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ABSTRACT: Well dispersed iron catalysts were synthesized in silica (Fe0.0XSiO2) by a one-step 

synthesis procedure. These materials were tested in the propylene epoxidation reaction with 

gaseous O2. The influence of the iron metal loading on the iron incorporation and distribution in 

the support (both influenced by the synthetic procedure) were thoroughly studied (conversion, 

generation and selectivity). Electron Microscopy and UltraViolet-Visible (UV-VIS), Raman and 

Fourier Transform Infrared Spectroscopy (FTIR) spectroscopy techniques were used to analyze 

the iron distribution in the catalysts and to probe its incorporation into the silica framework. In-

situ FTIR was also used to analyze the interaction between propylene and iron-based catalysts. 
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Computational calculations considering a single-site iron catalyst incorporated into the silica 

structure show a possible interaction between O2 and the incorporated iron atom and the olefin 

bond and the acidic proton neighboring the iron species which favours the reaction between the 

two molecules near the iron atom. 

 

1. Introduction 

In the last years, the fine chemicals industry is facing an important challenge concerning the 

production of one important intermediate in the synthesis of polyurethanes, cosmetics, solvents, 

detergents and other relevant products. This new attractive compound is propylene oxide (PO) 

and its properties and reactivity make this product one of the most widely studied, not only by 

academic researchers, but also by the main chemicals manufacturers, such as DOW Chemical 

and LyondellBasell Industries [1]. PO is principally consumed in the production of polyether 

polyols for urethanes (65%) and the synthesis of propylene glycols (19%) and glycol ethers 

(6%), these compounds being synthesized by oligomerization, hydration and alcoholysis of raw 

PO, respectively [2].  

In the industrial scale synthesis of PO, propylene is used as raw material. In this sense, 

approximately 7% of the world consumption of propylene is for PO production, representing the 

third product generated from this precursor, only behind polypropylene (62%) and acrylonitrile 

(8%) [2]. Nowadays, the main PO production route is the liquid-phase reaction, known as 

chlorohydrin process, with approximately 50% of PO production.  Other liquid-phase PO 

production processes employed in industry nowadays include the styrene co-product process 

(33% PO production worldwide), the tert-butyl co-product process (15%), the HPPO (hydrogen 

peroxide-based) process (5%), and the Sumitomo cumene-based process (5%). Some problems 
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associated with these syntheses are the use of chlorine and sub-production of chlorinated organic 

compounds in the reaction that result in a complicated separation and purification of PO [3]. 

In this sense, propylene epoxidation to propylene oxide by gas-solid phase heterogeneous 

catalysis could avoid the use of hazardous oxidation agents such as Cl2, in the liquid phase and 

replace them with other safer compounds, such as H2/O2 mixtures or O2 in the best case scenario 

[2,4]. In the literature, the most common and widely developed catalysts for this process are 

based in titano-silicate supports (Ti-SiO2) with well dispersed Au nanoparticles on the surface of 

the material. This kind of materials presents very well dispersed Ti(IV) species on the silica 

matrix, generally with low Ti/Si ratios. In these cases, the chemical properties of the Ti-SiO2 

reflect in an enhanced performance of the active phase in the epoxidation process compared to 

the behavior of pure TiO2-based catalysts, both in terms of activity and selectivity for the process 

[5,6].  

Moreover, the deposition of low metal loadings of Au as nanoparticles (less than 5 nm in size) 

drastically increases the selectivity (over 90% towards PO) at temperatures above 100-200ºC. 

These catalysts have been widely studied and nowadays the reaction mechanism for this active 

phase is well known, with the formation of hydroperoxo and peroxo species on the metal 

nanoparticles and their interaction with propylene molecules adsorbed on titanium sites [7] being 

responsible for the high selectivity towards PO.  

These catalysts have been developed in microreactor configurations [8] and membrane reactors 

[9]. However, the use of H2/O2 mixtures in the gas stream is mandatory to achieve an acceptable 

selectivity towards PO. In this sense, many works have demonstrated the validation of these 

supports, by modifying the silica support, the titanium precursor and the Au nanoparticles 

deposition method. Nevertheless, some aspects such as low propylene conversion, water 

https://www.researchgate.net/publication/274196592_AuTS-1_catalyst_prepared_by_deposition-precipitation_method_for_propene_epoxidation_with_H2O2_Insights_into_the_effects_of_slurry_aging_time_and_SiTi_molar_ratio?el=1_x_8&enrichId=rgreq-8dcf9b0935f0acd1bfc64b087bbe3cca-XXX&enrichSource=Y292ZXJQYWdlOzI5OTM3OTQyNTtBUzo0MDc5MjMxNjQ0OTk5NjlAMTQ3NDI2Nzg2OTk0NQ==
https://www.researchgate.net/publication/270888555_Direct_Synthesis_of_Propene_Oxide_from_Propene_Hydrogen_and_Oxygen_in_a_Catalytic_Membrane_Reactor?el=1_x_8&enrichId=rgreq-8dcf9b0935f0acd1bfc64b087bbe3cca-XXX&enrichSource=Y292ZXJQYWdlOzI5OTM3OTQyNTtBUzo0MDc5MjMxNjQ0OTk5NjlAMTQ3NDI2Nzg2OTk0NQ==
https://www.researchgate.net/publication/281190354_Direct_Oxidation_of_Propylene_to_Propylene_Oxide_with_Molecular_Oxygen_A_Review?el=1_x_8&enrichId=rgreq-8dcf9b0935f0acd1bfc64b087bbe3cca-XXX&enrichSource=Y292ZXJQYWdlOzI5OTM3OTQyNTtBUzo0MDc5MjMxNjQ0OTk5NjlAMTQ3NDI2Nzg2OTk0NQ==
https://www.researchgate.net/publication/257658553_Gas-phase_propene_epoxidation_over_coinage_metal_catalysts?el=1_x_8&enrichId=rgreq-8dcf9b0935f0acd1bfc64b087bbe3cca-XXX&enrichSource=Y292ZXJQYWdlOzI5OTM3OTQyNTtBUzo0MDc5MjMxNjQ0OTk5NjlAMTQ3NDI2Nzg2OTk0NQ==
https://www.researchgate.net/publication/231375883_The_Direct_Epoxidation_of_Propene_in_the_Explosive_Regime_in_a_Microreactor-A_Study_into_the_Reaction_Kinetics?el=1_x_8&enrichId=rgreq-8dcf9b0935f0acd1bfc64b087bbe3cca-XXX&enrichSource=Y292ZXJQYWdlOzI5OTM3OTQyNTtBUzo0MDc5MjMxNjQ0OTk5NjlAMTQ3NDI2Nzg2OTk0NQ==
https://www.researchgate.net/publication/244393280_Selective_Vapor-Phase_Epoxidation_of_Propylene_over_AuTiO_2Catalysts_in_the_Presence_of_Oxygen_and_Hydrogen?el=1_x_8&enrichId=rgreq-8dcf9b0935f0acd1bfc64b087bbe3cca-XXX&enrichSource=Y292ZXJQYWdlOzI5OTM3OTQyNTtBUzo0MDc5MjMxNjQ0OTk5NjlAMTQ3NDI2Nzg2OTk0NQ==
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formation and the low H2 efficiency are the main drawbacks of this active phase and still need to 

be overcome. Recently, some authors have tested this kind of gold-based catalysts (Au/TiO2) in a 

different oxidative atmosphere (CO/O2) with comparable results (in terms of propylene 

conversion and PO selectivity) to those reached under a H2/O2 gas stream composition [10]. Ag 

nanoparticles have been also supported on TiO2, but poorer results have been obtained compared 

to the gold-based catalysts, yielding lower propylene conversions [11]. Also, similar catalysts 

such as Ti-SiO2 loaded with Pt or Pd nanoparticles have been tested in the epoxidation of 

propylene in liquid phase by in-situ generation of H2O2 adding H2 and O2 in the organic phase 

[12].  

On the other hand, the use of a gas stream with O2 as oxidative agent, without the addition of 

H2, is employed in some catalysts for the synthesis of PO by epoxidation of propylene. Ag-based 

catalysts on different supports (such as CaCO3, Al2O3, MoO3/ZrO2 and WO3) [3,13], have been 

studied in the epoxidation of propylene with O2 between 250-350ºC. The catalytic behavior of 

these materials shows lower selectivity than the Au/Ti-SiO2 systems in H2/O2 gas streams 

compositions but with a similar propylene conversion [14]. In other related works, the catalysts 

studied for the propylene epoxidation reaction are based on different metal oxides (Ru and/or 

Cu) [15–17] also tested in O2-containing atmospheres. In these cases, a PO selectivity of 35% 

and 9% propylene conversion is achieved for a 2% Cu-5% Ru-1.75% NaCl promoted catalyst 

supported over silica at 350ºC. Also, mixed copper/manganese oxides promoted with NaCl at 

300ºC, have displayed propylene conversions around 5% and PO selectivities of 25% [18]. Other 

works use more complicated systems to achieve good catalytic behaviors, such as Ti-MoO3-

Bi2SiO5/SiO2, that displays 20% of propylene conversion and 60% of PO selectivity at 500ºC 

[19]. 

https://www.researchgate.net/publication/281190354_Direct_Oxidation_of_Propylene_to_Propylene_Oxide_with_Molecular_Oxygen_A_Review?el=1_x_8&enrichId=rgreq-8dcf9b0935f0acd1bfc64b087bbe3cca-XXX&enrichSource=Y292ZXJQYWdlOzI5OTM3OTQyNTtBUzo0MDc5MjMxNjQ0OTk5NjlAMTQ3NDI2Nzg2OTk0NQ==
https://www.researchgate.net/publication/260443423_Propylene_epoxidation_with_in_situ_generated_H2O2_in_supercritical_conditions?el=1_x_8&enrichId=rgreq-8dcf9b0935f0acd1bfc64b087bbe3cca-XXX&enrichSource=Y292ZXJQYWdlOzI5OTM3OTQyNTtBUzo0MDc5MjMxNjQ0OTk5NjlAMTQ3NDI2Nzg2OTk0NQ==
https://www.researchgate.net/publication/272391613_Direct_epoxidation_of_propylene_to_propylene_oxide_on_various_catalytic_systems_A_combinatorial_micro-reactor_study?el=1_x_8&enrichId=rgreq-8dcf9b0935f0acd1bfc64b087bbe3cca-XXX&enrichSource=Y292ZXJQYWdlOzI5OTM3OTQyNTtBUzo0MDc5MjMxNjQ0OTk5NjlAMTQ3NDI2Nzg2OTk0NQ==
https://www.researchgate.net/publication/256737677_Active_site_and_reaction_mechanism_for_the_epoxidation_of_propylene_by_oxygen_over_CuOxSiO2_catalysts_with_and_without_Cs_modification?el=1_x_8&enrichId=rgreq-8dcf9b0935f0acd1bfc64b087bbe3cca-XXX&enrichSource=Y292ZXJQYWdlOzI5OTM3OTQyNTtBUzo0MDc5MjMxNjQ0OTk5NjlAMTQ3NDI2Nzg2OTk0NQ==
https://www.researchgate.net/publication/278397583_Enhanced_catalytic_performance_in_the_gas-phase_epoxidation_of_propylene_over_Ti-modified_MoO3-Bi2SiO5SiO2_catalysts?el=1_x_8&enrichId=rgreq-8dcf9b0935f0acd1bfc64b087bbe3cca-XXX&enrichSource=Y292ZXJQYWdlOzI5OTM3OTQyNTtBUzo0MDc5MjMxNjQ0OTk5NjlAMTQ3NDI2Nzg2OTk0NQ==
https://www.researchgate.net/publication/260946844_Catalytic_epoxidation_of_propylene_with_COO2_over_AuTiO2?el=1_x_8&enrichId=rgreq-8dcf9b0935f0acd1bfc64b087bbe3cca-XXX&enrichSource=Y292ZXJQYWdlOzI5OTM3OTQyNTtBUzo0MDc5MjMxNjQ0OTk5NjlAMTQ3NDI2Nzg2OTk0NQ==
https://www.researchgate.net/publication/226923938_Highly_selective_propene_epoxidation_with_hydrogenoxygen_mixtures_over_titania-supported_silver_catalysts?el=1_x_8&enrichId=rgreq-8dcf9b0935f0acd1bfc64b087bbe3cca-XXX&enrichSource=Y292ZXJQYWdlOzI5OTM3OTQyNTtBUzo0MDc5MjMxNjQ0OTk5NjlAMTQ3NDI2Nzg2OTk0NQ==
https://www.researchgate.net/publication/244108374_Direct_propylene_epoxidation_over_modified_AgCaCO_3_catalysts?el=1_x_8&enrichId=rgreq-8dcf9b0935f0acd1bfc64b087bbe3cca-XXX&enrichSource=Y292ZXJQYWdlOzI5OTM3OTQyNTtBUzo0MDc5MjMxNjQ0OTk5NjlAMTQ3NDI2Nzg2OTk0NQ==
https://www.researchgate.net/publication/276383355_Copper-Manganese_Mixed_Metal_Oxide_Catalysts_for_the_Direct_Epoxidation_of_Propylene_by_Molecular_Oxygen?el=1_x_8&enrichId=rgreq-8dcf9b0935f0acd1bfc64b087bbe3cca-XXX&enrichSource=Y292ZXJQYWdlOzI5OTM3OTQyNTtBUzo0MDc5MjMxNjQ0OTk5NjlAMTQ3NDI2Nzg2OTk0NQ==
https://www.researchgate.net/publication/261294549_Crystal-Plane-Controlled_Selectivity_of_Cu2O_Catalysts_in_Propylene_Oxidation_with_Molecular_Oxygen?el=1_x_8&enrichId=rgreq-8dcf9b0935f0acd1bfc64b087bbe3cca-XXX&enrichSource=Y292ZXJQYWdlOzI5OTM3OTQyNTtBUzo0MDc5MjMxNjQ0OTk5NjlAMTQ3NDI2Nzg2OTk0NQ==
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Some works have studied iron impregnated or incorporated in silica as active phase for 

selective hydrocarbon oxidations. In this sense, the iron location (framework or extra-

framework), iron coordination (tetrahedral or octahedral) or its distribution (single-sites, clusters 

or small particles) are the main factors discussed for the selective oxidation but, in all cases, the 

iron has been stated to produce the decomposition of the oxidizing agent (H2O2 or N2O) and the 

resulting adsorbed atomic oxygen has been identified as the species responsible for the oxidation. 

As an example, the activation of N2O for the oxidation of benzene to phenol requires of extra-

framework iron species in Fe-MFI catalyst [20]. In the epoxidation of styrene with H2O2, two 

different species of iron have been found to be important for the oxidation reaction, i.e., iron 

oxide clusters are responsible for the H2O2 decomposition and tetrahedral iron in framework 

positions are the sites where the epoxidation effectively takes place [21]. This kind of well-

dispersed iron-based catalysts has been also used for selective oxidations in other liquid phase 

processes, with very successful results [22,23]. 

In the propylene epoxidation reaction using iron-based catalysts, the use of a more oxidant 

compound, such as N2O at 350ºC, is necessary for the PO synthesis in the gas-phase reaction 

[24–27]. E. Ananieva et al. studied the effect of Na
+
 and Cs

+
 in the acidity of the support to 

decrease the possibility of PO polymerization [24]. In addition, B. Horváth et al. focused their 

work on the addition of the alkaline promotor K
+
 (as KCl) in order to enhance the catalytic 

properties of the iron containing catalyst. Maximum PO selectivity during the catalytic tests was 

achieved (around 75%) for a KCl promoted iron impregnated silica, but deactivation of the 

catalyst was observed due to carbon deposition on the catalyst, even when the promoting agent 

was added. In this sense, the authors propose that the epoxidation reaction takes place via the 

oxygen-atoms abstracted from the N2O which decomposes in the medium. The specific iron 

https://www.researchgate.net/publication/264317529_Gas-phase_epoxidation_of_propylene_over_iron-containing_catalysts_The_effect_of_iron_incorporation_in_the_support_matrix?el=1_x_8&enrichId=rgreq-8dcf9b0935f0acd1bfc64b087bbe3cca-XXX&enrichSource=Y292ZXJQYWdlOzI5OTM3OTQyNTtBUzo0MDc5MjMxNjQ0OTk5NjlAMTQ3NDI2Nzg2OTk0NQ==
https://www.researchgate.net/publication/222532538_New_FeSiO2_materials_prepared_using_diiron_molecular_precursors_Synthesis_characterization_and_catalysis?el=1_x_8&enrichId=rgreq-8dcf9b0935f0acd1bfc64b087bbe3cca-XXX&enrichSource=Y292ZXJQYWdlOzI5OTM3OTQyNTtBUzo0MDc5MjMxNjQ0OTk5NjlAMTQ3NDI2Nzg2OTk0NQ==
https://www.researchgate.net/publication/223215677_Direct_gas-phase_epoxidation_of_propene_with_nitrous_oxide_over_modified_silica_supported_FeOx_catalysts?el=1_x_8&enrichId=rgreq-8dcf9b0935f0acd1bfc64b087bbe3cca-XXX&enrichSource=Y292ZXJQYWdlOzI5OTM3OTQyNTtBUzo0MDc5MjMxNjQ0OTk5NjlAMTQ3NDI2Nzg2OTk0NQ==
https://www.researchgate.net/publication/223215677_Direct_gas-phase_epoxidation_of_propene_with_nitrous_oxide_over_modified_silica_supported_FeOx_catalysts?el=1_x_8&enrichId=rgreq-8dcf9b0935f0acd1bfc64b087bbe3cca-XXX&enrichSource=Y292ZXJQYWdlOzI5OTM3OTQyNTtBUzo0MDc5MjMxNjQ0OTk5NjlAMTQ3NDI2Nzg2OTk0NQ==
https://www.researchgate.net/publication/8665568_Synthesis_Characterization_and_Catalytic_Performance_of_Single-Site_IronIII_Centers_on_the_Surface_of_SBA-15_Silica?el=1_x_8&enrichId=rgreq-8dcf9b0935f0acd1bfc64b087bbe3cca-XXX&enrichSource=Y292ZXJQYWdlOzI5OTM3OTQyNTtBUzo0MDc5MjMxNjQ0OTk5NjlAMTQ3NDI2Nzg2OTk0NQ==
https://www.researchgate.net/publication/273539165_Vanadium_species_supported_on_inorganic_oxides_as_catalysts_for_propene_epoxidation_in_the_presence_of_N2O_as_an_oxidant?el=1_x_8&enrichId=rgreq-8dcf9b0935f0acd1bfc64b087bbe3cca-XXX&enrichSource=Y292ZXJQYWdlOzI5OTM3OTQyNTtBUzo0MDc5MjMxNjQ0OTk5NjlAMTQ3NDI2Nzg2OTk0NQ==
https://www.researchgate.net/publication/223343444_Effect_of_high-temperature_treatment_on_FeZSM-5_prepared_by_chemical_vapor_deposition_of_FeCl3_II_Nitrous_oxide_decomposition_selective_oxidation_of_benzene_to_phenol_and_selective_reduction_of_nitric?el=1_x_8&enrichId=rgreq-8dcf9b0935f0acd1bfc64b087bbe3cca-XXX&enrichSource=Y292ZXJQYWdlOzI5OTM3OTQyNTtBUzo0MDc5MjMxNjQ0OTk5NjlAMTQ3NDI2Nzg2OTk0NQ==
https://www.researchgate.net/publication/244393871_Characterizations_of_Iron-Containing_MCM-41_and_Its_Catalytic_Properties_in_Epoxidation_of_Styrene_with_Hydrogen_Peroxide?el=1_x_8&enrichId=rgreq-8dcf9b0935f0acd1bfc64b087bbe3cca-XXX&enrichSource=Y292ZXJQYWdlOzI5OTM3OTQyNTtBUzo0MDc5MjMxNjQ0OTk5NjlAMTQ3NDI2Nzg2OTk0NQ==
https://www.researchgate.net/publication/244394454_Iron-catalyzed_propylene_epoxidation_by_nitrous_oxide_Toward_understanding_the_nature_of_active_iron_sites_with_modified_Fe-MFI_and_Fe-MCM-41_catalysts?el=1_x_8&enrichId=rgreq-8dcf9b0935f0acd1bfc64b087bbe3cca-XXX&enrichSource=Y292ZXJQYWdlOzI5OTM3OTQyNTtBUzo0MDc5MjMxNjQ0OTk5NjlAMTQ3NDI2Nzg2OTk0NQ==
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species responsible for the N2O decomposition could transfer the oxygen atoms and react with 

propylene, generating PO [25]. Most of these related, promoted or unpromoted, catalyst used in 

propylene epoxidation reaction have been prepared using multiple-step procedures (e.g. support 

preparation and/or metal impregnation). 

In this work, we present a one-step synthesis method for the preparation of Fe-SiO2 catalysts, 

with very well dispersed iron species into the silica structure, and their application in the 

propylene epoxidation reaction using only the O2 molecule as oxidant. The comparison between 

samples with different preparation procedures (one-step synthesis and impregnation) and their 

characterization by different spectroscopic (UV-VIS, Raman and FTIR), microscopy (TEM and 

FE-SEM) techniques and complementary simulation calculations (dispersion-corrected DFT) 

allows obtaining information about the reaction mechanism for the epoxidation reaction 

investigated on the postulated iron species incorporated into the silica structure. 

 

2. Experimental 

2.1 Catalyst Preparation 

2.1.1 Preparation of the Fe0.0XSiO2 Catalysts (One-step synthesis) 

The mesoporous Fe-doped silica catalysts have been prepared adapting a sol-gel synthetic 

protocol described for pure SiO2 in other works [28,29]. 

In a typical synthesis, 0.400 g of surfactant (Pluronic® F127, BASF), 0.452 g of urea (Sigma-

Aldrich) and 5.052 g of 0.01M acetic acid solution were mixed under vigorous stirring for 80 

min, the final pH of the resulting solution being around 4. Then, the necessary amount of iron 

https://www.researchgate.net/publication/264317529_Gas-phase_epoxidation_of_propylene_over_iron-containing_catalysts_The_effect_of_iron_incorporation_in_the_support_matrix?el=1_x_8&enrichId=rgreq-8dcf9b0935f0acd1bfc64b087bbe3cca-XXX&enrichSource=Y292ZXJQYWdlOzI5OTM3OTQyNTtBUzo0MDc5MjMxNjQ0OTk5NjlAMTQ3NDI2Nzg2OTk0NQ==
https://www.researchgate.net/publication/6810039_Electrochromatographic_behavior_of_silica_monolithic_capillaries_of_different_skeleton_sizes_synthesized_with_a_simplified_and_shortened_sol-gel_procedure?el=1_x_8&enrichId=rgreq-8dcf9b0935f0acd1bfc64b087bbe3cca-XXX&enrichSource=Y292ZXJQYWdlOzI5OTM3OTQyNTtBUzo0MDc5MjMxNjQ0OTk5NjlAMTQ3NDI2Nzg2OTk0NQ==
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precursor (iron (III) nitrate nonahydrate, Fe(NO3)3·9H2O, 99.99%, Sigma-Aldrich) is added in 

the solution and the mixture is stirred for 1 h. Subsequently, the solution was cooled in an ice-

water bath maintaining the stirring and the silica precursor was added dropwise (2.030 g 

Tetramethyl orthosilicate, TMOS, Sigma-Aldrich). This solution was kept under stirring for 40 

min at 0ºC.  

Finally, the sol was introduced in a Teflon autoclave and heated at 40ºC for 20 h to produce 

the aging of the sol (the pH after this step remained around 4). After this, the sample is submitted 

to a hydrothermal treatment at 120ºC for 6 h, to produce the urea decomposition (the final pH of 

the supernatant liquid being around 9-10). After this step, a dark supernatant liquid phase is 

observed for samples with a Fe/Si ratio over 0.01, which was removed from the top of the 

monolith generated, corresponding to the excess of Fe not incorporated in the SiO2 structure. As 

a final step, the monolith is calcined at 550ºC for 6 h to eliminate the surfactant and the rest of 

unwanted precursors.  

Four samples with different Fe/Si molar ratios have been prepared (namely 0.005, 0.01, 0.02 

and 0.03). Higher Fe content cannot be incorporated in these structures, since high amounts of 

Fe(NO3)3 in the initial sol lead to mechanical instability of the active phase (a sample prepared 

with a 5% iron molar ratio content crumbled during the thermal calcination of the material) and 

the mixed oxide cannot be generated. The samples in this work have been named according to 

the nominal Fe/Si molar ratio in each case, for example Fe0.01SiO2 corresponds to the sample 

with 1 mol % Fe in the oxide (with respect to Si moles). The samples prepared by this procedure 

are all white in color, except for the one with a higher Fe content (Fe/Si=0.03) which is brown. 

2.1.2 Preparation of the Fe impregnated-SiO2 Catalyst 
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For comparison purposes, an iron-based silica catalyst has been prepared by wet impregnation. 

For that, 300 mg of pure mesoporous silica (prepared by the aforementioned procedure without 

the iron precursor) and the necessary amount of Fe(NO3)3·9H2O to yield a metal loading of 1 mol 

% Fe were stirred in water for 2 days. Then, the solvent was evaporated under stirring by heating 

the suspension at 80ºC, keeping the magnetic stirring until complete evaporation of the solvent. 

Finally, the powder was calcined in an oven at 550ºC for 6 h, and the sample was labeled as 

FeimpregSiO2. 

2.2 Characterization  

All the prepared catalysts have been analyzed by Field Emission Scanning Electron 

Microscopy (FE-SEM, Merlin VP Zeiss) before the catalytic tests to determine the morphology 

of the samples and how the metal incorporation reflects in the silica texture. The samples were 

also characterized by Transmission Electron Microscopy (TEM) coupled to Energy Dispersive 

X-Ray Analysis (EDX) with a JEOL JEM-2010 microscope operating at 200 kV with a space 

resolution of 0.24 nm. For the analysis, a small amount of the sample was suspended in a few 

drops of ethanol, and sonicated for a few minutes. A drop of this suspension was then deposited 

onto a 300 mesh Lacey copper grid and left to dry at room temperature. TEM analyses allowed 

the evaluation of the metal incorporation, the formation of small particles of iron and the 

quantification of the metal loading by the coupled EDX.  

Spectroscopic techniques were also used for characterization purposes. The prepared materials 

were analyzed using a UltraViolet-Visible-Near-Infrared (UV-VIS-NIR, V-670, JASCO) 

equipped with a double monochromator system, a photomultiplier tube detector and an 

integrating sphere (ISN-723 UV-Visible-NIR, JASCO) which enables the possibility to measure 
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the diffuse reflectance or diffuse transmittance of a solid powder. The catalysts have been 

analyzed before and after the catalytic tests. In-situ Fourier Transform Infrared Spectroscopy 

(FTIR, FTIR-4100, JASCO) was also used for the study of the solid-gas reaction in the different 

catalysts. FTIR spectra were collected in the single beam mode at different times while a gas 

stream of: 10 vol. % C3H6/He, 10 vol. % O2/He or the reaction gas stream composition (10% 

C3H6, 10% O2/He) is flowed through the sample for at least 5 minutes to ensure whichever 

interaction between the catalysts and the propylene. Afterwards, the gas stream was shifted to 

pure He and the evolution of the spectra corresponding to the catalyst surface was also studied by 

FTIR. Spectra were collected at different temperatures (150, 250 and 350ºC) and with an interval 

time of 15 seconds. The results have been presented by subtracting the spectrum corresponding 

to the pure catalyst to that obtained at the same temperature. Furthermore, this technique has 

been also used to analyze the incorporation of the iron into the silica framework studying the 

modification of the vibrational bonds of the silica and the iron based silica in the fresh catalyst 

after their dry at 120ºC for 24h. UV-Raman (NRS-5100, Jasco) has been used to analyze the 

incorporation of iron into the silica framework. The catalysts have been irradiated for 30 minutes 

with a UV lamp (HeCd, 325 nm, 1 mW). The equipment is equipped with a Thorlabs 20x UV 

objective. 

The iron metal loading of the catalysts was analyzed by inductively coupled plasma-optical 

emission spectroscopy (ICP-OES), in a Perkin-Elmer Optima 4300 system. The necessary 

amount of sample was dissolved in 0.1 ml of HF (5 vol. %) at room temperature, in order to 

ensure the total dissolution of the samples, and then diluted to the linear iron detection range 

(0.05-10 ppm). 
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The iron based catalysts were also characterized by N2 adsorption−desorption measurements at 

−196°C (Quantachrome, Autosorb 6B) to analyze the porous texture of the catalysts. 

2.3 Propylene Epoxidation Tests 

The samples were first tested under non-isothermal conditions at a heating rate of 3ºC/min up 

to 450ºC to analyze the catalytic performance of the samples. Once the non-isothermal reactions 

were performed, the temperature for the isothermal reaction was chosen and the behaviour of the 

catalysts was tested for at least 4 hours at ambient pressure under steady-state conditions. At the 

conditions chosen (350ºC), low propylene conversion and high PO selectivity were obtained.  

In all cases, the propylene epoxidation was evaluated using 200 mg of powder catalyst 

introduced in a quartz reactor, and the gas stream was maintained constant to obtain a WHSV of 

10000 ml·g
-1

·h
-1

 (STP), with a gas composition of 10% C3H6, 10% O2, 80% He. When several 

catalytic cycles were performed for a sample, the catalysts were treated at 550ºC in synthetic air 

between cycles to ensure the total elimination of any carbonaceous deposit that could be formed 

during the former catalytic test. 

The gas composition of the reaction was analyzed with a GC chromatograph (Agilent 7820A) 

equipped with two columns, PoraBond Q (Agilent) and CTR-I (Alltech), for the separation of the 

organic (propylene, propane, propylene oxide, acetaldehyde, acetone) and the inorganic (O2 and 

CO2 mainly) compounds respectively. The main possible organic by-products have been 

analysed separately. Calibration for was performed introducing each pure compound separately 

in a quartz reactor at a controlled temperature (accuracy ± 0.1ºC) to obtain the desired range of 

partial pressure. A constant flow of He (30 ml/min of He) was passed through the reactor and the 

resulting stream was analyzed in the GC. Their respective retention times are shown in the 
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Supplementary Information (Fig. S1), with the GC analysis of the most and the least selective 

catalyst, Fe0.005SiO2 and Fe0.03SiO2 respectively as examples of the analysis done. Inorganic by-

products include CO2 and H2O. Propylene conversion, PO generation and PO selectivity, all of 

them as percentage, are calculated using the following equations and with the respective 

calibration for each compound in order to describe the catalytic behaviour of the samples. TOF, 

calculated from the moles of PO generated per hour per mole of Fe contained in the catalyst (and 

quantitatively determined by ICP-OES) has been used to assess the catalytic performance of the 

samples. Given the inherent difficulty in differentiating between the well-dispersed iron species 

(present as single or di-iron sites) and larger iron species present in the catalyst (mainly forming 

small oxide particles), this approach was taken as a simple and illustrative way to present and 

compare our results.   

 

 

 

 

2.4 Computational calculations 

The energy calculations and geometry optimizations were performed with Gaussian09 

program [30], using the hybrid non-local B3LYP method [31,32] and the 6-31G(d,p) basis set for 

all atoms [33–35].  

The dispersion energies were considered using the D3(BJ) method [36,37] in all calculations. 

https://www.researchgate.net/publication/50269050_Effect_of_the_Damping_Function_in_Dispersion_Corrected_Density_Functional_Theory?el=1_x_8&enrichId=rgreq-8dcf9b0935f0acd1bfc64b087bbe3cca-XXX&enrichSource=Y292ZXJQYWdlOzI5OTM3OTQyNTtBUzo0MDc5MjMxNjQ0OTk5NjlAMTQ3NDI2Nzg2OTk0NQ==
https://www.researchgate.net/publication/220044075_The_Influence_of_Polarization_Functions_on_Molecular_Orbital_Hydrogenation_Energies?el=1_x_8&enrichId=rgreq-8dcf9b0935f0acd1bfc64b087bbe3cca-XXX&enrichSource=Y292ZXJQYWdlOzI5OTM3OTQyNTtBUzo0MDc5MjMxNjQ0OTk5NjlAMTQ3NDI2Nzg2OTk0NQ==
https://www.researchgate.net/publication/13387860_Density-Functional_Exchange-Energy_Approximation_With_Correct_Asymptotic_Behavior?el=1_x_8&enrichId=rgreq-8dcf9b0935f0acd1bfc64b087bbe3cca-XXX&enrichSource=Y292ZXJQYWdlOzI5OTM3OTQyNTtBUzo0MDc5MjMxNjQ0OTk5NjlAMTQ3NDI2Nzg2OTk0NQ==
https://www.researchgate.net/publication/13343853_Development_of_the_Colle-Salvetti_correlation-energy_formula_into_a_functional_of_the_electron_density?el=1_x_8&enrichId=rgreq-8dcf9b0935f0acd1bfc64b087bbe3cca-XXX&enrichSource=Y292ZXJQYWdlOzI5OTM3OTQyNTtBUzo0MDc5MjMxNjQ0OTk5NjlAMTQ3NDI2Nzg2OTk0NQ==
https://www.researchgate.net/publication/43347348_A_Consistent_and_Accurate_Ab_Initio_Parametrization_of_Density_Functional_Dispersion_Correction_DFT-D_for_the_94_Elements_H-Pu?el=1_x_8&enrichId=rgreq-8dcf9b0935f0acd1bfc64b087bbe3cca-XXX&enrichSource=Y292ZXJQYWdlOzI5OTM3OTQyNTtBUzo0MDc5MjMxNjQ0OTk5NjlAMTQ3NDI2Nzg2OTk0NQ==
https://www.researchgate.net/publication/234988868_6-31G_basis_set_for_atoms_K_through_Zn?el=1_x_8&enrichId=rgreq-8dcf9b0935f0acd1bfc64b087bbe3cca-XXX&enrichSource=Y292ZXJQYWdlOzI5OTM3OTQyNTtBUzo0MDc5MjMxNjQ0OTk5NjlAMTQ3NDI2Nzg2OTk0NQ==
https://www.researchgate.net/publication/236475503_Self-consistent_molecular_orbital_methods_XXIII_A_polarization-type_basis_set_for_second-row_elements?el=1_x_8&enrichId=rgreq-8dcf9b0935f0acd1bfc64b087bbe3cca-XXX&enrichSource=Y292ZXJQYWdlOzI5OTM3OTQyNTtBUzo0MDc5MjMxNjQ0OTk5NjlAMTQ3NDI2Nzg2OTk0NQ==
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The zero-point vibrational energies (ZPE) obtained were scaled according to Wong (0.9804) 

[38]. The basis set superposition error (BSSE) was calculated and taken into account using the 

Counterpoise Theory for the base pair complex energies [39,40]. Visualization of the structures 

was performed using Avogadro 1.1 software [41]. Ferrosilicate structure was modelled using the 

FeH19O7Si7 cluster, which had been previously used to simulate acidic catalytic performance 

on Fe-MFI [42]. 

Three different adsorbate-cluster complex structures were considered. One formed by 

dioxygen and the ferrosilicate cluster, and the other two formed by propylene approaching the 

ferrosilicate cluster in two different ways. A full optimization of the complex geometry was 

carried out, obtaining vibrational information in the calculation and no imaginary frequencies 

were observed in any of the situations presented in this work. In the cluster and the complex, we 

have considered several possible spin multiplicities, whereas the adsorbates have their ground 

state multiplicities: singlet in the case of propylene and triplet in the case of oxygen. 

Interaction energies between adsorbate and the cluster model were calculated by the following 

formula 

 

where Eint is the interaction energy between adsorbate and the cluster model, Ecluster is the energy 

of the cluster maintaining the structure of the adsorbent-cluster complex, Eadsorbate is the energy of 

the optimized adsorbate and Ecomplex is the energy of the optimized adsorption complex 

(adsorbate-cluster complex).  

3. Results and discussion 

3.1 Morphological and Chemical Analysis of the Catalysts 

https://www.researchgate.net/publication/231245511_State_of_the_Art_in_Counterpoise_Theory?el=1_x_8&enrichId=rgreq-8dcf9b0935f0acd1bfc64b087bbe3cca-XXX&enrichSource=Y292ZXJQYWdlOzI5OTM3OTQyNTtBUzo0MDc5MjMxNjQ0OTk5NjlAMTQ3NDI2Nzg2OTk0NQ==
https://www.researchgate.net/publication/222174087_Vibrational_frequency_prediction_using_density_functional_theory?el=1_x_8&enrichId=rgreq-8dcf9b0935f0acd1bfc64b087bbe3cca-XXX&enrichSource=Y292ZXJQYWdlOzI5OTM3OTQyNTtBUzo0MDc5MjMxNjQ0OTk5NjlAMTQ3NDI2Nzg2OTk0NQ==
https://www.researchgate.net/publication/220044076_The_Calculation_of_Small_Molecular_Interactions_by_the_Differences_of_Separate_Total_Energies_Some_Procedures_with_Reduced_Errors?el=1_x_8&enrichId=rgreq-8dcf9b0935f0acd1bfc64b087bbe3cca-XXX&enrichSource=Y292ZXJQYWdlOzI5OTM3OTQyNTtBUzo0MDc5MjMxNjQ0OTk5NjlAMTQ3NDI2Nzg2OTk0NQ==
https://www.researchgate.net/publication/230664907_Avogadro_an_advanced_semantic_chemical_editor_visualization_and_analysis_platform_J_Chem_Inf_4?el=1_x_8&enrichId=rgreq-8dcf9b0935f0acd1bfc64b087bbe3cca-XXX&enrichSource=Y292ZXJQYWdlOzI5OTM3OTQyNTtBUzo0MDc5MjMxNjQ0OTk5NjlAMTQ3NDI2Nzg2OTk0NQ==
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ICP-OES analysis served to establish the Fe content in each catalyst. The results indicated that 

the Fe content is very close to the one targeted in each synthesis, with the incorporation of 

approximately 93% of the desired Fe in the final SiO2 structure in all cases. In this sense, the 

obtained Fe/Si ratio is 0.00428 ± 0.00005, 0.00952 ± 0.00005, 0.0186 ± 0.0003 and 0.0288 ± 

0.0002 for the samples with nominal contents of 0.005, 0.01, 0.02 and 0.03, respectively. For the 

impregnated sample, the iron content has been determined to be 0.0099 ± 0.0001, which is also 

very close to the targeted 0.01 Fe/Si ratio. It should be mentioned that for the sol-gel Fe-based 

catalysts, complete incorporation of the Fe into the SiO2 structure did not take place, as described 

in the Experimental Section (Section 2.1.1), since a dark supernatant liquid phase was observed 

covering the generated SiO2 monolith and removed before the calcination step. 

All the samples prepared in this work have been analyzed by N2 and CO2 adsorption and no 

significant changes have been observed between the pure silica and the different catalysts. In all 

cases, the catalysts show a combination of type I and type IV isotherms typical of predominantly 

mesoporous materials (see Fig. S2 in Supplementary Information) with a slight microporous 

contribution. The materials also show a certain degree of macroporosity due to the interparticle 

gap between the silica spheres and microporosity inherent to materials formed by precipitated 

silica [43]. The specific surface area of the samples calculated by the BET method is around 

∼230 m
2
/g in all cases, with a mesopore size distribution from 5 to 20 nm according to the BJH 

model applied to the desorption branch of the N2 isotherms. The obtained silica has a low 

micropore volume of 0.09 cm
3
/g calculated by the Dubinin−Radushkevich method in N2 

adsorption.  

The catalysts were observed by FE-SEM in order to evaluate the morphological appearance of 

the prepared powders. The micrographs are shown in Fig. 1 and it can be observed that, due to 
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the synthetic procedure, the pure silica synthesized in this work is generated in the form of 

spheres with a very well defined morphology (Fig. 1A), with the silica particles size being 

around 3-6 μm in diameter, as previously reported in other works [28,29]. As it can be observed, 

the incorporation of low loadings of Fe in the SiO2 structure may reflect in significant 

modifications of the particles morphology. For the samples Fe0.005SiO2 and Fe0.01SiO2 (Fig. 1B 

and 1C), the spherical shape of the catalysts can be observed, although a slight distortion of the 

spheres is obtained. In the samples with higher metal loadings, (Fe0.02SiO2 and Fe0.03SiO2), the 

samples show a very different morphology and the spheres cannot be appreciated in the images. 

Instead, a shapeless continuous material with high surface roughness is obtained (Fig. 1D and 

1E).  

https://www.researchgate.net/publication/6810039_Electrochromatographic_behavior_of_silica_monolithic_capillaries_of_different_skeleton_sizes_synthesized_with_a_simplified_and_shortened_sol-gel_procedure?el=1_x_8&enrichId=rgreq-8dcf9b0935f0acd1bfc64b087bbe3cca-XXX&enrichSource=Y292ZXJQYWdlOzI5OTM3OTQyNTtBUzo0MDc5MjMxNjQ0OTk5NjlAMTQ3NDI2Nzg2OTk0NQ==
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Fig. 1. Field Emission Scanning Electron Microscopy (FE-SEM) of the fresh samples 

prepared in this work. Samples; A) SiO2, B) Fe0.005SiO2, C) Fe0.01SiO2, D) Fe0.02SiO2, E) 

Fe0.03SiO2 and F) FeimpregSiO2. 
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In this sense and according to our results, low iron loadings could be incorporated efficiently 

in the silica structure while maintaining the morphology of the solid, indicating that the Fe atoms 

might be very well dispersed in the SiO2 structure. On the other hand, it seems that Fe contents 

above 2 mol % are too high to efficiently incorporate into the silica structure without distortion, 

and therefore yield SiO2–based materials with a very different morphology, as it can be observed 

in the micrographs.  

The formation mechanism of the silica spheres is a very well-known process described in the 

literature, consisting of a hydrothermal treatment in an autoclave (at 120ºC during 6 h) and 

subsequent urea decomposition, forming NH3 and increasing the pH of the solution/gel up to 10. 

The high pH in the reaction medium, together with the temperature and pressure produce the 

spinodal decomposition of the aqueous and silica phases and the solution/precipitation reactions 

of the silica take place, forming the SiO2 μ-spheres [28,29]. When the iron precursor is added to 

the synthesis solution, the iron can interact with the silicate species during the sol/gel process and 

precipitate together with the SiO2 phase. In this sense, if the Fe content is too high (above 2 mol 

% in this work) not all the iron can be incorporated appropriately in the structure and therefore 

the spherical morphology cannot be obtained, as previously mentioned.  

For the impregnated catalyst (Fig. 1F), spherical particles of SiO2 of similar size have been 

detected. However, in this case, a significant fraction of the SiO2 spheres was fractured, probably 

due to the impact of said spheres with the stirring bar during impregnation (48h under stirring) 

which contrasts with the spherical particles found for pure-silica synthesized by a one-step sol-

gel process).  

https://www.researchgate.net/publication/6810039_Electrochromatographic_behavior_of_silica_monolithic_capillaries_of_different_skeleton_sizes_synthesized_with_a_simplified_and_shortened_sol-gel_procedure?el=1_x_8&enrichId=rgreq-8dcf9b0935f0acd1bfc64b087bbe3cca-XXX&enrichSource=Y292ZXJQYWdlOzI5OTM3OTQyNTtBUzo0MDc5MjMxNjQ0OTk5NjlAMTQ3NDI2Nzg2OTk0NQ==
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For these catalysts, no large particles of iron oxide can be observed on the catalyst surface. 

However, in all cases, Fe is detected by EDX (Fig. S3 top) and ICP. For the Fe0.005SiO2 catalyst, 

the Fe, Si and O distribution obtained by elemental mapping are shown in Fig. S4, where no Fe 

agglomeration is observed in the sample. 

Transmission electron microscopy images of the catalysts are presented in Fig. 2. 

 

Fig. 2. TEM images of the fresh catalysts prepared in this work. Samples; A) Fe0.005SiO2, 

B), Fe0.01SiO2, C) Fe0.03SiO2 and D) FeimpregSiO2. 
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The silica support obtained in this work has an amorphous structure without any apparent 

crystalline order, as extracted from the iron containing silica micrographs (e.g. Fig. 2A). In all 

cases, iron has been detected by EDX (Fig. S3 bottom) regardless the iron loading in the sample. 

It must be highlighted that detection of iron in the samples was confirmed even for the sample 

sections shown in the inserts of Fig. 2A-C, some of which do not display any appreciable 

nanoparticles (specifically insets in Fig. 2A and 2B), which is indicative of the good dispersion 

of the iron species in the sample. However, some differences can also be observed. For the sol-

gel catalysts with low Fe contents (Fe0.01SiO2), some Fe particles (probably corresponding to iron 

oxide) can be observed, with a particle size that is around 1 nm, indicated by the red arrows. For 

the catalyst with the highest Fe content (Fe/Si=0.03), these particles can also be observed in a 

higher concentration (Fig. 2C). So, by using the one-step synthesis procedure, most of the iron 

species can be incorporated into the silica structure as isolated Fe(III) species , as it was detected 

for the sample with the lowest iron loading. As the Fe/Si ratio increases, the iron is also 

incorporated to a significant degree as small iron containing superficial clusters and larger 

particles of iron oxide around 1 nm of diameter [44]. 

On the other hand, for the iron based catalyst prepared by impregnation, a good dispersion of 

the iron oxide has been achieved (Fig. 2D). Small particles of iron oxide can be observed, in this 

case with particle sizes between 1-2 nm.  

Large particles of iron oxide were not detected in any of the samples. XRD analyses (results 

not shown) performed to evaluate the chemical state of Fe in the samples did not yield any 

significant peaks arising from any iron-containing phase due to the small size and the small iron 

loading of the samples.  

https://www.researchgate.net/publication/256737888_Structural_and_electronic_promotion_with_alkali_cations_of_silica-supported_FeIII_sites_for_alkane_oxidation?el=1_x_8&enrichId=rgreq-8dcf9b0935f0acd1bfc64b087bbe3cca-XXX&enrichSource=Y292ZXJQYWdlOzI5OTM3OTQyNTtBUzo0MDc5MjMxNjQ0OTk5NjlAMTQ3NDI2Nzg2OTk0NQ==
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3.2 Spectroscopic Analysis of Fe0.0XSiO2 and FeimpregSiO2 

The solid UV-VIS analyses of the catalysts are shown in Fig. 3.  

 

Fig. 3. Solid UV-VIS reflectance spectra of the fresh samples prepared in the work. 

As it can be observed in Fig. 3, all the samples present significant UV-VIS radiation 

absorbance between 15000 and 50000 cm
-1

, independently of the Fe content. In this sense, a 

commercial Fe2O3-bulk oxide (Sigma-Aldrich, Fig. S5) was also analyzed, presenting only two 

intense bands at 20000 and 25000 cm
-1

 and pure SiO2 does not present any UV-VIS radiation 

absorption within the interval analyzed.  
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For the catalysts prepared in this work, important differences can be observed depending on 

the metal loading and the preparation method. In this sense, the samples prepared by one-step 

synthesis with Fe/Si ratios lower than 0.03, present a very weak signal at 27000 cm
-1

 (370 nm) 

and two intense bands at 38000 and 45000 cm
-1

 (260 and 220 nm, respectively). However, for 

the highest Fe/Si values (Fe0.03SiO2), the intensity of the peak at 27000 cm
-1

 is very similar to 

that of the bands at 38000 and 45000 cm
-1

. This is also the case of the impregnated catalyst, 

where the band at 27000 cm
-1

 displays a higher intensity than the ones above 30000 cm
-1

. 

In addition, for these two catalysts (Fe0.03SiO2 and FeimpregSiO2) with an intense band at 27000 

cm
-1

, a shoulder at around 20000 cm
-1

 (500 nm) can be observed in the spectra. Comparing the 

intensity of the 27000 cm
-1 

band for the catalysts prepared by the sol-gel route, it is possible to 

see that the intensity of this band depends on the Fe/Si ratio especially for loadings over 2 mol 

%. However, this effect is not observed for any of the other bands of the absorption spectra. It is 

very important to emphasize that both samples also show the corresponding UV-VIS bands 

attributed to isolated iron species (38000 and 45000 cm
-1

) which are predominant in the sample 

with the lowest iron loading. Another important point is the difference between the FeimpregSiO2 

and commercial iron oxide (Fig. S5). For the impregnated sample the bands at 38000 and 45000 

cm
-1

 can be clearly seen (with a relative intensity similar to that of the sample prepared by the 

sol-gel route) while these bands show a significantly lower intensity in the case of bulk Fe2O3. 

Many studies have analyzed in depth the electronic transitions responsible for these absorption 

bands in this kind of materials and have identified different iron species supported on silica 

and/or well dispersed Fe species (such as single-site, di-iron sites or iron clusters) in inorganic 

materials [22,23,45,46]. Briefly, the authors conclude that large particles of iron oxide are 

responsible for the absorption between 20000-30000 cm
-1

. In this sense, Fe2O3 particles present 

https://www.researchgate.net/publication/222532538_New_FeSiO2_materials_prepared_using_diiron_molecular_precursors_Synthesis_characterization_and_catalysis?el=1_x_8&enrichId=rgreq-8dcf9b0935f0acd1bfc64b087bbe3cca-XXX&enrichSource=Y292ZXJQYWdlOzI5OTM3OTQyNTtBUzo0MDc5MjMxNjQ0OTk5NjlAMTQ3NDI2Nzg2OTk0NQ==
https://www.researchgate.net/publication/8665568_Synthesis_Characterization_and_Catalytic_Performance_of_Single-Site_IronIII_Centers_on_the_Surface_of_SBA-15_Silica?el=1_x_8&enrichId=rgreq-8dcf9b0935f0acd1bfc64b087bbe3cca-XXX&enrichSource=Y292ZXJQYWdlOzI5OTM3OTQyNTtBUzo0MDc5MjMxNjQ0OTk5NjlAMTQ3NDI2Nzg2OTk0NQ==
https://www.researchgate.net/publication/239627081_IronIII_species_dispersed_in_porous_silica_through_sol-gel_chemistry?el=1_x_8&enrichId=rgreq-8dcf9b0935f0acd1bfc64b087bbe3cca-XXX&enrichSource=Y292ZXJQYWdlOzI5OTM3OTQyNTtBUzo0MDc5MjMxNjQ0OTk5NjlAMTQ3NDI2Nzg2OTk0NQ==
https://www.researchgate.net/publication/244392388_Structure_and_Reactivity_of_Framework_and_Extraframework_Iron_in_Fe-Silicalite_as_Investigated_by_Spectroscopic_and_Physicochemical_Methods?el=1_x_8&enrichId=rgreq-8dcf9b0935f0acd1bfc64b087bbe3cca-XXX&enrichSource=Y292ZXJQYWdlOzI5OTM3OTQyNTtBUzo0MDc5MjMxNjQ0OTk5NjlAMTQ3NDI2Nzg2OTk0NQ==
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an intense peak at 20000 cm
-1

, FeOx species shows a band at 23400 cm
-1

, some aggregates of γ-

FeOOH and Fe(OH)3 display absorption at around 26000 cm
-1

 and finally Fe(III)-clusters present 

a band at 30000 cm
-1 

[23,45,46]. For the 30000-50000 cm
-1

 wavenumber interval, the pseudo-

tetrahedral Fe(III) centers present a charge-transfer (CT) band at around 38000 cm
-1

 (the exact 

wavenumber depending on the solvent) and the same transition for octahedral iron complexes 

appears at 36000 cm
-1

 [23]. For a Fe(III) tetrahedral center, the molecular orbital theory predicts 

two intense transitions at 46500 and 41500 cm
-1

 corresponding to t1t2 and t1e transition 

electronic states, respectively. However, the octahedral Fe(III) centers also have two bands in the 

same wavenumber interval [46]. In this sense, all authors conclude that it is very complicated to 

unequivocally identify the coordination of the Fe(III) when it is very well dispersed over an 

inorganic support, like silica or a zeolite [46,47]. Recently, Prieto-Centurion et al. reported very 

well dispersed iron silica based on Fe-EDTA complex impregnation where the identification of 

the iron species was very exhaustive. Iron single-sites, small bi-dimensional iron superficial 

clusters and larger particles of iron oxide can be obtained modifying the iron precursor or the 

alkaline promotor [44]. 

In this sense, the interpretation of the UV-VIS spectra of iron based catalysts is not 

straightforward. In samples Fe0.005SiO2, Fe0.01SiO2 and Fe0.02SiO2, the presence of the weak band 

at 27000 cm
-1

 demonstrates that not all the iron of the sample is incorporated into the silica 

framework as well-dispersed species, despite of the intense bands at 38000 and 45000 cm
-1 

which
 
are indicative of the iron being incorporated as well-dispersed species. The band at 27000 

cm
-1

 increases slightly in intensity with increasing Fe content. However, considering the intensity 

of the band compared to the sample FeimpregSiO2, we can conclude that most of the iron 

introduced to the synthesis solution is efficiently incorporated into the silica framework as 

https://www.researchgate.net/publication/8665568_Synthesis_Characterization_and_Catalytic_Performance_of_Single-Site_IronIII_Centers_on_the_Surface_of_SBA-15_Silica?el=1_x_8&enrichId=rgreq-8dcf9b0935f0acd1bfc64b087bbe3cca-XXX&enrichSource=Y292ZXJQYWdlOzI5OTM3OTQyNTtBUzo0MDc5MjMxNjQ0OTk5NjlAMTQ3NDI2Nzg2OTk0NQ==
https://www.researchgate.net/publication/8665568_Synthesis_Characterization_and_Catalytic_Performance_of_Single-Site_IronIII_Centers_on_the_Surface_of_SBA-15_Silica?el=1_x_8&enrichId=rgreq-8dcf9b0935f0acd1bfc64b087bbe3cca-XXX&enrichSource=Y292ZXJQYWdlOzI5OTM3OTQyNTtBUzo0MDc5MjMxNjQ0OTk5NjlAMTQ3NDI2Nzg2OTk0NQ==
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isolated iron. This is in agreement with the EDX results in the TEM analyses and FE-SEM 

observations (see Fig. S3), where the incorporation of iron prevented the formation of perfect μ-

spheres of silica. The formation of some small iron superficial clusters and larger particles 

(around 1 nm) of iron oxide was also confirmed by TEM microscopy (Fig. 2) and is in good 

agreement with other related works based in alkaline-promoted iron catalysts [44]. It is quite 

difficult to quantify the fraction of iron which is well-dispersed and incorporated into the silica 

framework with respect to the rest of the iron oxide forming small particles. 

Eg (bandgap energy) extracted by Kubelka-Munk analysis has demonstrated to be a very useful 

tool to investigate the dispersion of transition metals (Mo or Fe) over inorganic materials, such as 

silica or zeolites [26,48,49]. For example, the Eg values obtained for bulk α-Fe2O3 and 

nanoclusters of iron oxide in MCM-41 were 2.14 and 4.20 eV, respectively [49], and for well 

dispersed and KCl doped iron oxide over MFI zeolite around 4.50 eV [26]. The same authors 

[21] used XANES analysis and concluded that for samples with small Fe/Si ratios (0.01), the 

direct hydrothermal synthesis of an iron containing silica produces preferentially an iron 

incorporation in the tetrahedral framework positions obtaining similar values of Eg, around 4.20 

eV, while other methodologies, such as ion-exchange or impregnation methods produce small 

iron oxides clusters with an octahedral coordination of the iron atoms. 

Comparing the Eg energies obtained for the one-step synthesis catalysts in this work (which are 

3.97, 3.91 and 3.90 eV for Fe0.005SiO2, Fe0.01SiO2 and Fe0.02SiO2, respectively) with other Fe-

silicates values found in the literature, the results of this work are closer to those of well 

dispersed iron oxide on inorganic materials, such as silica or zeolites, were the Eg energies are 

around 4.20 eV, than to those of bulk iron oxide or large oxide particles [49]. On the contrary, 

for the sample Fe0.03SiO2, the intensity of the bands at 20000 and 27000 cm
-1

 suggests that the 
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iron species are mainly in the form of clusters and larger particles of iron oxide, with a calculated 

Eg for this sample of 2.51 eV, very close to bulk iron oxide [49]. However, these iron oxide 

particles are too small for XRD detection (results not shown). 

For the FeimpregSiO2 catalyst, the high absorbance of the sample at 20000 and 27000 cm
-1

 

indicates that the iron oxide is preferentially deposited as small iron superficial clusters and 

larger particles over the silica surface. The bandgap value obtained in this case is 2.55 eV, which 

also indicates the formation these particles of iron oxide, as previously observed for the 

Fe0.03SiO2 catalyst.  

The incorporation of the iron species into the silica framework can be also deduced by FTIR 

spectroscopy in the fresh catalysts after their drying at 120ºC for 24 h. The corresponding spectra 

are shown in Fig 4. 
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Fig. 4. FTIR spectra of the catalysts prepared in this work after drying at 120ºC for 24 h. 

The presented magnifications correspond to the OH (left) and SiO4 (right) vibration 

regions. 

Fig. 4 shows the IR spectra for the catalysts within the most relevant wavenumber ranges. The 

band located at 810 cm
-1

 corresponding to the asymmetric modes of the isolated [SiO4] units is 

showed in the upper right corner in Fig. 4. This analysis shows that the maximum of the band 

(dotted line) is located at around 810 cm
-1

, being this value obtained for the impregnated iron 

catalyst. However, for the one-step synthesis catalysts a small displacement to lower 

wavenumbers is observed (e.g. 804 cm
-1

 for the Fe0.005SiO2 catalyst). A similar effect was 

observed by Scarano et al. [50], where the presence of small amounts of heteroatoms was enough 
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to induce modifications in the framework stretching region. On the other hand, the most intense 

band located at 1090 cm
-1

, corresponding to Si-O stretching, does not present any apparent 

modification. Bordiga et al. [46]described how the absorption of the [O3Si-O] species 

surrounding the Fe(III) centers can emerge in a complex absorption band between 1250-1000 

cm
-1

. In this sense, it is quite difficult to differentiate this band due to the proximity of the 

fundamental framework modes of pure silica (1300-1000 cm
-1

). However, as the iron loading 

increases a new shoulder appearing at approximately 1160 cm
-1

 increases its intensity (Fig. 4). 

This shoulder may appear as a consequence of the aforementioned complex band due to the 

increasing presence of iron species. It must be mentioned that it has been impossible to find the 

shoulder at 1006 cm
-1

previously reported by the same work, corresponding to the framework 

Fe(III)-O stretching species, due to the calcination step applied to the samples, as they described 

in their work. 

In the 2900 to 3800 cm
-1 

wavenumber region (top left corner of Fig. 4) it is possible to identify 

the OH stretching bands on the surface. Some bands can be detected and have been described in 

the literature [46,47,51]; isolated free silanol (3745 cm
-1

), bridged hydroxyls with Brønsted acid 

character (3660 cm
-1

) and H-bonded species in silanol (3500-3250 cm
-1

). The raw silica presents 

only the band of the free silanol groups. However, when iron is incorporated the rest of the 

typical OH bands appear. It is very important to notice that the band corresponding to the 

bridged hydroxyls (3660 cm
-1

) has a higher intensity in the case of Fe0.005SiO2 and decreases as 

the iron loading increases. On the other hand, the relative intensity of this band for the iron 

impregnated catalyst is very similar to the Fe0.02SiO2. This band presents a slight displacement to 

higher wavenumber values compared to similar materials (H-ZSM-5 (3610 cm
-1

) and Fe-
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Silicalite (3630 cm
-1

)). This higher wavenumber indicates a lower acid strength of the Brønsted 

bridged hydroxyls corresponding to the Si-OH-Fe species in the samples [46,47]. 

 In this sense, the observation of the bridged hydroxyls and the displacement of the asymmetric 

modes of the isolated [SiO4] due to the presence of iron may confirm the presence of Fe(III) 

species incorporated and well-dispersed into the silica framework, especially in the case of the 

lowest iron-content sample Fe0.005SiO2.  

UV-Raman has been used as another complementary technique to determine the incorporation 

of iron into the silica framework in the fresh catalysts. The results are presented in the Fig. 5. 

 

Fig. 5. UV resonance Raman spectra of the silica, fresh catalysts and pure Fe2O3 excited 

with a UV laser of 325 nm. 
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By UV-Raman it is possible to analyze the different coordination environments of the iron into 

crystalline aluminosilicates (such as ZSM-5) or amorphous silica materials (such as SBA-15) 

[52,53]. For the pure silica material the Raman bands of the symmetric and asymmetric Si-O-Si 

stretching appear at 485 and 990 cm
-1

. These bands are not obtained for the commercial Fe2O3 

material, which only presents a very intense Raman activity under 600 cm
-1

 due to its vibrational 

structure modes. For the iron based materials, three characteristics bands are reported for the 

amorphous silica materials. In their work (see Ref. [52]) at 510 and 1090 cm
-1

 the Fe-O-Si 

stretching modes of the Fe into the silica framework appear together with a band located at 978 

cm
-1

 associated to the Si-O-Si vibrations near the iron species [52,53]. Two main features may be 

highlighted from Fig. 5. On the one hand, a blueshift displacement of the 485 cm
-1

 band is 

observed when the iron content increases in the one-step synthesis series (up to 500 cm
-1

 in the 

case of Fe0.01SiO2 and Fe0.02SiO2). For the FeimpregSiO2 catalysts no modification of the Si-O-Si 

stretching band is observed, only the presence of a small band at 600 cm
-1

 which is also found in 

the bulk iron oxide. On the other hand, some modifications due to the presence of iron are 

observed in the 900-1200 cm
-1

 range. While there are no  modifications in the 990 cm
-1

 band 

when iron is present in the synthesis, these are not conclusive and do not seem related to the 

amount of iron in the synthetic protocol. However, in the case of the band located at 1080 cm
-1

 a 

progressive increase in intensity is observed when the Fe/Si ratio increases up to a molar loading 

of 0.02.  

Analyzing the results obtained by UV-Raman, and comparing with UV-VIS and FTIR, it is 

possible to confirm that iron is incorporated into the silica framework. Thus, with these results 

we have confirmed that as the iron loading increases in the one-step synthesis the silica 

framework is being modified by the presence of the incorporated iron species. Furthermore, for 
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the impregnated sample it is also possible to obtain an iron fraction of well-dispersed species. 

However, compared with the Fe0.01SiO2 catalysts, a higher amount of small particles/clusters of 

iron oxide is obtained. 

In-situ FTIR has also been used to analyze the interaction between the components in the gas 

phase (propylene, molecular oxygen and gas stream reaction) and the catalysts, since this 

interaction is of importance to understand the performance of the catalyst in the propylene 

epoxidation reaction. The results corresponding to the Fe0.005SiO2 sample at 350ºC are presented 

in Fig. S6.  

As it can be observed, after 5 minutes of interaction of the catalyst surface with the propylene 

stream, the gas is present on the ferrosilicate surface and therefore, intense CHx symmetric and 

asymmetric stretching bands are observed in the spectrum at around 3000 cm
-1

. Also, IR bands 

can be observed at around 1640 and 1840 cm
-1

, corresponding to C=C stretching and of the 

molecular dipole moment parallel to the plane of symmetry vibrations, respectively [54]. In all 

cases, the IR signals correspond to those of pure propylene gas since no significant shift in the 

position of the peaks assigned to gaseous propylene [27,55] can be appreciated, which indicates 

that propylene is mostly physisorbed on the ferrosilicate surface. Stronger adsorbent-adsorbate 

interactions may not be ruled out altogether, but due to the low metal amount compared to the 

high concentration of adsorbed propylene the corresponding IR signals are inappreciable. When 

the gas stream is switched to pure He, a decrease in the intensity of the signals corresponding to 

physisorbed propylene can be gradually seen due to propylene desorption and, after 60 seconds, 

no evidence of propylene, or other hydrocarbon-related compound can be obtained and a flat IR 

spectrum is observed (red line). From these results, a weak interaction between propylene in the 

gas phase and the surface of the catalysts can be inferred at the reaction temperature. Similar 
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results have been obtained for the rest of the catalysts in this work and for the different 

temperatures tested, which have not been shown for the sake of brevity. Regarding the results of 

the O2 desorption experiments, no results could be obtained due to the lack of IR signal from the 

molecular O2. When the reaction mixture was flowed over the catalyst at 350ºC during the in situ 

FTIR analysis, no bands corresponding to propylene oxide molecule could be observed due to 

the small production of PO with respect to the propylene concentration. For the two analyzed 

samples (those with a 0.5% and 3% mol loading, see Fig. S6B), the catalyst with the higher 

activity (Fe0.03SiO2) showed a marked increase in the amount of generated water, as evidenced 

by the signals in the fingerprint region (1500-2000 cm
-1

), as compared to the Fe0.005SiO2 sample. 

The presence of these bands together with the comparatively low PO production did not allow 

for the detection of the desired reaction product by in situ FTIR analysis. When the reaction was 

stopped (by flowing Helium through the reaction chamber), the spectrum returned to the initial 

appearance of the original catalyst. 

 

3.3 Propylene Epoxidation Reaction 

From the non-isothermal experiments, it is observed that the reaction starts (PO generation) in 

all cases at around 300ºC, reaching the maximum activity at around 400ºC. The PO selectivity in 

these tests is very stable throughout the entire temperature interval and, in general, shows slightly 

higher values at low conversions and tends to decrease as the activity increases (e.g. 27% at 

320ºC versus 20% at 450ºC for the Fe0.01SiO2 sample). 

After these preliminary experiments, the fresh samples were tested under isothermal conditions 

(at 350ºC) during at least 4 hours in two cycles. In all catalytic tests, the propylene conversion, 
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PO generation and PO selectivity remained constant for all the reaction time, and the values 

showed in this section correspond to the steady state conditions. Analyzing the other compounds 

produced in the reaction, it was possible to find out that the main byproduct formed was CO2, but 

in some catalysts acetaldehyde, ethanol and acetone were also produced to a negligible extent 

(maximum selectivity for any of the products was always below 1%). 

The results of the catalytic activity of the samples under steady-state conditions at 350ºC are 

shown in Table 1. 

Table 1. Catalytic performance of the samples prepared in propylene epoxidation by O2 

molecule under steady-state conditions at 350ºC 

Catalyst C3H6 

Conversion 

(%) 

PO 

Generation 

(%) 

Selectivity (%) TOF (h
-1

) 

   PO Others
a
 CO2  

1
st
 Cycle       

Fe0.005SiO2 5.5 1.8 33.6 < 0.5 ~66 10.8 

Fe0.01SiO2 7.8 1.9 24.6 

 

< 0.5 ~75 4.8 

Fe0.02SiO2 10.3 2.4 23.1 < 1.0 ~76 

 

3.6 

Fe0.03SiO2 15.4 3.0 19.5 < 1.0 ~80 2.7 

FeimpregSiO2 5.4 1.2 22.9 < 1.0 ~76 3.5 

2
nd

 Cycle       

Fe0.005SiO2 5.6 1.9 33.3 < 0.5 ~66 10.7 

Fe0.01SiO2 6.0 1.4 23.5 < 0.5 ~76 3.5 

 

FeimpregSiO2 4.7 

 

1.1 22.8 < 1.0 ~76 2.6 

a
 Acetaldehyde is the main organic byproduct obtained in the catalytic reaction (always with a 

selectivity below 1%). 
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According to the results shown in Table 1, the catalytic results for the propylene epoxidation in 

O2 atmosphere show that all the catalysts of this work are active in the studied reaction. As it can 

be observed, the propylene conversion gradually increases as the Fe/Si increases. For the sample 

with the lowest Fe/Si ratio, 5.5% of propylene conversion is obtained, while for the Fe0.03SiO2 

catalyst the propylene conversion increases up to 15.4%. The PO generation presents the same 

trend, and also increases proportionally to the metal loading, showing for the abovementioned 

catalysts PO generation values of 1.8 and 3%, respectively. On the contrary, the opposite 

behavior is obtained for the selectivity, since it decreases as the iron metal loading increases, 

obtaining 33.6% of selectivity towards PO for the Fe0.005SiO2 sample versus a 19.5% in 

Fe0.03SiO2. If we analyze these results in terms of TOF, we can see that the sample with the 

lowest iron loading (Fe0.005SiO2) is the one with the highest TOF and, as the Fe/Si ratio increases, 

TOF values decrease and similar data are obtained for samples Fe0.02SiO2 and Fe0.03SiO2.  

Regarding the samples with similar Fe/Si ratios but prepared using different methodologies, 

Fe0.01SiO2 and FeimpregSiO2, the catalytic results observed were slightly different. Fe0.01SiO2 

catalyst presents a 7.8% of propylene conversion versus 5.4% for FeimpregSiO2. The PO 

selectivity also presents similar differences, with values of 24.6% for the one-step synthesis and 

22.9%, for the impregnated catalyst. From these results, it can be extracted that the sol-gel 

synthesis yields catalysts with better properties for this epoxidation process than the 

impregnation procedure, as shown in Table 1 at 350ºC. The FeimpregSiO2 catalyst shows a 

propylene conversion value similar to the Fe0.005SiO2  catalyst and the lowest PO generation for 

all the studied catalysts. The different catalytic behavior of the impregnated sample can be 

attributed to the broad and complex distribution of iron species on the silica support. The results 

corresponding to the one-step synthesis seem to indicate that not all the iron species contained in 
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the catalysts are equally active for the epoxidation reaction since, would that be the case, TOF 

values would be similar for all samples. However, the iron species in the Fe0.005SiO2 catalyst 

seem to be more active than those present on the catalysts with higher Fe contents. It should also 

be taken into account that propylene conversion increases significantly as the Fe content in the 

sample increases. Thus, in order to understand these two effects, we need to consider the results 

obtained by the experimental techniques applied (FE-SEM, TEM, FTIR, UV-Raman and UV-

VIS) to the Fe0.0XSiO2 catalysts. These results suggest that it is possible to differentiate between 

two kind of iron species in the catalyst; i.e., well dispersed iron into the silica framework or 

superficial iron atoms in either tetrahedral or pseudo-tetrahedral coordination (mainly present in 

Fe0.005SiO2 catalyst, as detected by EDX and UV-VIS) and small iron superficial clusters and 

larger particles of iron oxide (around 1 nm in size) over the silica surface (present in the samples 

with high iron loadings). Thus, our hypothesis after the catalysts characterization is that as iron 

loading increases in the catalysts for the one-step synthesis, there is a higher fraction of iron 

species present as iron oxide clusters relative to the incorporated ones. In this sense, even for the 

samples with 3 mol % Fe prepared by the sol-gel route or even the impregnated samples 

analyzed with UV-Vis analyses, it is not possible to rule out the presence of a fraction of well-

dispersed iron species incorporated in the silica framework (Fig. 3). On the other hand, as it can 

be seen in Fig. S5, there are noticeable differences in the UV-VIS spectra of the impregnated 

catalyst with respect to bulk iron oxide which may be attributed to the presence of well-dispersed 

iron species present in the sample, which may account for its observed catalytic activity. In case 

of the commercial iron oxide, the bands at 38000 and 45000 cm
-1

, corresponding to isolated iron 

species present a very weak intensity (See Figure S5), while their relative intensities for the 

FeimpregSiO2 catalysts are significantly larger. So from our results we can conclude that that the 
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iron species incorporated into the silica framework have a higher activity for PO generation 

versus the small particles of iron oxide, which are more active in the propylene conversion to 

CO2 (i.e. total oxidation). Our hypothesis is in good agreement with the samples characterization 

and the obtained catalytic results. 

To study the behavior of the samples after the first catalytic test, the samples were treated at 

550ºC in air to remove any possible carbonaceous deposit and were then studied in subsequent 

cycles. The most representative catalytic activity results are presented in Table 1. Between each 

cycle, the samples were analyzed by solid UV-VIS spectroscopy.  

The performance of these catalysts in terms of TOF for the two consecutive reaction cycles is 

presented in Table 1. It is possible to see the differences between the two cycles in the catalysts 

with a Fe/Si ration over 0.01, where a significant TOF decrease is observed for both the sol-gel 

catalysts and the iron-impregnated silica. The only exception to this observation is the 

Fe0.005SiO2 catalyst which presents the same value of TOF over the two catalytic cycles. 

As it can be observed, a similar behavior is obtained for the catalysts in the two cycles. In this 

sense, the TOF drastically diminishes as the Fe content increases in the samples and, as a general 

trend, the second reaction cycle displays lower TOF values than the first cycle for all the 

catalysts, with the only exception of the Fe0.005SiO2 sample. In addition, in both cycles the 

impregnated sample (Table 1) shows the smallest TOF value. The catalytic performance of the 

Fe0.005SiO2 sample the propylene conversion remains constant 5.5%, and also the PO generation 

and the selectivity towards PO in the second cycle. However, for both samples with 1 mol % Fe, 

a poorer catalytic activity is obtained in the second cycle, diminishing both propylene conversion 
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and PO generation. As previously mentioned, the impregnated catalyst displays a poorer 

performance in terms of activity and selectivity compared to the corresponding sol-gel catalyst. 

These results are in good agreement with the hypothesis that the species responsible for the 

catalytic epoxidation of propylene are the well dispersed iron atoms (isolated Fe(III) ions in 

tetrahedral or pseudo-tetrahedral coordination) into the silica framework. The sample with the 

lowest number of small iron oxide particles (around 1 nm) according to UV-VIS and TEM 

analysis and with the highest amount of iron incorporated in the silica structure is the Fe0.005SiO2 

catalyst, and in this sense, this iron distribution is less liable to changes during the first 

epoxidation reaction cycle, as it was inferred from the TOF results. On the other hand, the 

samples with higher Fe/Si ratios present a higher amount of small iron superficial clusters and 

larger particles of iron oxide, as Fe0.01SiO2 and FeimpregSiO2 catalysts, which are less active in 

propylene epoxidation with molecular O2, and some changes might have occurred during the first 

catalytic cycle that might even affect to the iron species incorporated in the silica structure, 

reflecting in a poorer catalytic behavior in the second cycle. These results are in good agreement 

with other similar reported catalysts [44]. 

After each catalytic cycle, the samples were calcined at 550ºC in air and analyzed by UV-VIS 

spectroscopy (see Fig. S7 in Supplementary Information). As a result of the UV-VIS analyses 

when the catalysts were submitted to a catalytic epoxidation test the band located at 27000 cm
-1

 

increases its intensity, with the only exception of the Fe0.005SiO2 sample which showed a 

negligible increase. The rest of the features of the spectra (bands at ~20000, 38000 and 45000 

cm
-1

) do not present any significant change after the reaction cycles. The modification of the 

intensity of this band suggests a modification of the Eg values obtained for the catalysts after the 

epoxidation reaction. Thus, for sample Fe0.01SiO2 the Eg value decreases from 3.91 (in the fresh 

https://www.researchgate.net/publication/256737888_Structural_and_electronic_promotion_with_alkali_cations_of_silica-supported_FeIII_sites_for_alkane_oxidation?el=1_x_8&enrichId=rgreq-8dcf9b0935f0acd1bfc64b087bbe3cca-XXX&enrichSource=Y292ZXJQYWdlOzI5OTM3OTQyNTtBUzo0MDc5MjMxNjQ0OTk5NjlAMTQ3NDI2Nzg2OTk0NQ==
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sample) to 3.80 eV in the used one. The samples have been analyzed by TEM after the propylene 

epoxidation test and no significant changes have been observed in the size and/or morphology of 

the iron oxide particles. However, the Eg value obtained after the epoxidation test for the 

Fe0.005SiO2 sample, 3.95 eV, does not differ significantly from that of the fresh catalyst. 

According to the catalytic reaction and the UV-VIS results, it seems that the Eg value is directly 

related to the catalytic performance of the Fe-doped catalysts and, in this sense, it seems that a 

decrease in the Eg parameter after the reaction (as it is the case of Fe0.01SiO2 and FeimpregSiO2) 

reflects in a poorer performance of the catalysts, both in terms of propylene conversion and PO 

generation.  

The slight decrease of the Eg values and the apparent impoverishment of the catalytic behavior 

(in terms of propylene conversion and TOF) for the catalysts with Fe content over 1 mol %, 

could be attributed to displacement/extraction of the iron species incorporated in the silica 

structure to extra-framework positions under reaction conditions (forming iron oxide deposited 

over the silica surface) or to a direct interaction with iron oxide nanoparticles, which would be 

less active in the propylene epoxidation reaction. This fact is observed in all samples, except for 

the lowest iron loading (Fe0.005SiO2), where the same TOF and propylene conversion have been 

obtained for the different cycles.  

When critically comparing the results obtained in this work with those present in the literature, 

higher selectivity values (around 90%) can be found in other related works in gas-phase 

conditions, such as Au/Ti-SiO2 catalyst in H2/O2 gas streams compositions, but in these catalysts 

lower propylene conversion are obtained [7,56,57]. On the other hand, the catalyst based on 

alkaline salts (K
+
 or Na

+
) doped iron silica require very powerful oxidizing agents, such as N2O 

(without the presence of H2 in the gas stream), to achieve PO selectivities around 60% for 

https://www.researchgate.net/publication/257658553_Gas-phase_propene_epoxidation_over_coinage_metal_catalysts?el=1_x_8&enrichId=rgreq-8dcf9b0935f0acd1bfc64b087bbe3cca-XXX&enrichSource=Y292ZXJQYWdlOzI5OTM3OTQyNTtBUzo0MDc5MjMxNjQ0OTk5NjlAMTQ3NDI2Nzg2OTk0NQ==
https://www.researchgate.net/publication/223512597_Vapor_phase_propylene_epoxidation_over_AuTi-MCM-41_catalysts_prepared_by_different_Ti_incorporation_modes?el=1_x_8&enrichId=rgreq-8dcf9b0935f0acd1bfc64b087bbe3cca-XXX&enrichSource=Y292ZXJQYWdlOzI5OTM3OTQyNTtBUzo0MDc5MjMxNjQ0OTk5NjlAMTQ3NDI2Nzg2OTk0NQ==
https://www.researchgate.net/publication/229223353_The_effect_of_mesoporous_scale_defects_on_the_activity_of_AuTS-1_for_the_epoxidation_of_propylene?el=1_x_8&enrichId=rgreq-8dcf9b0935f0acd1bfc64b087bbe3cca-XXX&enrichSource=Y292ZXJQYWdlOzI5OTM3OTQyNTtBUzo0MDc5MjMxNjQ0OTk5NjlAMTQ3NDI2Nzg2OTk0NQ==
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propylene conversions below 10% [26,58]. In other cases the use of O2 molecule as sole oxidant 

agent requires the use of more reactive metal oxides (Cu, Ru, Mo, Mn and/or W) to achieve the 

synthesis of the propylene oxide [14,16,18,59]. For example, Zheng et al. [60] have studied  very 

interesting catalysts based in Ag-Cu nanoparticles deposited over BaSO4 achieving a PO 

selectivity around 55% keeping a 3.6% of propylene conversion and Horváth et al. [61] have 

developed a pure MoOx nanofilms over SiO2  which present a PO yield around 2-3%, at least 

during 8 hours. In this regard, our catalyst show similar PO generation and slightly lower 

selectivities to PO only using a small amount of iron. As thoroughly summarised by Khatib and 

Oyama in a recent review [3], there are many examples in the literature in which molecular 

oxygen is used as the sole oxidant in the production of epoxides. This review clearly identifies 

three main catalysts groups (Ag-, Cu-, and Ti-based catalysts) with a fourth group (“Other types 

of catalysts” according to the authors) in which Au- and Mo-based catalysts seem promising 

alternatives. In terms of TOF, our systems show values over 10 h
-1

 which compare to some Ag-

based systems [13], but would be below the data reported by Lei et al. [62] It must be noted, 

however, that mass spectrometry was used to analyze the reaction products which raises some 

questions concerning the selectivity of the prepared systems. The use of Cu-based systems, on 

the other hand has resulted in comparatively poorer TOF values [63]. In terms of conversion and 

selectivity, Cu-based catalysts seem to perform similarly to our systems (see for example) but the 

reported systems contain a significant loading of Ruthenium oxide, which is comparatively 

expensive. On the other hand, recent reports on Ag- and Ti-based systems have shown 

significantly higher selectivity (around 70-80%) [59] or conversion values (up to 97%) [64], 

even though the prepared catalysts are reasonably more sophisticated than those presented in this 

study. In any case, as it can be immediately seen from Fig. 7 in [3], the preparation of an 

https://www.researchgate.net/publication/281190354_Direct_Oxidation_of_Propylene_to_Propylene_Oxide_with_Molecular_Oxygen_A_Review?el=1_x_8&enrichId=rgreq-8dcf9b0935f0acd1bfc64b087bbe3cca-XXX&enrichSource=Y292ZXJQYWdlOzI5OTM3OTQyNTtBUzo0MDc5MjMxNjQ0OTk5NjlAMTQ3NDI2Nzg2OTk0NQ==
https://www.researchgate.net/publication/281190354_Direct_Oxidation_of_Propylene_to_Propylene_Oxide_with_Molecular_Oxygen_A_Review?el=1_x_8&enrichId=rgreq-8dcf9b0935f0acd1bfc64b087bbe3cca-XXX&enrichSource=Y292ZXJQYWdlOzI5OTM3OTQyNTtBUzo0MDc5MjMxNjQ0OTk5NjlAMTQ3NDI2Nzg2OTk0NQ==
https://www.researchgate.net/publication/272391613_Direct_epoxidation_of_propylene_to_propylene_oxide_on_various_catalytic_systems_A_combinatorial_micro-reactor_study?el=1_x_8&enrichId=rgreq-8dcf9b0935f0acd1bfc64b087bbe3cca-XXX&enrichSource=Y292ZXJQYWdlOzI5OTM3OTQyNTtBUzo0MDc5MjMxNjQ0OTk5NjlAMTQ3NDI2Nzg2OTk0NQ==
https://www.researchgate.net/publication/244108374_Direct_propylene_epoxidation_over_modified_AgCaCO_3_catalysts?el=1_x_8&enrichId=rgreq-8dcf9b0935f0acd1bfc64b087bbe3cca-XXX&enrichSource=Y292ZXJQYWdlOzI5OTM3OTQyNTtBUzo0MDc5MjMxNjQ0OTk5NjlAMTQ3NDI2Nzg2OTk0NQ==
https://www.researchgate.net/publication/276383355_Copper-Manganese_Mixed_Metal_Oxide_Catalysts_for_the_Direct_Epoxidation_of_Propylene_by_Molecular_Oxygen?el=1_x_8&enrichId=rgreq-8dcf9b0935f0acd1bfc64b087bbe3cca-XXX&enrichSource=Y292ZXJQYWdlOzI5OTM3OTQyNTtBUzo0MDc5MjMxNjQ0OTk5NjlAMTQ3NDI2Nzg2OTk0NQ==
https://www.researchgate.net/publication/256737648_Iron-catalyzed_propylene_epoxidation_by_nitrous_oxide_Effect_of_boron_on_structure_and_catalytic_behavior_of_alkali_metal_ion-modified_FeOxSBA-15?el=1_x_8&enrichId=rgreq-8dcf9b0935f0acd1bfc64b087bbe3cca-XXX&enrichSource=Y292ZXJQYWdlOzI5OTM3OTQyNTtBUzo0MDc5MjMxNjQ0OTk5NjlAMTQ3NDI2Nzg2OTk0NQ==
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https://www.researchgate.net/publication/239234664_Oxidation_of_propene_by_molecular_oxygen_over_Ti-modified_silicalite_catalysts?el=1_x_8&enrichId=rgreq-8dcf9b0935f0acd1bfc64b087bbe3cca-XXX&enrichSource=Y292ZXJQYWdlOzI5OTM3OTQyNTtBUzo0MDc5MjMxNjQ0OTk5NjlAMTQ3NDI2Nzg2OTk0NQ==
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epoxidation catalyst which meets the current industrial demands requires the adequate balance 

between propylene conversion and yield towards its oxide. In our work, we present a simple 

preparation methodology to obtain iron based catalysts for propylene epoxidation using only O2 

molecules in the gas stream composition as oxidant, with conversion values above those obtained 

in some cases in the literature and good TOF values. The use of small quantities of an abundant 

and cheap metal, such as iron, well dispersed in the silica framework, allows for the simple 

preparation of a very user-friendly catalyst under the used reaction conditions. It should be noted 

that the obtained catalytic results are still distant from the objectives set in order to make these 

systems interesting from an applied point of view. However, these catalysts can be used as model 

to understand the epoxidation reaction pathway and, furthermore constitute a solid foundation 

from where these systems may be improved further in order to meet the industrial requirements 

in the future. On the other hand the TOF value obtained for the most selective sample in this 

work (Fe0.005SiO2, 10.8h
-1

) is significantly higher than that obtained for similar unpromoted 

catalysts found in the literature for the epoxidation reaction with N2O [26], and slightly higher 

than those found for vanadium oxide based silica catalysts [27] and controlled copper oxide 

(Cu2O) morphology [15]. The values of this work are similar to those presented by K-promoted 

copper oxide in different experimental conditions [65], although not as high as those obtained for 

certain gold based Ti-SiO2 materials [66] although these studies use H2/O2 mixtures for the 

generation of oxidant peroxide species. It must be once again highlighted that the catalysts 

prepared in this study use dioxygen as the sole oxidant, which is an advantage over the oxidants 

employed in other reports, which either use more aggressive and/or toxic oxidants (N2O, Cl2 or 

H2O2) or gaseous mixtures containing explosive gases (H2/O2).  
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3.4 Results on computational calculations 

Fe in the original cluster arranges itself in a pseudotetrahedral geometry as other authors have 

reported for the case of iron containing zeolites [42]. This proposed structure could correspond to 

the isolated Fe(III) ions incorporated into the silica framework in our hypothesis, specially in the 

sample with lowest amount of iron Fe0.005SiO2 where no small particles of iron oxide have been 

found. When O2 interacts with the cluster, dioxygen incorporates to the structure coordinating 

itself to the Fe in a bridge mode slightly distorting the initial geometry and forming what will be 

referred as O2-cluster complex (Fig. 6). It must be mentioned that the band at 38000 cm
-1 

in UV-

VIS spectra (presented in our samples, see Fig. 3) has been previously assigned to pseudo-

tetrahedral Fe(III) centers [23]. 

 

Fig. 6. Optimized simulated ferrosilicate clusters used in this study. Left: Original 

cluster; Right: O2-cluster complex. Colour coding; Green: Iron; Red: Oxygen; Grey: 

Silicon; White: Hydrogen. Please note that only the acidic proton neighboring the Iron 

atom is represented for simplicity 
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Propylene adsorption has been modelled starting from different initial conditions: a direct 

interaction between propylene and iron and an interaction between propylene and the acid 

proton, see FTIR spectra at 3660 cm
-1 

in Fig. 4, (Fig. 7), as suggested by Nguyen et al for alkene 

adsorption on Al-zeolites [67]. 

 

Fig. 7. Most stable optimized C3H6-cluster complex with the C3H6 in a bridge 

configuration over the acidic proton. Please note that only the acidic proton neighboring 

the Iron atom is represented for simplicity 

 

Different multiplicities of the adsorbate-cluster complexes were studied as this can be 

important in the case of iron containing species [68,69]. Two different multiplicity situations 

were studied for the case of O2-cluster complex: ferrosilicate cluster presents M=4 or M=6 and 

O2-cluster complex M=2 or M=4 respectively. In this study the energetically most favorable 

combination of ferrosilicate cluster (M=4) and O2-cluster complex (M=2) has been chosen for 

calculating the interaction energy.  
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For the case of propylene, the most stable C3H6-cluster complex is that in which the double 

bond interacts with the acidic proton of the ferrosilicate cluster (see Fig. 7). This configuration 

has been studied previously [67] and is in accordance with a precursor for the production of coke 

due to acid cracking reaction of the hydrocarbon. For this geometry, the most energetically stable 

cluster complex is the one where M=6 for both, the complex and the cluster. 

Interaction energies for the most stable complexes have been obtained and presented in Table 

2. These energy values are of the same order as those reported for alkene adsorption on different 

Al-zeolites [67]. 

 

Table 2. Calculated (B3LYP/6-31G(d,p)) interaction energies of the cluster-adsorbate complex 

System Eint (eV) 

O2-complex 0.434
a 

C3H6-complex 0.528
b
 

a
 Energy corresponding to the interaction between the oxygen molecule and the single-site iron species 

b
 Energy corresponding to the interaction between the propylene molecule and the acidic proton neighboring the 

iron species 

 

Interaction energies between ferrosilicate cluster and the adsorbates (O2 and C3H6) are quite 

similar, suggesting that both species interact with the surface to similar extents.  

Table 3 presents selected bond distances of the adsorbates (O=O, C=C) both in the gas phase 

and adsorbed. A low increase in the bond distance of the adsorbates is observed as a result of 

activation of reactants upon adsorption on their respective adsorption sites.  
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Table 3. Calculated (B3LYP/6-31G(d,p)) bond distances of gas phase and adsorbed species 

(pseudotetrahedral iron atom for the O2 molecule and acidic proton for the C3H6 molecule) . 

System Bond distance (Å) 

d O=O in O2 (gas phase) 1.21 

d O=O in O2 (cluster/O2) 1.29 

d C=C in C3H6 (gas phase) 1.32 

d C=C in C3H6 (cluster/C3H6) 1.34 

 

The interaction energy of both adsorbates with their corresponding adsorption sites is similarly 

small, showing that both compounds are weakly adsorbed. The calculated distances for the O=O 

and C=C bonds indicate that dioxygen is activated to a larger extent than propylene, which in 

turn makes the epoxidation possible in the ferrosilicate cluster shown in Fig. 6. 

On the other hand, computational results also predict a significant interaction energy between 

propylene (  and  complex) and the acidic proton located next to the single iron site. The slight 

difference in olefin bond distance in both interactions (with iron atom and acid proton for oxygen 

and propylene, respectively) would correspond to physisorbed species and is not enough to 

observe a IR-band displacement of the C=C in the sample Fe0.005SiO2 (Fig. S6A) maybe due to 

the small amount of iron present in the sample compared with the propylene concentration in the 

gas stream (see Fig. S6A). The interaction between the olefin and the acidic proton, is well 

known to produce cracking reactions and, in the presence of the activated oxygen in the neighbor 

position, could lead to either a partial or total oxidation of the hydrocarbon. These reactions 

(epoxidation, cracking and combustion) have been observed under the catalytic epoxidation 

conditions used in this work. From the results obtained in the epoxidation experiments, it 

becomes evident that the presence of well-dispersed iron species incorporated in the silicate 
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framework favours the preferential adsorption of oxygen over propylene, giving rise to an 

increase in the yield of the epoxide. 

 

3.5 Discussion on the mechanism of epoxidation of propylene in the presence of dioxygen 

The results obtained in this work together with those published for this and other reactions 

involving the activation of the O2 molecule, enable us to propose a possible reaction pathway 

occurring on the ferrosilicate catalysts. In this sense, some works related to carbon monoxide 

oxidation on catalysts based on pure iron oxide or on inert supports need high temperatures for 

the reaction to take place (around 300ºC) [70,71]. In our case, propylene epoxidation on the 

highly dispersed iron species into the silica structure also begins under similar conditions. In 

addition, recent theoretical and experimental works have determined that the critical step for this 

reaction is the Fe-O formation of the terminal bond, that requires activation of the O=O bond 

[71,72]. This observation is in agreement with our computational calculations which postulate 

the interaction between isolated iron species and O2, causing an increase in the O-O bond length 

of almost 7% which may react with the propylene adsorbed on the acidic proton located in its 

immediate vicinity. Also, the proposed mechanism for the propylene gas phase epoxidation over 

iron based catalyst with N2O has been studied, and the authors propose that the iron catalyst 

activates the N2O decomposition, and the atomic oxygen generated is the responsible for the 

propylene epoxidation [25].  

With all this, and from the viewpoint of our work, it seems plausible that the well dispersed 

iron species incorporated into the silica skeleton of our system interact with molecular oxygen 

while the propylene molecule adsorbs on the neighboring acidic proton as the DFT calculations 

indicate. In the former case, the interaction between the well incorporated iron on the silica 
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structure and the O2 molecule, produces the adsorption and activation of the gas molecule on the 

catalyst surface [73]. According to our evidence and the description proposed here, this process 

of propylene epoxidation with molecular oxygen over ferrosilicate catalysts would take place 

between the oxygen adsorbed on the well-dispersed iron species incorporated in the silica 

framework and the propylene adsorbed on the acidic proton to give the desired epoxide with 

significant efficiency under the reaction conditions. In this respect, the adsorption of propylene 

on the acidic proton favors the reaction of said compound with the activated oxygen molecule 

located in the isolated iron site, as we have also observed in our study. On the other hand, the 

interpretation of the dioxygen interaction with the surface with the small iron oxide 

cluster/particles, in some case lower than 1 nm, is very different depending on their size, atoms 

number and structure [74,75] and very difficult to construe in our catalyst. Furthermore, the 

existence (and the strength) of the acidic protons located next to the aforementioned 

clusters/particles would also play a role, which would further complicate the theoretical 

modelling of the system. 

 

4. Conclusions 

In this work we present a simple sol-gel methodology for the one-step synthesis of well 

dispersed iron sites in a silica framework in tetrahedral or pseudo-tetrahedral coordination and 

their application for the gas-phase epoxidation of propylene for the generation of propylene 

oxide only using O2 molecule as oxidant reactant.  

The synthetic procedure allows us to generate a user-friendly and cost-effective catalyst with 

different Fe sites depending on the Fe content, which range from pure single sites incorporated in 

https://www.researchgate.net/publication/13229927_Sequential_Oxygen_Atom_Chemisorption_on_Surfaces_of_Small_Iron_Clusters?el=1_x_8&enrichId=rgreq-8dcf9b0935f0acd1bfc64b087bbe3cca-XXX&enrichSource=Y292ZXJQYWdlOzI5OTM3OTQyNTtBUzo0MDc5MjMxNjQ0OTk5NjlAMTQ3NDI2Nzg2OTk0NQ==
https://www.researchgate.net/publication/231340611_Generation_and_Characterization_of_the_Anionic_Neutral_and_Cationic_Iron-Dioxygen_Adducts_FeO2_in_the_Gas_Phase?el=1_x_8&enrichId=rgreq-8dcf9b0935f0acd1bfc64b087bbe3cca-XXX&enrichSource=Y292ZXJQYWdlOzI5OTM3OTQyNTtBUzo0MDc5MjMxNjQ0OTk5NjlAMTQ3NDI2Nzg2OTk0NQ==
https://www.researchgate.net/publication/232366755_O2_isotopic_exchange_in_the_presence_of_O-_anion_radicals_on_the_FeZSM-5_surface?el=1_x_8&enrichId=rgreq-8dcf9b0935f0acd1bfc64b087bbe3cca-XXX&enrichSource=Y292ZXJQYWdlOzI5OTM3OTQyNTtBUzo0MDc5MjMxNjQ0OTk5NjlAMTQ3NDI2Nzg2OTk0NQ==


 44 

the silica matrix if the Fe content is low, to the formation of small particles of iron oxide (around 

1 nm in size) when the Fe content is increased. In all cases, the catalysts are highly active and 

selective for the generation of PO, although our results seem to indicate that Fe species 

incorporated within the SiO2 matrix have a higher activity towards the generation of the aimed 

product (PO). The active phases have proven to be modified under the reaction conditions, since 

several consecutive cycles show a decrease in both activity and selectivity towards PO when the 

iron content is over 1 mol %. In this sense, the distribution of isolated iron species into the silica 

framework presents a higher selectivity to PO production instead of the small iron superficial 

clusters and larger particles of iron oxide in catalysts whit higher metal loadings. O2 activation 

by well-dispersed iron species over the silica structure is proposed to be responsible for the 

propylene epoxidation, and these active iron species could be moved to extra-framework 

positions after the first catalytic reaction in samples with Fe/Si ratios higher than 0.01 in both 

preparation procedure (one-step synthesis and impregnation based catalysts). 

Simulation studies have identified that the presence of isolated iron species in tetrahedral or 

pseudo-tetrahedral coordination into the silica framework might be responsible for the adsorption 

of both molecular oxygen (only over isolated iron) and propylene (interacting with the acid 

proton), activating the former. This in turn enables the epoxidation of adsorbed propylene even 

in the absence of a noble metal catalyst, or even a catalyst in high loadings. In this sense, the 

prepared catalysts are still far from the thresholds with would qualify them for industrial 

application. However, the synthesis combined with the all the used techniques gives us a firm 

starting point from which to develop new catalysts and allows us to understand the catalytic 

process in order to improve the performance of the catalyst by their selective modification (e.g. 

adding some alkaline promoter to increase the PO selectivity) so as to meet industrial demands.  
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Finally, these catalysts prepared by one-step synthesis have proven to be more efficient for this 

process than a similar catalyst prepared by an impregnation procedure, where a poorer catalytic 

performance has been obtained. 
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