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Abstract

RGB-D sensors are capable of providing 3D points (depth) together with color

information associated with each point. These sensors suffer from different

sources of noise. With some kinds of RGB-D sensors, it is possible to pre-

process the color image before assigning the color information to the 3D data.

However, with other kinds of sensors that is not possible: RGB-D data must be

processed directly. In this paper, we compare different approaches for noise and

artifacts reduction: Gaussian, mean and bilateral filter. These methods are time

consuming when managing 3D data, which can be a problem with several real

time applications. We propose new methods to accelerate the whole process

and improve the quality of the color information using entropy information.

Entropy provides a framework for speeding up the involved methods allowing

certain data not to be processed if the entropy value of that data is over or

under a given threshold. The experimental results provide a way to balance the

quality and the acceleration of these methods. The current results show that

our methods improve both the image quality and processing time, as compared

to the original methods.
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1. Introduction

In the last years, an increasing number of applications using three dimen-

sional (3D) data have appeared. 3D data can be obtained from different devices:

3D lasers, stereo cameras, time-of-flight cameras, RGB-D cameras, et cetera. In

general, a 3D sensor provides a set of 3D points (usually called point cloud).

Each point consists of 3 coordinates (X, Y , and Z) and can also contain color

information (a gray, infrared, or RGB value). Here, we are interested in sensors

that can provide a point cloud with color information. It is also important to

note that all the applications using this information have to deal with measure-

ment errors that arise from the sensor’s intrinsic and extrinsic parameters. This

error affects both spatial and color spaces.

Reducing the impact of point position measurement error has been solved

in many works in the last years. However, errors in color acquisition tend to be

addressed by applying classical methods for 2D image noise reduction directly

on the 2D color image for sensors that can provide it. Nevertheless, a separated

color image is not available for all the 3D sensors. Our work is focused on the

application of a method for correcting the color from a 3D data set directly,

without using a separate color image. Furthermore, processing 3D data has an

additional advantage over processing a color image: the 3D discontinuities avoid

processing close points (in 2D) which belong to another object and therefore

must not be processed together. Furthermore, working with 3D data implies a

higher computational cost so high-efficiency methods have to be developed.

In the present paper, we perform a comprehensive review of the most typical

color error sources and the methods commonly used to reduce the color error.

In addition, we propose three new improvements of the original methods of

handling color noise in 3D point clouds.

1.1. Motivation

This work has been motivated by the potential use of these techniques in

robotics, although they can be applied to any 3D point cloud or reconstruc-

tion. Typically, the obtained point cloud has some color irregularities caused by
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changes in light intensity or vignetting (less intensity at image borders). This

effect is specially obvious in areas of the point cloud where the color must be

uniform (such as a wall or the floor). All of these optical effects produce a

non-uniform color of the point cloud. Depending on the input sensor and the

amount of error in the color space, some algorithms may be affected.

Figure 1: Above non-uniform noises, below other example showing the vignetting noise.

Figure 1 shows the effects of noise on a colored 3D point cloud. In the top

image, a plane in gray, which should have a uniform color, is observed. However,

the color is not uniform and must be corrected. In this case, Gaussian noise is

present. In the bottom image, there is a partial view of a color image taken by

a RGB-D sensor in which a vignetting effect can be distinguished. Vignetting

makes the colors in the center of the image different from those on the borders.

The image corners (the bottom right is shown enlarged) have darker colors than

the same pixels in the center of the image. These two effects should be corrected
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before addressing other tasks (like robotics mapping or object recognition). The

different types of noises are explained in Section 3.

1.2. Proposal

In the present paper, we apply three commonly used methods, two linear and

one non-linear, to smooth the color of a 3D point cloud. We use these methods

to mitigate the effects of color changes among neighboring points in the cloud.

The application of these methods on 3D data directly, instead of using the

corresponding 2D image, has the advantage that the color of foreground objects

is not affected by the background and vice versa. As linear smoothing methods

we use the classical mean and Gaussian filters, and as non-linear method, the

bilateral filter [21].

We compare the performance of the three filters for different color noise

sources and propose three new approaches that can be used to improve any

smoothing method. The first method we propose uses an entropy measure to

detect discontinuities in the color space, thus speeding up the existing methods

by discarding points from the cloud that should not be processed. In our second

approach, entropy is used again to obtain the optimum value of the size of

the neighborhood that affects the point smoothing calculations. In this way,

the color smoothing process is improved. Our third approach is based on the

optimal selection of the radius. It assumes that close points will have a similar

entropy, so it is possible to reduce the search for an optimal radius. Although

all the points are processed, the radius is adapted, allowing to process fewer

or more points, depending on the entropy. We perform several experiments for

color smoothing in 3D point clouds and draw our conclusions applying each

of the three methods described above for each noise source and comparing the

results with or without applying our improvements. Although our methods

could be applied, with prior adaptation, to a normal 2D image, some RGB-D

sensors do not provide a 2D image but only 3D data with color information.

Usually, the RGB-D sensor is related with some low cost sensors, like the Kinect

camera. But other sensors are included in the term, like some 3D lasers with
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color information. In some of these sensors, we are not able to access the color

image. For that reason, we have adapted our methods to work with 3D data.

The study and the proposed methods follow a soft computing approach. We

search for a method which aims to use heuristic information to speed up a given

solution (smoothing). Without that heuristic, the problem could not be boarded

under time constraints due to the fact that 3D data is usually much larger than

normal 2D images. The obtained solution is not optimal, but suffienciently

accurate to the problem.

The rest of the paper is structured as follows: after reviewing the state of

the art in Section 2, Section 3 lists the noise sources that we use for testing the

smoothing methods response in our experiments. After that, in Section 4 we

show the quality index used for comparing quantitatively the results of different

methods. Section 5 describes the smoothing filters that are reviewed and com-

pared in this paper. Our proposals for smoothing improvement are described

in Section 6 and Section 7 presents the experimental procedure and the results

obtained with the different smoothing methods, for different noise sources, and

a study of the effect of applying our approaches to each one. Section 8 presents

experiments and results with real images, and finally, in Section 9, we present

our conclusions and future work.

2. Related work

One area that has benefited from 3D sensors has been mobile robotics. Com-

puting the egomotion, which is defined as the movement made by the robot or

the camera between two consecutive poses, is one of the key issues in this area.

Several research works have addressed this problem using visual odometry [24]

sometimes also called pose registration [25][29], which is considered a good esti-

mation for egomotion in the last years. These works can be considered a good

starting point for automatic map building and for solving the Simultaneous

Location And Mapping (SLAM) [14] problem.

Using color information along with the 3D points may improve the results
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of pose registration methods [20][30]. For a review of one particular type of

RGB-D camera, the Kinect, see [19] and [32]. In these works, the 3D data

processing is enhanced by using color information. However, errors that occur

in capturing the color of the 3D points and which can affect the final result are

not addressed.

Recently, several works have developed a mapping or SLAM system using a

RGB-D camera. In [16], the use of a RGB-D sensor is proposed to resolve 3D

visual SLAM in real-time, but they do not solve the problem addressed in this

paper. Something similar happens with [17]. Therefore, our interest is not in

solving the matching problem, which can be done using 3D registration, but in

improving the color representation of the data to use better information when

applying a given method.

To improve the color capturing errors in 3D point sets we adapt two of the

classic image filters, namely the mean and Gaussian filters, to the three dimen-

sional space. We also use the non-linear bilateral filtering [28]. It was originally

proposed to perform an edge-preserving 2D image smoothing by combining do-

main and range filtering. Many applications use this filter to improve image

representation. [26] and [15] use bilateral filtering to obtain an enhanced image

from flash and no-flash image pairs. Tone management is achieved in [1], also

using the bilateral filter. Other studies have been carried out for other sensors,

such as CMOS [2], but for the best of our knowledge none of them uses a RGB-D

sensor. Other advanced color smoothing methods, like BM3D [13] or wavelet

have been reported. However, their direct application to 3D data has not been

described.

A complete review of bilateral filter variations can be found in [3]. In [4] a

comprehensive classification of noise sources is performed. These authors also

propose an improvement for the bilateral filter. This improvement consists in

finding the pair of parameters which minimizes the mean squared error (MSE)

by mean of an exhaustive (and costly) searching process through parameters

space. Moreover they use the strength of edges measured by a Laplacian of

Gaussian operator [21] for pixel classification. Nevertheless, in this paper, by
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using entropy we propose a simpler and lighter way to study the neighborhood

as performed in the bilateral filter.

In [8], the authors use standard deviation as a method to adapt the radius

parameter of a bilateral filter that is used for smoothing a depth image. A

depth image is organized like a 2D image, a x-y coordinate matrix, where pixels

values are distances measured from the point of view, usually the position of

the sensor. Applying the bilateral filter, they correct the position errors in the

point-cloud. The main problem with this approach is that the depth image is

required. Some 3D sensors such as stereo cameras or kinect-like cameras provide

this kind of image, but other devices like range lasers do not. In our case, we

work directly over unorganized point clouds so we do not require a depth image.

In this way, our method can be applied to data sets obtained by any kind of 3D

sensor.

Other works place the emphasis on refining depth images like [5], [6] and [7],

but none of them works with color information. All of them are focus on correct

position, and not on the color of the 3D points.

3. Sources of noise

When using RGB-D cameras, images suffer from the same errors as any

conventional camera. The first type of noise in digital images is the Gaussian

noise, which usually appears from the acquisition phase. It comes from poor

illumination, temperature and/or from the electronic sensor. It is an additive

noise. In a given image I(x, y), the additive noise can be defined as:

I(x, y) = I ′(x, y) + g(x, y) (1)

where I ′(x, y) is the original image without noise and g(x, y) is the noise. When

g is defined as a Gaussian (or normal) probability density function (PDF), then

the noise is considered Gaussian. The PDF of a Gaussian random variable z is
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given by:

f(z) =
1√
2πσ

e−
(z−µ)2

2σ2 (2)

where (µ, σ) are the mean and standard deviation of the distribution. For the

rest of the paper we assume an additive white Gaussian noise.

Another kind of noise is produced by errors in the data transmission: salt

and pepper noise, also called intensity spikes or speckle. The corrupted pixels

are either set at the maximum or minimum value, while unaffected pixels always

remain unchanged. We can model this noise with a given probability ρ (with

0 ≤ ρ ≤ 1). A pixel will have the maximum value (white) with a probability

ρ/2 and have the minimum value (black) with the same probability. This kind

of noise is due to defects in the camera sensor or in the data transmission and

it usually affects only a small number of pixels.

The last source of color noise is vignetting. It consists in the reduction of

an image’s brightness or saturation at the periphery compared to the image

center. Vignetting effect can occur due to different causes. Some arise from the

optical properties of camera lenses. Other sources of vignetting are geometric

in nature. For example, light arriving at oblique angles to the optical axis may

be partially obstructed by the field stop or lens rim [33]. Several computer

vision applications could be affected when vignetting is present. For instance,

object recognition or image mosaicing (map reconstruction when working with

3D data).

4. Color quality measurement

To compare the results of applying the different filters we need a measure-

ment method to analyze their efficacy. We have to clarify that, given a real

image, it is not possible to establish a quantitative metric that indicates how

good is a filter for removing noise. Usually, noise or artifacts are added to

an original image in order to create an image for testing the different meth-

ods. Then, metrics compare the original image with the result of applying a
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noise removal method on the testing image. In this way, we can compare the

performance of different methods.

Several form of quality measurement have been proposed in the literature.

An example is the Peak Signal-to-Noise Ratio (PSNR) which measures the signal

fidelity of a distorted image compared to a reference. It is based on the measure

of the Mean Squared Error (MSE) which is based on the square differences of

color values. It indicates the similarity between two colored point sets.

For a RGB color, the PSNR is obtained as an average of the three values, one

for each color band. This is a simple way to compare color values, but it does

not correlate highly with human perception [18]. Furthermore, mean squared

error has the disadvantage of being affected by outliers. This is a result of the

squaring of each term, which effectively weights large errors more heavily than

small ones.

In this work, we use a more perceptual-like metric, the Universal Image

Quality Index (UQI) [31]. This index establishes a value of changes in the color

of the point cloud. Instead of using traditional error summation methods, the

proposed index is designed by modeling any image distortion as a combination of

three factors: loss of correlation, luminance distortion, and contrast distortion.

The loss of correlation is related to the degree of linear correlation between

the color values of the point clouds. The index is defined in the range [−1, 1]

between two colored point clouds, being 1 when the color of the point clouds

are identical, pixel to pixel, and -1 when the difference is maximum.

Let be p = {pi}, i = 1...N be a set of N 3D points. Each point has 3

coordinates (x, y, z) and 3 colors (r, g, b): pi = {pxi , pyi , pzi , pri , pgi , pbi}. For a

given band, for instance the red band, UQI is defined as:

UQIr =
4σprqr p̄r q̄r

(σ2
pr + σ2

qr )(p̄r
2 + q̄r2)

(3)

where

p̄r =
1

N

N∑
i=1

pri , q̄r =
1

N

N∑
i=1

qri , (4)
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are the mean color values for the two point clouds and

σpr =

√√√√ 1

N − 1

N∑
i=1

(pri − p̄r)2, σqr =

√√√√ 1

N − 1

N∑
i=1

(qri − q̄r)2, (5)

are the color standard deviation. The covariance is defined as:

σprqr =
1

N − 1

N∑
i=1

(pri − p̄r)(qri − q̄r). (6)

The final UQI value is the mean of the UQI from the three bands. We use the

UQI measure for all our experiments as a way to compare the results of applying

different smoothing techniques. This index does not provide a way to measure

the noise in an image but a way to compare two images by a combination of

three factors: loss of correlation, luminance distortion, and contrast distortion.

This is important because it is impossible to know if a given filter is better

than another by comparing the results. We need ground-truth data (i.e. image

without noise).

5. Smoothing methods for RGB-D sensors

For the rest of the paper, we assume that the noise in this kind of sensors

is independent of spatial coordinates and that it is uncorrelated with the image

itself. All the filters described in this section use a neighborhood around one

point to define the filter. Given a point pi, the neighborhood is defined by a

sphere of radius R and the set of points inside the sphere is S = {pj}, j = 1...M .

First, we define linear methods. In linear filters, each point inside the neigh-

borhood is weighted by a given value wj . All the linear filters use the same

procedure and equations. The only difference between them is the weight value.

For the red band, the new color of the point is calculated as follows:

ri =

∑
pj∈S rjwj∑
pj∈S wj

. (7)
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For the other bands, the procedure is the same, but using g or b for green or

blue bands respectively. The final point color is the combination of the obtained

band values.

The first filter is the mean filter. It is defined as the average value from the

points inside the neighborhood. The sum of the weights is always 1.0. So the

former equation is simplified as:

ri =
1

M

∑
pj∈S

rj . (8)

For the rest of the paper, when we refer to this filter we assume that the

neighborhood is spherical.

The second filter is the Gaussian filter [21], which is defined by a discrete

approximation of a PDF with mean 0 and σ standard deviation. The weights

are set accordingly to the distribution. This filter gives more weight to the

points closest to the center of the kernel, decreasing that weight as the distance

to that center increases, using a Gaussian PDF.

Another kind of filter is the non-linear filters which do not use (7). In the

present work we have chosen the bilateral filter because it provides good quality

results. It is an edge-preserving and color-noise-reducing smoothing filter. It

could also be applied to reduce noise in the 3D point coordinates [23], but here

we apply it to achieve color smoothing. The color value at each point is replaced

by an averaged weight of color values from points in the neighborhood S. This

weight can be based on a Gaussian distribution. The weights are computed

simultaneously in Euclidean and color-space distance. The combination of the

two Gaussian distributions provides a way for the filter to preserve color edges.

If a given point in the neighborhood has a different color from the one evaluated,

its value is not included in the final color, as the Gaussian functions will be low

enough. The same occurs when the distance from the evaluated point and the

given point is high enough.

Its complexity is O(N ×M) where N is the number of 3D points and M is

the number of points in the neighborhood. The bilateral algorithm is more time

consuming than the two previous methods, but it provides better smoothing
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results. For that reason, we have developed the current research to speed up

this method. The algorithm is shown in Algorithm 1. We note that for the

point selection (line 2 of this algorithm) any method could be used: sequential,

random, uniform sampling, and et cetera. There is no advantage using one

method or another.

Algorithm 1 Bilateral filtering algorithm. This algorithm is defined for the R

component and must be applied in a similar way for G and B band. So pri is the

R component of point pi. Gσ() functions are PDF with mean 0 and standard

deviation σ.
Require: P3D: 3D point cloud.

P3D = {pi}, i = 1...N, pi = {pxi , pyi , pzi , pri , pgi , pbi}

Require: σs: spatial Gaussian standard deviation.

Require: σc: color Gaussian standard deviation.

Require: r defines the radius for a given neighborhood.

1: P3Dout = ∅

2: for each point pi in P3D do

3: Select a set of points S = {pj}, j = 1...M around pi with a Euclidean

distance d(pi, pj) < r.

4: w = 0

5: acum = 0

6: for each point pj in S do

7: acum = acum+ rj ∗Gσs(||pi − pj ||)Gσc(|ri − rj |)

8: w = w +Gσs(||pi − pj ||)Gσc(|ri − rj |)

9: end for

10: q = pi

11: qri = acum/w

12: P3Dout = P3Dout ∪ q

13: end for

14: return P3Dout: 3D point cloud color smoothed.

We have selected these three filters because their structure facilitates apply-
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ing the improvements explained in the next section. For the original implemen-

tation methods and for the experiments, we have selected a mask size of 0.11

cm for the three methods (mean, Gaussian, and bilateral). This value has been

selected empirically. Note that the greater the size, the greater is the smooth-

ness obtained. However, the blur effect and processing time are also increased.

The standard deviations σs and σc are also chosen empirically.

6. Improvements for smoothing methods

All the methods presented in the previous section use a determined neighbor-

hood to apply the smoothing. In this section, we propose several improvements

that can be used along with the smoothing filters to speed up the whole process

or to obtain better results in terms of color error. Applying one or other of

the given improvements will depend on the final application and the processing

requirements. All the methods presented below can be applied to any of the

previous smoothing methods.

6.1. Discrimination of points using entropy and a fixed radius

This improvement is based on the use of the entropy to discriminate whether

a point should be evaluated or discarded in the smoothing process. The goal of

this improvement is to maintain the level of detail in color edges, while smooth-

ing is applied in areas with less color variation. The speed-up achieved depends

on the environment. Environments with high presence of textured surfaces will

be processed faster. The main advantage of this technique is that it allows

details in high textured areas to be preserved, while allowing to process only

uniform areas.

Entropy is a measure of the uncertainty of a random variable [12]. Let X

be a discrete random variable with probability mass function P (x) = Pr{X =

x}, x ∈ X. The entropy H(X) of a discrete random variable X is defined by

H(X) = −
∑
x∈X

p(x) log2 p(x) (9)
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For color images, given that cj is the color for 3D point pj we redefine entropy

as:

Hc(X) = −
∑
cj∈S

p(cj) log2 p(cj) (10)

where P (cj) is the probability of the color cj = {rj , gj , bj} in the given neighbor-

hood S. We use the mean value from the three bands R, G and B as the final

entropy value. We define a given threshold and only process the points with

an entropy value below this threshold, indicating that the area in S is some-

what uniform. If the entropy is high enough, all the points will be processed.

The computation of the entropy adds a small time cost, but this is counterbal-

anced by benefits in the entire cloud processing. The right-hand side picture in

Figure 2 shows (marked in red) the points not processed due to high entropy.

Figure 2: Left: original image. Right: in red, points not processed due to entropy threshold.

6.2. Neighborhood variation using entropy

The goal of this improvement is to find the optimum window size for the

neighborhood of the smoothing filter. Formally, we seek a radius r∗ for a given

point pi:

r∗ = arg min
r∈R

E(r, et, pi) = ||ec − et||2 (11)
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where et is the entropy threshold and ec is the calculated entropy using the

color information of the points with a distance to pi lower than r. In the

experimental section, for synthetic data we use different values for the entropy

threshold, with 0 < et ≤ 8. For the real data, we fix et = 4 because this value is

the one yielding better results. Figure 3 shows an example of the search of the

optimal radius process. The process begins with a radius of 0.11m and entropy

threshold of 4. It iterates reducing the radius until the calculated entropy is

below the threshold. This occurs when radius is equal to 0.05m.

Figure 3: Sample of optimal radius process calculation.

To this end, a search for the optimal radius is performed starting at a max-

imum radius value Rmax. For each possible radius value, a homogeneity test

based on entropy of the region with the radius is performed. If this entropy

value is below a threshold, the search process ends returning the current radius

value to be used in the smoothing filter. Otherwise, the radius value is decre-

mented for the next iteration. The process continues until the desired entropy

threshold is reached or the radius value is decreased until a minimum value

previously set. In our implementation, the radius is decreased in Rmax/20 at

each iteration until the condition (the entropy value is below the threshold) or

the minimum radius (in our case Rmax/20) are reached. The use of a variable

radius allows to select a bigger radius when processing a uniform color area, and

a smaller one when the area is close to a color edge.
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6.3. Batch processing with optimal radius

The previous approach obtains good results at the cost of much calculation

due to the task of searching the optimum radius for a given entropy at each

point of the image. Our third approach aims to achieve equally good results in

a much lower execution time. This new approach starts computing, for a given

point pi, the optimum radius Rpopt using the method described in section 6.2.

Nevertheless, instead of repeating this work for all the points in the image we

can simplify the process by assuming that the computed Rpopt for pi does not

differ greatly from the values we will obtain if we compute their optimum radius.

Using this assumption, we can use Rpopt to be the optimum radius for a subset

of points in the neighborhood of pi. In this way, we need to determine the

size of this neighborhood around pi. Let Rproc be the radius for the subset of

points around pi, its value must be the highest possible ensuring that we reduce

the use of data outside the analyzed area during the selection of Rpopt, that is

determined by Rmax. Thus, we propose computing Rproc using the following

equation:

Rproc =

 Rmax −Ropt, if Ropt < Rmax/2

Rmax/2, otherwise.
(12)

which ensures that when the area around pi that is being analyzed presents

a high entropy value, in which the computation of Rpopt produces small values

compared to Rmax, Rproc is set to the maximum value that ensures not using

points further than Rmax for processing the neighborhood of pi using Rpopt.

Nevertheless, the smaller the entropy area we find, the bigger Rpopt is obtained

and thus less points are included in the neighborhood of pi. In the case of a

uniform area when the likelihood of obtaining similar values of Ropt for all the

points in the area is high, we have that Rpopt ' Rmax and thus no points are

included in the neighborhood which reduces drastically the efficiency of this

method. In order to solve this effect we include here an optimality relaxation

term by allowing some of the most distant points in the neighborhood of pi

to be smoothed using points further than Rmax when Ropt ≥ Rmax/2. Thus,
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we achieve a considerable reduction of the computation time with a minimum

impact in the overall quality.

With this technique, we assume that close points have a similar processing

radius, so if an optimal radius is selected, neighboring points will have a similar

optimal radius. At the same time, we reduce the execution time because it is not

necessary to compute the optimal radius for all the points (the part more time

consuming of the previous method). Moreover, radius adaptation to selected

entropy parameter avoid unnecessary large radius processing, saving more time.

Finally, once Rpopt is computed and Rproc is determined by (12), all the points

in the neighborhood of pi are smoothed using Rpopt, as the optimum radius for

each of them, and are then marked as visited. Then, a new point pj is randomly

selected among the points not yet visited and the process described here starts

again. This is repeated until all the points in the image are marked as visited.

7. Results and Discussion

In our experiments, we generate 3D synthetic data sets. These sets are the

ground truth data we use in the calculation of the Universal Image Quality

Index (UQI) used to compare the results of applying the different filters. Then,

from each set p, three new sets are generated from each type of noise considered

in this paper: additive Gaussian G(p), Salt and Pepper S&P (p) and Vignetting

V ig(p). Therefore, for each experiment, the original data set (the ground truth)

and the result of applying a filter to the noise distorted sets are available. Both

sets are used in the computation of the UQI value for the given filter. All the

smoothing filters presented in Section 5 have been implemented and adapted

to 3D data, processing each color band individually. We have selected several

scenes with different depths and texture to provide a balanced scene.

Although our methods can be applied to any RGB-D sensor, we have focused

on the low cost RGB-D, as the primary sensor. This kind of sensor has a

resolution of 640×480 (used for the experiments) or 320×240 points, depending

on the camera.
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We have conducted the experiments using the Point Cloud Library (PCL

[27]) in C++. We have also used a software able to generate synthetic data.

The synthetic data are generated simulating the way the Kinect gets their 3D

data. It is not just adding a Z coordinate to each pixel but also transforming

the x, y, d information to a 3D point using the Kinect library. Our experiments

were performed using a dual CPU Intel Xeon X5660 with 6 cores at 2.8GHz.

In this section, we describe several experiments to analyze the behavior of

the different smoothing filters with respect to the different types of noise. We

also show the advantage of using the improvements proposed in this paper.

The experiments are structured as follows: for each method proposed, we have

conducted experiments for different types of noise and for each one we show the

effect of the different noise filters.

For the bilateral filter and for all the experiments and types of noises, we

have chosen empirically σc = 5.0, as it provides the best UQI values. The

different radii are set as the σs parameter. For the mean and Gaussian filters,

the different radii are also set as the size of the kernel.

First, we show the results for the filters without any of the improvements

presented in this paper so they can then be compared with our improvements.

Figure 4 shows the UQI value of the bilateral filter for the three types of noises.

Figure 5 shows the same for the Gaussian and the mean filter.

Analyzing these results, the Gaussian filter provides better UQI results for

Gaussian noise, which is a reasonable result. For salt-and-pepper noise, we can

conclude that the bilateral filter provides better UQI value. Finally, for the

vignetting noise, the bilateral filter again provides better UQI values. Gener-

ally, using different radii, the larger the radius is, the lower the UQI obtained.

However, for the Gaussian noise with the bilateral and Gaussian filters, the

maximum UQI value is achieved with a radius of 0.03 cms.

7.1. Results for discrimination of points using entropy and a fixed radius

Here we analyze the performance of the first improvement proposed in Sec-

tion 6. The number of processed points is independent of the smoothing filter
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Figure 4: UQI value for the bilateral filter with Gaussian noise (top-left), Salt&Pepper (top-

right) and Vignetting (bottom) noise, with respect to different radii and σc parameter.
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Figure 5: UQI value obtained from the Gaussian (left) and mean filter (right) for the three

types of noise, with respect to different radii.

used, as the entropy computation does not depend on the posterior filter. We

first show the number of processed points for each noise and then the UQI value

obtained for each filter. The number of processed points for each filter can be

found in Figure 6. Figure 7 shows the UQI values obtained after applying the

three filters for the Gaussian noise. Figures 8 and 9 show the UQI values for

the salt&pepper and vignetting noise, respectively.
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Figure 6: Number of processed points with respect to the entropy threshold and the differ-

ent noises for the discrimination with entropy method. Top-left: Gaussian noise; top-right:

salt&pepper noise; bottom: vignetting noise.

First, we analyze the number of processed points with respect to the entropy

value. The higher the entropy value, the fewer are the points processed. This is

an expected behavior as more points will be discarded when raising the entropy

value. Regarding the radius value, it is also expected that when the radius is

increased more points will be discarded.

For the Gaussian noise, the Gaussian filter together with the entropy-based

discrimination of points is the one which provides the best UQI, even better than

the original implementation of the filter. The highest UQI value is obtained for

an entropy value of 5 with radius between 0.05 and 0.11. With this entropy value

the number of processed points is 50% of the original points, which means that

we have obtained a 2x acceleration and also an improvement of the UQI value.

The mean filter also improves the original implementation for the same entropy

value. Finally, the bilateral filter reaches the same UQI value as the original

implementation with entropy value of 5. Due to the fact that the Gaussian
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Figure 7: Type of noise: Gaussian. UQI value for the Gaussian (top-left), mean (top-right)

and bilateral (bottom) filter for the discrimination with entropy method.

filter is faster and simpler than the bilateral filter, it is preferred for this kind of

noise. For radius values of 0.05 and above, there is no significant difference in

the number of processed points and therefore a value of 0.05 will be preferred

as it will have fewer points to process.

For the Salt&Pepper and the vignetting noises, the three filters have similar

UQI values. All of them provide higher UQI value with low entropy values.

With these UQI values, the number of processed points is low. Again, the

Gaussian or mean filters are preferred instead of the bilateral one, as they are

simpler and faster.

7.2. Results for neighborhood variation using entropy

In this case, there is no speed-up in the process but an improvement of the

quality of the UQI value. This method processes all the points, and for this

reason the number of processed points is not shown in the following figures as

it is always 100%. The resulting UQI values after applying the three filters
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Figure 8: Type of noise: salt&pepper. UQI value for the Gaussian (top-left), mean (top-right)

and bilateral (bottom) filter for the discrimination with entropy method.

for different entropy thresholds and using different radii can be observed in Fig-

ures 10, 11 and 12 for Gaussian, salt&pepper and vignetting noises, respectively.

The experimentation was conducted using several initial radii, as, although this

method seeks the optimal radius, different initialization could provide different

results (as, in fact, happens).

This improvement is focused on the quality of the color information. It is

the most time-consuming method. Regarding the Gaussian noise, the Gaussian

and mean filters provide higher UQI values than the original implementations.

However, the bilateral filter does not achieve better UQI values for any and,

therefore, this improvement is not good for this filter. Entropy values of 4.5 (for

the Gaussian filter) and 4.0 (for the mean one) have the highest UQI value. For

all the filters, larger radii provide better UQI values, so it is preferable to select

an initial high radius since the method is able to reduce it.

The selection of this initial high radius is guided by the sensor device. It must

ensure a minimum number of points (10 points is empirically a good number).
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Figure 9: Type of noise: vignetting. UQI value for the Gaussian (top-left), mean (top-right)

and bilateral (bottom) filter for the discrimination with entropy method.

It depends on the point density at the furthest distance to the sensor. In the

case of a RGB-D camera, we have selected 11 cm.

For the Salt&Pepper noise, the three methods provide better UQI values

than the original implementations, although the UQI values for the accelerated

and original bilateral filter are not significant. With this noise, a low, even zero,

entropy value is preferred as it provides the highest UQI values. It has also been

noticed that a low radius (0.01) is the one with highest UQI.

Finally, for the vignetting noise, the Gaussian and bilateral filter have ap-

proximately the same UQI as the original method, and therefore this improve-

ment is not appropriate for these filters and noise. However, for the mean filter

the UQI value is improved. Consequently, the mean filter is the most appropri-

ate for this kind of noise.
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Figure 10: Type of noise: Gaussian. Filter: Gaussian (top-left), mean (top-right) and bilateral

(bottom) filter. UQI value modifying the radius with respect to entropy for the neighborhood

variation method.

7.3. Results for batch processing with optimal radius

As in the previous method, all the points are processed. However, this time,

the optimum radius is only computed for a set of randomly selected points in

the image and used as a smoothing radius for their neighbors. This method is

designed to represent an important speed-up, compared to the previous method,

and obtaining similar UQI values. Figures 13, 14 and 15 show the UQI values

for Gaussian, salt&pepper and vignetting noise, respectively. Here, we also try

with different initial radii. Depending on the initial radius, the method can

provide better results.

This method improves both, processing time and quality. Regarding the

original methods with Gaussian noise, the three filters provide better UQI values

than the original methods. Considering the UQI values, the best results are

obtained when using the Gaussian filter with an entropy value of 4. For the

other two kinds of noises, Salt&Pepper and vignetting, the Gaussian filter is
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Figure 11: Type of noise: salt&pepper. Filter: Gaussian (top-left), mean (top-right) and

bilateral (bottom) filter. UQI value modifying the radius with respect to entropy for the

neighborhood variation method.

again the one providing better UQI values. With these noises, a low entropy

value gives the best UQI value.

7.4. Processing time

Figure 16 shows the processing time for the different smoothing methods

with the improvements proposed in this paper. As we expected, the two methods

for speeding up the process have a processing time below the original method.

The mean filter is an exception where points are discriminated using entropy

improvement, which has a similar processing time than the original method.

This is because the processing time of the mean filter itself is similar to the time

required to calculate the entropy to decide whether or not to proceed with this

point, so the speed-up improvement is finally not obtained.

The discrimination of points using entropy and a fixed radius yields a pro-

cessing time below the original method. This behavior is expected, as several
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Figure 12: Type of noise: vignetting. Filter: Gaussian (top-left), mean (top-right) and

bilateral (bottom) filter. UQI value modifying the radius with respect to entropy for the

neighborhood variation method.

points are not processed when entropy is above a certain threshold. The neigh-

borhood variation using entropy is between 3 and 4 times slower than the original

algorithm. But this behavior is also expected. This last method was designed

to improve the quality of the smoothing at the expense of higher processing

time. Finally, the batch processing with optimal radius method provides the

lower processing time.

Regarding the selected radius, the larger it is, the more processing time is

needed. This is unimportant, as more points inside the selected neighborhood

must be processed. For low radii, there is almost no difference between the

methods.

7.5. Discussion

In this section, we summarize and discuss the results of the proposed meth-

ods. Figures 17, 18 and 19 show the results obtained from the application of
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Figure 13: Type of noise: Gaussian. UQI value for the Gaussian (top-left), mean (top-right)

and bilateral (bottom) filter for the batch processing method.

the methods with the respective observed noise. For the Gaussian noise, the

Gaussian filter provides better UQI and processing time results (Figure 17). It

also seems that qualitatively it provides better results in removing the noise.

For the salt-and-pepper noise, although the bilateral filter has the better UQI,

the Gaussian filter also seems to qualitatively provide the better result. For the

previous noises, the Gaussian filter uses less processing time than the bilateral

filter. Finally, for the vignetting noise, the bilateral filter is better in both UQI

value and qualitative evaluation.

We can conclude that the three methods improve the results compared to

the original methods, providing a better UQI value. In our experiments, the

neighborhood variation method provides the best UQI value while the batch

processing with optimal radius method yields a good UQI value, close to that

of the neighborhood variation method. Furthermore, the batch processing with

optimal radius method is the fastest.

With regard to the different noises, the Gaussian filter is the most appro-
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Figure 14: Type of noise: salt&pepper. UQI value for the Gaussian (top-left), mean (top-

right) and bilateral (bottom) filter for the batch processing method.

priate for the Gaussian noise. It provides the best UQI value in combination

with any of the three proposed improvements. However, for the salt-and-pepper

noise, the Gaussian filter has a better visual appearance than the other two, al-

though the UQI values are lower than the bilateral one.

To summarize, we present Table 1, in which we describe the main conclusions

of the experimental results reported herein.

8. Results with real images

In this section, we show some results of applying the proposed methods to

real images. We present two kind of experiments: qualitative and quantitative.

Figure 20 shows an example of applying the different methods to a real

image. In this case, the size of the kernel for all the filters is 0.04cm. The first

row represents a section of a real Kinect image. The Gaussian noise present

in the data can be observed. The second row shows the result of applying the

original methods (from left to right: Gaussian, mean and bilateral). The third
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Figure 15: Type of noise: vignetting. UQI value for the Gaussian (top-left), mean (top-right)

and bilateral (bottom) filter for the batch processing method.

row shows the results after applying one of our improvements (the fixed radius).

It can be seen that the fixed radius improves the original method by smoothing

the image area only where the color is uniform. The discrimination of points

by entropy using fixed radius avoids processing points in areas where color is

variable (high entropy), while the original methods did not make distinctions

and smoothed all areas. This effect is especially evident for the mean filter

(Figure 20, third row, column two).

The fourth row shows the results after applying the neighborhood variation.

In this case, the results are even more improved, although the effect is not

so visually evident as with the previous improvements. The improvement be-

tween the original method (second row) and the neighborhood variation method

(fourth row) is remarkable.

Finally, the fifth row shows the results from the batch processing method.

In this case, results are visually very similar to the original ones (second row).

Processing time has been reduced, as shown in Figure 22.
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Figure 16: Processing time for the Gaussian (top-left), mean (top-right) and bilateral (bottom)

filter.

We can visually compare the results of the proposed methods with respect

to the original image. If we focused on uniform color areas and details like the

laptop logo or the poster in the wall, the bilateral filter is the best smoothing

method. For example, the laptop logo is blurred with Gaussian and mean filter.

The bilateral filter is able to preserve the edge information while smoothing the

uniform areas. However, the bilateral filter with the fixed radius provides even

better results compared to the original bilateral filter, as demonstrated mainly

by the decrease in processing time.

Another experiment with real images was conducted, applying the different

methods (original and proposed ones). We used part of the Vidrilo dataset [22].

We made a subset extracting 10% frames of the dataset, running all filters and

approaches processing 238 point clouds.

Figure 21 shows the comparison between the original and the three proposed

methods for each filter using the dataset described. The original method is

displayed in red, the discrimination of points using entropy method is displayed
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Figure 17: An example of applying our methods with a synthetic image and Gaussian noise.

The first row is the original method. The second row is for the fixed radius, the third for the

neighborhood variation and, finally, the fourth for the optimal radii.

in green, the neighborhood variation using entropy in blue, and batch processing

in yellow.
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Figure 18: An example of applying our methods with a synthetic image and salt&pepper

noise. The first row is the original method. The second row is for the fixed radius, the third

for the neighborhood variation and, finally, the fourth for the double radii.

Due to our working with real data, we do not have ground truth data for

comparison. However, in the light of the good results achieved using the original

bilateral filter, we could set the UQI value obtained by that filter as a target.
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Figure 19: An example of applying our methods with a synthetic image and vignetting noise.

The first row is the original method. The second row is for the fixed radius, the third for the

neighborhood variation and, finally, the fourth for the double radii.

The quality results in Figure 21 show that:

• With discrimination of points using entropy (green), high UQI values are

obtained, but this indicates that the original point cloud is not overlay

modified with this method, and many points are discarded (UQI=1 indi-

cates that two images are the same).

• Using neighborhood variation (blue) and batch processing (yellow), all
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Table 1: Summary of the main results of the experimentation

Method

Noise
Gaussian noise Salt&Pepper Vignetting

Naive

(Best UQI)

Filter:Gaussian

Radius=0.03

UQI=0.36

Time=3.11

Filter:Bilateral

Radius=0.01

UQI=0.64

Time=1.12

σc=1

Filter:Bilateral

Radius=0.11

UQI=0.53

Time=104.15

σc=1

Discrimination of

points

(similar UQI than

naive)

Filter:Gaussian

Radius=0.03

Entropy=4.5

UQI=0.39

Time=3.10

Filter:Bilateral

Radius=0.01

Entropy=2.0

UQI=0.64

Time=2.1 σc=5.0

Filter:Bilateral

Radius=0.11

Entropy=1

UQI=0.54

Time=70.1

σc=5.0

Neighborhood

variation

(Best UQI)

Filter:Gaussian

Radius=0.11

Entropy=4.5

UQI=0.56

Time=49.9

Filter:Bilateral

Radius=0.01

Entropy=0.25

UQI=0.69

Time=13.11

σc=5.0

Filter:Bilateral

Radius=0.01

Entropy=0.25

UQI=0.54

Time=10.3

σc=5.0

Batch processing

(Best UQI)

Filter:Gaussian

Radius=0.11

Entropy=4

UQI=0.50

Time=17.1

Filter:Bilateral

Radius=0.01

Entropy=0.25

UQI=0.69

Time=12.1

σc=5.0

Filter:Bilateral

Radius=0.11

Entropy=0.25

UQI=0.532

Time=44.1

σc=5.0

points are processed, thus we can compare with the original bilateral UQI

values. For the bilateral filter, values are very similar, and for the mean

and Gaussian filter, output is better than with the original methods.

Regarding the process time in Figure 22:
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Figure 20: Results of applying the proposed methods to a real image. The figure shows the

original (Gaussian, mean, and bilateral) results with each proposed improvement.
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Figure 21: Results with real images. Comparison of UQI results with respect to original

images.

• Discrimination of points is faster than with other approaches. This is clear

because fewer points are smoothed.

• Neighborhood variation is the most expensive method due to the addi-

tional cost of locating the optimal radius before smoothing each point.

• The batch processing with optimal radius achieves a notable acceleration

with respect to the original methods and other approaches.

9. Conclusions and future work

In this paper, we have presented and compared the application of different

methods to remove color noise from a 3D set captured by a RGB-D sensor.

These sensors provide a large amount of colored 3D data. Correcting color
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Figure 22: Comparison of execution time using real images.

noise in data from this kind of devices is a time-consuming task. At the start

of this paper, we present different sources of noise that commonly affect the

images from this kind of sensors. We also present an index value, the UQI, as

a way to measure the differences between two colored data sets, normally the

original set and the color smoothed one. This value allows us to compare the

accuracy of the different smoothing methods that we review in this paper (two

linear, Gaussian and mean, and one non linear, the bilateral filter).

To improve the quality of the results and the processing time of the original

methods, this work presents three new improvements. The first one is designed

to speed up the original methods. It uses entropy to decide whether the point

has to be smoothed or not. The second method can be used to obtain the best

results as it finds the optimal neighborhood radius for smoothing at each point of

the image. The results using this method are considerably better than the orig-

inal ones but are very time-consuming. Our third method overcomes the time
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problem of the previous method by introducing an optimality relaxation term

in the search for the optimal radius. The resulting images using this approach

are comparable in quality with those of our second method but maintaining the

computing time close to the time obtained when using our first method. The

experiments carried out in this paper lay down in which situations each of the

proposed methods is more suitable.

For each kind of noise we have established which filter works best and which

of the proposed methods can be used to improve the filter to obtain the best noise

reduction. The selection of the best filter is based on the acceleration and the

UQI value obtained. The experimental results also include several real images

which are useful for assessing a balance between acceleration and quality. In this

way, a person can select a given UQI value and find the acceleration reached or,

if the application requires a short time response, select the desired acceleration

and seek the amount of color quality loss to be produced based on the UQI index

difference between the original smoothing method and the accelerated one.

Regarding the relationship between the neighborhood radius and the pro-

cessing time, we conclude that when using a small neighborhood radius, the

proposed methods do not change the computational time obtained with the

original filters. Therefore, the proposed methods should be used for a radius

larger than 5 cm. This is due to the fact that smaller radii do not provide

smoothing results.

As future works, we plan to develop new methods for color smoothing which

also include the processing of sequences of 3D data sets, as they are affected by

another type of noise. These methods can be useful for automatic map building

in mobile robotics. Another way to speed up the whole process consists in

developing a massive parallel implementation for Graphical Processor Units

(GPUs) which will be explored shortly.

It seems that all the proposed methods could be applied for smoothing depth

data so we plan to develop a similar study with depth data. Furthermore, the

bilateral filter has been used as a normal smoothing method so our approach

could be applied for normal smoothing. This requires another study.
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We also plan to include other kinds of noise and filter types to study their

behavior when working with 3D data.
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