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Abstract

We consider the problem of solving large sparse linear systems where the co-
efficient matrix is possibly singular but the equations are consistent. Block
two-stage methods in which the inner iterations are performed using alter-
nating methods are studied. These methods are ideal for parallel processing
and provide a very general setting to study parallel block methods includ-
ing overlapping. Convergence properties of these methods are established
when the matrix in question is either M-matrix or symmetric matrix. Dif-
ferent parallel versions of these methods and implementation strategies, with
and without overlapping blocks, are explored. The reported experiments
show the behavior and effectiveness of the designed parallel algorithms by
exploiting the benefits of shared memory inside the nodes of current SMP
supercomputers.

Keywords: Block two-stage methods, alternating iterations, overlapping,
parallel computing, shared memory, distributed memory, Laplace’s
equation, Markov chains.

1. Introduction

Consider the problem of solving a linear system

Ax = b, (1)

where A is an n× n matrix such that b is in R(A), the range of A.
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Given a splitting A = M−N (M nonsingular), a classical iterative method
produces the following iteration scheme

Mx(l+1) = Nx(l) + b, l = 0, 1, . . . . (2)

On the other hand, when the linear systems (2) are not solved exactly,
but rather their solutions approximated by iterative methods, we are in the
presence of a two-stage method (see e.g. [1], [2]). That is, consider the
splitting M = F −G and perform, at each outer step l, q(l) inner iterations
of the iterative procedure induced by this splitting. Thus, the two-stage
method can be written as follows

x(l+1) = (F−1G)q(l)x(l) +

q(l)−1
∑

j=0

(F−1G)jF−1(Nx(l) + b), l = 0, 1, . . . . (3)

Without loss of generality, let us assume that the matrix A has the form

A =











A11 A12 · · · A1r

A21 A22 · · · A2r
...

...
...

Ar1 Ar2 · · · Arr











, (4)

with the diagonal blocks Aii being square of order ni, 1 ≤ i ≤ r,
∑r

i=1 ni =
n. Let A = M − N be a splitting of A such that M is a block diagonal
matrix M = Diag{M1, . . . ,Mi, . . . ,Mr}, and let us consider the splittings
Mi = Bi − Ci, Mi = Fi − Gi, 1 ≤ i ≤ r. Let M = Pi − Qi = Ri − Si be
splittings of the matrix M such that

Pi = Diag{I, . . . , Bi, . . . , I}, Ri = Diag{I, . . . , Fi, . . . , I}. (5)

Moreover, let the n× n diagonal matrices Ei have ones in the entries corre-
sponding to the diagonal block Mi and zero otherwise. In order to approxi-
mate the linear systems (2) we perform, at each outer iteration l, q(i, l) inner
iterations of the following alternating iterative scheme:

z
(k+ 1

2
)

i = P−1i Qiz
(k)
i + P−1i (Nx(l) + b),

z
(k+1)
i = R−1i Siz

(k+ 1

2
)

i +R−1i (Nx(l) + b), k = 0, 1, . . . , q(i, l)− 1,
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with z(0) = x(l), or equivalently

z
(k+1)
i = R−1i SiP

−1
i Qiz

(k)+R−1i (SiP
−1
i +I)(Nx(l)+b), k = 0, 1, . . . , q(i, l)−1.

Thus, for l = 0, 1, . . ., the alternating two-stage method can be written as
follows,

x(l+1) =

r
∑

i=1

Eiz
q(i,l)
i =

r
∑

i=1

Ei[(R
−1
i SiP

−1
i Qi)

q(i,l)x(l)

+

q(i,l)−1
∑

j=0

(R−1i SiP
−1
i Qi)

jR−1i (SiP
−1
i + I)(Nx(l) + b)]. (6)

Note that the global iteration matrix of the alternating two-stage iterative
method (6) can be written as T (l) =

∑r

i=1EiT
(l)
i , with

T
(l)
i = (R−1i SiP

−1
i Qi)

q(i,l) +

q(i,l)−1
∑

j=0

(R−1i SiP
−1
i Qi)

jR−1i (SiP
−1
i + I)N, (7)

or equivalently as

T (l) =

r
∑

i=1

Ei[(R
−1
i SiP

−1
i Qi)

q(i,l) + (I − (R−1i SiP
−1
i Qi)

q(i,l))M−1N ]. (8)

With the above notation, the iterative scheme (6) describes an alternat-
ing two-stage Block-Jacobi type method but note that this method is much
more general if, for example other matrices M , Pi, Ri and/or Ei are chosen.
Particularly if Pi = P , Ri = R for all i = 1, . . . , r, this iteration scheme
includes the alternating method described in [3] but this general formulation
allows us to include overlapping setting the weighting diagonal nonnegative
matrices Ei such that they add up to the identity. From a theoretical point
of view, under certain hypotheses, the presence of overlap can reduce the
convergence rate of the iterative solvers in the nonsingular case. Therefore,
if the extra work required by the use of overlap is offset by a reduction in
the number of iterations, probably the computation time will be reduced;
see [4] and [5]. The experiments performed in [4] have been executed in only
one processor using Matlab for the code implementation. However, to run
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the experiments of [5], a parallel block iterative code was implemented with
the Block Jacobi method as the outer iteration and the point Gauss-Seidel
method as the inner iteration. The test matrix was generated from the dis-
cretization of the Laplace’s equation using the standard five-point stencil and
the experiments were performed on a parallel computer using 16 processors.
As compared to the non-overlapping implementation, the parallel implemen-
tation with overlapping blocks achieved a time reduction about 5%, when
the involved parameters in both algorithms were chosen near to the optimal
values.

Despite the fact that the behavior of the convergence rate of the block-
based iterative solvers with overlap is an open question, specially in the
singular case, some numerical results given in [6] show that overlap can also
improve the asymptotic convergence factor and the sequential execution time
of iterative methods for singular systems, and specifically for ergodic Markov
chains.

The use of quite general weighting matrices in (6) allows us the study of
truly parallel methods (with or without overlap), i.e., methods in which each
processor computes an approximation to the solution of a problem which is
much smaller than the original problem. Recently convergence of (6) has
been analyzed in the context of solving nonsingular linear systems obtain-
ing similar convergence results to those obtained in [3]; see [7] and [8]. In
this paper we give convergence results of these methods considering the gen-
eral formulation for consistent linear systems. Concretely, in Section 3, we
give convergence results of these methods when M-matrices or symmetric
matrices are considered. The numerical experiments performed in Section 4
explore the behavior of these parallel algorithms for the solution of singular
and nonsingular systems. Previously, in Section 2, we present some defini-
tions and preliminaries that are used later in the paper. The conclusions
are given in Section 5. This paper is based upon Migallón et al. [9], but the
current paper includes the following additional research: new convergence re-
sults for symmetric positive semidefinite matrices are given and new parallel
versions of these methods and implementation strategies, with and without
overlapping blocks, are explored.

2. Notation and preliminaries

In this section we summarize some definitions and theoretical results used
later in the paper. Concretely, main results about the existence and unique-
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ness of splittings for stationary iterative methods are presented, the theoret-
ical concepts of convergent and semiconvergent matrix are introduced along
with the most important results that will be used in Section 3 to study the
convergence of the alternating two-stage method when the coefficient matrix
is both a singular M-matrix or a symmetric positive semidefinite matrix.

A general matrix A is called an M-matrix if A can be expressed as A =
sI − B, with B ≥ O, s > 0, and ρ(B) ≤ s. The M-matrix A is singular
when s = ρ(B) and nonsingular when s > ρ(B). Let Zn×n denote the set
of all real n× n matrices which have all non-positive off-diagonal entries. A
splitting A = M − N is called regular if M−1 ≥ O and N ≥ O, and weak
regular if M−1 ≥ O and M−1N ≥ O.

Lemma 1. [2] Given a nonsingular matrix A and a matrix T such that (I−
T )−1 exists, there is a unique pair of matrices P,Q such that P is nonsingular,
T = P−1Q and A = P−Q. The matrices are P = A(I−T )−1 and Q = P−A.

In the context of Lemma 1, it is said that the unique splitting A = P −Q is
induced by the iteration matrix T . We point out that when the matrix A is
singular, the induced splitting is not unique; see e.g., [10].

Theorem 1. [10] Let A be a nonsingular matrix such that A−1 ≥ O. Let
A = M − N = P − Q be weak regular splittings. Consider the matrix T =
P−1QM−1N , then ρ(T ) < 1. Furthermore there is a unique pair of matrices
B,C, such that A = B − C is a weak regular splitting and T = B−1C.

Let T ∈ ℜn×n, by σ(T ) we denote the spectrum of the matrix T . We
define γ(T ) = max{|λ| : λ ∈ σ(T ), λ 6= 1}. We say that two subspaces
S1 and S2 on ℜn are complementary if S1 ⊕ S2 = ℜn, i.e., if S1 ∩ S2 = {0}
and S1 + S2 = ℜn. The index of a square matrix T , denoted by ind T , is
the smallest nonnegative integer k such that R(T k+1) = R(T k). By ind1T
we denote the index associated with the value one, i.e., ind1T = ind(I − T ).
Note that when ρ(T ) = 1, ind1T ≤ 1 if and only if ind1T = 1. We say
that a matrix T ∈ ℜn×n, is convergent if limk→∞ T k = O. It is well known
that a matrix T is convergent if and only if ρ(T ) < 1. By N (T ) we denote
the null space of T . We say that T is semiconvergent if limk→∞ T k exists,
although it need not be the zero matrix. If, on the other hand, ρ(T ) = 1,
two different conditions need to be satisfied to guarantee semiconvergence,
as the following result shows.
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Theorem 2. [11] Let T ∈ ℜn×n, with ρ(T ) = 1. The matrix T is semicon-
vergent if and only if the following two statements hold.

(a) 1 ∈ σ(T ) and γ(T ) < 1,

(b) N (I − T )⊕R(I − T ) = ℜn.

Condition (b) is equivalent to the existence of the group inverse (I−T )#,
and it is also equivalent to having ind1T = 1; see, e.g., [12].

Definition 1. [12] Let A ∈ ℜn×n, and consider the following matrix equa-
tions.
(1) AXA = A,
(2) XAX = X, and
(3) AX = XA.
A {1, 2}-inverse of A is a matrix X which satisfies conditions (1) and (2).
If, in addition, X satisfies condition (3), X is said to be a group inverse of
A.

Note that the group inverse A# of a matrix A, if it exists, is unique and when
A is nonsingular, each generalized inverse coincides with A−1.

Theorem 3. [12] Let T ∈ ℜn×n, with T ≥ O, and let C be a {1, 2}-inverse
of I −T with R(C) complementary to N (I −T ), such that C is nonnegative
on R(I − T ), i.e., the matrix C satisfies the following conditions.
(i) I − T = (I − T )C(I − T ),
(ii) C = C(I − T )C,
(iii) N (I − T )⊕R(C) = ℜn,
(iv) If x ∈ R(I − T ), x ≥ 0 then Cx ≥ 0.
Then, ρ(T ) ≤ 1, and ind1(T ) ≤ 1.

Lemma 2. [12] Let T ∈ ℜn×n be semiconvergent. Then

lim
k→∞

T k = I − (I − T )(I − T )#.

Theorem 4. [13] Let A(l), l = 0, 1, . . . , be a sequence of square complex
matrices such that each group inverse (I − A(l))# exists. Suppose that there
is a subspace S satisfying N (I − A(l)) = S, l = 0, 1, . . . . If there exists a
matrix norm ‖·‖ such that the set {‖A(l)‖}∞l=0 remains bounded and ‖A(l)(I−
A(l))(I − A(l))#‖ ≤ θ < 1, l = 0, 1, . . . , then limi→∞A(l)A(l−1) · · ·A(0) = P ,
where P is a projection matrix onto the subspace S.
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Definition 2. [12] A general M-matrix A is said to have property c if for
some representation of A = sI − B, s > 0, B ≥ O, the matrix s−1B is
semiconvergent.

Obviously, a nonsingular M-matrix always has property c.

Theorem 5. [11] Let A ∈ Zn×n. Let A = M − N be a regular splitting,
and let T = M−1N . Then A is an M-matrix with property c if and only if
ρ(T ) ≤ 1, and N (I − T )⊕R(I − T ) = ℜn.

The transpose and the conjugate transpose of a matrix A ∈ Cn×n are
denoted by AT and AH , respectively. Similarly, given a vector x ∈ C

n, xT

and xH denote the transpose and the conjugate transpose of x, respectively.
A matrix A ∈ Cn×n is said to be symmetric if A = AT , and Hermitian if
A = AH . Clearly a real symmetric matrix is a particular case of a Hermitian
matrix. A complex, not necessarily Hermitian matrix A, is called positive
definite (positive semidefinite) if the real part of xHAx is positive (nonneg-
ative), for all complex x 6= 0. When A is Hermitian, this is equivalent to
requiring that xHAx > 0 (xHAx ≥ 0), for all complex x 6= 0. A general ma-
trix A is positive definite (positive semidefinite) if and only if the Hermitian
matrix A + AH is positive definite (positive semidefinite). Given a matrix
A ∈ Cn×n, the splitting A = M−N is called P -regular if the matrix MH+N
is positive definite. If a matrix A is symmetric positive definite it induces a
vector norm ‖x‖A = (xTAx)

1

2 .

Lemma 3. [14] Let A be a symmetric positive definite matrix and let A =
B − C be a P -regular splitting. Given s ≥ 1, the unique splitting induced by
(B−1C)s is also a P -regular splitting.

Theorem 6. [14] Let A be a Hermitian positive definite matrix. Let A =
M−N = P−Q be P -regular splittings. Consider the matrix T = P−1QM−1N ,
then ρ(T ) < 1. Moreover, the unique splitting A = B − C induced by the
iteration matrix T , such that T = B−1C, is also P -regular.

Theorem 7. [12] Let A = M − N be a P -regular splitting of a symmetric
matrix A. Then the matrix M−1N is semiconvergent if and only if A is
positive semidefinite.

Theorem 8. [15] Let A be a symmetric positive definite matrix. A splitting
A = M −N is P -regular if and only if ‖M−1N‖A < 1.
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3. Convergence

In this section we analyze the convergence of the alternating two-stage
method (6) in the context of singular M-matrices and symmetric positive
semidefinite matrices. Additionally, these results are extended to the nonsin-
gular case. First of all we proceed to study the convergence of the alternating
two-stage method when A is an M-matrix with property c.

Theorem 9. Let A be an M-matrix with property c. Let the splitting A =
M − N be regular, and the splittings M = Pi − Qi = Ri − Si, 1 ≤ i ≤ r
be weak regular. Then, the matrices T (l), l = 0, 1, . . . , defined in (7), satisfy
ρ(T (l)) ≤ 1 and ind1T

(l) ≤ 1.

Proof. From (8), it follows that I − T (l) = (I − H(l))(I − M−1N), l =
0, 1, . . . , where H(l) =

∑r

i=1Ei(R
−1
i SiP

−1
i Qi)

q(i,l). From [16, Theorem 2.1]
and Theorem 1 it follows that ρ(H (l)) < 1. Therefore (I − H(l))−1 exists.
On the other hand the existence of (I −M−1N)# follows from Theorem 5.
Let us consider the matrix C = (I −M−1N)#(I −H(l))−1. Using Definition
1, the matrix C satisfies conditions (i) and (ii) of Theorem 3. Furthermore,
R(C) = R((I − M−1N)#) = R(I − M−1N) and N (I − T (l)) = N (I −
M−1N) = N (A). Moreover, from Theorem 5, it follows that R(I −M−1N)
and N (I − M−1N) are complementary. Let x ∈ R(I − T (l)), x ≥ 0, then
following Theorem 3, to conclude the proof we need to show that Cx ≥ 0.
Since M−1N ≥ O and (I −M−1N)# exists, it follows from [17, Theorem 2]
that (I − M−1N)# is nonnegative on R(I − M−1N). Taking into account
that (I − H(l))−1x ∈ R(I − M−1N) and (I − H(l))−1x ≥ 0, the proof is
complete.

Theorem 10. Let A be an M-matrix with property c. Let the splitting A =
M − N be regular, and the splittings M = Pi − Qi = Ri − Si, 1 ≤ i ≤ r be
weak regular. Assume further that the diagonal entries of the matrices P−1i Qi

and R−1i Si, are positive. Then, the matrices T (l), l = 0, 1, . . . , defined in (7),
are semiconvergent.

Proof. From the hypotheses it follows for all l = 0, 1, . . ., that the matrices

T (l) =

r
∑

i=1

Ei[(R
−1
i SiP

−1
i Qi)

q(i,l) +

q(i,l)−1
∑

j=0

(R−1i SiP
−1
i Qi)

jR−1i (SiP
−1
i + I)N ],
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are nonnegative and have positive diagonal entries. Moreover, from Theo-
rem 9, the matrices T (l), l = 0, 1, . . . , satisfy condition (b) of Theorem 2.
Therefore, using the result in [18, Theorem 2], the proof is complete.

Theorem 11. Let A be an M-matrix with property c. Let the splitting A =
M − N be regular, and the splittings M = Pi − Qi = Ri − Si, 1 ≤ i ≤ r be
weak regular. Then, for each δ ∈ (0, 1), the matrices T

(l)
δ = δT (l) + (1− δ)I,

l = 0, 1, . . . , with T (l) defined in (7), are semiconvergent.

Proof. Since I−T
(l)
δ = δ(I−T (l)), l = 0, 1, . . . , from Theorem 9 it follows,

for each δ ∈ (0, 1), that ρ(T
(l)
δ ) ≤ 1 and N (I − T

(l)
δ ) ⊕ R(I − T

(l)
δ ) = ℜn,

l = 0, 1, . . . . Moreover, T (l) ≥ O. Thus (see e.g., [12, Exercise 6.4.3]), T
(l)
δ

has only the eigenvalue one on the unit circle, and from Theorem 2 it follows
that T

(l)
δ is semiconvergent for all δ ∈ (0, 1).

Note that in Theorem 10 we have assumed that the matrices P−1i Qi and
R−1i Si, have positive diagonal entries. However, the iteration matrices of
some classical alternating iterative methods do not have this property. In
order to ensure that condition (a) of Theorem 2 holds, from Theorem 11 it
follows that equation (6) can be replaced in the alternating two-stage method
by

x(l+1) = δ(T (l)x(l) + cl) + (1− δ)x(l), l = 0, 1, . . . . (9)

Theorem 12. Let A be an M-matrix with property c. Let the splitting A =
M − N be regular, and the splittings M = Pi − Qi = Ri − Si be weak
regular. Assume that the sequence of inner iterations {q(i, l)}∞l=0 satisfies
q(i, l) = q(i), l = 0, 1, . . . . Then the following two results hold.
(a) If the diagonal entries of the matrices P−1i Qi and R−1i Si, are positive,
the alternating two-stage method (6) converges to a solution of the consistent
linear system Ax = b, for any initial vector x(0).
(b) The alternating two-stage method (6) with the modification (9), converges
to a solution of the consistent linear system Ax = b, for any initial vector
x(0).

Proof. Since q(i, l) = q(i), l = 0, 1, . . . , then there is a single iteration
matrix, i.e.,

T (l) = T =

r
∑

i=1

Ei[(R
−1
i SiP

−1
i Qi)

q(i)+

q(i)−1
∑

j=0

(R−1i SiP
−1
i Qi)

jR−1i (SiP
−1
i +I)N ].
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Let x∗ be a solution of (1), then e(l) = x(l) − x∗ = Te(l−1) = T le(0), for
l = 1, 2, . . . . In the case (a), from Theorem 10, T is semiconvergent, and from
Lemma 2 it follows that

lim
l→∞

e(l) = lim
l→∞

T le(0) = [I − (I − T )(I − T )#]e(0) ∈ N (I − T ) = N (A).

Therefore, the proof of part (a) is complete. The proof of part (b) is analo-
gous, but using Theorem 11.

Theorem 13. Let A be an M-matrix with property c. Let the splitting A =
M − N be regular, and the splittings M = Pi − Qi = Ri − Si, 1 ≤ i ≤ r
be weak regular. Suppose that there exists a matrix norm ‖ · ‖ such that
‖T (l)(I − T (l))(I − T (l))#‖ < 1, l = 0, 1, . . . , where T (l) are defined in (7).
Assume further that the sequence of inner iterations q(i, l), l = 0, 1 . . . , 1 ≤
i ≤ r remains bounded. Then, the alternating two-stage iterative method (6)
converges to a solution of the consistent linear system Ax = b, for any initial
vector x(0)

Proof. The proof is an immediate consequence of Theorems 4 and 9.

Note that in the particular case in which A is a nonsingular M-matrix, the
hypotheses of Theorem 13 can be lightened as follows.

Theorem 14. Let A be a nonsingular M-matrix. Let the splitting A =
M − N be regular, and the splittings M = Pi − Qi = Ri − Si, 1 ≤ i ≤ r be
weak regular. Then, the alternating two-stage iterative method (6) converges
to the solution of the nonsingular linear system Ax = b, for any initial vector
x(0) and for any sequence of inner iterations q(i, l), l = 0, 1 . . . , 1 ≤ i ≤ r.

Proof. Reasoning as in Theorem 15 of [3] the iteration matrices can be
written as

T (l) =
r
∑

i=1

Ei[(B
−1
i Ci)

q(i,l) + (I − (B−1i Ci)
q(i,l))M−1N ], l = 0, 1, . . . ,

such that B−1i Ci = R−1i SiP
−1
i Qi, and M = Bi − Ci, 1 ≤ i ≤ r are weak

regular splittings. Therefore the matrices T (l), l = 0, 1, . . . , can be seen as
the iteration matrices of a two-stage multisplitting method. Therefore using
the result of Theorem 3.2 in [19] the proof is complete.
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Next we study the symmetric positive semidefinite case.

Theorem 15. Let A be a symmetric positive semidefinite matrix. Let the
splitting A = M −N be such that M is a symmetric positive definite matrix
and N is a positive semidefinite matrix. Let M = Pi−Qi = Ri−Si, 1 ≤ i ≤ r
be P -regular splittings and Ei = αiI, 1 ≤ i ≤ r, with αi > 0 and

∑r

i=1 αi = 1.
Assume that the sequence of inner iterations {q(i, l)}∞l=0 satisfies q(i, l) =
q(i), l = 0, 1, . . . . Then the alternating two-stage method (6) converges to a
solution of the consistent linear system Ax = b, for any initial vector x(0).

Proof. Since q(i, l) = q(i), l = 0, 1, . . . , then there is a single iteration
matrix, i.e.,

T (l) = T =

r
∑

i=1

Ei[(R
−1
i SiP

−1
i Qi)

q(i) + (I − (R−1i SiP
−1
i Qi)

q(i))M−1N ].

Moreover, from Theorem 6, for each i, 1 ≤ i ≤ r, there exists a pair of
matrices Bi, Ci, such that R−1i SiP

−1
i Qi = B−1i Ci, M = Bi−Ci is a P -regular

splitting and ρ(B−1i Ci) < 1. Therefore, I − (B−1i Ci)
q(i) is a nonsingular

matrix. Thus, from Lemma 1 and Lemma 3 it follows that the splitting
induced by (B−1i Ci)

q(i), namelyM = B̂i−Ĉi, with B̂i = M(I−(B−1i Ci)
q(i))−1,

is P -regular.
On the other hand, since each matrix B̂i is positive definite, the ma-

trix
∑r

i=1EiB̂i

−1
is positive definite, and therefore nonsingular. Moreover

ρ(
∑r

i=1EiB̂i

−1
Ĉi) < 1.

Let B̂ =
(

∑r

i=1EiB̂i

−1
)−1

and Ĉ = B̂
(

∑r

i=1EiB̂i

−1
Ĉi

)

. Then taking

into account that M = B̂ − Ĉ, it obtains

T (l) = T =

r
∑

i=1

EiB̂i

−1
Ĉi +

(

I −
r
∑

i=1

EiB̂i

−1
Ĉi

)

M−1N =

= B̂−1(Ĉ + (B̂ − Ĉ)M−1N) = B̂−1(Ĉ +N).

Thus, the splitting A = B̂ − (Ĉ +N) is a (non-unique) splitting induced by
T . Since B̂T + Ĉ is positive definite and N is positive semidefinite, B̂T +
Ĉ + N is positive definite and thus this splitting is P -regular. Therefore,
from Theorem 7 it follows that T is a semiconvergent matrix and the proof
is completed.
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Theorem 16. Let A be a symmetric positive semidefinite matrix. Let the
splitting A = M −N be such that M is a symmetric positive definite matrix
and N is a positive semidefinite matrix. Let M = Pi − Qi = Ri − Si be
P -regular splitting and Ei = αiI, 1 ≤ i ≤ r, with αi > 0 and

∑r

i=1 αi = 1.
Suppose that there exists a matrix norm ‖ · ‖ such that ‖T (l)(I − T (l))(I −
T (l))#‖ < 1, l = 0, 1, . . . , where T (l) are defined in (7). Assume further
that the sequence of inner iterations {q(i, l)}∞l=0 remains bounded. Then,
the alternating two-stage iterative method (6) converges to a solution of the
consistent linear system Ax = b, for any initial vector x(0).

Proof. The proof is an immediate consequence of Theorems 4 and 15.

We want to point out that in the particular case in which A is a symmetric
positive definite matrix the linear system (1) is nonsingular and then the
following results hold.

Corollary 1. Let A be a symmetric positive definite matrix. Let the splitting
A = M − N be such that M is symmetric and N is a positive semidefinite
matrix. Let M = Pi − Qi = Ri − Si, 1 ≤ i ≤ r be P -regular splittings and
Ei = αiI, 1 ≤ i ≤ r, with αi > 0 and

∑r

i=1 αi = 1. Assume that the sequence
of inner iterations {q(i, l)}∞l=0 satisfies q(i, l) = q(i), l = 0, 1, . . . . Then the
alternating two-stage method (6) converges to the solution of the nonsingular
linear system Ax = b, for any initial vector x(0).

Corollary 2. Let A be a symmetric positive definite matrix. Let the splitting
A = M − N be such that M is symmetric and N is a positive semidef-
inite matrix. Let M = Pi − Qi = Ri − Si be P -regular splittings and
Ei = αiI, 1 ≤ i ≤ r, with αi > 0 and

∑r

i=1 αi = 1. Suppose that there exists
a matrix norm ‖ · ‖ such that ‖T (l)(I − T (l))(I − T (l))#‖ < 1, l = 0, 1, . . . ,
where T (l) are defined in (7). Assume further that the sequence of inner iter-
ations {q(i, l)}∞l=0 remains bounded. Then, the alternating two-stage iterative
method (6) converges to the solution of the nonsingular linear system Ax = b,
for any initial vector x(0).

In [8], the authors give convergence results for the alternating two-stage
method (6) similar to Corollary 1 but considering weighting matrices Ei ≥ O,
1 ≤ i ≤ r and

∑r

i=1Ei = 1. However, we point out that if the weighting
matrices Ei are of this form, the alternating two-stage iterative method (6)
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may not converge when A is symmetric positive semidefinite (or symmet-
ric positive definite), even though the splittings satisfy Theorem 15 or 16
(Corollary 1 or 2); see Examples 1 and 2. Therefore, Theorems 3 and 4 of
[8] are not true. This is due to they consider in the proof of these theorems
that

∑r

i=1 ‖Ei‖A = 1 and this equality does not hold for the above general
weighting matrices.

Example 1. Let A be the following symmetric positive semidefinite matrix.

A =

[

0.75 0.75
0.75 0.75

]

.

Consider the splitting A = M −N , such that

M =

[

1 0.75
0.75 1

]

= Pi −Qi = Ri − Si, i = 1, 2,

where

P1 = R1 =

[

1.75 −2
2 3

]

, P2 = R2 =

[

3 2
−2 1.75

]

.

Note that M is a symmetric positive definite matrix, N = M−A is a positive
definite matrix and M = Pi −Qi = Ri − Si, i = 1, 2 are P -regular splitting.

Then, setting E1 =

[

0 0
0 1

]

, E2 =

[

1 0
0 0

]

, and q(i, l) = q(i) = 1, i =

1, 2, l = 0, 1, . . ., the iteration matrix T =
∑2

i=1Ei[(R
−1
i SiP

−1
i Qi) + (I −

(R−1i SiP
−1
i Qi))M

−1N ] =

[

1.00986 0.00986
0.00986 1.00986

]

, has spectral radius equal to

1.0197, and the alternating two-stage iterative method (6) is not convergent.

Example 2. Let A be the following symmetric positive definite matrix

A =

[

0.75 0
0 0.5

]

.

Consider the splitting A = M −N , such that

M =

[

0.75 0
0 0.75

]

= Pi −Qi = Ri − Si, i = 1, 2,

where

P1 = R1 =

[

0.3934 −2.0660
2.0660 7.6244

]

, P2 = R2 =

[

7.6244 2.0660
−2.0660 0.3934

]

.

13



Note that M is a symmetric matrix, N = M − A is a positive semidefi-
nite matrix and M = Pi − Qi = Ri − Si, i = 1, 2 are P -regular splitting.

Then, setting E1 =

[

0 0
0 1

]

, E2 =

[

1 0
0 0

]

, and q(i, l) = q(i) = 1, i =

1, 2, l = 0, 1, . . ., the iteration matrix T =
∑2

i=1Ei[(R
−1
i SiP

−1
i Qi) + (I −

(R−1i SiP
−1
i Qi))M

−1N ] =

[

0.87499 0.16666
0.24999 0.91666

]

, has spectral radius equal to

1.101, and the alternating two-stage iterative method (6) is not convergent.

Theorem 17. Let A be a symmetric positive semidefinite matrix. Let the
splitting A = M −N be such that M = Diag(M1, . . . ,Mi, . . . ,Mr) is a sym-
metric positive definite matrix and N is a positive semidefinite matrix. Let
M = Pi − Qi = Ri − Si, 1 ≤ i ≤ r be the splittings defined in (5) such that
the splittings Mi = Bi − Ci = Fi − Gi, 1 ≤ i ≤ r are P -regular. Consider
the diagonal matrices Ei, 1 ≤ i ≤ r have ones in the entries corresponding
to the diagonal block Mi and zero otherwise and assume that the sequence
of inner iterations {q(i, l)}∞l=0 satisfies q(i, l) = q(i), l = 0, 1, . . . . Then the
alternating two-stage method (6) converges to a solution of the consistent
linear system Ax = b, for any initial vector x(0).

Proof. Since q(i, l) = q(i), l = 0, 1, . . . , from (5) and (8) it follows that

T (l) = T = H + (I −H)M−1N,

with

H = Diag((F−11 G1B
−1
1 C1)

q(1), . . . , (F−1i GiB
−1
i Ci)

q(i), . . . , (F−1r GrB
−1
r Cr)

q(r))

and M−1 = Diag(M−1
1 , . . . ,M−1

i , . . . ,M−1
r ). From Theorem 6, for i, 1 ≤

i ≤ r, there exists a pair of matrices Ui, Vi, such that F−1i GiB
−1
i Ci = U−1i Vi,

Mi = Ui − Vi is a P -regular splitting and ρ(U−1i Vi) < 1. Therefore, I −
(U−1i Vi)

q(i) is a nonsingular matrix. From Lemma 1 and Lemma 3 it follows
that the splitting induced by (U−1i Vi)

q(i), namely Mi = Ûi − V̂i, with Ûi =
Mi(I − (U−1i Vi)

q(i))−1, is P -regular. Let Û = Diag(Û1, . . . , Ûi, . . . , Ûr) and
V̂ = Diag(V̂1, . . . , V̂i, . . . , V̂r), then T (l) = T = Û−1V̂ + (I − Û−1V̂ )M−1N =
Û−1(V̂ +(Û−V̂ )M−1N) = Û−1(V̂ +N). Thus, the splitting A = Û−(V̂ +N)
is a (non-unique) splitting induced by T . Since ÛT + V̂ is positive definite
and N is positive semidefinite, reasoning in the same way as in Theorem 15
the proof is completed.
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Theorem 18. Let A be a symmetric positive semidefinite matrix. Let the
splitting A = M −N be such that M = Diag(M1, . . . ,Mi, . . . ,Mr) is a sym-
metric positive definite matrix and N is a positive semidefinite matrix. Let
M = Pi − Qi = Ri − Si, 1 ≤ i ≤ r be the splittings defined in (5) such that
the splittings Mi = Bi − Ci = Fi − Gi, 1 ≤ i ≤ r are P -regular. Consider
the diagonal matrices Ei, 1 ≤ i ≤ r have ones in the entries correspond-
ing to the diagonal block Mi and zero otherwise. Suppose that there exists
a matrix norm ‖ · ‖ such that ‖T (l)(I − T (l))(I − T (l))#‖ < 1, l = 0, 1, . . . ,
where T (l) are defined in (7). Assume further that the sequence of inner iter-
ations {q(i, l)}∞l=0 remains bounded. Then, the alternating two-stage iterative
method (6) converges to a solution of the consistent linear system Ax = b,
for any initial vector x(0).

Proof. The proof is an immediate consequence of Theorems 4 and 17.

Theorem 19. Let A be a symmetric positive semidefinite matrix. Let the
splitting A = M −N be such that M is a symmetric positive definite matrix
and N is a positive semidefinite matrix. Let M = Pi − Qi = Ri − Si, 1 ≤
i ≤ r be P -regular splittings. Assume that the sequence of inner iterations
{q(i, l)}∞l=0 satisfies q(i, l) = q(i), l = 0, 1, . . . . Given a fixed positive number
θ < 1, let η = θ/(

∑r

i=1 ‖Ei‖M). Let q̂ be such that ‖(R−1i SiP
−1
i Qi)

q‖M ≤ η
for all q ≥ q̂, i = 1, . . . , r. If q(i) ≥ q̂, then the alternating two-stage method
(6) converges to a solution of the consistent linear system Ax = b, for any
initial vector x(0).

Proof. Since q(i, l) = q(i), l = 0, 1, . . . , then there is a single iteration
matrix, i.e.,

T (l) = T =
r
∑

i=1

Ei[(R
−1
i SiP

−1
i Qi)

q(i) + (I − (R−1i SiP
−1
i Qi)

q(i))M−1N ].

Moreover, from Theorem 6, there is a pair of matrices Bi, Ci, such that
R−1i SiP

−1
i Qi = B−1i Ci, and M = Bi − Ci is a P -regular splitting. Since M

is a symmetric positive definite matrix, by the hypotheses and Theorem 8 it
obtains that ‖

∑r

i=1Ei(B
−1
i Ci)

q(i)‖M < 1. Then, using Lemma 1 there exist
B and C such that

∑r

i=1Ei(B
−1
i Ci)

q(i) = B−1C and M = B − C. Since
‖B−1C‖M < 1, this splitting is P -regular and it obtains

T (l) = T = B−1(C + (B − C)M−1N) = B−1(C +N).
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Thus, the splitting A = B − (C +N) is a (non-unique) splitting induced by
T . Since BT +C is positive definite and N is positive semidefinite, reasoning
in the same way as in Theorem 15 the proof is completed.

Note that, Theorem 15 requires the assumption that weighting matrices
are multiples of identity. This assumption on the weighting matrices have lit-
tle applicability for analysis of parallel processing. However, Theorem 19 does
not have this restriction. In the Example 1, where there is no convergence
using general weighting matrices, the splittings satisfies hypotheses of Theo-
rem 19, and the smallest integer q̂ for which ‖(R−1i SiP

−1
i Qi)

q̂‖M < 1∑
2

i=1
‖Ei‖M

,

is q̂ = 11. Thus for q(i, l) = q(i) ≥ 11 l = 0, 1, . . . , Theorem 19 assures the
convergence of the alternating two-stage method (6). Note that, in this case,
q(i, l) = q(i) = 2 is the smallest integer for which the alternating two-stage
method (6) converges.

Theorem 20. Let A be a symmetric positive semidefinite matrix. Let the
splitting A = M − N be such that M is a symmetric positive definite ma-
trix and N is a positive semidefinite matrix. Let M = Pi − Qi = Ri −
Si be P -regular splitting. Given a fixed positive number θ < 1, let η =
θ/(
∑r

i=1 ‖Ei‖M). Let q̂ be such that ‖(R−1i SiP
−1
i Qi)

q‖M ≤ η for all q ≥
q̂, i = 1, . . . , r. Suppose that there exists a matrix norm ‖ · ‖ such that
‖T (l)(I − T (l))(I − T (l))#‖ < 1, l = 0, 1, . . . , where T (l) are defined in (7). If
q(i, l) ≥ q̂, then, the alternating two-stage iterative method (6) converges to
a solution of the consistent linear system Ax = b, for any initial vector x(0).

Proof. The proof is an immediate consequence of Theorems 4 and 19.

Note that in the particular case in which A is symmetric positive definite and
therefore nonsingular, the hypotheses on the matrix M in Theorems 15–20
can be lightened in the sense that if M = A +N is symmetric then M is a
symmetric positive definite matrix.

4. Experimental setup and results

The alternating iterative methods treated here have been applied to
the solution of singular and nonsingular linear systems. In the nonsingu-
lar case, the problem to be solved comes from the discretization of the
Laplace’s equation satisfying Dirichlet boundary conditions on the rectan-
gle Ω = [0, a]× [0, b]. The discretization of the domain, using five point finite
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differences, with J × K points equally spaced by h, yields a linear system
Ax = b, where A is block tridiagonal, A = tridiag[−I, C,−I], where I and
C are K × K matrices, I is the identity, and C = tridiag[−1, 4,−1]. Note
that A is a nonsingular M-matrix with J × J blocks of size K × K. Then
the convergence of the alternating two-stage method (6) is guaranteed when
the splittings are chosen as in Theorem 14. Note that the Block Jacobi,
the Block Gauss-Seidel and the Symmetric Block Gauss-Seidel splittings of
an M-matrix are regular and weak regular splittings [12]. In the singu-
lar case, the test problems arise from Markov chain modelling. Concretely,
these methods can be used to find the stationary probability distribution
of a Markov chain, i.e., one is looking for a nonnegative vector x such that
Bx = x, where B is a nonnegative column stochastic matrix, i.e., BT e = e,
where e = (1, 1, . . . , 1)T . This implies that ρ(B) = ρ(BT ) = 1; see e.g., [12].
The vector of probabilities is normalized so that xT e = 1. In this case, the
system to be solved is

(I −B)x = 0. (10)

If B is a transition matrix of a Markov chain, the matrix A = I − B is an
M-matrix with property c, and thus the convergence of the alternating two-
stage method (6) with the modification (9), if need be, is guaranteed when
the splittings are chosen as in Theorems 12 and 13.

In the performed experiments , the variables are partitioned into r groups,
i.e., x = [xT

1 , x
T
2 , . . . , x

T
r ]

T , xi ∈ ℜni, i = 1, . . . , r,
∑r

i=1 ni = n. Therefore,
the matrix A is partitioned into r × r blocks as it is described in (4), with
the diagonal blocks Aii being square of order ni. In the experiments reported
in this paper, the number of obtained groups, r, is larger than the number
of processes p. Thus, we have assembled blocks from (4) into p groups,
each group being assigned to one process. There are rℓ blocks assigned to
process ℓ, ℓ = 1, . . . , p, and thus

∑p

ℓ=1 rℓ = r. In order to explain the tested
iterative methods, we describe the Block Jacobi (BJ) and the Symmetric
Block Gauss-Seidel (SBGS) Algorithms, for solving these linear systems, for
a generic number of blocks q in (4).

By setting b = [bT1 , b
T
2 , . . . , b

T
r ]

T = 0, Algorithms 1 and 2 can be used for
solving the Markov singular linear system (10). In this case, we will assume
that the solution x is normalized so that xT e = 1. In fact, in the algorithms
studied below, such normalization is assumed at every iteration when sin-
gular linear systems are solved. On the other hand, in order to ensure the
regularity of the Block Jacobi splitting, when B is the transition matrix of
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Algorithm 1: (Block Jacobi - BJ)

Initialization x(0)T = [x
(0)
1

T
, x

(0)
2

T
, . . . , x

(0)
q

T
], l = 0;

repeat
for i = 1 to q do

(11)Solve (or approximate) Aiix
(l+1)
i = −

∑q
j=1

j 6=i

Aijx
(l)
j + bi;

end

until convergence;

Algorithm 2: (Symmetric Block Gauss-Seidel - SBGS)

Initialization x(0)T = [x
(0)
1

T
, x

(0)
2

T
, . . . , x

(0)
q

T
], l = 0;

repeat
for i = 1 to q do

Solve (or approximate)

(12)Aiix
(l+ 1

2
)

i = −
∑i−1

j=1Aijx
(l+ 1

2
)

j −
∑q

j=i+1Aijx
(l)
j + bi;

end

until convergence;
repeat

for i = q to 1 do
Solve (or approximate)

(13)Aiix
(l+1)
i = −

∑q

j=i+1Aijx
(l+1)
j −

∑i−1
j=1Aijx

(l+ 1

2
)

j + bi;

end

until convergence;
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a finite homogeneous Markov chain, one can suppose that each column of
N = A−Diag(A11, . . . , Arr) must have one non-zero entry, or each block Aii

must be irreducible and at least one column, for each corresponding block
in N , must have at least one non-zero entry; see, e.g., [13]. In Algorithm 1,
the linear systems (11) can be solved independently of each other. Thus,
this algorithm is inherently parallel. When each solution of (11) in Algo-
rithm 1 is approximated by an alternating iterative method, this is called
an alternating two-stage method. In particular, each solution of (11) could
be approximated by the Symmetric Block Gauss-Seidel method. In order to
describe the parallel algorithms explored in this paper, we assume that there
are p processes with rℓ blocks assigned to process ℓ, ℓ = 1, . . . , p. In Step
3 of Algorithm 3 (PAGS), each solution of (12) and (13) is approximated
using Gauss-Seidel iterations while in Algorithm 4 (PALU), these solutions
are obtained using LU factorizations. We have used as the global stop-

Algorithm 3: Parallel Alternating Algorithm with GS inner iterations
- PAGS
Divide the r blocks of (4) into p groups, each assigned to a different
process ℓ;
1. Perform parallel BJ (with q = p in Algorithm 1), i.e., each process
approximates the solution of one linear system (11) (This is the outer
iteration);
2. Each solution of (11) in Step 1 is approximated using t steps of
SBGS (with q = rℓ in Algorithm 2);
3. Each solution of (12) and (13) in Step 2 is approximated by a fixed
number m of Gauss-Seidel (GS) iterations;

ping criterion (i.e., in the outer iteration) ‖Ax(l) − b‖2 < ε and to guarantee
convergence, for the singular linear systems, we use the customary device of
shifting the iteration matrix from T to Tδ = δT + (1− δ)I, where 0 < δ < 1.
This shift is performed at the end of each outer iteration. This is also the
point of the computation where the vector x(l) is normalized. In the experi-
ments reported in this section we have used ε = 10−6 and δ = 0.95. We note
that, the computation of both the stopping criterion and the normalization
is also performed in parallel with the need of an AllReduce operation at the
end. Additionally, the shift Tδ is also computed by all of the processes before
an AllGatherv operation is accomplished.
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Algorithm 4: Parallel Alternating Algorithm using LU factorizations
- PALU
Divide the r blocks of (4) into p groups, each assigned to a different
process ℓ;
1. Perform parallel BJ (with q = p in Algorithm 1), i.e., each process
approximates the solution of one linear system (11) (This is the outer
iteration);
2. Each solution of (11) in Step 1 is approximated using t steps of
SBGS (with q = rℓ in Algorithm 2);
3. Each solution of (12) and (13) in Step 2 is obtained using LU
factorizations;

Matrix Number of processes Row-wise distribution
LAPLACE 4 25000 × 4
NCD 8 ((37828, 37827) × 3, 37828 × 2)

QNATM1

4 523269 × 4
8 (261634, 261635) × 4
12 174423 × 12
16 (130817 × 3, 130818) × 4

QNATM2

4 1178117 × 4
8 (589058, 589059) × 4
12 (392706 × 2, 392705) × 4
16 (294529 × 3, 294530) × 4
24 (196353 × 5, 196352) × 4

Table 1: Row-wise distribution for the test matrices.

20



We have implemented the algorithms described here on an HPC cluster
of 26 nodes HP Proliant SL390s G7 connected through a network of low-
latency QDR Infiniband-based. Each node consists of two Intel XEON X5660
hexacore at up to 2.8 GHz and 12MB cache per processor, with 48 GB of
RAM. The operating system is CentOS Linux 5.6 for x86 64 bit.

We have run our codes using several test matrices. The singular models
are taken from [20]. The first model is a multi-class, finite-buffer, priority
queuing network model with applicability to telecommunications modelling.
The matrices we use are of order 2093076 and 4712468 and we label them
QNATM1 and QNATM2, respectively. The QNATM1 matrix has 14120056
nonzero entries and the QNATM2 matrix has 31796856 nonzero entries. The
second model represents the system architecture of a time-shared, multipro-
grammed, paged, virtual memory computer. The resulting nearly completely
decomposable (NCD) matrix corresponds to 120 users. This matrix is of or-
der 302621 and has 2074061 nonzero elements; see [21] for more details. In the
nonsingular case, we discuss the results for a Laplace matrix of size 100000.
This matrix, labelled as LAPLACE, has 1000×1000 blocks of size 100×100.

A sparse matrix format is considered in order to store the coefficient
matrices and all block structures needed in the algorithms. Concretely, the
Compressed Sparse Row (CSR) format was used, which is one of the most
extensively used storage schemes for general sparse matrices, with minimal
storage requirements.

We have used equal block sizes obtained from the original matrix. These
equal block sizes were obtained in the following way: firstly, we consider a
balanced block diagonal structure depending on the number of processes (see
Table 1). That is a row-wise distribution is chosen, where each process gets,
if possible, the same amount of consecutive rows. If the number of rows is not
a multiple of the number of processes there are some processes with one more
row. Hence, we construct, at each diagonal block, blocks of a predetermined
and constant size ni = η. If the order of a diagonal block is not a multiple
of η, the last block is of order greater than η. Figure 1(a) shows this block
structure for an intermediate process.

Algorithms 3 and 4 use a row domain decomposition, in which each sub-
domain consists of several consecutive rows of A without overlapping. Al-
ternatively, we can consider that every subdomain has an overlapping in the
following way: the number of rows of the original non-overlapped subdo-
mains is incremented by 2s rows, s rows in the upper part and s rows in
the lower part; the first and last subdomains are incremented by 2s rows in
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Figure 1: Row domain decomposition for an intermediate process.
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Figure 2: Efficiency PAGS Algorithm. QNATM matrices, m = 2, t = 10, η = 50.

the lower part and upper part, respectively. In each overlapping subdomain,
calculations are performed independently of each other in the framework of
a Block Jacobi iteration. Figure 1(b) shows this overlapping subdomain for
an intermediate process. After each Block Jacobi iteration, the overlapping
components of the current approximation are assembled in average way. In
this case, the AllGatherv operation is performed over a vector of size n+2sp.
After that operation, each process compacts this vector in another vector of
size n taking into account that the overlapping components are assembled in
average way. Moreover, using the overlapping pattern and that the iterative
vectors are nonnegative, it is possible to compute the normalization in par-
allel as in the non-overlapped case. We have called the overlapped versions
of Algorithms 3 and 4, OPAGS and OPALU Algorithms, respectively.

22



0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

T
im

e

PAGS m=1 34.12 23.05 16.58 15.00 15.11 15.75 16.68

PAGS m=2 29.84 21.25 16.45 15.76 16.43 17.52 18.93

PAGS m=3 31.15 23.04 18.58 18.25 19.41 20.92 22.75

PAGS m=4 33.77 25.66 21.37 21.34 22.66 24.60 27.01

PALU 24.03 15.80 10.98 9.97 10.29 10.92 11.83

t=1 t=2 t=5 t=10 t=15 t=20 t=25
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Figure 3: PAGS versus PALU Algorithms. QNATM matrices, η = 50. Distributed
memory.
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Figure 4: PAGS versus PALU Algorithms. QNATM matrices, η = 50. Distributed
memory versus shared memory.
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t=1 t=5 t=8 t=10 t=20

PAGS m=2 (?=50) 71.51 33.79 31.09 30.50 31.97

OPAGS m=2 (?=50, s=50) 72.71 34.09 31.19 30.66 31.79

PAGS m=2 (?=100) 71.39 32.71 29.81 29.15 30.55

OPAGS m=2 (?=100, s=50) 57.71 27.74 25.52 25.12 26.19

PALU (?=100) 60.19 25.44 22.80 22.36 23.14

OPALU (?=100, s=50) 52.25 20.49 18.05 17.44 17.50
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(a) QNATM1 matrix, 12 (3 × 4) processes.

t=1 t=5 t=10 t=15 t=20

PAGS m=2 (?=50) 170.88 85.36 77.18 76.47 78.13

OPAGS m=2 (?=50, s=50) 172.69 85.44 76.94 76.52 78.18

PAGS m=2 (?=100) 211.19 102.10 91.11 90.01 91.78

OPAGS m=2 (?=100, s=100) 168.28 82.68 74.33 73.51 74.91

PALU (?=100) 174.46 74.10 63.48 62.12 63.21

OPALU (?=100, s=100) 137.79 58.66 50.58 49.39 50.35
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(b) QNATM2 matrix, 12 (4× 3) processes.

Figure 5: Overlapping versus non-overlapping Algorithms. QNATM matrices. Distributed
shared memory.
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Figure 6: PAGS versus PALU Algorithms. Laplace matrix. Distributed memory, 4 (4×1)
nodes.

t=1 t=3 t=5 t=8 t=10 t=20

PAGS m=1 (?=100) 21.14 14.73 13.67 13.43 13.57 15.55
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(a) PAGS versus OPAGS Algorithms.

t=1 t=3 t=5 t=8 t=10 t=20

PALU (?=100) 11.15 8.29 8.09 8.53 9.02 12.30
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(b) PALU versus OPALU Algorithms.

Figure 7: Overlapping versus non-overlapping Algorithms. Laplace matrix. Distributed
memory, 4 (4× 1) nodes.
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t=1 t=5 t=10 t=15 t=20

PAGS m=1 (?=400) 16025 3648 2198 1717 1468

OPAGS m=1 (?=400, s=100) 14077 3336 2080 1653 1427

PAGS m=2 (?=400) 14034 3233 1927 1478 1241

OPAGS m=2 (?=400, s=100) 12087 2922 1807 1412 1197

PALU (?=400) 6867 1456 636 379 271

OPALU (?=400, s=100) 584 143 81 58 45
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Figure 8: Overlapping versus non-overlapping Algorithms. NCD matrix. Distributed
memory, 8 (8× 1) nodes.

The parallel environment has been managed using MPI (Message Passing
Interface) [22]. Moreover, the BLAS routines [23] for vector computations
and the SPARSKIT routines [24] for handling sparse matrices have been used.
The algorithms have been implemented and tested on distributed and shared
memory, and using a hybrid distributed shared memory model. Concretely,
each process is assigned to a core as follows: let p be the number of physical
cores used, p = d×c indicates that d nodes of the parallel platform have been
used and for each one of these nodes, c cores have been considered. Therefore,
we use a philosophy of distributed shared memory using p = d× c processes
or threads. Particularly, if d = 1, the algorithms are executed in shared
memory using p = c threads on a single node. Conversely, if c = 1, we are
working on distributed memory using p = d nodes. Figure 2 illustrates the
efficiency of the PAGS Algorithm (Algorithm 3) for the QNATM matrices,
using diagonal blocks of size η = 50 and varying the number of processes and
the number of cores per node. In order to calculate the efficiency of these
parallel algorithms, we have used as reference sequential algorithm the best
sequential algorithm obtained from the best execution of Algorithm 3, using
p = 1. Note that Algorithm 3 differs for each value of p, that is, different
sequences of iterative vectors are obtained for several values of the number of
processes p; in this sense, the number of iterations of the parallel executions of
Figure 2(a) differs from the number of iterations of the sequential algorithm.
Therefore superlinear efficiency can be obtained in certain cases.

Furthermore, the speed-up does not decrease significantly as the number
of processes p is increased, i.e., we obtain a good scalability and efficiency of
the algorithm. Generally, the best parallel results have been obtained using
from 1 to 4 cores in each node. Moreover, it seems inappropriate to use 8
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or more cores on a single node. Note that many processing cores sharing
the same system bus and memory bandwidth limits the real performance
advantage.

Figures 3 and 4 compare the behavior of the parallel PAGS and PALU
Algorithms for the QNATM1 and QNATM2 matrices. We note that, for all
tested models, the best parallel results for the PAGS Algorithm are obtained
for m = 1 or m = 2, regardless of the number of processes. Note that the
execution time of the PAGS and PALU Algorithms is reduced as the num-
ber of SBGS steps, t, increases up to an optimal value of t after which the
time starts to increase. This behavior is characteristic of two-stage methods
and although the optimal value of t is difficult to predict, a good choice of
it is one which balances the realization of more inner updates with the de-
crease of the global iterations and its associated computational cost. For the
QNATM models discussed here, the experiments lead us to conclude that a
good choice of t for the three philosophies of implementation is t = 10. Fig-
ure 5 compares the execution time of the algorithms treated here with and
without overlapping, for different sizes of blocks. For the QNATM matrices,
we have obtained the best results for the OPALU Algorithm using blocks of
size η = 100 and a relatively small overlapping compared with the size of the
matrix (s = 50 for the QNATM1 matrix and s = 100 for the QNATM2 ma-
trix). Our experience indicates that, for these matrices, good choices of t for
both overlapping algorithms are between 10−15, obtaining similar execution
times. In Figures 6 and 7 we report results for the Laplace matrix. Similar
results to those obtained for the QNATM matrices were obtained. Note that,
for each value of t, the timings of the PALU Algorithm are generally lower
than those of the PAGS Algorithm, obtaining the greatest saving time of the
parallel PALU Algorithms in relation to the parallel PAGS Algorithms when
only one core is used in each node, that is, using distributed memory. How-
ever if the size of blocks is relatively big with respect to the size of the matrix,
the fill-in caused by the LU factorizations, in the sparse diagonal blocks, in-
creases the execution time of the PALU Algorithm; see Figure 6 (η = 400).
On the other hand, for the Laplace matrix, the saving time obtained with the
overlapping algorithms in relation to the non-overlapping algorithms is poor
when optimal values of t are considered (about 7% in Figure 7(a) and 10.4%
in Figure 7(b)). This is due to the fact that the lower number of iterations
achieved adding overlap is paid by a higher computational cost, in relation
to the small global cost of the algorithms for the Laplace matrix. Let us
highlight some observations about the results of these algorithms. In gen-
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eral, usually larger overlap leads to faster convergence up to a certain point
where increasing the overlap does not further improve the convergence rate.
But, generally, the amount of overlap needed to minimize the total solving
time is problem specific. As it can be seen in Figure 8, for the NCD matrix,
the OPALU Algorithm with η = 400 and s = 100 reduces tremendously the
number of iterations and the total time to solve the linear system in relation
to the other algorithms analyzed in this paper.

5. Conclusions

In this paper we have studied the problem of solving large consistent
linear systems by means of parallel alternating two-stage algorithms with and
without overlapping. These algorithms have been applied to both singular
and nonsingular large linear systems. In the nonsingular case, the problem
to be solved comes from the discretization of the Laplace’s equation while in
the singular case the test problems arise from Markov chain modelling. The
algorithms have been implemented and tested on distributed and shared
memory, and using a distributed shared memory model, obtaining a good
scalability and efficiency. Generally, the PALU algorithms behave better
than the PAGS algorithms. On the other hand, the overlapping algorithms
have sped up the convergence time of the non-overlapping algorithms. The
amount of overlap needed to improve the convergence rate is problem specific
and depends on the characteristics of the matrix and the block diagonal
structure considered in the corresponding parallel algorithm.
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