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Abstract—ARM processors are leaders in embedded systems,
delivering high-performance computing, power efficiency, and
reduced cost. For this reason, there is a relevant interest for its
use in the aerospace industry. However, the use of sub-micron
technologies has increased the sensitivity to radiation-induced
transient faults. Thus, the mitigation of soft errors has become a
major concern. Software-Implemented Hardware Fault Tolerance
(SIHFT) techniques are a low-cost way to protect processors
against soft errors. On the other hand, they cause high overheads
in the execution time and memory, which consequently increase
the energy consumption. In this work, we implement a set of
software techniques based on different redundancy and checking
rules. Furthermore, a low-overhead technique to protect the pro-
gram execution flow is included. Tests are performed using the
ARM Cortex-A9 processor. Simulated fault injection campaigns
and radiation test with heavy ions have been performed. Results
evaluate the trade-offs among fault detection, execution time, and
memory footprint. They show significant improvements of the
overheads when compared to previously reported techniques.

Index Terms—Aerospace applications, error detection, fault
coverage, fault tolerance, mitigation techniques, processors, reli-
ability, soft errors, software techniques.

I. INTRODUCTION

S OFT errors affect processors by modifying values stored
in memory elements (such as registers and data memory)

[1]. Such faults may lead the processor to incorrectly execute
an application or even to enter into a loop and never finish the
execution. These faults can also modify some computed data
values, generating errors in the data results. The mitigation of
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soft errors in aerospace applications is a must. In this context,
hardware-based or software-based fault tolerance techniques
can be used.

Hardware-based fault tolerance techniques rely on replicat-
ing or adding hardware modules. Although the high reliability
they provide, they present a significant increase in area and
power consumption, high design and manufacture costs, and
they are not applicable to commercial off-the-shelf (COTS) pro-
cessors [2], [3]. Software-based fault tolerance techniques, also
referred in the literature as Software-Implemented Hardware
Fault Tolerance (SIHFT) techniques [4], are methods to protect
processor-based systems against soft errors by adding instruc-
tion redundancy and comparison to detect or correct errors,
without having to modify the underlying hardware, which per-
mits their use in COTS processors. SIHFT techniques provide
high flexibility and low development time and cost. Although
software redundancy brings reliability to the system, it requires
extra processing time and increases the energy consumption
since more instructions are executed [5], [6]. Furthermore,
a reliable program uses more memory addresses due to the
software redundancy [7], [8].

This work implements a set of data-flow techniques based
on duplicating and checking rules that aim at reducing over-
heads. Furthermore, a new control-flow technique, with lower
overheads when compared to a state-of-the-art technique [9],
is introduced. The control-flow technique was designed to be
used together with a data-flow technique to increase the over-
all system reliability. The SIHFT techniques are applied to
the assembly code executed by processors. In this work, we
focus on ARM Cortex-A9 processor [10] because of its growing
employment in different domains where reliability is a must.
Finding the best data-flow/control-flow combination is not an
easy task and can be unaffordable if radiation experiments
are involved. Therefore, to address that issue, we propose to
compare the different solutions regarding fault coverage and
overheads using a processor simulator. Then, only the most
reliable configuration will be assessed in radiation test.

This paper is organized as follows. Section II briefly dis-
cusses state-of-the-art SIHFT techniques. Section III presents
our techniques and the key points of their implementation.
Section IV is devoted to analyzing, in terms of fault injec-
tion, the reliability of different combinations of techniques.
Section V describes the radiation tests performed on the real
hardware running a hardened and an unhardened version of
a selected benchmark. Finally, in Section VI, we draw some
conclusions and discuss future work.

0018-9499 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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TABLE I
TYPES OF SOFTWARE-BASED FAULT TOLERANCE TECHNIQUES

II. FAULT TOLERANCE IN SOFTWARE

SIHFT techniques are techniques implemented in software to
protect processor against soft errors that may affect the program
flow or the data stored in registers or memory. The techniques
that aim to protect the data-flow are called data-flow techniques,
and the ones to protect the control-flow are the control-flow
techniques. There are also techniques that combine features
of both data-flow and control-flow techniques to protect the
data-flow and the control-flow [11]. They consist of code trans-
formation rules and can be understood as a data-flow and a
control-flow technique applied together because some rules
focus on protecting the data-flow and others, the control-flow.
Table I summarizes the two types SIHFT techniques.

A. Data-Flow Techniques

Data-flow techniques are designed to protect the data stored
in registers or memory. These techniques replicate the regis-
ters, assigning copies to the original ones. When the aim is
error detection, registers are duplicated, and when correction
is included, registers are triplicated. Checkers (voters, if cor-
rection) are inserted in the code to compare the registers with
their copies. The points where checkers are inserted depend on
the technique. Since error detection presents lower overheads
than correction due to duplication instead of triplication, this
work focus on that. Some data-flow techniques present in the
literature are EDDI [12] and Variables [13].

B. Control-Flow Techniques

Control-flow techniques are designed to protect the program
flow, i.e., to protect against incorrect jumps. Such techniques
divide the code into basic blocks. A basic block (BB) is a
branch-free sequence of instructions, i.e., a portion of code that
is always executed in sequence. There only can be a branch
instruction at the end of the basic block. Furthermore, there are
no branches to the basic block, except to the first instruction.
For each basic block, a signature is assigned. The signature
is attributed to a global register at the beginning of the basic
block. Checkers are inserted in the code to verify if the signa-
ture register contains the expected value. If it does not, it means
the program flow was not correctly followed, and an error is

TABLE II
STATE-OF-THE-ART CONTROL-FLOW TECHNIQUES [9]

UF: UNDETECTED FAULTS
ET: EXECUTION TIME

TABLE III
RULES FOR DATA-FLOW TECHNIQUES [16]

reported. Some control-flow techniques present in the literature
are CFCSS [14], YACCA [15], and CEDA [9]. Table II shows
the execution time and fault coverage of these techniques. As
one can see, CEDA is the one with the best trade-off between
fault coverage and performance, and that is why it was used as
the baseline control-flow technique of this work.

III. IMPLEMENTED TECHNIQUES

In this work, we aim at protecting both data-flow and control-
flow of a running application. For this reason, we combined
data-flow and control-flow techniques. They are presented as
follows.

A. VAR Data-Flow Techniques

In reference [16], a set of seventeen data-flow techniques,
called VAR, that aim at reducing overheads in performance,
memory, and energy consumption, were presented and vali-
dated by fault injection for the miniMIPS processor [17]. They
consist of three types of different rules: global, duplication,
and checking rules, as one can see in Table III. The global
rule states that every register used by the program must have
a spare register assigned as replica. The global rule is applied
by all techniques. Duplication rules regard how the instructions
are duplicated. They are only applicable to instructions that
perform write operations on registers or memory. Therefore,
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TABLE IV
RULES FOR IMPLEMENTED VAR DATA-FLOW TECHNIQUES

branch instructions are not considered in this case. There are
two types of duplication rules: D1 and D2. Each technique can
only use one duplication rule. D1 duplicates all instructions,
including stores, which allow the use of unprotected memories
because the original value and its replica can be stored in dif-
ferent positions in the memory. D2 duplicates all instructions,
except stores. The last one is adequate when the memory is
hardened because the data in memory do not need to be dupli-
cated. Thus, the overhead caused by duplicating the code and
the number of memory accesses are reduced. Checking rules
indicate when a register and its replica are compared. Thus, it is
possible to verify if an error has occurred (when the register and
its replica present different values). Techniques can have more
than one checking rule. Theoretically, the more checkers are
included in one technique, the more reliability is achieved. Of
the seventeen data-flow techniques, we selected the nine with
the best results. They are listed in Table IV.

Table V shows a portion of code hardened by the nine
implemented data-flow techniques for the ARM Cortex-A9
processor. The original code is formatted as normal text, the
instructions inserted by the duplication rules are italicized, and
the checkers are bold. As one can notice, there are differences
among the codes generated by the techniques due to the differ-
ent rules each technique implements. VAR3 was proposed by
[13], and it is the technique with the highest overhead among
the implemented ones. VAR4 is equivalent do EDDI.

In this work, VAR data-flow techniques are merged with a
control-flow technique to protect both data-flow and control-
flow. The goal is to achieve a high fault coverage with low
overheads. Among the data-flow techniques, we are looking for
the one with the lowest overhead that still provides very high
fault coverage when combined with the control-flow technique
for the ARM Cortex-A9 processor.

B. SETA Control-Flow Technique

In this paper, we introduce a technique called SETA
(Software-only Error-detection Technique using Assertions) to
detect control-flow errors in processors with no modification
or addition of extra hardware. The penalties in performance

and memory caused by SETA are lower than other control-
flow techniques. SETA is based on HETA [18] and CEDA.
These techniques use runtime signatures to detect errors affect-
ing the control-flow of a running application. HETA uses an
extra signature, which increases the overheads. Also, it makes
use of a watchdog to help in the detection, which requires extra
power. And, as the author stated, the watchdog needs access to
the memory buses. Some processors that use on-chip embed-
ded cache memories may not be accessible by the watchdog,
which makes impossible to implement this technique in the tar-
get ARM processor. Furthermore, both CEDA and HETA are
concerned about the error detection rate they achieve, but not
about the overheads they cause. Aiming at providing similar
error detection rate as CEDA with lower overheads, SETA is
proposed. The technique uses signatures calculated a priori and
processed during runtime. The program code is divided into
basic blocks (BB), which are branch-free sequences of instruc-
tions with no branches into the basic block, except for a possible
branch to the first instruction, and no branches out of the basic
block, except for the last instruction. Signatures are assigned to
the basic blocks.

Two Basic Block Types (BBT) are defined: A and X. A basic
block is of type A if it has multiple predecessors, and at least
one of its predecessors has multiple successors. And it is of type
X if it is not of type A. Then, the basic blocks are grouped into
networks. Basic blocks sharing a common predecessor belong
to the same network. An example is shown in Fig. 1.

Every basic block has two different signatures: a Node
Ingress Signature (NIS), for when entering the basic block, and
a Node Exit Signature (NES), for when exiting the basic block.
The NIS represents the current basic blocks, and the NES is
used to identify the successor network and the valid successor
basic blocks.

The signatures are divided in two parts: an upper half and a
lower half, as shown in Table VI. The upper half identifies the
network, and the lower half identifies the basic block. The NIS’
upper half identifies the network that the basic block belongs
to. The lower half has a random number assigned if the BB is
of type X. If the BB is of type A, the lower half is calculated by
the AND operation of the lower halves of all predecessor BBs’
NES. The NES’ upper half identifies the successor network, and
the lower half has a random number. Table VII summarizes it.
If a BB of type X has multiple predecessors, all its predecessors
must have the same NES. The size of these “halves” is, actually,
variable per application in order to maximize the basic block
identifier (lower half) and, thus, avoid aliasing. The upper half
receives the minimum number of bits it needs to represent all
the networks, i.e., the first integer greater or equal to log2(N +
1), where N is the total number of networks. Let us define it
as ceil(log2(N + 1)). The remaining bits are used by the lower
half. The networks are sequentially identified, from 0 to N− 1.
The identifier N is reserved for what we call ghost network.
It is used as successor network of the basic blocks that have
no successors. Thus, it invalidates any transition (caused by a
fault) from such BBs to another BB.

At runtime, a signature register S is updated according to
the conditions presented in Table VIII to keep track of the pro-
gram execution. The operation to update S can be an XOR or an
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TABLE V
EXAMPLE OF VAR DATA-FLOW TECHNIQUES FOR THE ARM CORTEX-A9

Fig. 1. Representation of a program flow. Basic blocks (circles) classified as
of type A or X, and grouped into networks (dashed rectangles). The arrows
indicate the valid directions that a basic block can take.

TABLE VI
SIGNATURE DIVISION

TABLE VII
ROLE OF EACH HALF IN THE SIGNATURES
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TABLE VIII
SIGNATURE UPDATE

AND. It is performed with S and an invariant value, as shown
below.

S ← S OP invariant,where OP can be AND or XOR (1)

The invariant is a constant that will make S have the expected
signature during a correct execution. Its calculation is described
as follows. From NIS to NES (inside a BB), the NES invariant
to update S depends only on the BB’s signatures. The invariant
is the result of an XOR operation of the BB’s NIS and NES.
From NES to NIS (BBs transition), the NIS invariant relies on
the predecessor BBs’ NES, and on the NIS and type of the cur-
rent BB. If the BB is of type X, there are two possible ways to
calculate the invariant:
• The BB has no predecessors (starting BB): in this case,

the NIS invariant is equal to the BB’s NIS.
• The BB has predecessors: the NIS invariant is the result

of an XOR operation of any predecessor NES with the
BB’s NIS.

If the BB is of type A, the NIS invariant is divided into upper
and lower half (like the signatures) for its calculation. The upper
half is filled with ones (the equivalent in unsigned integer is
2ceil(log2(N+1)) − 1). The lower half of the NIS invariant is
equal to the lower half of the BB’s NIS. The classification of
basic blocks into types and networks ensures that there will not
be invalid transitions, except for the following case: the starting
BB has itself as successor. Consequently, it is also its predeces-
sor. In this case, a constant is loaded to S at the beginning of
the BB to keep the execution consistent.

Checkers are inserted in the basic blocks to verify if S con-
tains the expected signature for that basic block. The more
checkers, the lower is the latency to detect errors. On the other
hand, the higher is the overhead. The maximum number of
checkers in SETA matches the number of basic blocks since
only one checker is needed per basic block. Table IX shows
an example of SETA for the ARM Cortex-A9 processor. An
unhardened portion of code is shown in the left side, and, in
the right side, there is the same code protected by SETA. The
instructions inserted by SETA are in italics (signature updates)
or bold (checkers). The first XOR (eor) is used to update the
signature to the BB’s NIS. The instructions cmp and bne are
used to compare the signature register r5 with the expected sig-
nature for that basic block. Finally, the last XOR is used to
update the signature register to the expected NES.

IV. RELIABILITY ESTIMATION OF SIHFT TECHNIQUES

We analyzed the techniques in terms of execution time,
memory footprint, fault coverage, and Mean Work to Failure

TABLE IX
EXAMPLE OF SETA CONTROL-FLOW TECHNIQUE FOR ARM

CORTEX-A9 PROCESSOR

(MWTF) metric [19]. The last metric captures the tradeoff
between reliability and performance. The more time an appli-
cation needs to run, the higher the probability to be hit by a
particle and, consequently, affected by a fault. The MWTF is
defined by Eq. (2). The AVF (Average Vulnerability Factor) is
used to measure microarchitectural structure’s susceptibility to
transient faults [20].

MWTF =
amount of work completed

number of errors encountered
= (raw error rate×AVF× execution time)−1 (2)

To obtain the fault coverage for each technique or set of
techniques, we hardened three target applications (matrix mul-
tiplication (MM), quicksort (QS) and Tower of Hanoi (TH))
with the presented techniques using the CFT-tool [21], which
makes the hardening automated. Then, we submitted the differ-
ent hardened versions to a fault injection campaign. A total of
1,000,000 faults were injected per version. The OVPSim-FIM
[22] was used to perform fault injections by simulation in the
ARM Cortex-A9 processor. OVSim-FIM relies on and extends
the capabilities of the OVPSim, marketed by Imperas [23].
In this platform, the bit flips are performed in the accessible
registers at a random time during the program execution. The
target register and the bit where the bit flip occurs are randomly
selected. A random injection time based on the instruction
count is also chosen. So, when the program reaches the fault
time, a single selected bit of the selected register is flipped. The
PC (program counter) and the memory of the executions under
faults are compared to the PC and memory of a golden exe-
cution. A fault can be masked (correct execution) or cause an
error. If an error is produced, it can be detected or undetected.
With this information, it is possible to obtain the fault coverage
by the following equation:

Fcoverage =
Edetected + Fmasked

Ftotal
= 1− Eundetected

Ftotal
(3)

Where:
• Fcoverage is the fault coverage
• Edetected is the number of errors detected
• Fmasked is the number of correct executions
• Eundetected is the number of undetected errors
• Ftotal is the number of executions
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Fig. 2. Comparison between CEDA and proposed SETA techniques. The exe-
cution time, memory footprint, and MWTF are presented normalized by the
unhardened application (left axis). The fault coverage is presented in percentage
(right axis).

Firstly, we compared SETA with CEDA. Fig. 2 shows the
execution time, memory footprint, MWTF, and fault cover-
age of both techniques for all benchmarks. The average result
(AVG) is also included. The execution time, memory footprint,
and MWTF are presented normalized by the equivalent unhard-
ened application (left axis). The fault coverage is expressed in
percentage (right axis). The results show that both techniques
present fault coverage around of 39% in average.

The execution time and the memory footprint of SETA
(1.07x and 1.45x, respectively) are lower than CEDA (1.14x
and 1.63x, respectively). Once SETA runs faster than CEDA,
the application protected by SETA has a lower chance of being
hit by an energized particle that causes a bit flip. And since both
have similar fault coverage, SETA is more reliable than CEDA.
It is shown by the MWTF, which is 0.94x for SETA and 0.88x
for CEDA. It is important to notice that the average MWTF
of both control-flow techniques for the ARM Cortex-A9 and
the target applications is inferior to the unhardened. SETA’s
MWTF is slightly greater than 1x for the matrix multiplica-
tion and Tower of Hanoi, but inferior for the quicksort. CEDA’s
MWTF is inferior to 1x and, also, inferior to SETA’s MWTF in
all cases. It means that sometimes is better not protect the appli-
cation instead of protecting using only a control-flow technique.
This result corroborates [24], in which the authors stated that
control-flow techniques make the processor more vulnerable to
soft errors because they do not provide enough fault coverage
to compensate the extra execution time. However, this statement
cannot be taken as a rule since the reliability also depends on
the target application and processor, as showed by the greater
MWTF presented by SETA in 2 out of 3 cases. Furthermore,
control-flow techniques are meant to be used together with data-
flow techniques. Thus, they can significantly increase the fault
coverage and MWTF.

SETA was combined with some data-flow techniques called
VAR. Fig. 3 presents the results for each benchmark and the
average results (AVG). The execution time, memory footprint,
and MWTF are expressed normalized by the equivalent unhard-
ened application (left axis). The fault coverage is presented in

percentage (right axis). The horizontal axis identifies the data-
flow technique. For example, 3++ means that the data-flow
technique VAR3++ and the control-flow technique SETA have
been applied. We can see that the overheads in performance and
memory introduced by the data-flow techniques for the target
application and processor are higher than the ones presented
by the control-flow techniques. It is justified by the insertion
of redundancy and checkers in the entire code, instruction by
instruction, and not by dividing into basic blocks. However,
one can notice an increase of up to 8.67x of the MWTF when
VAR3+ and SETA are applied. All the data-flow techniques,
when combined with SETA, present a significant increase of
the MWTF.

V. RADIATION TEST WITH HEAVY IONS

Radiation test is considered one of the most accurate
approaches to assess the reliability of new techniques. However,
contrarily to the simulations carried out in previous section, an
exhaustive evaluation of every combination is not feasible with
radiation due to limited beam time. Therefore, we used the fault
injection campaigns as a guideline to select the most suitable
combination of SIHFT techniques based on MWTF. As a result,
only VAR3+ combined with SETA was evaluated by radiation
test with heavy ions.

For the radiation test experiment, we utilized a ZedBoard.
It is a low-cost development board for the Xilinx Zynq-7000
All Programmable SoC, XC7Z020-CLG484 part, which offers
high configurability, stimulates strong interest in the scien-
tific community, and is highly present in the market. The
board is composed of two main parts: a Processing System
(PS) that contains a dual-core ARM Cortex-A9 processor [25],
and Programmable Logic (PL). The PL section is ideal for
implementing high-speed logic, arithmetic, and data processing
subsystems, while the PS supports software routines and oper-
ating systems. The proposed analysis is based only on the PS
part of the board. The PL part is not used at any moment during
the experiment. Nevertheless, the proposed test methodology
and the achieved results are meant to be generic and easily
extendable to other ARM cores.

Heavy ions experiments were conducted at Laboratório
Aberto de Física Nuclear of the Universidade de São Paulo
(LAFN-USP), Brazil [26]. The ion beams were produced
and accelerated by the São Paulo 8UD Pelletron Accelerator.
Aiming to achieve a very low particle flux in the range from 102

to 105 particles.cm−2.s−1, as recommended by the European
Space Agency (ESA) for SEU tests [27], a standard Rutherford
scattering setup using a gold foil was used. The experiment
was performed in air. A silicon barrier detector was mounted
inside the vacuum chamber at an angle of 45◦ to monitor the
beam intensity. In front of the detector, it was mounted a col-
limator with a diameter of 4 mm, defining a solid angle of
about 0.085 msr. The SEU events were observed irradiating 16O
beams, scattered by a 184 µg/cm gold target, with an energy of
51 MeV (effective energy of 41 MeV), which provided a Linear
Energy Transfer (LET) of 5 MeV/mg/cm and penetration in Si
of 29 µm. To achieve the desired particle flow, the DUT was
positioned at a scattering angle of 15◦, resulting in an average
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Fig. 3. Execution time, memory footprint, MWTF, and fault coverage for all combined techniques and all case-study applications. The label indicates the version
of VAR technique was used together with SETA. For example, 3+ indicates that VAR3+ and SETA were utilized. The execution time, memory footprint, and
MWTF are expressed in relation to the unhardened application (left axis). The fault coverage is presented in percentage (right axis).

Fig. 4. (a) View of the surface of the XC7Z020-CLG484 device, and
(b) Microscopic section of the XC7Z020-CLG484 device.

flux of 584.44 particles.cm−2 · s−1. Finally, the DUT was also
positioned in a way that the center of the beams was focused in
the PS part.

The package of the device was thinned to allow that irradi-
ated particles penetrate the active region of the silicon. Fig. 4(a)
shows the chip surface without its package. It is possible to
distinguish between the PS and the PL part. Fig. 4(b) shows
a microscopic section of the chip performed to evaluate the
energy loss of the heavy ions after passing the passive layers.
The passive layers consist of eleven copper metallization layers
separated by dielectric layers. The total thickness of the passive
layers is 12.87 µm. To estimate the energy loss of the heavy
ions, it was assumed a total thickness of the copper metalliza-
tion layers of 7.87 µm, and a total thickness of the dielectric
layers of 5.0 µm.

The setup, shown in Fig. 5, consists of a board, computer,
USB net switch, cables for communication, and cables for
power supply. The computer is connected to the board by two
USB cables. One is used to program the board, and the other
is used to receive the output from the board. The board power
supply is connected to the USB net switch, which is connected
by USB to the computer. It is used to control the power sup-
ply of the board. Only one ARM core was utilized during the
test, data and instruction L1 caches were enabled, and L2 was
disabled. The processor was running a target application that

TABLE X
SUMMARY OF RADIATION TEST WITH HEAVY IONS IN THE ARM

CORTEX-A9

sends the output by UART to the computer and, then, restarts
its execution. The computer was running a monitoring applica-
tion that listens to the COM port connected to the board UART,
and classifies the output. In case of error in the ARM processor,
the processor is reset.

Two versions of a Tower of Hanoi have been tested, one
unhardened, and the other hardened by VAR3+ and SETA
techniques, which was the case that reached the highest MWTF
in the simulated fault injection. Table X summarizes the
parameters utilized in the radiation test with heavy ion. The
unhardened version was 92 minutes under radiation, receiving
a total fluence of 3.23× 106 part/cm2 in average. The hard-
ened version was 91 minutes under radiation, receiving a total
fluence of 3.19× 106 part/cm2 in average. We observed an
SER of 5.43× 10−3 and a cross section of 9.30× 10−6 cm2

for the unhardened application. For the hardened version, we
observed an SER of 1.47× 10−3 and a cross section of 2.51×
10−6 cm2. One can see a reduction of the SER and cross
section by a factor of 3.71 when hardening using VAR3+ and
SETA. However, the execution time of the hardened case-study
application is 2.62 times, and the code size is 3.95 times the
unhardened application for the ARM processor. That results in
a normalized MWTF of 1.66x for the hardened application.

Although the results obtained from simulated fault injection
cannot be directly compared with the ones obtained from the
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Fig. 5. Setup of the radiation test. The computer is connected to the board by two USB cables. One is used to program the board and the other is used to get the
output from the board by UART. The computer is also connected by USB to a switch that controls the power supply of the board.

radiation experiment, it is possible to notice that the MWTF of
the hardened version in the radiation experiment was not very
high, only 1.66x. There are many factors that influenced the
lower MWTF in the radiation test. One of the major causes is
the presence of cache memories. The experiments show that
ARM caches are very sensitive to radiation and prone to faults
that become errors. Another concern is that simulation model
does not include microarchitectural registers.

Data-flow technique VAR3+ implements duplication rule
D2, which does not create redundancy in the main memory
and, consequently, in the cache memories. Therefore, a fault
affecting the L1 cache (enabled in the heavy ion experiment)
is not detected by VAR3+. On the other hand, the current ver-
sion of the OVPSim-FIM fault injector does not inject faults in
cache memories. It only injects faults in the accessible regis-
ters. Anyhow, it is important to mention that the fault injection
method must not be used to replace radiation because it cannot
reproduce the complexity of the radiation flux and the com-
plete hardware architecture implementation. The fault injection
simulator was designed only for comparing the increase of reli-
ability offered by different SIHFT techniques, but not to get
estimations of absolute reliability values.

VI. CONCLUSIONS AND FUTURE WORK

SIHFT techniques are less costly than hardware-based ones,
but they present time and memory overheads. In this work,
we went a step further than [28]. We showed that there is
room to reduce overheads without degrading the fault cov-
erage. SETA appears as a better solution to protect against
control-flow errors. It achieves the same level of fault coverage
as a state-of-the-art control-flow technique with lower over-
heads in performance and memory. However, SETA by itself
is not enough to protect the processor against soft errors, it
must be combined with a data-flow technique. The combina-
tion of SETA with VAR increases significantly the MWTF.
When SETA is combined with VAR3+, the MWTF is 8.67x
the MWTF of the unhardened application. However, radiation
test reveals that ARM Cortex-A9 architecture presents high sen-
sitivity to faults due to its cache memories. Therefore, it is
important to use data-flow techniques that also apply redun-
dancy to the memories (duplication rule D1). In addition, fault
injection campaigns on the core architecture are not accu-
rate enough to estimate the reliability of SIHFT techniques.
Simulation models have to include cache memories to get better
estimations in the design of SIHFT techniques.

Furthermore, one can see that data-flow techniques present
higher overheads in performance and memory when compared
to control-flow techniques. Selective methods to protect the
data-flow shall be investigated to reduce such overheads.
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