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Abstract—This letter presents a method to detect and estimate
multiple frequencies based on the maximum likelihood (ML)
principle. The method addresses the three main difficulties in this
kind of computation, which are the detection of the number of
frequencies, the coarse localization of the cost function’s global
maximum, and the iterative refinement of an initial estimate.
Fundamentally, it consists of first detecting and estimating single
frequencies or frequency clusters using the periodogram, and
then refining this last estimate through a Newton-type method.
This second step is fast because its complexity is independent of
the number of samples, once a single FFT has been computed.
These two steps are iteratively repeated until no mode frequency
is above a fixed detection threshold. The main advantage of the
proposed method is its low complexity, given that its computa-
tional burden is just that of a few FFTs in typical scenarios. The
method is assessed in a numerical example.

I. INTRODUCTION

In many signal processing applications, it is necessary to
estimate multiple frequencies and there is a wide variety of
estimators for this problem in the literature. Among them,
the maximum likelihood (ML) estimator is valued for its
asymptotical efficiency and its good performance even if the
noise is colored [1]–[4]. However, in practice its computation
is deemed too complex [5, p. 148], and other sub-optimal esti-
mators that exploit the problem’s specific structure are usually
preferred, like MUSIC and ESPRIT, [6], [7]. These alternative
estimators achieve a complexity reduction but have poorer
statistical performance. Also, there exist iterative methods like
SAGE [8], that compute the actual ML estimate by decou-
pling the problem into several one-dimensional minimizations
in each iteration. However, they require a high number of
iterations to converge.

In the literature, the computation of the ML estimator
through standard techniques is deemed too complex for the
following reasons. First, the minimization of its cost function
must be performed iteratively, through a method like the
Modified Variable Projection (MVP) [9], that involves first
and second order differentials. Second, these iterative methods
require an initial iterate close to the actual cost function’s
global maximum. And third, it is also necessary to detect
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the number of frequencies. In [10], it was shown that each
iteration in the MVP method can be performed with low com-
plexity, thus allowing the fast computation of the ML estimate,
once an initial iterate with a given number of frequencies is
available. Fundamentally, it was shown that the ML estimator
can be obtained in two steps. First, one FFT is computed
with complexity O(N logN), where N is the number of
samples. And second, each MVP iteration is performed with
complexity O(K3) for K estimated frequencies. In order to
assess the relevance of this result, note that computing one
MVP iteration through conventional methods has complexity
O(NK3), N is very large (on the thousands), and K small. So,
the method in [10] decouples the complexity from O(NK3)
to O(N logN)+O(K3). In practice, this decoupling involves
a complexity reduction by a large factor.

The purpose of this letter is to present a joint solution for
the detection and initial iterate problems just commented, and
then combine it with an improved version of the method in
[10]. The outcome is a fast method to detect and estimate
multiple frequencies based on the ML principle. We propose
to employ as initial iterate the set of abscissas corresponding
to the periodogram peaks, that lie above a fixed detection
threshold. In doing so, we are viewing the periodogram as
a frequency cluster estimator. Then, additional frequencies are
added if necessary and the method in [10] applied again, until
all the modes have been detected and estimated.

The letter has been organized as follows. In the next section,
we introduce the multiple frequency estimation problem, and
recall the ML estimator and the MVP method. Then, in Sec.
III we shortly describe the fast computation of the MVP
iteration and related functions. Afterward, Sec. IV presents
the proposed estimation and detection method. Finally, the
statistical and computational performances are assessed in Sec.
V.

A. Notation
In the paper, we adopt the following notation:
• Vectors and matrices are written in lower and upper bold

face respectively, (vector x, matrix X). I denotes an
identity matrix of proper size, and ’�’ is the element-by-
element product of two equal-size matrices or vectors.

• [x]k and [X]p,q are the kth and (p, q) elements of x and
X respectively.

• A† denotes the pseudo-inverse of a matrix A. If A has
full-column rank, then A† = (AHA)−1AH .

• ’≡’ is used for introducing new symbols or functions.
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II. SIGNAL MODEL FOR MULTIPLE FREQUENCY
ESTIMATION, ML ESTIMATOR, AND MVP METHOD

Consider a signal x(t) consisting of K undamped exponen-
tials with complex amplitudes ak and distinct frequencies fk,
which is observed in the presence of a complex white Gaussian
noise process ε(t) of variance σ2. The model for the samples
xn ≡ x(n) at instants n = 0, 1, . . . , N − 1 is

xn =
K∑
k=1

ake
j2πnfk + εn, (1)

where εn ≡ ε(n). The noise process characteristics imply that
the samples εn are independent with equal variance σ2 and
follow a complex circularly-symmetric Gaussian distribution.
Stacking the last equation column-wise we obtain the well-
known model

x = Φ(f)a+ ε, (2)

where (k = 1, 2, . . . , K)

[x]n+1 ≡ xn, [f ]k ≡ fk, [φ(f)]n+1 ≡ ej2πnf ,
[Φ(f)]·,k ≡ φ(fk), [ε]n+1 ≡ εn.

Since ε has zero mean and covariance Iσ2, the ML estimator
of f and a is identical to the least squares estimator [5, p.
147],

{â, f̂} = argmin
a,f
‖x−Φ(f)a‖2. (3)

Besides, this cost function can be concentrated in the coeffi-
cients a using the pseudo-inverse Φ†(f). If this is done, it
turns out that the ML estimate of the frequencies is also given
by

f̂ = argmax
f

L(f), (4)

where
L(f) ≡ ‖Φ(f)Φ†(f)x‖2. (5)

The MVP method optimizes (4) iteratively from a given initial
estimate of f using a Newton-type iteration, in which the
gradient and the approximation to the Hessian are given by

g(f) ≡ −2Re
{
(Φ†x)�

(
DH(I − P )x

)∗}
, (6)

H(f) ≡ 2Re{
(
DH(I − P )D

)
�
(
(Φ†x) · (Φ†x)H

)∗},
where we have written Φ rather than Φ(f) for simplicity and
[D]·,k ≡ φ′(fk), [10].

III. FAST EVALUATION OF THE COST AND RELATED
FUNCTIONS

As already commented in the introduction, the optimization
of (4) is deemed too complex in the literature, due to the
evaluation of L(f) and its differentials, which is viewed as
too costly. However, in [10] a technique was presented that
allows one to perform these evaluations inexpensively. The
techinque starts by computing the zero padded FFT of x of
size M > N (usually M = 2N ). Then, if x̃ denotes this FFT
output, the technique makes it possible to interpolate L(f) and
various functions related with this cost function from x̃ in a
small number of operations. Actually, the complexity of these
interpolations is independent of the data size N . For what we

require in this letter, we may interpolate from x̃: L(f), g(f),
H(f), and the periodogram introduced in the sequel.

To see how this kind of interpolation works for L(f), let
us substitute the expression of the pseudo-inverse into (5),

L(f) = xHΦ(ΦHΦ)−1ΦHx. (7)

Note that in this expression Φ is a very “tall” matrix, given
that its number of rows is equal to the number of data samples
N (on the thousands), but its number of columns is equal to
the number of frequencies K in the estimation problem, a
small number. This implies that most of the computational
burden in evaluating (7) is taken up by two products, namely
ΦHΦ and ΦHx. However, the product ΦHΦ must not be
performed at all, given that there is a closed-form formula
for its components. Specifically, we have [ΦHΦ]k,r ≡ γ(fr−
fk), (k, r = 1, 2, . . . , K), where γ(f) is the complex spectral
window defined by

N−1∑
n=0

ej2πnf = γ(f) ≡


N if f = 0

ej2πNf − 1

ej2πf − 1
otherwise.

(8)

As to the second product ΦHx, its components are samples
of the spectrum of x, i.e, [ΦHx]k = X(fk), defined by

X(f) ≡
N−1∑
n=0

xne
−j2πnf . (9)

Thus, the evaluation of φ(f)Hx comes down to evaluating
X(f) at arbitrary frequencies. At this point, the relevant
fact is that there exist very accurate barycentric formulas for
interpolating X(f), [11], [12]. More precisely, for an integer
M > N , we may interpolate X(f) from the 2P + 1 samples
of the form m/M closer to f in the following steps:

1) If f = k/M + u is a modulo-(1/M) decomposition
of f , (integer k and −1 ≤ 2Mu < 1), compute the
coefficients

ap =
wp

u− p/M
, −P ≤ p ≤ P, (10)

where wp is a set of constants.
2) Interpolate X(f) using the barycentric formula

X(f) ≈
P∑

p=−P
X((k − p)/M)ap

/
P∑

p=−P
ap . (11)

Note that (10) and (11) just involve a few arithmetic operations
for each input sample X((k − p)/M). Following the last
references, one may choose wp so that the interpolation error
in (11) decreases exponentially with P . So, in practice (11)
is able to interpolate X(f) with high accuracy for small
P . An additional point is the computation of the samples
X((k − p)/M) in (11). But note that these samples are just
components of x̃, the M -length FFT of x.

In summary, for an arbitrary frequency vector f , L(f) can
be evaluated in the following steps,

1) Compute ΦHΦ using (8). [Complexity O(K2).]
2) Compute ΦHx using (11). [Complexity O(KP ).]
3) Compute the remaining operations in (7). [O(K3).]
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Fig. 1. Periodogram realization (5 frequencies) and corresponding ML estimate. The stems indicate the module and position of the estimated modes. Note
that the periodogram estimate would place a single frequency in the first local maximum above the threshold.

As shown in [10], this interpolation technique can be applied
as well to the cost function’s gradient and approximate Hessian
in (6), g(f) andH(f). This is so because these functions only
depend on ΦHΦ and ΦHx and their derivatives. For details,
see [10].

Finally, the fast evaluation can also be applied to an ex-
tended version of the Schuster periodogram, that will be a
key function in the detection method in the next section. We
will call “residual periodogram” to the Schuster periodogram
of x once the contribution of a set of modes, specified by a
vector of frequencies η, has been subtracted. Its definition is

L1(f,x;η) ≡ |φ(f)H(I −Φ(η)Φ†(η))x|2. (12)

Besides, if η is empty then we will denote this periodogram
simply as L1(f,x) and it will coincide with the usual pe-
riodogram, L1(f,x) = |φ(f)Hx|2. The sampled residual
periodogram will be (12) but restricted to the frequencies
m/M , m = 0, 1, . . . , M − 1, and is defined by

L1,s(m,x;γ) ≡ L1(m/M,x;γ),

L1,s(m,x) ≡ L1(m/M,x).
(13)

IV. PROPOSED DETECTION METHOD

The detection method proposed in this letter is a combi-
nation of two procedures that improve on a given estimate
specified by a vector of frequencies fo. The method starts
with an empty fo and applies the procedures successively until
there is no change in this vector.

The first procedure works as follows. If the modes specified
by fo approximately match modes actually present in x, then
the residual x −Φ(fo)Φ(fo)

†x is approximately composed
by the remaining modes plus noise. This composition is
reflected in the periodogram L1,s(m,x;fo) in which the local
peaks with high amplitude are mainly produced by one or more
of the remaining modes, while the low-amplitude peaks are
produced by the noise. Fig. 1 is a typical periodogram of this
kind. The procedure first detects the significant peaks and then
appends the frequency m1/M to fo for each of them, where
m1 is the peak’s abscissa. For assessing whether a given peak
is significant, the procedure uses a test for unlikely high noise

peaks. More precisely, if x − Φ(fo)Φ(fo)
†x just contains

noise, then the procedure declares a given peak as significant
if its amplitude is above a threshold A. This threshold is pre-
computed from the test

Prob(max
m

L1,s(m, ε) > A) = PFA, (14)

where Prob(·) denotes probability, ε is a noise vector as in
(2), and PFA a given false-alarm probability. The threshold A
is pre-computed through Monte Carlo simulation. In (14), we
implicitly assume that there is available an estimate of the
noise variance σ2.

The second procedure fundamentally consists of refining
fo using the MVP iterative process in which L(f), g(f), and
H(f) are computed through the interpolation method in the
previous section. The MVP process is stopped when the cost
function increase becomes negligible. During the MVP itera-
tions, the components of fo are checked for possible frequency
pairs whose difference is too small, before the cost function or
any of its differentials is evaluated. If one such pair is found,
then one of the two frequencies is eliminated from fo. Note
that the mode corresponding to the eliminated frequency is not
estimable, because the small difference produces a large value
of the Cramer-Rao bound of both frequencies. The minimum
frequency difference is the one ensuring that the logarithm
of the condition number of Φ(f ′o)

HΦ(f ′o) is below half the
numerical precision, where f ′o is a vector containing only the
frequency pair. For example, if working with double precision
then the condition number must be smaller than 1015.65/2.

A. Comments

The threshold in (14) detects unusual noise peaks, but is
employed to detect several modes that may interfere with
each other. Thus, the significance of the detected modes is
not jointly tested, and this is a weak point of the proposed
detector. Whether this is a drawback or not depends on the
specific application but, if necessary, the computed frequencies
and amplitudes can be used to evaluate with low complexity
a more robust detector like the Generalized Likelihood Ratio
Test, [13, Ch. 6]. Besides, the interpolation techniques in Sec.
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(a) RMS error of first frequency and corresponding Cramer-Rao bound.
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Fig. 2. RMS error (dB), average number of detected frequencies, and
computational cost (mega-flops) of proposed estimator/detector.

III can be used to eliminate non-significant modes and re-
adjust the ML estimation in such a test. It is worth mentioning
that there exist analytical thresholds for real periodograms that
seem adaptable to (14); see [14].

V. NUMERICAL EXAMPLE

The proposed method has been assessed in a scenario
with five modes (K = 5) and noise samples following the

distribution specified in Sec. II. The modes’ frequencies and
amplitudes were the following:

Frequencies (f ·N ): -3.61, -2.31, 1.92, 7.65, 14.24.
Modules |a|: 1, 0.803, 0.958, 0.687, 0.678.

Phases arg{a} (rad): 0.489, 0.599, 1.43, 2.24, -1.66.

Fig. 1 is a typical snapshot in this scenario. The num-
ber of data and periodogram samples were N = 2048 and
M = 4096, and the interpolation order was P = 6. The false
alarm probability was set to PFA = 0.05, and the corresponding
threshold was obtained through a Monte Carlo simulation and
its value was A = 2.305 · 104σ2. Note that the separation
between the first two frequencies was only (f2 − f1)N = 1.3
samples.

Fig. 2(a) shows the root-mean-square (RMS) error of the
first frequency together with the corresponding Cramer-Rao
bound. As expected for the ML estimator, the RMS error
converges to this last bound for sufficiently high signal-to-
noise (SNR) ratio.

Fig. 2(b) shows the average number of detected frequencies.
We can see that the method was able to make out the five
frequencies at approximately the RMS threshold region. In this
example, at most two iterations were necessary. In the first,
the four lobes in Fig. 1 were detected, and in the second an
additional frequency was detected in the first lobe. Note that in
Fig. 2(b) the number of detected frequencies is slightly above
5 for high SNRs. Actually, it is roughly equal to 5.05 because
the false alarm probability was set to 0.05, i.e, occasionally
there was a small noisy mode.

Finally, Fig. 2(c) presents the computational cost in millions
of floating-point operations. Approximately 0.48 MFlops suf-
ficed to detect and estimate the five frequencies. This cost
is very small. Just for comparison, note that the cost of one
size-N FFT is 5N log2(N) = 0.112 MFlops. So, we have that
the computational cost of the whole estimation and detection
is roughly equal to that of 0.48/0.112 = 4.29 N -size FFTs.
For a comparison with other methods in the literature, see [10,
Sec. VII.E], where a less efficient interpolation method already
provided roughly a factor-six improvement in computational
burden over the existing methods.

VI. CONCLUSIONS

We have presented a method to estimate and detect multiple
frequencies based on the ML principle. The method employs
the periodogram to detect frequency clusters, and the MVP
algorithm to refine a given initial estimate. It works iteratively
and in each iteration adds to the set of detected frequencies
those given by the peaks of the residual periodogram. The
iterative procedure stops when no peaks are left. The method is
very efficient computationally due to the interpolation method,
that makes it possible to compute elaborate detection schemes
with a complexity that is independent of the data size. The
only operation with a complexity proportional to this last size
is one initial FFT.
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