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Abstract

A computational predictive tool for assessing patient-specific corneal tissue properties is devel-

oped. This predictive tool considers as input variables the corneal central thickness (CCT), the

intraocular pressure (IOP), and the maximum deformation amplitude of the corneal apex (U)

when subjected to a non-contact tonometry test. The proposed methodology consists of two

main steps. First, an extensive dataset is generated using Monte Carlo (MC) simulations based

on finite element models with patient-specific geometric features that simulate the non-contact

tonometry test. The cornea is assumed to be an anisotropic tissue to reproduce the experimentally

observed mechanical behavior. A clinical database of 130 patients (53 healthy, 63 keratoconic

and 14 post-LASIK surgery) is used to generate a dataset of more than 9,000 cases by permut-

ing the material properties. The second step consists of constructing predictive models for the

material parameters of the constitutive model as a function of the input variables. Four different

approximations are explored: quadratic response surface (QRS) approximation, multiple layer

perceptron (MLP), support vector regressor (SVR), and K-nn search. The models are validated

against data from five real patients. The material properties obtained with the predicted models

lead to a simulated corneal displacement that is within 10% error of the measured value in the

worst case scenario of a patient with very advanced keratoconus disease. These results demon-

strate the potential and soundness of the proposed methodology.
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1. Introduction1

Corneal biomechanics is an open topic in ophthalmology. Precise knowledge about the under-2

lying factors that affect the corneal mechanical response will allow establishing better clinical di-3

agnoses, monitoring the progression of different diseases (e.g., keratoconus, a non-inflammatory4

disease that causes disruption of the collagen fibers) or designing a priori patient-specific surgical5

plans that may reduce the occurrence of unexpected outcomes.6

Non-contact tonometry has recently gained interest as a diagnostic tool in ophthalmology and7

as an alternative method for characterizing the mechanical behavior of the cornea. In a non-8

contact tonometry test, a high-velocity air jet is applied to the cornea for a very short time (less9

than 30 ms), causing the cornea to deform, while the corneal motion is recorded by a high-10

speed camera. A number of biomarkers associated with the motion of the cornea, i.e., maximum11

corneal displacement and time between first and second applanations, among others, have been12

proposed to characterize pre- and post-operative biomechanical changes[1, 2, 3, 4, 5, 6, 7, 8,13

9]. However, this response is the result of the interplay between the geometry of the cornea,14

the intraocular pressure (IOP), and the mechanical behavior of the corneal tissue, as has been15

demonstrated by recent experimental and numerical studies [2, 10]. These studies suggest that16

this interplay could be the reason for some unexpected clinical results (i.e., a softer cornea with17

a higher IOP could show the same behavior as a stiffer cornea with a lower IOP). Although the18

geometry and the IOP can be measured using corneal topographers and Goldmann tonometry19

applanation tests (GATs), the mechanical behavior of the cornea cannot be directly characterized20

in vivo.21

The human cornea is composed of an almost incompressible layered base material (matrix),22

mainly composed of water, where two families of orthogonal collagen fibers are embedded [11,23
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12]. Due to this structure, the tissue behaves as an anisotropic solid that has two preferential24

directions corresponding to the direction of the collagen fibers. A number of material models25

have been proposed to reproduce the behavior of the cornea, ranging from simply hyperelastic26

isotropic materials [13] to more complex models coupling the hyperelastic isotropic response27

for the matrix (neo-Hookean models) with the anisotropic response of the collagen fibers of28

the eye [12, 14, 15, 16, 17, 18, 23, 24]. These material models have been incorporated into29

computer models of the eye to simulate surgical interventions and tonometry tests in an effort to30

demonstrate the potential of these in silico models[3, 4, 17, 25, 26, 27, 28, 54, 55, 56].31

However, numerical studies have found that the contribution of the fibers to load bearing dur-32

ing a tonometry test is highly reduced due to the bending mode of deformation imposed by33

the test. Under this particular loading condition, other factors such as the IOP or the central34

corneal thickness (CCT) were found to be more significant in the response of the cornea to the35

air puff[2, 4]. Moreover, in the physiological range of IOP (from 10 to 15 mmHg) and CCT36

(from 500 to 600 microns), the corneal tissue is not subjected to large stresses, with the fibers37

bearing relatively low loads[4]. In addition, experimental studies in porcine and human eyes have38

demonstrated that fibers play a major role only when the IOP increases to values above the phys-39

iological range [24, 29]. Therefore, it appears that the mechanical behavior of the matrix will40

play a significant role in reproducing the corneal response during a tonometry test. Furthermore,41

some authors have suggested that only one in vivo technique may not be sufficiently accurate for42

properly characterizing the material properties, such as Kok et al. [19, 4]. However, at present,43

it is the only clinical device that permits a non-invasive analysis of the human cornea, as biaxial44

or inflation tests can only be performed ex vivo.45

Over the past decade, with the development of large and extensive datasets, the use of artificial46

neural networks (ANNs) has returned to the spotlight. Essentially, an ANN intends to model47

the human brain by mathematically reproducing the neural architecture to learn and recognize48

patterns or to adjust functional responses. In ophthalmology, commercial topographers imple-49

ment different types of ANNs to establish a classification between healthy eyes and diseased50

eyes (e.g., keratoconus eyes, KTC, or ectasias post-LASIK)[30, 31, 32, 33, 34]. Unfortunately,51
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these ANNs are primarily based on the geometrical features of the cornea (e.g., radii, thickness,52

diopters, shape factors, and so forth), and it is not common to consider mechanical variables53

such as the intraocular pressure (IOP). In addition to ANNs, response surface methods have also54

been used in biomedical sciences for predicting the effects of different model parameters on a55

set of biomarkers associated with a particular pathology [35, 36, 37]. The great interest in these56

mathematical methods relies on the immediateness of their response, which is a key factor for57

clinical applications. However, they suffer from an important weakness: the extension of the58

training dataset. These methods are based on precisely learning a considerable amount of data59

under different conditions to lead to a proper and accurate response of the system. Otherwise,60

a poor prediction or an overfitting in the solution could be reached with catastrophic results.61

Unfortunately, the higher the complexity of the applied neural network, the higher the number62

of cases that are needed for both training and validating the training. Therefore, this is a clear63

limiting factor when dealing with patient data. Apart from the aforementioned mathematical64

tools, another optimization approach has been used for determining the material properties of the65

human cornea: the inverse finite element method (henceforth IFEM) [3, 20, 21, 22]. This method66

uses an iterative optimization procedure that changes a set of unknown parameters to match the67

numerical response with the experimental response. Thus, it requires a highly accurate definition68

of the problem and sufficiently reliable boundary conditions. Moreover, each case of interest69

must be evaluated ad hoc, resulting in a time-consuming process that is not real time and hence70

not interesting for real clinical applications.71

The present work aims to construct predictors for real-time clinical applications based on ANN72

and quadratic response surface (QRS) approximations to obtain the parameters of the constitu-73

tive model of a patient’s cornea using 3 clinical biomarkers as inputs: the maximum corneal dis-74

placement measured during a non-contact tonometry test (U), the patient’s IOP, and geometrical75

features of the cornea. The predictive tool relies on a dataset generated by the results of finite el-76

ement simulations of the non-contact tonometry test. The simulations are based on combinations77

of patients of a real clinical database (the patient-specific corneal geometry and the Goldmann78

IOP[4]) and of corneal material properties of the numerical model to predict the corneal apical79
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displacement. In brief, the finite element model is used to perform a Monte Carlo (MC) simu-80

lation in which the material parameters and the IOP are uniformly varied within an established81

range. The range for the material parameters was determined by considering the experimental82

results from an inflation test reported in the literature[24, 38] and the physiological response of83

the cornea to an air-puff device (i.e., displacement of the cornea using a CorVis device). First, the84

inflation tests were used to initially screen the model parameters, to constrain the search space85

of the optimization and in an attempt to avoid an ill-posed solution [19]. Second, the range of86

each material parameter was then determined such that the in silico inflation curve was within87

the experimental window. In this way, both physiological behaviors of the cornea are simulta-88

neously fulfilled: the response to an inflation test (biaxial stress) and the response to an air-puff89

test (bending stress). Subsequently, the generated dataset was used to implement different pre-90

dictors for the mechanical properties of the patient’s corneal model in terms of variables that are91

identified in a standard non-contact tonometry test. Eventually, the resulting models were tested92

on five different, new and unknown patients to demonstrate the potential and soundness of the93

proposed methodology in terms of predicting corneal tissue properties.94

2. Materials and Methods95

2.1. Patient data96

Topographical data of the cornea and IOP from 130 patients (53 healthy, 63 keratoconic and97

14 post-LASIK surgery)[2, 4] were collected prospectively, i.e., an ongoing measuring process98

without posterior revision of the patient’s medical history, at the Department of Ophthalmology99

(OFTALMAR) of the Vithas Medimar International Hospital (Alicante, Spain). A comprehen-100

sive ophthalmologic examination was performed in all cases, including Goldmann tonometry and101

analysis of the corneal anterior and posterior segments using a Scheimpflug photography-based102

topography system (Pentacam system, Oculus, Germany). The inclusion criteria were as follows:103

healthy eyes, eyes diagnosed with keratoconus according to the Rabinowitz criteria [39], and eyes104

that had undergone previous laser in situ keratomileusis (post-LASIK) for the correction of my-105

opia (range -0.50 to -8.00 D). The exclusion criteria were patients with active ocular diseases106
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or patients with other types of previous ocular surgeries. Clinical validation data were collected107

prospectively at the Qvision Ophthalmic Unit of the Vithas Virgen del Mar Hospital (Almeria,108

Spain). A comprehensive ophthalmologic examination was performed in all cases, including109

Goldmann tonometry, corneal and anterior segment analysis using a Scheimpflug photography-110

based topography system (Pentacam, Oculus, Germany) and corneal dynamics analysis (CorVis,111

Oculus, Germany). This study adhered to the guidelines of the Declaration of Helsinki and was112

approved by the ethics committee of the University of Alicante (Alicante, Spain).113

Figure 1: Graphical Outline of the Developed Methodology.

2.2. Construction of the predictive model114

Figure 1 shows the main steps of the proposed methodology. As stated in the introduction, the115

methodology relies on the use of a previously developed algorithm for the patient-specific geo-116

metrical reconstruction of the cornea and the simulation of a non-contact tonometry test [4]. To117

generate the dataset, two main steps have to be differentiated. In the first step, an initial screening118

over the constitutive model parameters is performed using the inflation experiments reported in119

the literature [24, 38]. There are two benefits associated with this step: constraining the space of120

solutions for the subsequent step and restraining the space of solutions to those that behave phys-121

iologically on the inflation range. The second step corresponds to the generation of the training122

dataset using a Monte Carlo analysis. The in silico simulations of the non-contact tonometry123

test using the clinical patient-specific corneal topography and the clinical Goldmann IOP are124

used to obtain the bending behavior of the cornea. By filtering with the clinical ranges of max-125

imum deformation amplitude [1], the space of material parameters that behave physiologically126

in both experiments (inflation and air puff) is obtained. Following the Monte Carlo simulation,127

an analysis of variance (ANOVA, using a second-order linear model for the sum of squares and128

accounting for the interaction between the parameters) is performed to identify the impact of the129

variables on the maximum displacement of the corneal apex, thereby defining the main inputs of130

the predictors. The resulting dataset is then used to train a set of 4 different predictors in terms131

of the material model parameters (D1, D2, k1, and k2) and the main variables identified through132
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ANOVA. Finally, the predictors are tested with clinical results from a non-contact tonometry test133

on five patients to validate the methodology using unknown patient data.134

2.3. Finite Element Model135

The FE model consists of the patient-specific corneal geometric data, which are provided by136

the topographer, the limbus and half of the sclera [4]. The geometry is meshed using quadratic137

hexahedral elements (62,276 nodes and 13,425 elements). The limbus and the cornea are con-138

sidered to be anisotropic solids described by the same strain energy function but with different139

preferential directions (the cornea is assumed to be orthotropic with two orthogonal families of140

fibers, whereas the limbus is assumed to be transversely isotropic with only one family of fibers).141

The limbus is assumed to have the same material properties as the cornea since a proper in vivo142

characterization has not yet been reported and because it is considered to be a more compliant143

boundary condition for the cornea [56] far from the zone of influence of the air jet. Material144

models are described in detail in the following section. Conversely, the sclera is assumed to be145

an isotropic solid since the region of interest is far from the optic nerve insertion. Symmetry146

boundary conditions are defined on the scleral symmetry plane, and the intraocular pressure is147

assumed to be an equally distributed internal pressure determined by the Goldmann tonometry148

test.149

To properly simulate the profile of pressure over the cornea of the non-contact tonometry from150

a purely structural perspective, a computational fluid dynamics simulation using ANSYS was151

conducted to determine the pressure pattern over the cornea due to the air puff. Although it is an152

approximation since the cornea is considered to be a rigid wall interface for the sake of the fluid153

analysis, a bell-shaped profile with a peak pressure set to 15 kPa is obtained (commercial devices154

range between 10 and 15 kPa), following a 30 ms temporal load profile provided by Oculus (only155

the load phase is considered). In addition, a zero-pressure algorithm is performed as a step prior156

to the air-puff simulation and is necessary for determining the corneal tissue pre-stress due to the157

IOP. Briefly, a fixed-point iterative optimization is applied, where an initial model of the eyeball158

is subjected to an internal pressure to deform. Subsequently, the error between the measured159

configuration (i.e., topographer geometry) and the deformed configuration is computed. If the160
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error is greater than a tolerance, a new initial model is computed by subtracting the point-to-point161

error. Eventually, the algorithm stops once the measured reference is achieved when pressurizing162

the initial (usually smaller) model (for further details, see [4]).163

2.4. Material Model164

The form of the strain energy function for modeling the cornea corresponds to a modified165

version of that proposed by Gasser–Holzapfel–Ogden [40] for arterial tissue, where the neo-166

Hookean term has been substituted by an exponential term167

ψ(C, nα) = D1 · {exp[D2 · (Ī1 − 3)] − 1} + k1

2 · k2
·

N∑

α=1

{exp[k2〈Ēα〉2] − 1} + K0 ·


J2
el − 1

2
− ln(Jel)

 ,

with Ēα
def
= κ · (Ī1 − 3) + (1 − 3κ) · (Ī4(αα) − 1),

(1)

where C is the right Cauchy–Green tensor; Jel =
√

det C is the elastic volume ratio; D1, D2, k1168

and k2 are material parameters; K0 is the bulk modulus; N is the number of families of fibers; Ī1 is169

the first invariant of the modified right Cauchy–Green Tensor C̄ = J−2/3
el C; and Ī4(αα) = nα · C̄ · nα170

is the square of the stretch along the fiber’s direction nα. The parameter κ describes the level of171

dispersion in the fiber’s direction and has been assumed to be zero since it has been reported that172

a dispersion in the fibers of ±10 deg about the main direction results in a maximum variation of173

0.03% on the maximum corneal displacement [4].174

The strain-like term Ēα in Eq. 1 characterizes the deformation of the family of fibers with175

preferred direction nα. The model assumes that collagen fibers bear load only in tension while176

they buckle under compressive loading. Hence, only when the strain of the fibers is positive,177

i.e., Ēα > 0, do the fibers contribute in the strain energy function. This condition is enforced178

by the term < Ēα >, where the operator < · > stands for the Macauley bracket defined as179

< x >= 1
2 (|x|+ x). The model has been implemented in a UANISOHYPER user subroutine within180

the FE software Abaqus.181

Due to the random distribution of fibers far from the optic nerve insertion, the sclera has been182
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assumed to be an isotropic hyperelastic material [41] (Eq. 2).183

ψY =

3∑

i=1

Ki(Jel − 1)2·i +

3∑

i=1

Ci0 · (Ī1 − 3)i, (2)

where C10 = 810 [kPa], C20 = 56, 050 [kPa], C30 = 2, 332, 260 [kPa], and Ki [kPa] is automati-184

cally set by the finite element solver during execution.185

2.5. Monte Carlo Simulation186

Due to the large dispersion in the corneal responses to inflation and air-puff tests and be-187

cause the behavior of the fibers should not be properly characterized by a single experiment,188

the Monte Carlo simulation was conducted in two steps. First, the inflation experiments were189

used for screening the range of values of the material model that behaves physiologically in a190

biaxial stress state and hence constraining the searching space in subsequent steps. A total of191

81 combinations of the material parameters were used to simulate an inflation test on an average192

healthy eye (see Figure 2b). The in silico inflation curves were then compared with experi-193

ments reported in the literature [24, 38], and the range of material parameters leading to curves194

within the experimental window was determined. The identified range of parameters was set to195

D1[kPa] ∈ (0.0492, 0.492), D2[−] ∈ (70, 144), k1[kPa] ∈ (15, 130), and k2[−] ∈ (10, 1000).196

The second step was to generate the dataset using the Monte Carlo simulation and considering197

a uniformly distributed sample of the material parameters within the previously identified range.198

A uniform distribution was assumed since there are no a priori data on the dispersion of the199

mechanical parameters in the human cornea, and therefore, total ignorance about the population200

is assumed. Otherwise, a bias could be introduced on the outcome of the system. Additionally,201

to account for the physiological diurnal variations in the IOP [42], variations in the IOP ranging202

from 8 to 30 mmHg along with the patient’s IOP at the moment of the examination were also203

considered in the Monte Carlo simulation. Hence, for each available geometry in the clinical204

database, 72 different samples of the material parameters and the IOP, uniformly distributed in205

their respective ranges, were used to conduct 72 simulations of the non-contact tonometry test.206

Consequently, a total of 9,360 computations (i.e., 72 combinations times 130 geometries) were207

9



scheduled. The generated dataset consisted of the following variables: classification (healthy,208

KTC and LASIK), computation exit status (failed or successful), material parameters (D1, D2,209

k1 and k2), IOP, CCT, nasal-temporal curvature (Rh), superior-inferior curvature (Rv) and the210

computed maximum displacement of the cornea (Unum).211

After the dataset was generated, ANOVA was performed to identify the most influential model212

parameters (geometry, pressure and material) on the numerical displacement, Unum, obtained213

with the non-contact tonometry simulation. The results from this analysis were used to identify214

the geometric parameters to be included in the construction of the predictor functions for the ma-215

terial parameters. ANOVA was conducted on the global dataset without differentiation between216

the populations and for each of the populations (healthy, keratoconus or KTC, and LASIK). Since217

the dataset is randomly generated, ANOVA cannot be directly conducted on the data. Instead, a218

quadratic response surface was first fit to Unum (e.g., Unum = f (geometry, pressure,material)).219

Then, a Pareto analysis (i.e., it states the most influential parameters on an objective variable, ar-220

ranging them in decreasing order by taking into account the cumulative sum of the influence until221

reaching a 95% variation on the objective variable) was used to determine the most influential222

parameters on the dependent variable, Unum.223

2.6. Predictive Models224

The generated dataset was used to construct predictors for the mechanical properties of the225

patient’s cornea in terms of variables that are measured with a standard non-contact tonometry226

test. Two different approaches were implemented (see Fig.1): i) response surface approach and227

ii) neighborhood-based approach.228

2.6.1. Response surface approach229

This approach is based on adjusting, or training, a predictor model for each material parameter230

(D1, D2, k1 and k2). Individual predictors were constructed using either an ANN or a quadratic231

response surface. For the ANN approach, two different mathematical models were considered:232

multiple layer perceptron, MLP, and support vector regressor, SVR. As an alternative to the233

ANN, a quadratic RS (QRS) was fit for each material parameter.234
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Artificial Neural Network: Multiple Layer Perceptron (MLP). An MLP is a feedforward235

ANN whose aim is to map a set of input variables (i.e., parameters that define the problem)236

into an output, allowing non-linear separable sets to be distinguished. It consists of different237

layers formed by ’neurons’ or processing elements with non-linear activation: input layer,238

hidden layer and output layer. This technique is a supervised back-propagation learning239

technique for the training [57]. For the present study, an ensemble of 7 independent MLPs240

has been configured, obtaining the output as the average of the individual outputs (reducing241

the inherent variability of the method). Each independent MLP has been trained using a242

Levenberg-Marquardt minimization with early stooping criteria (usual criteria: a maximum243

of 6 increments of the validation error and a maximum of 1000 training epochs). Each MLP244

has 10 neurons for the hidden layer.245

Support Vector Regressor (SVR). A support vector machine (SVM) is a supervised learn-246

ing model that is mainly used for analyzing data for classification and regression analysis247

[58]. Once a set of training data is given, it marks each point for classifying into cate-248

gories using a non-probabilistic non-linear classifier based on the use of kernels, which249

allow mapping into higher-dimensional feature spaces to better discern the clustering of250

categories. When the SVM is used for fitting a response (i.e., regression) rather than classi-251

fying, it is called a support vector regressor (SVR)[59]. For the present study, the libSVM252

C++ library using the epsilon-SVR formulation with a Gaussian kernel (RBF) was used253

for solving the SVR problem [43]. There are three configuration parameters: the epsilon254

value (default value 0.001), the algorithm Cost (optimized value) and the kernel’s Gamma255

(optimized value). The optimization of the parameters was achieved by searching the cross-256

validation generalized performance of the training data. This method uses a grid search257

within the maximum expectation range of the parameters (Cost and Gamma), yielding a258

surface where the minimum corresponds to the optimum.259

Regarding the dataset used for both methods (MLP and SVR), it has been split as 80%260

of the data for the training stage and 20% for the validation stage. In addition, the mod-261

els have been trained using k-fold techniques (with a k-fold equal to 5) to automatically262
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optimize their parameters while avoiding overfitting during the training and differencing263

datasets according to populations (healthy, KTC and LASIK). Furthermore, the data have264

been normalized using the criterion of null average and the standard deviation equal to one.265

Quadratic Response Surface (QRS). The response surface methodology seeks for the266

relationship between the input variables and the response variables in terms of the optimal267

response and using a dataset constructed following a sequence of designed experiments268

[60]. In general, the method fits a multiple order surface (e.g., a second-order polynomial)269

to minimize the error with respect to the experimental data. In the present study, a multiple270

linear regression model including crossed and second-order terms was used for predicting271

the response (D1, D2, k1 and k2) as a linear function of the predictor variables. The model272

fitting used a stepwise regression (i.e., terms can be added or removed depending on their273

influence on the response) based on the Akaike information criterion (AIC) [44]. The AIC274

provides a measure of model quality by simulating the situation where the model is tested275

on a different data set. After computing several different models, they can be compared276

using this criterion. According to Akaike’s theory, the most accurate model has the smallest277

AIC.278

Independent predictors were fit to the entire dataset and to individual populations to test their279

classification capabilities. Each predictor was structured as follows. Let j stand for a particular280

material parameter and χ j be its predictor. Based on the ANOVA performed on the dataset, the281

most influential geometric parameters on the corneal displacement, U, are identified and denoted282

as x. Hence, each predictor χ j was constructed as a function (inputs) of x, IOP, and the remaining283

material parameters of the model. Therefore, for parameter D1, χD1 = χD1 (x, IOP,D2, k1, k2).284

Once the models were trained, identification of the material parameters from the known patient285

data, i.e., x, IOP, and U, was performed iteratively using a fixed-point iteration algorithm. The286

search algorithm is detailed in Algorithm 1. In brief, D1 is evaluated through χD1 using the287

material parameters from the previous iteration; D2 will then be obtained through χD2 including288

the previously computed value for D1, while k1 and k2 are kept from the previous iteration, and so289

on. The cost function controls the changes in the values of the material parameters between two290
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consecutive iterations: if the change in the material properties between two consecutive iterations291

is less than a tolerance, the algorithm stops and the identified material parameters are reported.292

Algorithm 1. Fixed-point iteration algorithm to determine material parameters from patient’s293

data (clinical biomarkers).294

295

%Initialize Control Values296

TOL=1e-6; itemax=5000; k=1; error=1;297

%Initialize Random Material Seed298

matk=(Dk
1 Dk

2 kk
1 kk

2);299

WHILE AND(error>TOL,k<itemax)300

%Predict Dk+1
1301

Dk+1
1 :=χD1 (x,IOP, U, Dk

2, kk
1, kk

2);302

%Predict Dk+1
2303 �

Dk+1
2 :=χD2 (x,IOP, U, Dk+1

1 kk
1 kk

2);304

%Predict kk+1
1305 �

kk+1
1 :=χk1 (x,IOP, U, Dk+1

1 , Dk+1
2 , kk

2);306

%Predict kk+1
2307 �

kk+1
2 :=χk2 (x,IOP, U, Dk+1

1 , Dk+1
2 , kk+1

1 );308

%Check Cost Function309

matk+1=(Dk+1
1 , Dk+1

2 , kk+1
1 , kk+1

2 );310

error=
∑ |matk+1 − matk |;311

%Update Next Iteration312

k=k+1;313

END314

2.6.2. Neighborhood-Based Protocol (K-nn Search)315

Due to the coupled effects that geometry, IOP, and material properties have on the corneal316

response (i.e., displacement), different combinations of parameters could exist that provide the317

same maximum displacement (i.e., less rigid corneas subjected to a large IOP could experience318

the same displacement to the air puff as a more rigid cornea subjected to a lower IOP), causing319

the response surface approach to be less effective, i.e., Algorithm 1 could identify different sets320

of material parameters according to the initial seed (local minima). The K–nn search approach321

searches the set of material parameters directly in the raw dataset without the need for an approx-322

imation function. This algorithm searches the n closest neighbors to the patient in the dataset and323

then interpolates the material model parameters in terms of the distance from the patient’s point324

to the neighbors. The distance is calculated as the Euclidean distance in the (x, IOP,U) subspace325

of the dataset.326
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2.7. Validation327

To validate the proposed methodology, 5 eyes (1 healthy eye and 4 keratoconus eyes) that328

were subjected to a non-contact tonometry test (CorVis ST, Oculus, Germany) were considered.329

For these eyes, the corneal topography, IOP and corneal displacement due to the air puff, U,330

were available (see Table 1). These parameters were used to predict the patient’s material model331

parameters using the previously described predictors. With the predicted material model pa-332

rameters and the topographical data of the cornea, an in silico non-contact tonometry test was333

simulated using the procedure proposed in [4]. The numerical corneal displacement, Unum, was334

compared to the clinical displacement U.335

Table 1: Clinical Validation Data: CorVis Non-Contact Tonometry Test for Validation Patients (5 eyes: 1 healthy
eye and 4 keratoconus eyes).

L. Eye IOP CCT U AL1 AL2 VA1 VA2 P. Dist. R
h0 R 12 578 1.00 2.09 1.92 0.19 -0.36 2.38 7.5

ktc0 R 15 545 1.12 1.81 1.87 0.16 -0.34 5.07 7.58
ktc1 L 15 544 1.03 1.84 2.06 0.18 -0.38 5.08 7.9
ktc2 R 15 464 1.05 1.87 1.07 0.16 -0.43 2.53 7.6
ktc3 L 16 460 1.12 1.84 2.06 0.17 -0.39 5.45 7.81

Table Legend and Units. L.: identification tag (i.e., ‘h’ for healthy eyes and ‘ktc’ for
keratoconus eyes); Eye: ocular position; IOP [mmHg]: intraocular pressure; CCT [µm]: central
corneal thickness; U [mm]: maximum deformation amplitude at the maximum concavity time;
AL1 [mm]: first applanation length; AL2 [mm]: second applanation length; VA1 [mm/s]:
velocity at the first applanation time; VA2 [mm/s]: velocity at the second applanation time; P.
Dist. [mm]: peak distance; R [mm]: curvature at the maximum concavity time.

2.8. Computations and Statistical Analysis336

Finite element simulations were conducted using the commercial finite element software337

Abaqus 6.11 (Dassault Systèmes Simulia Corp.). All the mathematical computations, algorithms338

and statistical analysis were developed using MATLAB R2012 v.8.0. software and open source339

C++ libraries (libSVM C++, [43]).340

Data are reported as their mean and standard deviation (mean ± SD). Statistical significance341

was tested with the two-sample Kolmogorov-Smirnov test, where a two-sided p-value of less342

than 0.05 indicates significance. The performance of the predictors was measured in terms of the343
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coefficient of correlation R2 to measure the quality of the fitting, whereas the Akaike information344

criterion (AIC) [44] was used to directly compare the quality of each model relative to each other.345

3. Results346

3.1. Monte Carlo Simulation347

The Monte Carlo simulation computed 9,360 combinations. Due to technical limitations re-348

garding the number of licenses, computations were performed on two conventional PCs with an349

8-core processor and 8 GB RAM, requiring 128 days of computations on double thread. How-350

ever, the methodology is implemented for a suitable parallel and massive computation on a com-351

putational cluster. The failure rate was under 3% of the computations, resulting in an effective352

dataset of 9,216 cases.

Figure 2: Results of the Monte Carlo simulation. (a) Mechanical corneal response to both experiments: inflation
and air puff. The physiological range for the inflation is limited by the inflation real curves reported in the literature
[24, 38] (see in black dashed lines and triangles), whereas the physiological range of the air-puff behavior must lie
within the ‘searching objective frame’ (i.e., the reported experimental displacement to CorVis [1]). As shown in the
’upper right area’, a physiological inflation behavior could not represent a physiological air-puff mechanical response,
and thus, aiming out of the searching frame (see yellow vs. red lines in the figure); (b) First Monte Carlo analysis
for pre-screening the range of the material parameters within the physiological inflation range reported. From all the
simulations, the extreme ones were chosen for constraining the search space of the second Monte Carlo analysis. The
range of the material parameters is shown in the bottom of the panel; (c) Second Monte Carlo analysis for establishing the
range of the corneal mechanical response to an air-puff test. All the mechanical responses (incremental displacement due
to the incremental pressure) related to the material range variation are depicted in a lighter color in the figures. Darker
zones belong to those combinations of material parameters that numerically behaved as physiological with respect to
the maximum deformation amplitude reported in the CorVis diagnosis. (c.1) Results of the Monte Carlo simulation for
those eyes classified as healthy in the clinic (i.e., those whose topography and IOP were diagnosed as healthy by an
optometrist). Dark red curves belong to the simulations that cast a numerical displacement that is contained within the
experimental range (UHealthy[mm] ∈ (0.8, 1.1)); (c.2) Results of the Monte Carlo simulation for those eyes classified as
keratoconic in the clinic. Dark blue curves belong to the simulations that cast a numerical displacement that is contained
within the experimental range (UKTC[mm] ∈ (0.95, 1.25)); (c.3) Results of the Monte Carlo simulation for those eyes
that were subjected to a LASIK surgery in the clinic. Dark green curves belong to the simulations that cast a numerical
displacement that is contained within the experimental range (ULAS IK [mm] ∈ (0.9, 1.15)).

353

The simulations show that the proposed material model is adequate to reproduce both the in-354

flation and the bending response of the cornea when subjected to an air puff for different levels355

of the IOP (see Fig.2.a). In particular, the range of parameters used for the Monte Carlo sim-356

ulation is able to accommodate the experimental response to corneal inflation tests reported in357

the literature (see Fig. 2.b). Note that traditional model development for corneal mechanics has358

mainly considered inflation tests to identify the model parameters. However, when the response359
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to an air puff is considered, we found that there are a number of combinations for which the in-360

flation response is within the experimental range but the corneal displacement due to the air puff361

is not. An example of this situation is given by the red and blue lines in Fig. 2.a. In both cases,362

the response to the inflation test is identical, but the response to the air,puff is not physiological363

for the red line. Therefore, from the total number of samples in the Monte Carlo simulation,364

only those samples that reconcile the response to an inflation and to an air,puff test to be within365

the experimental ranges[1, 45, 5] were considered. After including this exclusion criterion, only366

29% (1127 of 3855) of the healthy cases, 30.5% (1327 of 4344) of the KTC cases, and 21.5%367

(219 of 1017) of the LASIK cases were included in the training dataset. The bright areas in368

Fig.2.c(1–3) (healthy: red; KTC: blue; LASIK: green) show the response to the air puff for the369

admitted samples.370

The empirical distribution of the material parameters related to the matrix (D1 and D2) did371

not follow a uniform distribution, whereas those related to the fibers (k1 and k2) were found372

to be uniformly distributed (see A.6 in Appendix A). A Kolmogorov-Smirnov test shows non-373

significant differences between the material parameters of the healthy-LASIK and the KTC-374

LASIK populations (see in Table 2). In contrast, significant differences were found for D1 and375

D2 between the healthy-KTC populations.376

Table 2: Kolmogorov-Smirnov Hypothesis Test between Populations Regarding the Material Parameters.
D1 D2 k1 k2

Comparison h p–value h p–value h p–value h p–value
Healthy–KTC 1 <0.001 0 0.058 0 0.328 0 0.983

Healthy–LASIK 0 0.869 0 0.779 0 0.584 0 0.482
KTC–LASIK 0 0.098 0 0.161 0 0.681 0 0.725

Table Legend. h: indicates the result of the hypothesis test (i.e., h=1 rejects the null hypothesis
that both populations come from the same continuous probability distribution); p–value:
asymptotic p–value of the test (i.e., p–value < 0.05 means that the null hypothesis can be
rejected at a 5% significance level).

When the cornea is under the action of the IOP (i.e., its physiological stress state), the cornea377

is under a pure traction membrane stress state where the full cornea works in tension (i.e., both378

extracellular matrix and both families of collagen fibers), and therefore, no bending effects exist.379
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However, during an air puff, the cornea experiences bending. Whereas the anterior surface goes380

from a traction state of stress to a compression state of stress, the posterior surface works in381

tension. Hence, in the anterior corneal stroma, the collagen fibers are not contributing to load382

bearing since they do not support buckling and the stiffness of the cornea mainly relies on the383

extracellular matrix. At the same time, the collagen fibers on the posterior stroma suffer from384

a higher elongation, resulting in an overall non-physiological state of stress. In this regard, due385

to the action of the IOP, no significant differences in the maximum principal stress and in the386

maximum principal stretch were observed between the different populations for both the ante-387

rior and posterior corneal surfaces. In contrast, when the maximum principal stress and stretch388

are compared at the instant of maximum corneal displacement, significant statistical differences389

between all populations were found at the posterior surface (see Table 3). However, at the ante-390

rior surface, significant differences were found only for the maximum principal stretch, whereas391

for the maximum principal stress, differences were found only between the healthy and KTC392

populations (see Table 3).393

Table 3: Kolmogorov-Smirnov Hypothesis Test between Populations Regarding the Stress-Strain Apical Behavior.
Anterior Posterior

Stretch Stress Stretch Stress
Comparison h p–value h p–value h p–value h p–value
Healthy–KTC 1 <0.001 1 <0.001 1 <0.001 1 <0.001

Healthy–LASIK 1 <0.001 0 0.073 1 <0.001 1 <0.001
KTC–LASIK 1 <0.001 0 0.083 1 <0.001 1 0.049

Table Legend. h: indicates the result of the hypothesis test (i.e., h=1 rejects the null hypothesis
that both populations come from the same continuous probability distribution); p–value:
asymptotic p–value of the test (i.e., p–value < 0.05 means that the null hypothesis can be
rejected at a 5% significance level).

3.2. Sensitivity Analysis394

The sensitivity analysis and ANOVA conducted on the dataset (with the admitted samples395

only) demonstrate the predominant role of the material parameters on Unum (see Fig.3.a). For396

the entire population, ANOVA revealed that the most influential parameters are the material397

parameters (D1 and D2), followed by the IOP and the central corneal thickness (CCT). When the398
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populations are considered separately (Fig.3.b and Fig.3.c, respectively), the general trends are399

kept for the healthy and LASIK populations. However, for the KTC population, the IOP appears400

to play a more important role than the material itself. In addition, the superior-inferior curvature401

slightly influences the numerical response for the KTC population. The results demonstrate the402

significant importance of the IOP on U for those cases in which the corneal thickness is lower403

relative to the healthy case (i.e., KTC and LASIK).404

Figure 3: Pareto chart representing the variables responsible for 95% of the mechanical response (displacement).
(a) Impact of the main variables on the mechanical response taking the entire dataset into account; (b) Impact of the
main variables on the mechanical response taking the healthy cases of the dataset into account; (c) Impact of the main
variables on the mechanical response taking the KTC cases of the dataset into account; (d) Impact of the main variables
on the mechanical response taking the LASIK cases of the dataset into account. Legend: intraocular pressure (IOP),
central corneal thickness (CCT), superior-inferior curvature of the eye (Rv), material parameters (D1, D2 and k2) and
interaction between material parameter D1 and the intraocular pressure (D1 : IOP).

In general, the sensitivity analysis showed that the most influential parameters on the displace-405

ment response (Unum) were the material parameters (D1, D2 and k2), the intraocular pressure406

(IOP), and the central corneal thickness (CCT) in all populations. An exception is found for the407

superior-inferior curvature (RV ) for the KTC population. However, the most remarkable result is408

the negligible impact of the material parameter k1 on the numerical response. Although k1 cannot409

be removed from the simulations since it is a material parameter of the strain energy function (1),410

the result from the sensitivity analysis suggests that setting its value to its average (i.e., k1 = 19411

[kPa]) appears to be a reasonable choice in terms of developing the material predictors. Hence-412

forth, the parameter k1 is treated as a constant value, thereby avoiding the need to adjust or train413

a specific model for it, with a consequent reduction in computational cost.414

3.3. Response surface predictor models (MLP, SVR and QRS)415

According to the results from the sensitivity analysis, the predictive models were constructed416

considering D1, D2, k2, IOP, CCT , and Unum, following the methodology described in Materials417

and Methods. Table 4 presents the main results from the fitting for the three models under418

consideration.419

All response surface methods performed similarly, although the MLP model showed a slightly420

better performance (see the R2 value in Table 4). All models (D1, D2, and k2) presented a good421

18



Table 4: Accuracy for the four predictors (MLP: multiple layer perceptron; SVR: support vector regressor; SR:
surface response) for the different populations (healthy, KTC and LASIK)

D1
Healthy KTC LASIK

Var MLP SVR QRS MLP SVR QRS MLP SVR QRS
R2 0.967 0.958 0.952 0.886 0.869 0.843 0.954 0.948 0.949

AIC -1769 -1661 -1671 -1386 -1324 -1241 -404 -391 -396
µres -0.002 -0.005 -0.002 0.000 0.002 0.001 -0.003 -0.003 0.000
σres 0.028 0.032 0.032 0.054 0.058 0.063 0.028 0.030 0.030

D2
Healthy KTC LASIK

Var MLP SVR QRS MLP SVR QRS MLP SVR QRS
R2 0.962 0.954 0.952 0.905 0.897 0.864 0.963 0.968 0.956

AIC 2589 2663 2626 3302 3339 3467 600 584 613
µres -0.295 -0.622 -0.312 0.165 0.193 -0.083 0.312 0.171 0.498
σres 5.408 5.912 5.653 8.273 8.606 9.874 5.043 4.656 5.413

k2
Healthy KTC LASIK

Var MLP SVR QRS MLP SVR QRS MLP SVR QRS
R2 0.857 0.822 0.781 0.563 0.518 0.432 0.817 0.806 0.774

AIC 5337 5421 5464 6360 6411 6477 1289 1295 1308
µres -10.970 -23.592 -18.253 -3.106 -8.900 -10.458 -7.413 -13.408 -10.401
σres 148.2 164.0 172.6 220.1 232.4 249.4 176.1 181.4 194.5

Table Legend. R2: coefficient of determination; AIC: Akaike information criterion for the final adjusted model; µres:
average of the residuals of the predicted response with respect to the expected response; σres: standard deviation of the
residuals of the predicted response with respect to the expected response.

coefficient of determination (R2) and a relatively low dispersion of the residuals (i.e., predicted422

response minus real response) with their mean around zero, with the exception of k2, which pre-423

sented a higher dispersion. This result was somewhat expected since D1 and D2 were the material424

parameters to which the corneal displacement was more sensitive. In general, the best fitting al-425

ways corresponded to the healthy population, whereas the worst performance was always found426

for the LASIK population. These results could be thought to be related with the disruption of427

the collagen fibers due to the corneal flap generated during the surgery and its consequent loss428

of stiffness. However, since our models are phenomenological and not structural, the dispersion429

is hypothesized to be mainly associated with the abrupt change of the corneal curvature of the430

anterior surface due to the resulting flattened area induced by the surgery and the dispersion on431

the central corneal thickness. As mentioned in the Materials and Methods section, in addition432

to individual predictors of the material parameters for each of the populations, a predictor was433

fit for each material parameter but considering the entire dataset. No significant differences in434
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the results were obtained when compared with the predictors constructed for individual popula-435

tions (results not shown). Therefore, in the following, only results corresponding to individual436

populations will be shown.437

Regarding the Akaike information criterion, it remains almost constant between the methods438

(MLP, SVR and QSR) for the same parameter (D1, D2 and k2), indicating that all models obtained439

similar quality on the adjustment. The residual analysis indicates that the best predictions (i.e.,440

mean close to 0) always belong to the D1 independently of the method and the population. In441

contrast, the worst predictions were always associated with k2 independently of the method and442

the population. However, it is remarkable that the healthy population showed the best accuracy443

with respect to the rest of the populations, whereas the KTC population showed the worst accu-444

racy. This finding could be explained by the inherent geometrical variability of the keratoconus.445

For this pathology, the location of the disease is not repeatable among patients, leading to a very446

heterogeneous distribution of geometrical features among patients. Conversely, the geometrical447

features of healthy eyes are more repeatable. Furthermore, the better accuracy of the D1 and the448

D2 parameters are directly supported by their importance on the corneal response of the model449

(see Fig.3).450

3.4. Neighborhood-Based Protocol (K-nn Search)451

The K-nn search method does not require the fitting of a particular mathematical function to452

predict the material parameters in terms of the corneal patient’s geometric data and the mechan-453

ical response to the air puff since it simply searches for the closest point in the database to the454

patient’s data (IOP, CCT and U). However, this method helps to demonstrate the inherent cou-455

pling that exists between CCT, IOP and U that has been demonstrated in previous studies [2].456

457

Figure 4a shows that for a given value of the IOP, different combinations of the material prop-458

erties and corneal thickness lead to the same corneal displacement, U (see red dots in Fig. 4a).459

Similarly, for a given corneal thickness, different combinations of material parameters and IOP460

provide the same corneal displacement as an air puff (see Fig.4.b). This result shows that differ-461

ent combinations of material parameters, IOP and CCT can lead to the same corneal displace-462
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Figure 4: Coupled Effect of the Corneal Response (Patient h0, Table 1). All the healthy cases of the dataset are
represented as blue dots in the figures. The biomarkers selected for determining the mechanical properties of the eye are
shown to outline the coupling between different parameters: different combinations of thickness, material and intraocular
pressure could lead to the same displacement. (a) Displacement (U) versus thickness (CCT) considering the intraocular
pressure to be constant (IOP=12 mmHg). In red dots, all the feasible combinations of CCT that lead to the same
displacement (1 mm) when the material properties and the pressure are fixed; (b) Displacement (U) versus IOP (IOP)
considering the thickness to be constant (CCT=578 microns). In red dots, all the feasible combinations of IOP that lead
to the same displacement (1 mm) when the material properties and the CCT are fixed; (c) Intraocular pressure (IOP)
versus thickness (CCT) considering the displacement to be constant (U=1.00 mm). All tuples of IOP and CCT that can
lead to the same displacement (1 mm). The dispersion of the parameters is only influenced by the tissue stiffness, i.e.,
the lowest pressures and thickness can only behave as the highest pressures and thickness if the material properties are
stiffer. In this way, although different corneas could have a similar average tissue stiffness, an increase in IOP or CCT
could lead to a less compliant mechanical response.

ment, U, thus making it impossible to quantify each contribution separately. However, when the463

patient-specific information (IOP, CCT, and U) is used as an input to the dataset (red triangle in464

Fig.4.c), it is possible to define a neighborhood of feasible points around the patient’s data (blue465

diamonds in Fig.4.c) from which the material parameters can be estimated. This method is the466

most straightforward in terms of searching and implementation, as well as the one providing the467

best prediction (see next section). However, it is also the most expensive method in terms of468

computations since the accuracy of the method is highly affected by the resolution of the grid469

used for the dataset (number of samples present in the dataset).470

3.5. Examples with clinical data471

Table 5 shows the material model parameter predictions for the 5 patients described in Table472

1. All the material model parameters obtained with the different predictors were used to sim-473

ulate a non-contact tonometry test using the patient-specific data available for each case, i.e.,474

topography of the cornea and IOP. For most cases, the predicted displacements (Unum) were in475

close proximity to the measured displacement (U), with the largest error difference, ε(%), being476

13% for the KTC eye (patient ktc2) and the QRS method. In addition, although local minima477

exist and we are aware of them, material predictions associated with local minima also lead to a478

predicted corneal displacement close to the actual measurements (results not shown). For patient479

ktc2, for which the material predictions led to the worst corneal displacement predictions, it was480

found that the closest neighbor to the patient’s data was located at a distance that was an order481

of magnitude larger than for the other patients. This result indicates the need for a larger number482
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Table 5: Validation using a priori unknown clinical patient data (Table 1). Application of the former patient-
specific geometrical reconstruction algorithm [4] coupled with the present patient-specific material prediction
methodology to reproduce the maximum deformation amplitude (displacement) of the corneal apex when sub-
jected to a non-contact tonometry test (clinical values correspond to the CorVis measurement system).

Input Output Validation
D1 | D2 | k1 | k2 Unum ε(%)

L. Meth. [kPa] | [–] | [kPa] | [–] [mm] [–]

h0

K-nn
IOP=12 mmHg
CCT=578 µm
U=1.00 mm

0.277 | 120.6 | 20.8 | 516.9 1.007 0.726
QRS 0.193 | 138.3 | 19.0 | 545.6 1.013 1.251
MLP 0.446 | 85.7 | 19.0 | 843.1 1.022 2.158
SVR 0.292 | 122.8 | 19.0 | 191.5 1.006 0.573

ktc0

K-nn
IOP=15 mmHg
CCT=545 µm
U=1.12 mm

0.267 | 103.5 | 17.9 | 525.3 1.153 2.968
QRS 0.289 | 97.9 | 19.0 | 455.5 1.175 4.917
MLP 0.379 | 80.6 | 19.0 | 644.6 1.174 4.814
SVR 0.368 | 81.3 | 19.0 | 687.4 1.171 4.503

ktc1

K-nn
IOP=15 mmHg
CCT=544 µm
U=1.03 mm

0.330 | 109.0 | 17.6 | 374.5 1.025 0.529
QRS 0.320 | 105.9 | 19.0 | 458.4 1.042 1.150
MLP 0.186 | 131.3 | 19.0 | 443.0 1.072 4.099
SVR 0.229 | 127.2 | 19.0 | 321.1 1.042 1.147

ktc2

K-nn
IOP=15 mmHg
CCT=464 µm
U=1.05 mm

0.385 | 126.7 | 20.8 | 267.5 1.161 10.565
QRS 0.363 | 122.0 | 19.0 | 540.0 1.186 12.964
MLP 0.379 | 128.1 | 19.0 | 412.8 1.149 9.408
SVR 0.365 | 126.1 | 19.0 | 423.3 1.175 11.857

ktc3

K-nn
IOP=16 mmHg
CCT=460 µm
U=1.12 mm

0.388 | 120.5 | 18.5 | 592.7 1.131 0.940
QRS 0.319 | 115.3 | 19.0 | 515.3 1.238 10.545
MLP 0.336 | 122.1 | 19.0 | 397.0 1.198 6.933
SVR 0.330 | 116.2 | 19.0 | 486.6 1.227 9.533

Table Legend. (D1 [kPa] | D2 [–] | k1 [kPa] | k2 [–]): Parameters of the Demiray + G–H–O
energy strain function ; Unum [mm]: maximum deformation amplitude provided by the
numerical simulation of the non-contact tonometer; ε(%) = |Unum − U |/U · 100: percentage
difference between numerical and clinical displacement.

of samples in the dataset, i.e., a more dense sampling of the parameter space. However, note483

that as the number of patients in the database increases, the prediction capabilities of all models484

will also generally increase. Further information regarding the performance of each method can485

be found in Appendix A. Regarding the time required to search a set of material parameters486

(texec, Table A.6), the fastest method is the K–nn search since it does not require any iterative487

procedure to find the material properties. In addition, depending on the initial material seed,488

the iterative procedure may find different minima and take longer execution times. For these489

reasons, the implementation of the algorithm includes a multiple seed strategy to identify the490
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material parameters with the least possible error.491

4. Conclusions492

A series of mathematical models have been proposed to predict the mechanical properties493

of corneal tissue from patient-specific data obtained using a non-contact tonometry test. The494

proposed methodology is based on in silico simulations of the non-contact tonometry tests using495

patient-specific corneal geometry data [4]. The methodology is amenable for implementation496

on commercial devices for clinical applications, and it provides acceptable execution times and497

accuracy.498

The computational simulation has different assumptions of the material and the modeling that499

cannot be neglected. First, we used a phenomenological and macroscopic material model for500

the cornea that allows to reproduce, within the experimentally reported range, the corneal re-501

sponse to both inflation to increase values of IOP and the corneal displacement induced by a502

non-contact tonometry test. Regarding the material model, there are some hypotheses that must503

be addressed, such as the absence of viscoelasticity or the use of a generic orthogonal pattern504

of fibers following that proposed by Meek et al. (2009) [50]. With respect to the viscoelastic505

properties of the cornea, the loading of the tissue is fast enough to consider that viscoelastic506

effects do not play a major role in the corneal response [46]. This assumption has been widely507

accepted in previous publications (see several publications by Elsheikh, Pandolfi, Lanchares or508

Studer), and recently, Simonini et al. (2016) [56] have reported a study on the dynamics of the509

cornea when subjected to an air puff that suggests the great importance of the elastic contribution510

of the stroma during the loading phase of the air jet but the minor contribution of the inertia511

and viscoelasticity. However, if the recovery of the cornea during the unloading phase would512

be addressed, the inclusion of inertia and viscoelasticity would be essential. Concerning the513

pattern of collagen fibers is not patient specific since it is not yet easily accessible. Although514

Winkler et al. and others authors have reported a more precise micro-structural distribution of515

the fibers using SHG optical microscopy [51, 52, 53, 47, 48, 49], the inclusion of the patient-516

specific micro-structural information of the cornea would not be useful but would rather increase517
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the computational costs and introduce a new bias since this information was not accessible for518

our patients. Nevertheless, the proposed methodology does not prevent the use of more complex519

material models that incorporate information of the micro-structure of the cornea, viscoelasticity520

or inertia. Second, the boundary condition simulating the air-jet impact has been assumed to be521

a constant pressure applied over the cornea. Although a CFD analysis has been applied over a522

generic cornea to compute the pressure pattern, a more precise simulation would require a fluid523

structure simulation since the corneal geometry and the deformation of the cornea over time may524

have an important impact on the pressure transferred during the air puff.525

Despite its considerable computational cost, the Monte Carlo simulation has proven to be a526

powerful tool for use in real-time estimation of the corneal mechanical properties from a non-527

contact tonometry test in the clinic. In addition, the mathematical tools (MLP, SVR and QRS)528

have shown good performance in predicting the corneal material parameters, but the inherent529

coupling between the IOP, the CCT, and the corneal mechanical properties affecting the corneal530

response introduces an unavoidable dispersion in the data that reduces the performance of these531

methods. In this regard, the K–nn search has proven to be the most reliable method. Since532

it restricts the search to the neighborhood of the patient, the method is not prone to finding533

local minima, and it exhibits the best performance in terms of execution time. Furthermore,534

the material model parameters predicted by the K-nn search method lead to the most accurate535

predictions of the corneal displacement with respect to the clinical value (i.e., less than 3%536

difference with respect to the clinical results). Although the main drawback is the considerable537

computational cost involved in generating the dataset because it needs a fine resolution on the538

data grid for good accuracy, it is still more suitable than other optimization methods, such as539

the IFEM, due to its real-time response (i.e., no finite element computation is required for the540

diagnosis, but the patient can subsequently be used for updating the dataset).541

No significant differences have been found between populations, in general, in terms of the542

material parameters. In this regard, only the healthy and KTC populations showed significant543

differences in terms of the D1 and D2 parameters but not in terms of k1 and k2. Therefore, these544

results indicate that considering differences in the material parameters of the cornea may not545
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be sufficient to classify healthy and keratoconus eyes using a single air-puff test, pointing to546

the necessity of having more than a single test for properly characterizing the properties of the547

eye. However, until now, there has been no additional in vivo test that complements the air-puff548

diagnosis, and the results should be assessed additionally by, for example, ex vivo inflation tests,549

as we used for constraining the search of material properties with both physiological behaviors550

(i.e., inflation and air puff). Moreover, our results suggest that variations in corneal thickness551

may be a more reliable monitoring variable in terms of classifying the healthy population from552

the KTC population. In addition, based on the finite element simulations, the maximum principal553

stretch in the anterior and posterior surfaces of the cornea obtained at the instant of maximum554

corneal deformation may be used as a discriminant to classify different groups (healthy, KTC555

and LASIK).556

One final limitation regarding the clinical biomarkers used for the prediction must be ad-557

dressed. For simplicity, only 3 clinical biomarkers have been used for predicting the material558

properties of the cornea: pressure (i.e., the IOP), geometry (i.e., CCT) and displacement (i.e., the559

maximum deformation amplitude of the CorVis test). Since our models are mainly phenomeno-560

logical, macroscopic and are not taking the inertia, viscoelasticity and micro-structural features561

of the cornea into account, the dynamic parameters provided by the CorVis diagnosis test cannot562

be trustworthily used. Moreover, ANOVA and the Pareto analysis showed that for the models563

used in the present study, the most influential parameters were the selected ones. However, there564

are no problems for easily introducing other corneal parameters in the predictive model, pro-565

vided that they can be accurately measured in both the experimental and the numerical results.566

Although only these 3 biomarkers have been used, the methodology has been tested with actual567

unknown patient data that did not form a part of the dataset. The predicted material parameters,568

along with the patient’s corneal geometry and IOP, were used to simulate a non-contact tonome-569

try test to predict the corneal displacement. The numerical results resulted in errors of less than570

10% in most cases, with the K-nn search methodology outperforming the response surface-based571

methods, achieving errors of less than 3%.572

The important aspect of the present study is that the proposed methodology, independently of573
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the complexity of the numerical simulations, is amenable for real-time diagnosis and implemen-574

tation in commercial devices. Importantly, it allows easily introducing additional elements (e.g.,575

viscoelasticity, microstructure, dynamics, and so forth) that could enhance the performance and576

accuracy of the results without modifying the underlying methodology. Eventually, the compu-577

tational framework will incorporate actual clinical data (corneal topographies, IOP and corneal578

apical displacement from a non-contact tonometry test) to predict the mechanical properties of579

the cornea. These results could be used for surgical planning or to monitor the evolution of a580

given patient by looking at changes in the mechanical properties with time.581

Acknowledgments582

Special thanks to Dr. Joaquin Fernandez at the Qvision Ophthalmic Unit of the Vithas Virgen583

del Mar Hospital (Almeria, Spain) for prospectively collecting the validation data.584

Funding585

The research leading to these results has received funding from the European586

Union’s Seven Framework Program managed by REA Research Executive agency587

http://ec.europa.eu/research/rea (FP7/2007-2013) under Grant Agreement FP7-SME-2013588

606634, the Spanish Ministry of Economy and Competitiveness under the Grant Agreement589

DPI2014-54981R, the Government of Aragón (predoctoral contract of the author), the Ibercaja-590

CAI mobility program (mobility funding for research stay of the author) and the Swiss Federal591

Department of Economic Affairs, Education and Research (Federal Commission for Scholarships592

for Foreign Students).593

26



Appendix A. Additional Results594

This appendix contains the extended non-essential results that are needed to understand the595

complete scope of the outcomes. The extensions are related to the following:596

• Sensitivity analysis: The response surface (U = f (geometry, pressure,material)) used for597

analyzing the impact of the different variables (geometry, pressure and material) to the nu-598

merical variable under analysis in the FE computation (displacement) is depicted in Fig.A.5.599

• Statistical distribution of the mechanical properties of the cornea for the Monte Carlo600

simulation: All the Monte Carlo combinations of material that fulfill both physiological601

responses (inflation and air puff) are presented in Fig.A.6 (green histogram). Whereas the602

parameters related to the fibers are uniformly distributed (k1 and k2), the matrix parameters603

(D1 and D2) stack around 0.4–0.45 [kPa] and [130–140].604

• Accuracy of the prediction after the training phase for the SVR and MLP: The ac-605

curacy of the predictions of both methods after the training phase is depicted in Fig.A.7.606

Support vector regressor does not present a blue shaded zone since only one SVR is used.607

Conversely, the MLP uses 7 different assemblies and subsequently computes the average.608

Therefore, the confidence intervals (blue shaded zones) can be established.609

• Goodness of the fits for the SVR, MLP and QRS models: The correlation plot of the610

predicted property versus the actual value in the dataset is depicted in Fig.A.8. The material611

properties D1 and D2 show the best model fitting, whereas k2 shows a higher dispersion (k1612

is not shown since it was discarded after the sensitivity analysis).613

• Additional performance of the methodology: The results of supplementary performance614

variables (execution time, distance of the nearest neighbor and initial tangent modulus) are615

depicted in Table A.6.616
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Figure A.5: Slice plots of the quadratic response surface for each population (healthy–red, KTC–blue, LASIK–
green). The slice plots show the individual contribution of the different model parameters on the numerical displacement.
The higher the slope, the higher the contribution (shaded zones represent the standard deviation of the parameter, whereas
solid lines represent the mean response). (a) Impact of the model parameters on the numerical displacement of the healthy
population; (b) Impact of the model parameters on the numerical displacement of the KTC population; (c) Impact of the
model parameters on the numerical displacement of the LASIK population

Figure A.6: Statistical distribution of the mechanical properties of the cornea for the Monte Carlo simulation. The
empirical distribution (green histogram) due to all the combinations of material parameters that fulfill both physiological
behaviors (inflation and air puff) shows that the fiber’s parameters are uniformly distributed.

Figure A.7: MLP (right panel) and SVR (left panel) predictions for validating the training phase (only healthy
response is shown). a.(1–3): D1, D2 and k2 predictions depending on the patient case for the MLP method. Blue
intervals correspond to the confidence interval (95% light blue and 99% dark blue) of the prediction since the method is
composed of an ensemble of 7 independent MLPs and the response is the average of each independent MLP; b.(1–3):
D1, D2 and k2 predictions depending on the patient case for the SVR method. k1 predictor is not computed since it was
discarded after the sensitivity analysis.
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Figure A.8: Correlation plot of the predicted parameter (y-axis) vs expected parameter (x-axis) for the healthy
group. a.(1–3): QRS; b.(1–3): MLP; c.(1–3): SVR. D1 and D2 show a good prediction of the values, whereas k2
presents a higher dispersion. k1 predictor is not computed since it was discarded after the sensitivity analysis.

Table A.6: Performance of the Prediction of the Patient-Specific Material Properties for the Clinical Patients (Table
1) Applying the Prediction Models (K-nn Search: Neighbor-based Prediction Model; QRS: Quadratic Response
Surface Model; MLP: Multiple Layer Perceptron; SVR: Support Vector Regressor)

texec Dist. E E (%)
L. Meth. [s] [–] [kPa] [–]

h0

K-nn 0.060 ± 0.023 0.003 283.637 –
QRS 1.996 ± 0.562 – 236.15 -16.7
MLP 19.282 ± 9.551 – 305.333 7.7
SVR 75.304 ± 4.469 – 291.146 2.7

ktc0

K-nn 0.036 ± 0.002 0.006 237.407 –
QRS 1.145 ± 0.101 – 245.760 3.5
MLP 14.473 ± 1.458 – 259.284 9.2
SVR 7.833 ± 4.724 – 255.510 7.6

ktc1

K-nn 0.036 ± 0.003 0.005 286.22 –
QRS 0.781 ± 0.028 – 279.328 -2.4
MLP 17.861 ± 2.922 – 222.531 -22.3
SVR 10.130 ± 2.168 – 250.773 -12.4

ktc2

K-nn 0.0336 ± 0.003 0.025 375.877 –
QRS 0.460 ± 0.015 – 341.716 -9.1
MLP 4.962 ± 0.238 – 367.299 -2.3
SVR 2.284 ± 0.187 – 352.159 -6.3

ktc3

K-nn 0.035 ± 0.003 0.006 354.524 –
QRS 0.519 ± 0.018 – 296.684 -16.3
MLP 7.892 ± 0.160 – 322.154 -9.1
SVR 4.091 ± 0.269 – 306.076 -13.7

Table Legend. texec [s]: execution time for prediction; Dist. [–]: minimum distance of the
neighborhood (only for K-nn search); E = 6 · D1D2 + 4 · k1 [kPa]: Equivalent initial tangent
modulus (λ = 1); E(%) = 100 · (1 − E j/EK−nn): initial slope difference between the equivalent
initial tangent modulus of the ‘j’ method (E j), where ‘j’ are QRS, MLP, and SVR, with respect
to the equivalent initial tangent modulus of the K-nn search method (EK−nn).
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diurnal variations of intraocular pressure, pachymetry, and corneal response to an air puff: Preliminary evidence,711

JCRS Online Case Reports 3 (2015) 12–15.712

[43] C. C. Chang, C. J. Lin, Libsvm: a library for support vector machines, ACM T. Intel. Syst. Tech. 2 (3) (2011) 27.713

[44] Y. Sakamoto, M. Ishiguro, G. Kitagawa, Akaike information criterion statistics, D. Reidel Publishing Company,714

1999.715

[45] T. Huseynova, G. O. Waring, 4th, C. Roberts, R. R. Krueger, M. Tomita, Corneal biomechanics as a function of716

intraocular pressure and pachymetry by dynamic infrared signal and scheimpflug imaging analysis in normal eyes,717

Am. J. Ophthalmol. 157 (4) (2014) 885–893.718

[46] J. Simo, On a fully three-dimensional finite-strain viscoelastic damage model: formulation and computational719

aspects, Comput. Methods Appl. Mech. Engrg. 60 (2) (1987) 153–173.720
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Figure A.14: Figure A6
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Figure A.15: Figure A7
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Figure A.16: Figure A8
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