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Abstract

Lie-Hori canonical perturbation theory provides asymptotic solutions for conservative Hamiltonian systems. This restriction pre-
vents the canonical method from being applied directly to dissipative mechanical systems. There are, however, two main alternatives
to overcome this difficulty, enabling the application of canonical perturbation methods. The first one consists in constructing a time-
dependent Hamiltonian, through a generating function, related to the energy dissipation pattern of the system. The second embeds
the original phase space into a double dimensional one where the dynamics of the system can be formulated in a Hamiltonian
way. In this paper, a modified Lie-Hori method that avoid the disadvantages of the former approaches is proposed. Namely, it is
not necessary to find out a time-dependent generating function, nor doubling the number of the canonical variables of the original
problem. The new algorithm provides first order analytical solutions for a certain set of dissipative non-linear dynamical systems.
It is based on a suitable modification of the Hori kernel in the double-dimensional embedding phase space, allowing the inclusion
of the dissipative (or generalized) forces. By means of this redefined auxiliary system, the path-integrals of the method can be
performed in a domain of the phase space with the same dimensionality as the original problem.

Keywords:
Perturbation theory, Non-canonical system, Non-linear system, Hamiltonian Mechanics

1. Introduction

The motion of an unconstrained dynamical system with n de-
grees of freedom can be properly described through the Hamil-
ton, or canonical, equations (Wintner 1941, chap. 2, sec. 91)

dqi

dt
=
∂H
∂pi
,

dpi

dt
= −∂H
∂qi
, i = 1 . . .m. (1)

In these 2m differential equations,H = H (q, p, t) is the Hamil-
tonian function of the system, depending on the canonical vari-
ables p (momenta), q (coordinates), and on the time t. The
canonical variables are real variables defined in a certain do-
main D ⊂ R2m, referred to as phase space, and time varies in an
interval I ⊂ R. H is assumed to be real and sufficiently regular
in D × I.

In many situations, i.e., for the problems named natural in
Whittaker (1947, chap. III, sec. 38) terminology,H is the sum
of the kinetic and potential energies of the system. In these
casesH does not involve the time explicitly, and it can be iden-
tified with the total mechanical energy of the system, which is
conserved in motion (Whittaker 1947, chap. III, sec. 41).

The analytical resolution of equations (1) is not possible in
general. However, many mechanical systems own a Hamilto-
nian function that can be split into the form

H = H0 + ΔH , (2)

with |ΔH| � |H0|, i.e., ΔH is a perturbation of H0, usually
referred to as unperturbed Hamiltonian. If the dynamics gen-
erated by H0 is known and some additional conditions hold

(Arnold et al. 2006, chap. 10), an asymptotic solution of the
dynamics corresponding to H can be obtained with the aid of
canonical perturbation theories.

The development of canonical perturbation theories 1 began
in the second half of the 19th century. Such theories were
mainly concerned with the resolution of some important prob-
lems of Celestial Mechanics like, for example, the lunar theory
(Delaunay 1860). Basically, the idea of the method consists
in determining a canonical transformation built from a certain
function (determining or generating function), which leads to
canonical equations easier to integrate.

Subsequent researches pushed those theories forward, spe-
cially with the works by Poincaré (1893) and von Zeipel (1916).
The last method played an important role in the determination
of the motion of an artificial satellite (Brouwer and Clemence
1961, chap. XVII, sec. 12).

A main achievement was due to Hori (1966), who intro-
duced a perturbation method based on Lie series, allowing a
simpler handling of canonical transformations. It is often re-
ferred to as Lie-Hori canonical method. Later, a close approach
was designed by Deprit (1969), both theories being equiva-
lent2 (Campbell and Jefferys 1970). Lie-Hori’s method presents
some advantages (Campbell and Jefferys 1970) with respect

1For a comprehensive treatment of canonical perturbation theories we refer
the reader, for example, to Nayfeh (1973) and Ferraz-Mello (2007).

2Although there are slight differences in the approach of both methods
(Murdock 2003, app. C and D), they are sometimes referred to as Lie-Hori,
Lie-Deprit, or even Hori-Deprit method, indistinctly.
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to that of von Zeipel’s (1916). Specifically: the determining
function of the transformation just depends on the transformed
canonical variables; the theory is formulated through Poisson
brackets3, hence it is canonically invariant; and it is possible to
provide the expression of any function of the initial canonical
set in terms of the transformed one.

In its original formulation, Hori’s method can just be applied
to Hamiltonians independent of time, i.e., H = H (q, p). Even
so, this restriction can be easily circumvallated by introducing
the extended phase space of dimension 2m + 2. With this con-
struction, also known as homogeneous formalism, the time as-
sumes the role of a new canonical coordinate with conjugated
momentum given by −H (Wintner 1941, chap. 2, sec. 93,
Stiefel and Scheifele 1971, i.a., see section 2).

In contrast, the application of Hori’s method to dynamical
systems affected by dissipative processes (for example, damped
harmonic oscillators) cannot be carried out in a simple way.
This is due to the fact that the construction of the generating
function implies the existence of a privileged dynamical system
related to the unperturbed system, called auxiliary system or
Hori kernel (Ferraz-Mello 2007, chap. 6, sec. 6.5), which has
the restriction of being Hamiltonian. Therefore, the generalized
canonical systems, which are characterized by the differential
equations

q̇i =
∂H
∂pi
− Qpi , ṗi = −∂H

∂qi
+ Qqi , i = 1 . . .m, (3)

cannot be included in this category (hereafter, time-derivative
will be denoted by a dot). In these equations, Q pi and Qqi are
the generalized (or canonical) forces, whose inclusion is nec-
essary to account for the dissipation of the system. That kind
of equations appears, e.g., when treating the drag action on the
motion of an artificial satellite (Brower and Clemence 1961).
When H = 0, equations (3) reduce to the most general form
of a first order differential system with even unknowns (Stiefel
and Scheifele 1971). Indistinctly, generalized canonical sys-
tems will be also denominated as non-Hamiltonian ones.

For the obtention of an asymptotic solution of equations (3)
when viewed as a perturbation of H0 and the zeroth-order part
of the generalized forces, there exist specific perturbation al-
gorithms like those based on the method of averaging (Bogoli-
ubov and Mitropolsky 1961) or on an extension of the Lie series
methods (e.g., Kamel 1970, Henrard 1970, Hori 1971).

Nevertheless, it is still possible to use the original Hori’s
method with proper modifications of equations (3). Basically,
two different ways can be followed to accomplish this proce-
dure.

On the one hand, it is possible to find a time-dependent
canonical transformation in order to obtain the equations (3)

3The Poisson bracket of two smooth functions f and g of the canonical set
is defined by the bilinear operation

{ f (q, p), g(q, p)} =
m∑

i=1

(
∂ f
∂qi

∂g
∂pi
− ∂g
∂qi

∂ f
∂pi

)
.

from the Hamiltonian of the associated non-dissipative dynam-
ical system, i.e., with no generalized forces. Since the canon-
ical transformation depends on time, it will also be the case
for the transformed Hamiltonian. However, it does not pose
any obstacle, since the problem can be formulated in the ex-
tended phase space where the Lie-Hori method can be applied.
A major difficulty of this approach is that there is no systematic
way to find that canonical transformation, with the exception
of some simplified dynamical systems like harmonic oscillators
(e.g., Nagem et al. 1991). For them, it is possible to have some
a priori knowledge about the energy dissipation features in the
system evolution. It makes feasible to construct the success-
ful canonical transformation from the non-dissipative dynami-
cal system to recover the original dissipative dynamics (see sec-
tion 5.1).

The second possibility is to hamiltonize the equations of mo-
tion by constructing a single Hamiltonian H̃ , necessarily differ-
ent from H , in order to derive equations (3). This approach is
originally attributed to Liouville, and it is already considered in
Birkhoff (1927).

Within this category, a general procedure consists in embed-
ding the original 2m-dimensional system into a 4m-dimensional
phase space (or 4m + 4 in the explicitly time-dependent case),
and determine the new Hamiltonian H̃ . In the context of per-
turbations theories this procedure can be found, for example, in
Kamel (1971), Hori (1971), and specially in Choi and Tapley
(1973), where Hori’s original algorithm is utilized once the em-
bedding procedure has been applied. Although the application
of canonical perturbation theories in this approach is straight-
forward from an analytical point of view, the management of
the double number of canonical variables is involved in prac-
tice and become a main disadvantage of the procedure.

This research focuses on a certain set of dissipative dynami-
cal systems whose analytical asymptotic solution of first-order
can be obtained from Hori’s method, without the need of dou-
bling the dimension of the phase space. In this way, the disad-
vantages of the former procedures for general dynamical sys-
tems can be avoided, while preserving their benefits.

Those particular dynamical systems are characterized by the
fact that their unperturbed part, which must include canonical
forces, gives rise to a linear system of differential equations
with constant coefficients with respect to the 2n canonical vari-
ables pi and qi, i ≤ n. This condition is not really restrictive in
practice, since any unperturbed Hamiltonian that is integrable
(in Liouville sense) can be expressed in angle-action variables,
which produce linear equations of motion. Of course, the form
of linear system is attainable in different manners.

The system may include 2(m − n) additional canonical vari-
ables p j and q j, n < j ≤ m, which do not enter into the unper-
turbed dynamics, i.e., they are non-coupled variables (solved
independently from the 2n preceding ones), or even cyclic or
ignorable variables4. The perturbation stems from a non-linear

4In the latter case, cyclic variables are considered with respect to the un-
perturbed Hamiltonian. Then, the constant coefficients of the linear system can
depend on the conjugated momenta of these cyclic variables.
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HamiltonianΔH = H1, which is a function of the whole canon-
ical set and time of the form

H1 =

n∑
i=1

[
fpi (qn+1, . . . qm, pn+1, . . . pm, t) pi

+ fqi (qn+1, . . .qm, pn+1, . . . pm, t) qi

]
+ ft (qn+1, . . . qm, pn+1, . . . pm, t) , (4)

fpi , fqi and ft being real and sufficiently regular functions, but
otherwise, arbitrary. A remarkable example of such kind of per-
turbations appears in the Hamiltonian theory of the rotation of
a two-layer non-rigid Earth, e.g., Getino and Ferrándiz (1997,
2000, 2001), as will be studied as an application of the method
in section 6.

The paper is structured as follows. In section 2, the main fea-
tures of the first-order Lie-Hori canonical method and the ho-
mogeneous formalism are exposed. In the subsequent sections,
3 and 4, the proposed modification to the perturbation method
is developed constructively, including some important math-
ematical properties. This comprises the definition of the ex-
tended dynamical system within the double dimensional phase
space, and the particular study of the previously stated non-
Hamiltonian systems, allowing the reduction of the dimension-
ality of the problem. As it will be shown, the procedure is based
on a suitable definition of an Hori-like kernel of the perturbation
method. In section 5, different approaches to tackle a dissipa-
tive system are exemplified through a driven damped harmonic
oscillator, highlighting the operational advantages of the pro-
posed method. In section 6, the procedure is applied to obtain
an analytical first-order solution of the nutations of a non-rigid
Earh, which can be assimilate to a non-linear system of cou-
pled oscillators. Finally, some conclusions about the presented
research, as well as future working lines, will be drawn. The
paper is completed with an appendix containing some supple-
mentary material.

2. Background: first-order Lie-Hori canonical method

The first-order Lie-Hori perturbation method and its main
features, on which this research is focused, will be succinctly
summarized in this section. A comprenhensive description of
the method and its fundamentals is developed in Nayfeh (1973)
and Ferraz-Mello (2007, chap. 6).

An unconstrained dynamical system will be considered,
whose 2n-dimensional phase space is described by n gen-
eralized coordinates q̂i and n conjugated momenta p̂ i (i =
1, 2, ..., n). The canonical set can be expressed through a col-
umn matrix QT = (q̂1, q̂2...q̂n, p̂1, p̂2, ...p̂n) ≡ (q̂, p̂), where T
denotes matrix transposition. Let H(q̂, p̂) be the Hamiltonian
function of the conservative system (time-independent), sup-
porting a decomposition of the type H = H 0+H1, H0 and H1

being the unperturbed and perturbed parts, respectively. The
system with Hamiltonian H0 is referred to as auxiliary system
or Hori kernel, and its solution trajectories are supposed to be
known and denoted as UP (Unperturbed Problem).

First-order Lie-Hori method consists in performing a canoni-
cal transfomation from variables (q̂, p̂) to (q̂ ∗, p̂∗) (in this sense,
symbol ∗ over a canonical variable or function denotes ”trans-
formed”) which leads to a new, easier to integrate, Hamiltonian
functionH∗(q∗, p̂∗) (i.e., with related dynamical equations eas-
ier to solve). First-order dynamical evolution for any function
of the canonical set, f (q̂, p̂), is then given by

f (q̂, p̂) = f ∗(q̂∗, p̂∗) + Δ f (q̂, p̂), (5)

where
Δ f (q, p̄) = { f ∗(q̂∗, p̂∗),W1 (q̂∗, p̂∗)} . (6)

Here,W1 is the generating function of the canonical transfor-
mation, defined by the path-integration over UP

W1 (q̂∗, p̂∗) =
∫

UP

[H1(q̂∗, p̂∗) − H∗1 (q̂∗, p̂∗)
]
dt. (7)

Usually, Lie-Hori’s method is combined with an averaging
method (Hori 1966) by defining H ∗1 as the so-called secular
part ofH1, given by

H∗1 ≡ H1,sec = 〈H1〉 = lim
T→∞

1
T

∫ T

0,UP
H1dt. (8)

The argument of the generating function,W 1 (q̂∗, p̂∗), implies
that the canonical set dependency must be recovered after path-
integration, by reversing solution trajectories through integra-
tion constants.

Time evolution of the transformed canonical set (q̂∗, p̂∗) is
then given by Hamilton dynamical equations for the trans-
formed Hamiltonian

H∗= H∗0+H∗1 = H0(q̂∗, p̂∗)+H1,sec(q̂∗, p̂∗), (9)

whereH∗ functions are expressed by the literal replacement of
old variables by new ones, i.e.,

dp̂∗

dt
= −∂H

∗

∂q̂∗
,

dq̂∗

dt
=
∂H∗
∂p̂∗

. (10)

For a time-dependent Hamiltonian, H(q̂, p̂, t), the Lie-Hori
method can be applied by constructing a new conservative dy-
namical system with an extended (2n + 2)-dimensional phase
space, by adding coordinate q̂0 = t and conjugate momentum
p̂0 = −H(q̂, p̂, t) (Wintner 1941, chap.2, sec. 93). The new
Hamiltonian will be taken as HE(q̂0, p̂0, q̂, p̂) = H(q̂0, q̂, p̂) +
p̂0, which shares the dynamical Hamilton equations for the
original variables (q̂, p̂). In order to apply the perturbation
method, the p̂0 part is included in the auxiliary system, i.e,
HE(q̂0, p̂0, q̂, p̂) = H0(q̂0, p̂0, q̂, p̂) +H1(q̂0, q̂, p̂).

It is easy to prove that the Lie-Hori dynamical equations ob-
tained from HE are equivalent to those that would be obtained
for a direct application of the algorithm to non-conservative
Hamiltonian H(q̂, p̂, t). In general, time-dependent Hamilto-
nian dynamics is a particular case of the time-independent one,
through the extended phase space (Wintner 1941, chap. 2, sec.
93; Ferraz-Mello 2007, chap. 1, sec. 1.6).
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3. Double-dimensional phase space embedding of a general
canonical system

In this section, a general canonical system will be studied
within a conveniently defined double-dimensional phase space
embedding the original one. This procedure is similar to that
of Choi and Tapley (1973), the main differences being that
the generalized forces will be made explicit, and that the non-
coupled variables (indices n + 1 to m) will not be doubled.

Coordinates and momenta are supposed to be coupled by
means of a linear system of first-order differential equations
with constant coefficients, in the unperturbed problem. Let R
be the 2n × 2n matrix associated to the linear system, so that

Q̇ = RQ, (11)

or, by making the coordinates explicit, (q̇1, ..., q̇2n)T =

R (q1, ..., q2n)T . Such system of equations may be obtained from
the modified Hamilton equations (3) for general canonical sys-
tems, i.e., generalized forces may be included (see Appendix
A).

In a general case, the dynamical system may include other
non-coupled variables, i.e., solved regardless of the indicated
system of equations,

(q2n+1, ..., q2m) = (q2n+1(t), q2n+2(t), ..., q2m(t)) . (12)

Here, q2n+k(t) (k = 1, 2, ..., 2m − 2n) are known time-functions
(m coordinates and m conjugated momenta). This variables are
not explicitly considered in the following expressions, in order
to simplify the notation. The case of cyclic variables and their
conjugated momenta is included in such a category, as stated in
the introduction. In this particular situation, the cyclic variables
are linearly time-dependent, and their conjugated momenta are
constant. Therefore, the R matrix elements may depend on
these momenta.

Since the dynamical system is not necessarily Hamiltonian
(because of the generalized forces or dissipative processes), a
double-dimensional phase space will be built, by means of the
canonical set

(Q, P)T = (q1, ..., qn, qn+1, ..., q2n, p1, p2, ..., p2n) , (13)

where qk = q̂k, qn+k = p̂k (k = 1, 2, ..., n) and pi (i = 1, 2, ..., 2n)
are the new conjugate momenta, artificially introduced.

The Hamiltonian function within the 4n-dimensional phase
space can be symbolically written as (Birkhoff 1927, chap. II,
sec. 13, Choi and Tapley 1973) H̃ = p1q̇1 + p2q̇2 + ...+ p2nq̇2n.
In the canonical set (13) it has the form

H̃(Q, P) =
n∑

i=1

[
pi

(
∂H
∂qn+i

− Qqn+i

)
+ pn+i

(
−∂H
∂qi
+ Qqi

)]
,

(14)
Qq being the generalized forces. Hereafter, ∼ symbol will be
used to denote functions of the double-dimensional space. The
time evolution of conjugated momenta, ṗ k = −∂H̃/∂qk, is ob-
tained from (14), and leads to

Q̇ = RQ, Ṗ = −RT P. (15)

For perturbed mechanical systems, H → H 0 +H1 substitu-
tion can also be made in (14) in order to obtain the new Hamil-
tonians, provided that H̃ = H̃0 + H̃1. Therefore,

H̃1 = p1
∂H1

∂qn+1
+ ...+ pn

∂H1

∂q2n
− pn+1

∂H1

∂q1
− ...− p2n

∂H1

∂qn
, (16)

and the expression of H̃0 is the same as that of H̃ , replacingH
byH0. Accordingly, the canonical forces are considered within
the unperturbed dynamics.

The perturbation Hamiltonian (16) can be written in matrix
form

H̃1 = −PT E2n∇QH1 (17)

using Nabla symbol ∇Q, which stands for gradient operator of
Q coordinates, and the 2n-dimensional symplectic matrix E 2n

(see Appendix A). In the double-dimensional phase space, the
Hori auxiliary system will be denoted by ŨP.

4. Modified first-order Lie-Hori perturbation method for a
certain class of general canonical systems

Within the double-dimensional phase space, the application
of the first-order Lie-Hori pertubation method to originally non-
Hamiltonian systems is allowed, because they are converted to
canonical ones through (14). Now, it will be shown that for
the particular set of dynamical systems described in the intro-
duction, it is possible to apply that procedure by working, in
practice, with the same dimensionality as the original problem.

The generating function, expressed in variables (13), is of
the type (symbol ∗ for transformed variables is omitted since
no confusion is possible)

W̃1 =

∫
ŨP

[
H̃1(Q, P) −

〈
H̃1(Q, P)

〉]
dt (18)

where ŨP and H̃1 have 2× 2n = 4n variables (4n+ 1 if explicit
time dependence exists, coming from non-coupled or cyclic
variables). The idea of the method is to reduce by half the num-
ber of variables used in the generating function calculation, by
means of some restriction in the original perturbation Hamilto-
nianH1(Q) carried to H̃1(Q, P).

For the sake of convenience, the Hori kernel ŨP will be split
into two parts, namely, the linear systems of equations (15) (in-
stead of their related solutions), and the known solutions (12)
of the non-coupled variables, when obtained from unperturbed
mechanical system. Therefore, the related restricted Hamilto-
nian will be formally represented by H̃ŨP , symbolizing this def-
inition criterion.

As UP ⊂ ŨP (common variables Q), considering the matrix
relation (17) restricted to the auxiliary system,

H̃1ŨP = −PT E2n(∇QH1)ŨP , (19)

the dependency on variables Q can be removed from H̃1ŨP if
vector (∇QH1)ŨP is supposed to be constant (not depending on
canonical variables). This condition is fulfilled by a Hamilto-
nian verifying (∇QH1)ŨP = ∇QH1ŨP and such that

H1ŨP = QT F, FT = ( f1(t), f2(t), ..., f2n(t)) , (20)
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fi(t) (i = 1, 2, ..., n) being sufficiently regular time-dependent
functions, depending on solutions (12), in a general case. Note
that such condition is accomplished by a Hamiltonian of the
form (4), as stated in the introduction. The f t(t) function is
directly integrated in the generating function and therefore is
not considered now. The fulfillment of (20) implies

H̃1ŨP(P) = −PT E2nF, (21)

which is formally equivalent to make the QT → −PT E2n =

(E2nP)T substitution, i.e.,

Q→ E2nP, (22)

in the expression (20) of H1ŨP in order to obtain H̃1ŨP. Then,
from (20) and (22)

H̃1ŨP = H1ŨP (E2nP) (23)

= H1ŨP (−pn+1,−pn+2, ...,−p2n, p1, p2, ..., pn)

is obtained, which allows writing the generating function
(18) argument by means of original 2n-dimensional perturba-
tion Hamiltonian, instead of the extended 4n-dimensional one.
Then, path-integration depends only on the time evolution of
conjugated momenta P in ŨP, given by (15), Ṗ = −RT P. A
new 2n-dimensional auxiliary system, denoted by UP ∗, can be
built as follows, by determining the time-evolution of the E 2nP
argument of the Hamiltonian function,

d
dt

(E2nP) = E2nṖ = −E2nRT P = −E2nRT E−1
2n (E2nP) . (24)

Using E−1
2n = −E2n, the time-evolution of such argument is

given by the following matrix R∗,

R∗ = E2nRT E2n. (25)

The new auxiliary system UP∗, replacing ŨP as defined by
(15), is given by Q̇ = R∗Q, which definitely leads to a gen-
erating function calculation in a 2n-dimensional phase space,

W1 =

∫
UP∗

[H1(Q) − 〈H1(Q)〉] dt. (26)

In this expression forW1, substitution (22) has been performed
for practical purposes, as only time evolution of the argument
variables is needed, and thereby the original expression of H 1

can be used. In any case, once W1 has been obtained, the
double-dimensional generating function W̃1 can be recovered
if required, by the inverse substitution (22).

Finally, it is necessary to express the dynamical equations of
first-order Lie-Hori method (5) with the new procedure. As they
are assumed to be applicable within the double-dimensional
phase space, considering the restricted set of mechanical sys-
tems characterized by (20), previous algorithm leads to

Δ f (Q) = { f (Q), W̃1(P)}4n =

2n∑
i=1

∂ f (Q)
∂qi

∂W̃1(P)
∂pi

. (27)

Here, the subscript is used to denote the dimension of the phase
space where the Poisson bracket is calculated. By considering

the inverse substitution (22) in order to compute W̃1 within the
original phase space, the following relations are fulfilled

∂W̃1(P)
∂pi

=
∂W1(Q)
∂qn+i

,
∂W̃1(P)
∂pn+i

= −∂W1(Q)
∂qi

, i = 1, 2, ..., n,

(28)
whereW1(Q) is the generating function in the 2n-dimensional
phase space, given by Eq. (26). Therefore, using Eqs. (27) and
(28),

Δ f (Q) =

n∑
i=1

[
∂ f (Q)
∂qi

∂W1(Q)
∂qn+i

− ∂ f (Q)
∂qn+i

∂W1(Q)
∂qi

]
= { f (Q),W1(Q)}2n (29)

is obtained. Hereafter, the subscript in the bracket will be omit-
ted, since there is no possible confusion.

This Poisson bracket recovers first-order Lie-Hori per-
turbation equations for the original canonical set Q T =

(q̂1, q̂2...q̂n, p̂1, p̂2, ...p̂n).

Note that the condition (20) only implies linearity for H 1ŨP
and not necessarily for H1. This allows the application of (26)
for the computation of the generating function to a restricted set
of nearly linear mechanical systems, which includes, but is not
limited to, those with linear perturbation Hamiltonian.

The averaged Hamiltonian 〈H1〉, if needed, is also calculated
in a similar way, as it has the same path-integral structure than
W1. Then it can be performed in the 2n-dimensional phase
space in the form

〈H1〉 = lim
T→∞

1
T

∫ T

0,UP∗
H1(Q)dt. (30)

4.1. Summary of the method and some mathematical properties
The former modified Lie-Hori method is applied using the

following algorithm:

• Given a canonical set QT = (q1, q2...qn, p1, p2, ..., pn)
linked through a linear system not necessarily Hamilto-
nian, defined by Q̇ = RQ, and a set of non-coupled
variables (qn+1, ..., qn+m, pn+1, ..., pn+m) (including cyclic
ones), the restricted perturbation Hamiltonian to unper-
turbed solutions, H1UP , obtained by substitution of the
non-coupled variables, must verify to be linear in Q vari-
ables, i.e.,

H1UP = ft(t)+ f1(t)q1+...+ fn(t)qn+ fn+1(t)p1+...+ f2n(t)pn.
(31)

• The auxiliary system, UP∗, is built by replacing R → R∗,
with

R∗ = E2nRT E2n. (32)

• The generating and averaged functions are obtained by
means of the 2n-dimensional path-integrals

W1 =

∫
UP∗

[H1(Q) − 〈H1(Q)〉] dt,

H1,sec = 〈H1〉 = lim
T→∞

1
T

∫ T

0,UP∗
H1(Q)dt. (33)
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• Finally, the first-order dynamical equations are those of the
Lie-Hori related method,

 f (Q) = { f (Q),W1 (Q)} , (34)

where the time evolution of Q is given by

Q̇ = RQ − E2n∇QH1,sec. (35)

Some mathematical properties, related to the transformed
matrix R∗, are fulfilled. They are stated in propositional form.

Proposition 1. A linear system Q̇ = RQ is Hamiltonian if, and
only if, R = R∗.

Proof. Necessary condition: a Hamiltonian linear system can
be written in the form (Williamson 1936),

E2nQ̇ = AQ, (36)

A being symmetric, AT = A. Then, Q̇ = −E2nAQ, or equiva-
lently, R = −E2nA. By performing transformed matrix R ∗,

R∗ = E2nRT E2n = E2n (AE2n) E2n = E2nAE2
2n.

Due to E2
2n = −I2n, R∗ = R is obtained.

Sufficient condition: if R∗ = R, then from (32), by multiply-
ing both sides by E2n, given that E2

2n = −I2n, ET
2n = −E2n, it is

obtained that

−RT E2n = E2nR→ (E2nR)T = E2nR.

Therefore E2nR is a symmetric matrix. Then, the linear system
E2nQ̇ = E2nRQ is Hamiltonian by means of characterization
(36).

Proposition 2. The eigenvalues of R∗ are the eigenvalues of R
with opposite sign.

Proof. Eigenvalues of R, λ, are solutions of the characteristic
equation det (R − λI2n) = 0 or equivalently,

det
(
RT − λI2n

)
= 0. (37)

The eigenvalues of R∗ are related to those of R through

det (R∗ − λ∗I2n) = det
(
E2nRT E2n − λ∗I2n

)
= det

[
E2n

(
RT + λ∗I2n

)
E2n

]
= det E2n det

(
RT + λ∗I2n

)
det E2n

where −I2n = E2nI2nE2n has been used. As det E2n = 1, eigen-
values λ∗ of R∗ arise from det

(
RT + λ∗I2n

)
= 0. By comparison

with (37), λ∗ = −λ is obtained.

5. Example I: driven damped harmonic oscillator

A damped harmonic oscillator further affected by an external
harmonic driving force will be considered in order to illustrate
the different procedures studied in the preceding sections. This
mechanical system is described by the linear ordinary differen-
tial equation

q̈ + 2γq̇ + ω2
0q = εeiωt, (38)

where all constant coefficients are assumed positives: γ is the
viscous-damping constant, ω0 is the (undamped) angular oscil-
lator frequency and ε and ω are the external force amplitude
and frequency, respectively. The underdamped and nonreso-
nant situation is assumed, i.e., ω2

0 > γ
2 and ω � ω0 (providing

quasi-periodic solutions). The driven force has been written in
complex form for analytical convenience.

The simplicity of such a dynamical system allows showing
the implementation of the methods, since it is not hidden behind
tedious algebra, and comparing the results with the solution of
the differential equation, whose closed form is known. This
kind of simple test problems is commonly used in perturbation
studies (e.g. Kamel 1970, Nayfeh 1973).

Equation (38) can be solved by means of classic ordinary
differential equation methods. Its general solution is q(t) =
qh(t) + Δq, qh(t) being the complementary function solution to
the homogeneus equation (ε = 0) and Δq a particular solution
to the non-homogeneus case,

qh(t) = C1e(−γ+iω̃0)t + C2e(−γ−iω̃0)t,

Δq =
εeiωt[

γ + i(ω + ω̃0)
] [
γ + i(ω − ω̃0)

] . (39)

Here C1,C2 are integration constants related with initial value

problems, ω̃0 =

√
ω2

0 − γ2 is often referred to as pseudo-
frequency, and −γ ± iω̃0 are the roots of the characteristic poly-
nomial.

Equation (38) can also be obtained from a general canonical
system with HamiltonianH = H0+H1, and generalized forces
Qq and Qp, where the unperturbed part corresponds to a free
damped harmonic oscillator,

H0 =
1
2

(
p2 + ω2

0q
)
, Qq = −2γp, Qp = 0, (40)

and the perturbation is given by

H1 = εe
iωtq. (41)

Here p = q̇ is obtained from (3). Given that the direct applica-
tion of the Lie-Hori method is not possible, since the system is
dissipative, the three alternatives described in this research will
be considered: the construction of a time-dependent canoni-
cal transformation, the doubling of the dimension of the phase
space, and the application of the modified first-order Lie-Hori
method presented herein. It will illustrate the advantages of the
last approach with respect to the first ones.

In this cases, the first-order Lie-Hori method leads to an exact
solution, then ε will be taken as 1 for the sake of simplicity.
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5.1. Lie-Hori method with time-dependent Hamiltonian

From the dynamical equation of a simple free harmonic os-
cillator, ẍ + ω2

0x = 0, the equation corresponding to viscous
damped case, q̈ + 2γq̇ + ω2

0q = 0 (ω2
0 = γ

2 + ω̃2
0) can be

obtained by means of the variable transformation x = e γtq
which is extended to be canonical5. A type ”two” generat-
ing function (following Goldstein 1980, sec. 9.1) is supposed,
S 2(x, p) = pq(x) = pe−γt x, and the extended momentum is then
y = ∂S 2/∂x = e−γt p. Therefore, the canonical transformation
is given by q = e−γt x, p = eγty. From the simple free harmonic
oscillator Hamiltonian,H(x, y) = T (y)+ V(x) = y2/2+ω2

0x2/2
(where T and V stand for kinetic and potential energies, respec-
tively), the required non-conservative counterpart is

K(q, p, t) = H(q, p) +
∂S 2

∂t
=

1
2

e−2γt p2 +
1
2
ω̃2

0e2γtq2 − γpq.

(42)
In order to tackle the driven damped case, with external force
eiωt, both perturbation Hamiltonian and canonical variables are
related by expression (42). Therefore, the following time-
dependent Hamiltonian H = H0 + H1 is assumed, where
H0 = K and H1 = −e2γtqeiωt will be formally considered as
a perturbation. Applying Hamilton equations, the differential
equation (38) is recovered and p = e2γt(q̇ + γq) stands for con-
jugated momentum (this is different from the one in (40), but
the same notation is used).

The first-order Lie-Hori canonical method requires the solu-
tion trajectories (UP) for the auxiliary system, i.e., qh(t) in (39).
Using a matrix formalism for the canonical set (q, p), this can
be written as(

q
p

)
UP

=

(
e(−γ+iω̃0)t e(−γ−iω̃0)t

iω̃0e(γ+iω̃0)t −iω̃0e(γ−iω̃0)t

) (
C1

C2

)
. (43)

By performing the path-integral (7), given thatH 1 has not sec-
ular part (from Eq. 8, H1,sec = 0), the generating function is
obtained. Matrix expression (43) allows an inversion of the
equation system to obtain Ci = Ci(q, p, t) (i = 1, 2). This leads
to recovering canonical variables dependency to build the gen-
erating function

W1(q, p, t) =
peiωt − (γ + iω)qe(2γ+iω)t[

γ + i(ω + ω̃0)
] [
γ + i(ω − ω̃0)

] . (44)

Finally, applying Lie-Hori dynamical equation (5) for the
canonical coordinate,

Δq = {q,W1} = ∂W1

∂p
=

eiωt[
γ + i(ω + ω̃0)

] [
γ + i(ω − ω̃0)

] .

(45)
Note that (45) coincides with the exact solution (39). The com-
plete evolution of the system is given by q(t) = qh(t) + Δq as
qh(t) is the solution trajectory to the auxiliary system.

5A more elaborated procedure is used in Nagem et al. (1991), where a La-
grangian coordinate transformation is applied to the dynamical equation and
then a Legrendre transform from the canonical momentum is performed to ob-
tain the Hamiltonian function.

5.2. Application of Lie-Hori method in double-dimensional
phase space

Double-dimensional phase space allows the application of
first-order Lie-Hori method to driven damped oscillator formu-
lated via generalized forces, given that their effects are included
through the Hamiltonian function (14). By recovering (40), the
unperturbed Hamiltonian H̃0 is obtained from (14),

H̃0(q1, p1, q2, p2) = p1q2 + p2

(
−ω2

0q1 − 2γq2

)
, (46)

where (q, p) ≡ (q1, q2) following notation (13). Unperturbed
solutions ŨP are obtained from Hamilton equations, which lead
to the following expression of matrix systems (15)(

q̇1

q̇2

)
=

(
0 1
−ω2

0 −2γ

) (
q1

q2

)
= R

(
q1

q2

)
(

ṗ1

ṗ2

)
=

(
0 ω2

0−1 2γ

) (
p1

p2

)
= −RT

(
p1

p2

)
. (47)

The first system of equations is that of a free damped harmonic
oscillator (38), q̈1 + 2γq̇1 + ω

2
0q1 = 0, whose known solutions

are q1(t) = C1e(−γ+iω̃0)t +C2e(−γ−iω̃0)t and q2(t) = dq1(t)/dt. The
second one leads to differential equation p̈1 − 2γ ṗ1 +ω

2
0 p1 = 0,

whose solutions are p1(t) = C3e(γ+iω̃0)t + C4e(γ−iω̃0)t and p2(t) =
(dp1(t)/dt) /(ω̃2

0 + γ
2).

The perturbation Hamiltonian is built from H1 = −qeiωt

through (16), H̃1(q1, p1, q2, p2) = p2eiωt. The Lie-Hori first-
order generating function is then calculated as

W̃1 =

∫
p2(t)eiωtdt =

eiωt(p1 + iωp2)[
γ + i(ω + ω̃0)

] [
γ + i(ω − ω̃0)

] . (48)

Finally, following (5), the exact solution (39) is recovered,

Δq1 =
{
q1,W̃1

}
=
∂W̃1

∂p1
=

eiωt[
γ + i(ω + ω̃0)

] [
γ + i(ω − ω̃0)

] .
(49)

Note that, although calculations have been omitted for the sake
of briefness, inversion of the set of four solution trajectories has
been performed to obtain Ci = Ci(q1, p1, q2, p2) (i = 1, 2, 3, 4)
and recover the dependency on canonical variables in (48).
All along the problem resolution, a 4-dimensional system has
been used, with increasing analytical complexity with respect
to the algorithm of section 5.1, while only coordinate q ≡ q 1

is needed to described the system evolution. For more complex
problems, with higher dimensionality, this is a handicap of the
method. Other examples of double-dimensional phase space
can be found in Choi and Tapley (1973).

5.3. Application of the modified Lie-Hori method
The modified Lie-Hori method is applied now to solve the

question raised in section 5.2. For a driven damped harmonic
oscillator (formulated via generalized forces), condition (31) is
fulfilled, as perturbation HamiltonianH1 = −qeiωt is linear with
respect to the q coordinate and so is H1UP . The matrix R is
given by (47) and R∗ is obtained from (32),

R∗ = E2RT E2 =

(
0 −1
1 0

) (
0 1
−ω2

0 −2γ

) (
0 −1
1 0

)

=

(
2γ 1
−ω2

0 0

)
. (50)
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Note that in the undamped case, γ = 0 (i.e., without gener-
alized force as Qq = −2γp = 0), R∗ = R is obtained as a
consequence of Proposition 1. Eigenvalues and eigenvectors
of R∗ are given by λ1 = γ + ω̃0i, vλ1 = (1,−γ + ω̃0i) and their
complex conjugates. Comparing with eigenvalues of R in (39),
the sign that accompanies γ is reversed, due to Proposition 2.
The general solution to the auxiliary system UP∗, defined by
(q̇, ṗ)T = R∗ (q, p) leads to(

q(t)
p(t)

)
= C1e(γ+ω̃0i)t

(
1

−γ + ω̃0i

)
+ C2e(γ−ω̃0i)t

(
1

−γ − ω̃0i

)
.

(51)
Following (33) and the usual Lie-Hori integration procedure,
the generating function is obtained as

W1 =

∫
UP∗
H1(q, p)dt =

eiωt (p − iωq)[
γ + i(ω + ω̃0)

] [
γ + i(ω − ω̃0)

] .
(52)

Finally, following (34), the exact solution (39) is also recovered,

Δq =
∂W1

∂p
=

eiωt[
γ + i(ω + ω̃0)

] [
γ + i(ω − ω̃0)

] . (53)

Note that the generating function W̃1 (48) of the double-
dimensional phase space is recovered from (52) by substitution
(22), (−p2, p1) → (q, p). However, all along the calculation,
2n canonical variables have been used (n = 1 in this exam-
ple), which illustrates the operational advantage of the abridged
method.

6. Example II: the rotation of a non–rigid Earth

Earth rotation poses an interesting example where the
method can be applied. In fact, it motivated the development
of the perturbative scheme presented in this research. Since
the complete physical description of this problem is out of the
scope of this paper, the main facts entering into the applica-
tion of the algorithm provided in Section 4.1 will be summa-
rized. Further references about its development and importance
in Celestial Mechanics theories can be found, for example, in
Tisserand (1894, esp. chaps XXVII, XXIX and XXX), Woolard
(1953, sec. 1), Moritz & Mueller (1987, esp. chaps. 1-5) or
Ferrándiz et al. (2015).

6.1. Dynamical characterization of the non–rigid Earth model

A simplified but quite effective model of the Earth assumes
that it is formed by a rigid container, the mantle, filled with a
fluid, the fluid core. The container is a shell limited by two
confocal axially symmetric quasi–ellipsoids. This model is re-
ferred to as Poincaré model (Poincaré 1910). From the point of
view of the astronomical applications, the interest lies in deter-
mining the rotation of the container, which is coupled with the
fluid dynamics.

Under different hypothesis (Poincaré 1910), the configura-
tion space of our dynamical system is equivalent to the di-
rect product of two three–dimensional rotation groups S O(3) ×
S O(3).

The first one defines the rotation of a principal reference sys-
tem Oxyz attached to the container with respect to a quasi–
inertial reference system OXYZ. The second one, the rotation
of the fluid with respect to a reference system Oxcyczc linked
to the fluid trough some dynamical condition (e.g., Tisserand
axes, Escapa et al. 2014). The center of mass of the container
and the fluid O are assumed to be coincident.

The principal moments of inertia of both constituents are
Am = Bm < Cm for the container and Ac = Bc < Cc for the fluid.
The moments Cm and Cc are taken with respect to the ellipsoids
symmetry axis Oz, denoted as �e3, and Am and Ac with respect to
any axis contained in the Oxy plane, i.e., the equatorial plane.

By doing so, the dynamics of the model can be described
by two angular velocity vectors �ω and �ωc with their respective
Eulerian angles. When there is no interaction but that due to
the fluid pressure on the common boundary with the container,
there is a steady motion where �ω = �ωc = Ω�e3 with Ω a positive
real constant.

The real dynamics can be approximated by the existence
of two interactions that depart the motion from this equilib-
rium configuration. First, there is a dissipative–electromagnetic
torque in the common boundary. It can be modeled by a linear
torque with proportionality constants K and K ′ just affecting
the equatorial components6 of �ω and �ωc.

The second one is a gravitational torque due to the interac-
tion with the Moon and the Sun. Its main part is given by the
second order terms in the multipolar expansion of the gravita-
tional potential. It is assumed that the orbital problem is solved,
i.e., the positions of the Moon and the Sun are known functions
of time through a combination of their so-called Delaunay vari-
ables (e.g., Woolard 1953, sec. 2).

6.2. Generalized Hamiltonian equations

A key point in the dynamical formulation of the Earth’s rota-
tion problem is the choice of the generalized coordinates. The
most natural election would be to take two Euler angles sets,
because of their immediate geometrical meaning.

However, from the point of view of establishing the differen-
tial equations of motion, it is not the best option. Instead, it is
commonly used a Hamiltonian approach, introducing a canon-
ical set which generalizes the one developed by Andoyer for
studying the rotation of the rigid body (e.g., Andoyer 1923, sec.
1; Kinoshita 1977; Arnold et al. 2006, sec. 3.2.3). So, this is
a problem evolving in a 12–dimensional phase space with six
Andoyer-like canonical variables for the container and another
six for the fluid.

In turn, the Andoyer-like set presents some difficulties due
to the fact that in the steady motion gives rise to virtual singu-
larities (Henrard 1974). They can be removed by introducing a
non–singular canonical set whose construction is well–known
in Celestial Mechanics theories, usually referred to as Poincaré
variables (e.g., Brouwer & Clemence 1961, chap. XVII or
Ferraz-Mello 2007, chap. 3).

6The presence of a dissipative torque in the axial direction can be readily
considered by including it in the steady reference motion.
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In this case, the new set is formed by the canonical pairs
(yi, Yi) and (yci, Yci), i = 1, 2, 3, where the first set is related
to the rotation from Oxyz to OXYZ and the second one from
Oxcyczc to Oxyz (Getino et al. 2000).

The dynamics of the system is governed by the generalized
Hamiltonian equations (Eqs. 3). When particularizing them to
the specific features of our problem and the nature of its inter-
actions, they reduce to

ẏi =
∂H
∂Yi
, Ẏi = −∂H

∂yi
,

ẏci =
∂H
∂Yci
− QYci , Ẏci = −∂H

∂yi
+ Qyci , (54)

In these equations,H = T +H1 is the Hamiltonian of the sys-
tem. T function is the kinetic energy of the model, i.e., the sum
of the rotational kinetic energies of the container and the fluid.
The perturbationH1 is due to the gravitational interaction with
the Moon and the Sun. The generalized forces, or torques, Q
just affect the variables related to the fluid, since they are linear
in the difference between the equatorial components of �ω c and
�ω.

The rotational evolution of the container is provided by the
canonical pairs (yi, Yi), i = 1, 2, 3. Their time evolution is, how-
ever, coupled with other canonical variables of the system. The
resulting differential equations are a subset of Eqs. (54) that can
be recast in such a way that the lower perturbations terms lead
to the system

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
ẏ2

ẏc2

Ẏ2

Ẏc2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ = S (
√

Y1,
√

Yc1)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
y2

yc2

Y2

Yc2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ +
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂H1

∂Y2
0

−∂H1

∂y2
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

Ẏ3 = − ∂H1

∂y3
, ẏ3 =

∂H1

∂Y3
,

Ẏ1 = − ∂H1

∂y1
, ẏ1 =

Y1 − Y1c

Cm
+
∂H1

∂Y1
.

(55)

Here, S is a 4 × 4 real matrix depending on rational functions
of
√

Y1 and
√

Yc1. The perturbationH1 has the form

H1= k′
N∑

i=0

Bi (Y1, Y3) cos (Θi − miy3)−

− k′Y2

N∑
i=0,τ=±1

Ci,τ (Y1, Y3)√
Y1

cos (τΘi − miy3 − y1)−

− k′y2

N∑
i=0,τ=±1

Ci,τ (Y1, Y3)√
Y1

sin (τΘi − miy3 − y1) ,

(56)
where k′ is a constant related to the magnitude of the gravita-
tional interaction, and Bi (Y1, Y3) and Ci,τ (Y1, Y3) are trigono-
metric polynomials in cos−1

(
Y−1

1 Y3

)
. The sum is taken over a

list of N arguments, mi being an integer and Θi an affine time
function of the form

Θi = nit + Θi0, (57)

which depend on the orbital motions of the Moon and the Sun.
The argument i = 0 is the only providing mi = Θi = 0.

In view of the functional dependence of Eqs. (55), to deter-
mine the dynamics it is also necessary to incorporate the evo-
lution of the variable Yc1. However, since Ẏc1 = 0, we can take
directly Yc1 = Yc1 (t0) = CcΩ.

The differential system formed by Eqs. (55, 56 and 57) is
a somewhat complex version of the classical problem of oscil-
lations with respect to an stationary motion (Routh 1877, chap.
I). In it, the variables Y2, Yc2, y2 and yc2 librates around zero and
y1 is a fast variable. The obtention of an analytical solution of
the first order through Lie-Hori canonical perturbation method
would imply to embed it into a 16–dimensional space7.

However, we could avoid these cumbersome computations
with the aid of the method developed in this study, working in
the original 8–dimensional phase space. First, it is necessary
to check that our system is of the kind of those considered in
Section 4.1.

With this aim, we employ the notations introduced in the pre-
vious sections. We have that the variables coupled through the
generalizes forces are⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y2

y2c

Y2

Y2c

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q1

q2

p1

p2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ = Q. (58)

Besides, it is necessary to consider the non–coupled variables⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
y1

y3

Y1

Y3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q3

q4

p3

p4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ = Z, (59)

y1 and y3 being ignorable coordinates in the unperturbed prob-
lem, as shown by Eqs. (55).

The perturbation H1 has the same form as in Eq. (4). In
particular

H1 (Q, Z, t)= fq1 (Z, t) q1 + fp1 (Z, t) p1 + ft (Z, t) . (60)

The explicit expressions of fq1 , fp1 , and ft can be immediately
derived from Eqs. (56). By doing so, the non-linear differential
equations fulfilled by Q and Z are

Q̇ = S
( √

Y1

)
Q − E4∇QH1 (Q, Z, t) ,

Ż = −E4∇ZH1 (Q, Z, t) , (61)

whereH1 given in Eqs. (60).

7The system is non–autonomous, since Θi depends explicitly on t. However,
as it was pointed out in Section 2, it is possible to apply directly the first order
canonical algorithm, taking into account that, with the exception of i = 0, Θi
has a fast evolution.
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This differential system belongs to the type defined in Section
4.1, since in the unperturbed problem,H 1 = 0, the non–coupled
variables Z evolve as

ZUP =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
Ωt + y1,0

y3,0

(Cm +Cc)Ω
Y3,0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (62)

where y1,0, y3,0 and Y3,0 are certain constants of integration.
Therefore, R = S

(√
(Cm +Cc)Ω

)
is a 4 × 4 constant real

matrix and the perturbation, over the unperturbed problem, has
the form (Eq. 31)

H1UP = fq1 (t) q1 + fp1 (t) p1 + ft (t) , (63)

with fq1 (t) = fq1 (ZUP , t), fp1 (t) = fp1 (ZUP , t) and ft (t) =
ft (ZUP , t) . Under these conditions, it is possible to apply the
algorithm developed in Section 4 to obtain an analytical first
order solution.

6.3. Application of the modified Lie-Hori method

For the sake of concreteness, the periodic part of the for-
mer first order solution will be obtained. From an astronomical
point of view, this is related to the forced nutations of the Earth
(see e.g., Ferrándiz et al. 2015).

Considering the previous description of the involved vari-
ables, the averaged perturbation Hamiltonian is directly given
by the i = 0 argument of the first term in Eq. (56). Therefore,
its secular part is

H∗1 ≡ H1,sec = 〈H1〉 = k′B0(Y1, Y3). (64)

By removing this term fromH1, its periodic part is obtained. It
allows the calculation of the 8-dimensional path-integral defin-
ing the generating functionW1(Q, Z) given in Eq. (33).

The auxiliary system UP∗ is built by making the matricial
substitution

S (
√

Y1)→ S ∗(
√

Y1) = E4S (
√

Y1)T E4 (65)

in the system of equations of the non-perturbed evolution of the
coupled variables

Q̇ = S ∗(
√

(Cm + Cc)Ω) Q = R∗Q, (66)

with the unperturbed solutions of the non-coupled variables
given by Eq. (60).

The computation of the generating function is made in two
steps. On the one hand, the integration of the first term of the
periodic part of H1 over the auxiliary system is inmediate in
view of Eqs. (57) and (62)

∫
UP∗

k′
N∑

i�0

Bi(Y1, Y3) cos(Θi − miy3)dt

= k′
N∑

i�0

Bi(Y1, Y3)
ni

sin(Θi − miy3). (67)

On the other, the integration of the remaining terms will be
performed in a complex matrix form, by means of a procedure
similar to that of Getino and Ferrándiz (2001). It is constructed
from the auxiliary integral related to the coupled variables,∫

UP∗
Qe−i(τΘi−miy3−y1)dt = −iA∗(Y1)Qe−i(τΘi−miy3−y1). (68)

In this expression, A∗ matrix is given by

A∗(Y1) =
[
−iS ∗(

√
Y1) + ni,τ(Y1)I4

]−1
(69)

where

ni,τ(Y1) =
Y1 −CcΩ

Cm
− τni. (70)

This function arises from the evolution of y1 + miy3 − τΘi =

ni,τt + ni,0 in the unperturbed problem (Eq. 62).
By extracting from Eq. (68) the different terms appearing in

Eq. (56) and adding the part arising from Eq. (67), the generat-
ing function is obtained.

It can be split as

W1 =W1,1 +W1,2 +W1,3 (71)

with

W1,1 = k′
N∑

i�0

Bi(Y1, Y3)
ni

sin(Θi − miy3), (72)

W1,2 = −k′
N∑

i=0,τ=±1

Ci,τ(Y1, Y3)√
Y1

sin(τΘi − miy3 − y1)

×
(
a∗31y2 + a∗32y2c + a∗33Y2 + a∗34Y2c

)
,

W1,2 = −k′
N∑

i=0,τ=±1

Ci,τ(Y1, Y3)√
Y1

cos(τΘi − miy3 − y1)

×
(
a∗11y2 + a∗12y2c + a∗13Y2 + a∗14Y2c

)
.

Here, a∗lk(Y1) are the matrix elements of A∗(Y1) (their Y1 argu-
ment has been omitted in Eq. 72 to lighten the notation).

Finally, the periodic part of the first-order solution is per-
formed by computing the Poisson brackets given by Eq. (34),

ΔQ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
Δy2

Δy2c

ΔY2

ΔY2c

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ = {Q,W1} , ΔZ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
Δy1

Δy3

ΔY1

ΔY3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ = {Z,W1} . (73)

In order to calculate these Lie derivatives, it should be recalled
that the generating function can be recast as

W1 = gy2(Z, t)y2 + gy2c(Z, t)y2c + (74)

gY2 (Z, t)Y2 + gY2c(Z, t)Y2c + gt(Z, t)

with the following definitions

gQj (Z, t) = −k′
N∑

i=0,τ=±1

Ci,τ(Y1, Y3)√
Y1

×
[
a∗3 j sin(τΘi − miy3 − y1) +

a∗1 j cos(τΘi − miy3 − y1)
]

( j = 1, 2, 3, 4) ,

gt(Z, t) = W1,1, (75)

10



Q j being the j-th coupled variable (in Q). Let G(Z, t) be the col-
umn matrix of gQj functions, i.e., G(Z, t) = (gy2 , gy2c , gY2 , gY2c)

T .
Therefore, the first-order periodic evolution of the canonical set
is given by

ΔQ = −E4G(Z, t), ΔZ = −E4∇Z

[
G(Z, t)T Q + gt(Z, t)

]
. (76)

In the following results, only the zeroth-order part in the Q
variables is kept, corresponding to the usual definition of the
forced nutations of the Earth. Then, the periodic evolution of
the coupled variables is explicitly obtained as

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
Δy2

Δy2c

ΔY2

ΔY2c

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ = −k′
N∑

i=0,τ=±1

Ci,τ(Y1, Y3)√
Y1

×

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
−a∗33−a∗34

a∗31
a∗32

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ sin(τΘi − miy3 − y1)

+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
a∗13
a∗14−a∗11−a∗12

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ cos(τΘi − miy3 − y1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , (77)

while the calculation for non-coupled ones leads to

Δy1 = k′
N∑

i�0

∂Bi

∂Y1
(Y1, Y3)

sin(Θi − miy3)
ni

,

Δy3 = k′
N∑

i�0

∂Bi

∂Y3
(Y1, Y3)

sin(Θi − miy3)
ni

,

ΔY1 = 0, (78)

ΔY3 = k′
N∑

i�0

Bi(Y1, Y3)mi
cos(Θi − miy3)

ni
.

As a reminder, the canonical set appearing in the right hand side
of the former equations stands for the secular evolution of the
variables (i.e., the solution of the dynamical equations for the
transformed secular Hamiltonian, see, e.g., Eq. 10). In order to
compute the forced nutations, it is accurate enough to take the
unperturbed solution instead, given by Eq. (62).

7. Discussion

The preceding study and examples show a method to reduce
the number of canonical variables to the half with respect to
double-dimensional technique, for a class of non-Hamiltonian
systems, when a first-order solution by Lie-Hori canonical
method is required.

The interest of this method beyond the canonical perturbation
theories, comes within the perspective of Applied Mechanics.
The reason is twofold. First, the class of dynamical systems
when linearity is fulfilled by H1UP restriction, but not neces-
sarily by the original perturbation H1, includes some of those

considered in the theory of non-linear oscillations (e.g., Bogoli-
ubov and Mitropolsky 1961) or in the determination of the sta-
bility with respect to a given state of motion (e.g., Routh 1877).
Second, the availability of an asymptotic solution of the first-
order can be very useful both from the analytical and numerical
points of view. For example, it could help to accelerate the
convergence, if needed, to obtain higher order asymptotic so-
lutions with the aid of other perturbation theories, playing the
role of a kind of ”intermediary” (e.g., Garfinkel 1964, Ferrándiz
and Florı́a 1991), or enhance the performance of the numer-
ical integration of those systems following a similar strategy
as in Encke-type methods (e.g., Brower and Clemence 1961,
Ferrándiz and Novo 1991, Vigo et al. 2004).

The method can also be extended to the study of second-
order secular theories (elimination of short-period terms - or
fast quasi-periodic variables - by means of first-order perturba-
tion methods). This is possible because in the Lie-Hori method
(combined with an averaging method), the second-order trans-
formed Hamiltonian8 only depends on the first-order generating
functionW1 and it is not required another path-integration over
the auxiliary system. This type of application is usual, e.g., in
Celestial Mechanics.
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projects AYA2010-22039-C02-02 and AYA2016-79775-P
(AEI/FEDER, UE). The authors acknowledge the valuable
advices of anonymous referees that helped to improve the
manuscript.

Appendix A. On the Hamiltonian and generalized forces
of a linear system of first-order differential
equations

In what follows, a Hamiltonian and a generalized forces set
will be derived when the equations of motion are of the form
(11), i.e.,

Q̇ = RQ, (A.1)

following the same notations introduced in section 3. Besides,
for the sake of concreteness, the system under consideration
is assumed to be fully characterized by the canonical variables
QT = (q̂1, q̂2, ..., q̂n, p̂1, p̂2, ..., p̂n), not considering other non-
coupled variables. In this way, R is a real 2n × 2n constant
matrix.

The Hamiltonian equations can be written in a more com-
pact form introducing the 2n-dimensional symplectic matrix
E2n (Goldstein 1980, sec. 8.1), which in terms of n-dimensional
null (0n) and identity (In) matrices, verifies

E2n =

(
0n −In

In 0n

)
, E−1

2n = ET
2n = −E2n, E

2
2n = −I2n. (A.2)

8Given by

H∗2 = H2,sec +
1
2

{H1 +H1,sec,W1
}
sec .
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By doing so, the equations of motion of a general canonical
system (3) can be rewritten as

Q̇ = −E2n∇QH + E2nQ, (A.3)

with Q comprissing all the canonical forces of the system,QT =(
Qq̂1 ,...,Qq̂n ,Qp̂1 ,...,Q p̂n

)
.

The following decomposition of R into the form

R = −E2n (M + N) , (A.4)

is chosen, where M and N are symmetrical, M = MT , and an-
tisymmetrical, N = −NT , matrices. Note that Eq. (A.4) is a
generalization of the well-known relation between the quadratic
form of a Hamiltonian and the linearized system of Hamiltonian
equations – see e.g. Meyer (1974) –, when canonical forces are
included. Combining equations (A.2) and (A.4), it is possible
to obtain the explicit expressions for M and N,

M =
1
2

(
E2nR − RT E2n

)
,

N =
1
2

(
E2nR + RT E2n

)
. (A.5)

From these matrices, defined when R is known, the following
Hamiltonian and canonical forces are constructed

H = 1
2

QT MQ, Q = −NQ. (A.6)

Computing the equations of motion through equations 9 (A.3),

−E2n∇QH = −E2nMQ = −1
2

(
−R − E2nRT E2n

)
Q,

E2nQ = −E2nNQ = −1
2

(
−R + E2nRT E2n

)
Q.(A.7)

is obtained. The sum of both equalities provides

Q̇ = −E2n∇QH+E2nQ = RQ, (A.8)

recovering in this way the original differential equations (A.1).
As a subproduct of this construction, note that when N = 0 n

the canonical forces are null. From equations (A.2) this condi-
tion can be cast as

R = −E−1
2n RT E2n = E2nRT E2n = R∗, (A.9)

in accordance with Proposition 1 (in section 4).
The decomposition established in Eq. (A.6) is not unique, as

it is readily derived from the fact that equations (A.1) can be
recovered by considering

H = 0, Q = −E2nRQ. (A.10)

However, this decomposition has the property that the stem-
ming generalices forces (A.6) contain no gradient terms. It
means that the only matrices N1 and N2 verifying

Q = −NQ = ∇Q

(
QT N1Q

)
− N2Q

are N1 = 0n and N2 = N.

9Note that for any 2n × 2n A matrix, ∇Q

(
QT AQ

)
=

(
A + AT

)
Q is verified.
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Delaunay, C. Mémoire sur la théories de la Lune. Mém. Acad. Sci. 28
(1860) and 29 (1867)

Deprit, A. Canonical transformation depending on a small parameter.
Celest. Mech. 1, 12-30 (1969)

Escapa, A., Baenas, T., Ferrándiz, J.M., Getino, J. On the Minimiza-
tion Properties of Tisserand Systems. Proceedings of the Journées
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