, L. Braun, J. Pascual, K. Franke, Protection of excited spin states by a superconducting energy gap,
Nature Physics 9 (12) (2013) 765–768.

[52] J. C. Oberg, M. R. Calvo, F. Delgado, M. Moro-Lagares, D. Serrate, D. Jacob, J. Fernández-Rossier, C. F. Hir-
jibehedin, Control of single-spin magnetic anisotropy by exchange coupling, Nature Nanotechnology 9 (2014)
64–68. doi:doi:10.1038/nnano.2013.264.

[53] B. Bryant, A. Spinelli, J. J. T. Wagenaar, M. Gerrits, A. F. Otte, Local control of single atom magnetocrystalline
anisotropy, Phys. Rev. Lett. 111 (2013) 127203. doi:10.1103/PhysRevLett.111.127203.

[54] S. Nadj-Perge, I. K. Drozdov, J. Li, H. Chen, S. Jeon, J. Seo, A. H. MacDonald, B. A. Bernevig, A. Yazdani,
Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor, Science 346 (6209) (2014)
602–607. doi:10.1126/science.1259327.

[55] I. G. Rau, S. Baumann, S. Rusponi, F. Donati, S. Stepanow, L. Gragnaniello, J. Dreiser, C. Piamonteze, F. Nolting,
S. Gangopadhyay, et al., Reaching the magnetic anisotropy limit of a 3d metal atom, Science 344 (6187) (2014)
988–992.

[56] A. Spinelli, B. Bryant, F. Delgado, J. Fernández-Rossier, A. Otte, Imaging of spin waves in atomically designed
nanomagnets, Nature Materials 13 (8) (2014) 782–785.

[57] A. Spinelli, M. Gerrits, R. Toskovic, B. Bryant, M. Ternes, A. F. Otte, Competition between Kondo screening and
exchange interaction in pairs of atoms, arXiv:1411.4415 (2014).

[58] S. Yoshida, Y. Aizawa, Z.-h. Wang, R. Oshima, Y. Mera, E. Matsuyama, H. Oigawa, O. Takeuchi, H. Shigekawa,
Probing ultrafast spin dynamics with optical pump-probe scanning tunnelling microscopy, Nature Nanotechnology
9 (8) (2014) 588–593.

[59] S. Baumann, W. Paul, T. Choi, C. P. Lutz, A. Ardavan, A. J. Heinrich, Electron paramagnetic resonance of
individual atoms on a surface, Science 350 (6259) (2015) 417–420.

[60] J. A. Burgess, L. Malavolti, V. Lanzilotto, M. Mannini, S. Yan, S. Ninova, F. Totti, S. Rolf-Pissarczyk, A. Cornia,
R. Sessoli, et al., Magnetic fingerprint of individual Fe4 molecular magnets under compression by a scanning
tunnelling microscope, Nature Communications 6.

[61] B. Bryant, R. Toskovic, A. Ferrón, J. Lado, A. Spinelli, J. Fernández-Rossier, A. Otte, Controlled complete
suppression of single-atom inelastic spin and orbital cotunnelling, Nano Letters (2015) 6542–6546.

[62] D.-J. Choi, R. Robles, S. Yan, J. A. Burgess, S. Rolf-Pissarczyk, J.-P. Gauyacq, N. Lorente, M. Ternes, S. Loth,
Entanglement-induced Kondo screening in atomic spin chains, arXiv:1507.04785 (2015).

[63] P. Jacobson, T. Herden, M. Muenks, G. Laskin, O. Brovko, V. Stepanyuk, M. Ternes, K. Kern, Quantum engineer-
ing of spin and anisotropy in magnetic molecular junctions, Nature Communications 6 (2015) 8536.

[64] A. Spinelli, M. Gerrits, R. Toskovic, B. Bryant, M. Ternes, A. Otte, Exploring the phase diagram of the two-
impurity Kondo problem, Nature Communications 6.

[65] S. Yan, D.-J. Choi, J. A. Burgess, S. Rolf-Pissarczyk, S. Loth, Three-dimensional mapping of single-atom mag-
netic anisotropy, Nano Letters 15 (3) (2015) 1938–1942.

[66] S. Yan, D.-J. Choi, J. A. Burgess, S. Rolf-Pissarczyk, S. Loth, Control of quantum magnets by atomic exchange
bias, Nature Nanotechnology 10 (1) (2015) 40–45.

[67] T. Choi, W. Paul, S. Rolf-Pissarczyk, A. Macdonald, K. Yang, F. Natterer, C. Lutz, A. Heinrich, Magnetic dipole-
dipole sensing at atomic scale using electron spin resonance STM, Bulletin of the American Physical Society.

[68] M. Steinbrecher, A. Sonntag, M. dos Santos Dias, M. Bouhassoune, S. Lounis, J. Wiebe, R. Wiesendanger,
A. Khajetoorians, Absence of a spin-signature from a single Ho adatom as probed by spin-sensitive tunneling,
Nature Communications 7.

[69] S. Yan, L. Malavolti, J. A. Burgess, S. Loth, Non-locally sensing the spin states of individual atomic-scale nano-
magnets, arXiv:1601.02723.

[70] D. W. S. Heinze, P. Kurz, G. Bihlmayer, S. Blügel, Resolving complex atomic-scale spin structures by spin-
polarized scanning tunneling microscopy, Phys. Rev. Lett. 86 (2001) 4132.

[71] L. Yu, Bound state in superconductors with paramagnetic impurities, Acta Phys. Sin. 21 (1965) 75.
[72] H. Shiba, Classical spins in superconductors, Prog. Theo. Phys. 40 (3) (1968) 435–451. doi:10.1143/PTP.40.435.
[73] A. Rusinov, On the theory of gapless superconductivity in alloys containing paramagnetic impurities, Sov. Phys.

JETP 29 (1969) 1101.
[74] J. Korringa, Nuclear magnetic relaxation and resonnance line shift in metals, Physica 16 (7) (1950) 601–610.
[75] D. C. Langreth, J. W. Wilkins, Theory of spin resonance in dilute magnetic alloys, Phys. Rev. B 6 (9) (1972) 3189.
[76] F. Delgado, C. Hirjibehedin, J. Fernández-Rossier, Consequences of Kondo exchange on quantum spins, Surface

Science 630 (0) (2014) 337 – 342. doi:http://dx.doi.org/10.1016/j.susc.2014.07.009.
[77] S. Baumann, F. Donati, S. Stepanow, S. Rusponi, W. Paul, S. Gangopadhyay, I. G. Rau, G. E. Pacchioni, L. Grag-

58



naniello, M. Pivetta, J. Dreiser, C. Piamonteze, C. P. Lutz, R. M. Macfarlane, B. A. Jones, P. Gambardella, A. J.
Heinrich, H. Brune, Origin of perpendicular magnetic anisotropy and large orbital moment in Fe atoms on MgO,
Phys. Rev. Lett. 115 (2015) 237202. doi:10.1103/PhysRevLett.115.237202.

[78] T. Choi, J. A. Gupta, Building blocks for studies of nanoscale magnetism: adsorbates on ultrathin insulating
Cu2N, J. Phys.: Condensed Matter 26 (39) (2014) 394009.

[79] A. Khajetoorians, M. Steinbrecher, M. Ternes, M. Bouhassoune, M. dos Santos Dias, S. Lounis, J. Wiebe,
R. Wiesendanger, Tailoring the chiral magnetic interaction between two individual atoms, Nature Communi-
cations 7. doi:10.1038/ncomms10620.

[80] J. Fernández-Rossier, Theory of single-spin inelastic tunneling spectroscopy, Phys. Rev. Lett. 102 (2009) 256802.
[81] A. Abragam, B. Bleaney, Electron Paramagnetic Resonance of Transition Ions, Oxford University Press, Oxford,

1970.
[82] E. Manousakis, The spin-1/2 Heisenberg antiferromagnet on a square lattice and its application to the cuprous

oxides, Rev. Mod. Phys. 63 (1991) 1–62. doi:10.1103/RevModPhys.63.1.
[83] R. C. Jaklevic, J. Lambe, Molecular vibration spectra by electron tunneling, Phys. Rev. Lett. 17 (1966) 1139.
[84] F. Delgado, J. Fernández-Rossier, Spin dynamics of current-driven single magnetic adatoms and molecules, Phys.

Rev. B 82 (13) (2010) 134414. doi:10.1103/PhysRevB.82.134414.
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